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Abstract. This work considers steady-state aspects of multirotor windturbine control. In contrast to most literature on the

topic, the underlying multirotor model includes the aerodynamic interactions between the rotors. The model predicts that

these interactions are central for effective control of multirotor windturbines under some conditions. A numerical optimization

problem is formulated to find the optimal control solutions, and two adaptations of the MPPT algorithm for the multirotor case

are suggested. By employing furling for multirotor windturbines, it is also shown that one can drastically reduce the bending5

moment of the structure. Other physical effects such as operation with wind shear and simple failure handling are also presented

using a 23-rotor fixed-pitch multirotor windturbine with a total rated power of 5 MW. The results are meant as an enabling

work, showcasing the possibilities and challenges involved in multirotor stability analysis and control problems.

1 Introduction

This work is a compilation of the relevant work for multirotor windturbines presented in the thesis of the main author Matras10

(2025).

Multirotor windturbines have been a known concept for several centuries, but they have almost been disregarded when

compared to their single rotor counterparts. In a quest for cost reduction, the single-rotor windturbines have become bigger and

bigger. While there might be many reasons for this trend, the scaling laws dictate structural and aerodynamic challenges due

to increasing rotor sizes. A natural alternative to increasing the rotor radius is to increase the rotor count, and possibly to work15

with, rather than against, the scaling laws by reducing the rotor radius. The idea has been investigated by reputable industry

companies such as Vestas van der Laan et al. (2019) and recent startups such as Wind Catching Systems AS (2021) and Myriad

Wind Energy Systems (2024).

The multirotor concept with smaller rotor radii has many advantages, mainly rooted in the fact that it can be considered

to discretize the continuous wind field in smaller areas, allowing it to more efficiency utilize the spatially varying wind field.20

Smaller blades also reduce the rotating inertia, offering the possibility of better temporal adaptations to the wind, which can

result in load reduction that in turn increases lifetime. These and other aspects have been investigated in existing literature on

the topic, among others Jamieson (2011); Jamieson and Branney (2014); Sandhu (2018).

Successful application of multirotor windturbines requires a thorough understanding of the system behavior and how they

are best controlled for maximal power generation, load reduction and stability. The available literature on the topic is somewhat25

sparse, which is highlighted by the control challenge proposed in Sørensen et al. (2018), motivating researchers to contribute to
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the topic. Spagnolo et al. (2020) responded to the challenge and developed an extremum-seeking controller. Other aspects such

as yawing of a two-rotor windturbine with variable pitch and optimal differential thrusting was investigated by Guenoune et al.

(2016) and MacMahon and Leithead (2018), respectively. Unfortunately, none of these contributions include the aerodynamic

interactions between the rotors, which is believed to be significant based on their significance for multirotor helicopters Johnson30

(1994). This work will include a simplified model of the interactions, allowing an investigation of how they affect the control

and stability of a multirotor windturbine at steady-state in the various operating regimes. The knowledge obtained from the

analysis can be used to guide future attention to the areas that are of significance for multirotor systems.

Modeling and control of single rotor windturbines is relatively well described in the literature, see Manwell et al. (2010);

Apata and Oyedokun (2020); Barzegar-Kalashani et al. (2023). The majority of large single rotor windturbines have blades with35

variable pitch, which adds modeling, design and control complexity, as well as increasing the number of failure points. Another

advantage of multirotor windturbines with smaller rotors is their increased rigidity which can allow for control techniques using

stalling or furling to effectively achieve a similar level of power control as a variable pitch turbine. This idea will be extended

to the multirotor case to illustrate an intriguing operation scheme for when the multirotor windturbine needs to limit its power

output.40

2 Overview

As established in Matras and Pedersen (2024), the dynamics of multirotor systems are influenced by both the rotor count and

the size of each individual rotor. This complicates any general study on the topic by making results case dependent, but it can

be omitted by discussing overall system behavior at steady-state, which is what will be done in this work.

From a control perspective one can identify two main modes of operation at steady-state: unconstrained and constrained45

operation. The former case considers the phase in which the main goal of a windturbine is to maximize its energy production.

This is typically achieved by using the well-know Maximum Power Point Tracking (MPPT) controller or derivations of it.

While this has proven to work well for single-rotor turbines, its efficacy for the multirotor case has still to be proven. To this

end, the results from applying the MPPT algorithm to each individual turbine is compared to the numerically optimal solution.

The second mode of operation, the constrained mode, can be trickier to handle due to the system complexity and the varying50

nature of the constraints. Algorithmically, this complicates the design because the MPPT algorithm is no longer viable, and

other controllers need to be developed. The present work will consider the numerically optimal solution, even though this can

be too complex for real-time control. An advantage of the numerical optimal solution is that the solutions relatively easily

can be computed for any desired constraints, of which the individual power constraint, a net bending moment constraint and

azimuthal torque constraints are considered here to highlight some interesting properties of multirotor systems.55

The findings from the two modes of operation are then used to inform a novel control strategy for multirotor windturbines

that by definition of Skogestad and Postlethwaite (2005) is self-optimizing, thus operating close to the numerically optimal

solution using inherent system properties. It is worth noting that also this analysis only considers the steady-state behavior and

substantial engineering efforts still need to be made to get a proficient dynamic control system.
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3 Modeling60

The foundation of the analysis is a simple steady-state multirotor model presented in Matras et al. (2024) based on the actuator

disk concept. The main novelty of this model comes from the inclusion of the aerodynamic interactions between the rotors.

Wind shear is also included as an extension of the model presented in Matras et al. (2024), and the required model parameters

are adjusted to fit a 23-rotor windturbine as shown in Fig. 1. Taking inspiration from the NREL 5 MW reference turbine from

Jonkman et al. (2009), the net rated power of 5 MW is equally divided among all the turbines and the center of the tightly65

packed multirotor turbine coincides with the hub height of the NREL 5 MW reference turbine. Additionally, the rotors are set

to have pairwise opposing rotational directions so that the axial torques cancel out.

Figure 1. Illustration of turbine configuration, the x, y and z coordinates, wind strength W (y) and direction ψ, thrusts f and torques M .

Following Matras et al. (2024), the model is decomposed as originally proposed in Joglekar and Loewy (1970) as shown in

Fig. 2. The decomposition allows for a clear separation of the various submodules, so that each can be modeled independently.

The main input to the model, which is also the source of energy, is the freestream wind of strength W (y) with direction ψ.70

Combining the freestream wind, the rotation of the rotors ω and the axial induced flows of all rotors v produces a relative

velocity over the rotor blades which are mapped to forces through the airloads module. These forces are then fed back into

the mechanics and inflow modules to compute the resulting mechanical and flow perturbations. The feedback structure gives

and intuitive understanding of the system behavior, and also allows to implement the multirotor interactions by extending the

inflow and mechanical modules, while the remaining modules remain decoupled on the rotor level.75

In the following, it is assumed that three critical measurements are available for each of the turbines n ∈ [1,N ], namely the

electrical power Pn, the rotational velocity ωn and the thrust fn. With these three measurements, it is possible to estimate

the required quantities for control purposes, as will be discussed later. The electrical power is assumed to be measured at the

output with good estimates for the losses so that the shaft power can be determined. The rotational velocity is assumed to be

an accurate direct measurement from, for instance, a hall sensor. Finally, the thrust is also assumed to be a directly measurable80
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Figure 2. Block diagram of system submodules.

quantity using a pressure plate between the thrust bearing and the support structure. Sideways forces are excluded for model

simplicity, and as shown in Matras et al. (2023), these are often two orders of magnitude smaller than the axial forces.

3.1 Induced Flows

The model developed in Matras et al. (2024) can be seen as a special case of the input coupling inflow model Matras (2025).

It describes the relation between a column vector of mean thrust f and a column vector of mean axial flows v. The relation is85

found as

v = Af . (1)

The matrix A describes the relation between the forces and flows, and depends on the rotor layout and the skew angle. Figure 3

illustrates how the pressure forcing of two rotors is converted into a flow using the A-matrix.

Figure 3. Illustration of inflow model with skewed flow.

The simplest case, where all rotors are spaced sufficiently apart so that they can be considered isolated from one another90

yields a diagonal matrix. Moving the rotors closer together adds interactions which become visible on the off-diagonals. To

include a skewed flow with average skew angle χ, the matrix A requires an expansion in tan(χ/2) to be computed

A =
M−1∑

m=0

Am tan(χ/2)m. (2)

As illustrated in Fig. 4, the skew angle is defined as the angle between the axial unit vector and the net flow that passes

through the rotor.95
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Figure 4. Illustration of induced velocity and the related angles.

A normalized example of the two first terms of the expansion of A for four rotors placed in a tightly packed square are

Ā0 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, Ā1 =




0 −0.26 −0.08 0

0.26 0 0 0.08

0.08 0 0 0.26

0 −0.08 −0.26 0



. (3)

It is clear that the zeroth term, representing the self influence, is constant regardless of the skew angle. The first term is skew-

symmetric and represents the linear, in tan(χ/2), interactions between the rotors. A few more terms are needed for good

coverage of higher skew angles, so the remainder of this work includes 10 terms for the modeled multirotor.100

3.2 Rotor Airloads

In accordance with the rest of the model, the airloads will also only consider mean axial linear and rotational velocities as

inputs, generating axial linear and rotational forces, f and q, respectively. The modeling of the airloads is further simplified by

using dimensionless inputs and outputs. The input is considered to be a slightly modified Tip Speed Ratio (TSR) given by

λ=
ωR

w
, (4)105

where the w =W cos(ψ)− v represents the net axial flow through the rotor, and not only the freestream component as in the

typical definition of the TSR. The fixed-pitch rotor model only takes the TSR as input.

Similarly, the outputs are also made dimensionless by using the thrust coefficient

CT =
f

1/2ρπR2(W cos(ψ))2
(5)

and torque coefficient110

CQ = κ
q

1/2ρπR3(W cos(ψ))2
, (6)

scaled by κ= 10 to make it of similar magnitude as the thrust coefficient. Here, ρ describes the fluid density and R the rotor

radius.

Using the approach from Matras et al. (2023), the input-output relation for the airloads was found using the Blade Element

Method (BEM) for λ ∈ [0,30] using the data presented in Jonkman et al. (2009). The dimensionless model then makes it115
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possible to scale the relation to the desired rotor size. Continuing as in Matras et al. (2023), the BEM data is then used to train a

neural network implemented in Flux Innes et al. (2018); Innes (2018) using the AdaBelief Zhuang et al. (2020) backpropagation

algorithm in Julia Bezanson et al. (2017). Thorough tuning of model dimensions, activation functions, weights and biases

revealed the model shown in Fig. 5, where the blue square represents the input, the blue circles represent neurons, the thickness

of the lines represents the weight of the connections and the red dots the bias. The activation function for the two hidden layers120

is the tanh function, and the output layer uses a unitary activation function.

Figure 5. Illustration of the neural network, weights in orange, bias in red.

Mathematically, the artificial neural network with weights W and biases b is given by

CT
CQ


 = W3 tanh(W2 tanh(W1λ+ b1) + b2) + b3. (7)

As expected from the results presented in Matras et al. (2023), the performance is excellent as shown in Fig. 6.

Figure 6. BEM results compared to the neural network (NN).
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3.3 Mechanics125

Only the fundamental mechanics required to represent a multirotor system at steady-state will be considered here. These are

the azimuthal torque and the net bending moment around the base

My =
23∑

n=1

fnxn, (8)

Mx =
23∑

n=1

fnyn, (9)130

where xn and yn are the x and y positions of rotor n. The steady-state nature of the model allows the rotational velocity of

rotor n, ωn, to be set directly as the appropriate torque will be produced by the generator to maintain steady-state,

qg,n =−qn (10)

3.4 Wind

The final block in Fig. 2 that needs to be modeled is the wind. Assuming a horizontally constant freestream field of strength135

W (y) and direction ψ, one only needs to model the wind shear. This endeavor has been undertaken many times previously, so

the well known power law profile presented in Manwell et al. (2010) is used,

W (y) =Wr

(
y

yr

)α
. (11)

The reference velocity Wr at height yr = 2 m, is scaled to height y, and the relation can be adapted to any particular site by

adjusting α. Following Schlichting and Shapiro (1968), we use α= 1/7.140

4 Unconstrained Operation

This section will investigate the unconstrained operation of a multirotor windturbine that maximizes the produced power.

4.1 Control Law

The MPPT algorithm is an excellent candidate for controlling a single rotor windturbine in the unconstrained region, Abdullah

et al. (2012). By considering the steady-state operation around the optimum, taking only the rotational velocity as a variable,145

an optimal and stable solution for the generator torque is found as

qg,n =
1
2
ρπR2C∗p

(
R

λ∗

)3

|ωn|ωn. (12)

The optimal power coefficient C∗p and the corresponding TSR λ∗ have to be computed beforehand. When applying the MPPT

algorithm to each individual turbine in a multirotor windturbine without considering the interactions this will be called Dis-

tributed Maximum Power Point Tracking (DMPPT).150
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During strictly axial flows, the DMPPT algorithm is equivalent to solving the optimization problem

max
ω

23∑

n=1

−ωnqn s.t. model equations (13)

for the simple model considered in this work. This optimization problem was implemented in Julia Bezanson et al. (2017)

using the JuMP Dunning et al. (2017) package and solved using the IPOPT solver Wächter and Biegler (2006).

4.2 Operation Characteristics155

At steady-state without constraints it is optimal for the multirotor to be aligned with the wind. The inflow model predicts no

interactions in this case, making the DMPPT optimal. This is indeed verified by comparing the results from the DMPPT to the

numerically optimal solution by solving (13).

Figure 7 and Fig. 8 show the powers and thrusts for the unconstrained case with a wind strength of 9 ms−1 at the array

center. The effect of the wind shear is clear, as both the thrust and power increase with height.160

Figure 7. Powers in kW of multirotor windturbine in wind shear with 9 ms−1 wind velocity at array center.

4.3 Azimuthal Torque

As long as the individual windturbines can be considered decoupled, the analysis is straight forward as it strongly resembles

a gathering of single rotor systems, which are described in the literature. However, once the aerodynamic interactions come

into play, this changes. In an effort to analyze these interactions, they are provoked by enforcing an azimuthal offset, which

in turn generates horizontally varying operating conditions across the array. These changes will in turn result in varying thrust165

distributions affecting the horizontal stability of the multirotor windturbine.

Consider the case in which the multirotor windturbine is not aligned with the flow. Now, the side that is closes to the wind,

the upwind side, extracts energy from the wind, reducing the axial wind strength. Because the multirotor is not aligned with the
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Figure 8. Thrusts in kN of multirotor windturbine in wind shear with 9 ms−1 wind velocity at array center.

flow, this means that some component of this slightly perturbed, slowed down, part of the flow, will traverse onto the downwind

turbines. This effect multiplies itself the further downwind one travels on the multirotor. Figure 9 illustrates the mean net axial170

flow through each rotor with a 45◦ azimuthal misalignment. The upwind side is to the right in the figure and the interactions

can be clearly seen.

Figure 9. Mean net axial flow with 45◦ azimuthal misalignment.

When operating in the unconstrained region, in which the thrust correlates with the freestream wind strength, this means that

the thrust also decreases downwind. Fortunately, this effect produces a restoring moment which tries to realign the multirotor
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with the wind as shown in Fig. 10. At the peaks, the restoring moment is approximately equivalent to moving the center of175

thrust by 3 m upwind.

Figure 10. Influence of azimuthal misalignment on azimuthal torque.

The interactions also cause a reduction in total power, which increases with increasing skew angle as shown in Fig. 11.

Both figures show the results obtained with the DMPPT algorithm and with the numerically optimal solution. While the

general characteristics are the same, there are some differences. Mainly, the optimal solution is able to leverage the interactions

to increase the total power by a maximum of about 2 % of the rated power, compared to the DMPPT algorithm that tries180

to maximize the power for each rotor independently. The leveraging of the interactions also has the effect of reducing the

azimuthal torque.

The restoring moment is necessary, but not sufficient to determine if the multirotor is at a stable equilibrium when it is

aligned with the wind. In addition to the restoring moment, one would also need to consider the dynamics of the total system

to form a sufficient argument. However, it is believed that with the appropriate utilization of dampers the equilibrium can185

be made stable if it is not already. The damping effect could be implemented either physically, or digitally using differential

thrusting. Differential thrusting can be achieved by manipulating the generator torques so that the corresponding rotors change

their thrusts, effectively manipulating the net azimuthal torque. In this sense, the differential application of generator torques

can be seen as a proxy for a yaw actuator.

When the stability of the system is ensured, one can conclude that the DMPPT algorithm exhibits a variation of self-190

optimizing control, Skogestad and Postlethwaite (2005), that will always try to realign the multirotor with the freestream wind.
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Figure 11. Influence of azimuthal misalignment on the total power.

5 Constrained Operation

The second and maybe more interesting operating region is the constrained region in which various physical constraints need

to be respected. In contrast to a single rotor, the multirotor has constraints both on the rotor level, such as maximal power or

thrust, and on the multirotor level such as the net azimuthal torque and bending moment.195

5.1 Control Law

The DMPPT algorithm is no longer valid in the constrained case, and the general numerical optimal solution presented in (13)

needs to be expanded to include constraints

max
ω

23∑

n=1

−ωnqn−Q
23∑

n=1

fnyn (14)

s.t.200

model equations

−ωnqn ≤ Pmax ∀ n (15)

ψ = ψ∗, (optional) (16)

My = 0, (optional) (17)

Mx ≤Bmax, (optional). (18)205

The star symbol is used to denote a reference value. A small penalty for the bending moment, with Q= 5×10−10, is added to

guide the solution towards the optimum that also reduces the bending moment without significantly influencing the power, the

importance of this will be shown later.

11

https://doi.org/10.5194/wes-2024-185
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



5.2 Individual Power Constraints

Figure 12 through Fig. 17 show varying characteristics of the multirotor, when aligned with the wind, found at the solution to210

(14) with the power constraints on each individual turbine from (15).

Figure 12. Power per rotor in each row with individual power constraints.

Figure 13. Total power with individual power constraints.

The effect from the wind shear is clearly visible, affecting each row of the multirotor differently. Intuitively, the top row of

rotors, row 5, reaches the power constraint first as shown in Fig. 12, while the remaining rows follow in order. An advantageous
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Figure 14. Thrust per rotor in each row with individual power constraints.

Figure 15. Total thrust with individual power constraints.

consequence of this is that the total generated power shown in Fig. 13 has a smoother transition from the unconstrained to the

constrained region. The same effect is visible for the thrusts in Fig. 14 and Fig. 15.215

Interpreting the above findings, one could conclude that the rotors in one row could advantageously differ from the rotors in

the other rows. For instance, the upper rotors should be optimized and rated for higher wind velocities than the lower rotors.

Such an adjustment could increase the total generated power, but consequently also the loads on the support structure. This

would also reduce the smoothing behavior seen when each row hits the constraint at slightly different velocities.
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Figure 16. Torque per rotor in each row with individual power constraints.

Figure 17. Rotational velocity per rotor in each row with individual power constraints.

Figure 17 shows the advantage of including the small penalty on the bending moment in (14), because once the fixed-pitch220

rotor reaches the rated power, it can decrease the power by either increasing or decreasing the TSR as shown in Fig 6. Increasing

the TSR would further increase the thrust, which is not desired, so the other solution found by decreasing the TSR is sought

and found as can be seen in Fig. 17 and Fig. 14.
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5.3 Net Bending Moment Constraint

In addition to placing constraints on the generated power to protect the drivetrain, generator and power electronics, a net bend-225

ing moment constraint can also be added to protect the support structure. The net bending moment constraint for a multirotor

can be seen as a weighted equivalent to the thrust constraint for a single rotor. Comparing the total thrusts from Fig. 15 to the

unconstrained net bending moment in Fig. 18 one can clearly see the resemblance between the two values, but the net bending

moment puts a higher weight on the rotors that are placed higher, because they increase the loading on the structure more.

Figure 18. Net bending moment.

One can easily include the net bending moment constraint (18) with Bmax = 5× 107 Nm in the optimization problem. The230

solution to (14) with (15) and (18) for a wind velocity of 17 ms−1 at the center of the array produces an allocation that result

in powers and thrusts as shown in Fig. 19 and Fig. 20, respectively. As can be seen, most rotors operate at the power constraint,

and only the top rotors have started reducing thrusts by slowing down the rotors starting from the middle and going outwards.

The top rotors are turned off first, because they have the greatest impact on the bending moment. This results in a total power

reduction of 8 %. In the presence of pitch-control, this issue is typically mitigated by pitching the blades, so no power is lost.235

An interesting note to Fig. 20 is the presence of a thrust due to the surface area of the rotor, even though the rotor is not

producing any power.

5.4 Net Azimuthal Torque Constraint

The final constraint considered is the net azimuthal torque constraint. Its importance might not be obvious, but one example

might be the case where one rotor fails, after which the remaining rotors might produce an undesired net azimuthal torque.240

Including the constraint (17) in the optimization problem, one can easily compensate for failures by reducing the thrusts

appropriately on the opposing side. Figure 21 and Fig. 22 show the powers and thrusts for a multirotor where rotor number 13
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Figure 19. Power in kW for allocation with individual power and net bending moment constraints.

Figure 20. Thrusts in kN for allocation with individual power and net bending moment constraints.

has suffered a failure and is not spinning. The example uses a wind velocity at the array center of 17 ms−1. As found by the

optimal control problem, the best thing to do is to reduce the thrust on the outer and uppermost rotor on the opposite side, rotor

number 19. This way the smallest possible reduction of power, 7 %, is achieved, while at the same time reducing the bending245

moment to a minimum.
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Figure 21. Powers in kW for allocation with individual power and net azimuthal torque constraints.

Figure 22. Thrusts in kN for allocation with individual power and net azimuthal torque constraints.

6 Multirotor Windturbine Allocation Strategies

The control strategy for the general case presented in the optimization problem (14) through (18) can be too computationally

complex to solve for practical real-time applications. This section will suggest some high level control schemes, utilizing

multirotor properties that are predicted by the proposed model, that should be viable for real-time applications.250
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6.1 Scheduled Maximum Power Point Tracking

The DMPPT algorithm developed for the unconstrained case is not applicable when there are active constraints. Assuming

that each rotor only is constrained by an individual power constraint, the DMPPT algorithm can be redesigned to respect this

constraint by reducing the power once it reaches the rated power. The main issue with the redesigned controller is that the power

constraint makes it not minimum phase Dalala et al. (2013). After the rotor reaches the rated power, the power is controlled255

by the generator torque which has to increase briefly, possibly exceeding the power constraint, to reduce the rotational rate

sufficiently for the steady-state power to be lower, after which the generator can reduce its torque and power. Luckily, similar

issues have been investigated and solved by Barzegar-Kalashani et al. (2023); Dalala et al. (2013), so it is believed that such a

controller can be successfully designed and implemented.

In contrast to the DMPPT algorithm, the current approach makes the somewhat unconventional assumption of the net flow260

through the rotor being available either as a measurement or an estimate. The net flow is used as input to the control algorithm,

that based on this returns the optimal rotational velocity of the rotor. A high-gain controller can then be used to control the

system to follow this reference. This type of control scheme will be called the Scheduled Maximum Power Point Tracking

(SMPPT) controller.

Figure 23 shows the optimal relation between the net flow through the rotor and the rotational velocity that maximizes the265

power until the power constraint is reached at around 7.5 ms−1, after which the power is kept at the constraint. The SMPPT

algorithm heavily relies on this relation, which has to be tuned to each physical system by formulating an accurate model

and computing the optimal solutions numerically. With these results at hand, one can then model the relation using a neural

network.

Figure 23. Optimal setpoints for rotational velocity and the fitted neural network (NN).
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Figure 24. Neural network for SMPPT.

A neural network as shown in Fig. 24 was designed, implemented and trained to reproduce the relations from Fig. 23 for net270

axial flows from 0.01 ms−1 to 50 ms−1. The same framework as for the airloads was used for implementation and training.

6.1.1 Thrust and Torque Schedule

An interesting feature arises when employing the SMPPT controller to the feedback model shown in Fig. 2: The airloads can

be substituted for the optimal airloads which include the mechanics, since at steady-state the rotational velocities are instantly

determined by the net flow. This gives a direct map from the net flow to the generated forces as shown in Fig. 25, simplifying275

the system block diagram to Fig. 26. Assuming a multirotor with many reasonably small rotors, one can still describe dynamic

cases with the optimal airloads simplification, because the dynamics are governed by the inflow as shown in Matras and

Pedersen (2024).

6.1.2 Restoring Moment

Similarly to the DMPPT, the SMPPT algorithm also generates an azimuthal torque when applied to a multirotor system that is280

not aligned with the freestream. In the unconstrained case the SMPPT is equivalent to the DMPPT where the restoring moment

already has been shown. An example for the power constrained case with a wind strength of 20 ms−1 at the array center,

meaning that all turbines need to limit their power to comply with the constraint, is shown in Fig. 27. For modest misalignments,

the expected restoring moment is present, but at large misalignments, the net azimuthal torque becomes destabilizing. The

somewhat abrupt changes in the graph for the optimal solution are believed to be due to the different rows reaching the285

destabilizing misalignment at slightly different azimuthal misalignments.

Figure 28 shows the resulting net power as a function of the azimuthal misalignment. One can clearly see that by increasing

the misalignment, one can effectively reduce the power. For single rotor systems this technique is known as furling, a term

which will also be used for multirotors.
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Figure 25. Thrust and torque schedules at steady state.

Figure 26. Block diagram with scheduling controller.

Figure 27. Influence of azimuthal misalignment on azimuthal torque when operating with power constraints.
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Figure 28. Influence of azimuthal misalignment on power when operating with power constraints.

An interesting observation in Fig. 27 and Fig. 28 is that the SMPPT controller performs identically in terms of power and net290

azimuthal torque to the numerically optimal solution of the multirotor problem, as long as the turbine is more or less aligned

with the wind. The major difference being that the SMPPT controller is almost trivial to compute. This highly simplifies the

control, as one can employ the SMPPT controller, completely disregarding the interactions and still operate optimally as if one

were to include the complex model with all interactions, at least in steady state with not too large azimuthal misalignments.

6.2 Furling Scheduled Maximum Power Point Tracking295

The SMPPT algorithm presented in the previous section gives promising results in the individual power constrained case. In

addition to constraining the power, it is often also desirable to minimize the structural loads. This can be achieved by utilizing

furling, which not only reduces power, but also the loads.

Consider the merged results from Fig. 27 and Fig. 28 as shown in Fig. 29. One can clearly see the blue dots marking the

yaw misalignments that produce a zero azimuthal torque, while still producing maximum power. This is an advantageous300

equilibrium, even though it is unstable. The red dots mark the azimuthal misalignment where the power per pending moment

is maximized, and it is of great interest that these points almost coincide with the unstable roots of the azimuthal torque.

Generalizing the results from Fig. 29 to a variety of velocities one can compute the azimuthal misalignment required to

achieve zero azimuthal torque and maximum power per bending moment at any given velocity. The results of such an analysis

are shown in Fig. 30, where also the case with no azimuthal misalignment is considered, the SMPPT algorithm. The blue305

line represents the line of zero azimuthal torque, while the red line the misalignment where the power per bending moment is

maximized. It is clear that the zero net azimuthal torque misalignment almost coincides with the optimal solution where the

power per bending moment is maximized for all freestream wind velocities!
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Figure 29. Slice of Fig. 30 at velocity 20 ms−1.

Figure 30. Optimal furling.

Concluding the findings, one can approximate the optimal solution to the problem

max
ψ

P

Mx
s.t. model equations (19)310

by choosing the appropriate root of the azimuthal torque, namely the unstable equilibrium, rather than solving a complicated

global numerical optimization problem. Furthermore, each individual multirotor windturbine can still be decoupled using the

SMPPT algorithm. The main challenge lies in keeping the multirotor at the unstable equilibrium, which can be done using a

variety of techniques based on either differential thrusting or with some sort of yaw actuator.
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The SMPPT algorithm in cooperation with a global governor that ensures the operation at the optimal root of the net315

azimuthal torque curve is named the Global Governor Scheduled Maximum Power Point Tracking (GGSMPPT) algorithm.

As in the unconstrained case, such a control strategy is a self-optimizing control scheme by definition of Skogestad and

Postlethwaite (2005).

Based on simulations of other rotor layouts and counts, it is believed that the multirotor properties required for the GGSMPPT

controller to work are a general phenomenon in multirotor windturbines with at least one pair of vertically aligned and hori-320

zontally spaced rotors.

7 Discussion

Three control algorithms for the control of multirotor systems have been proposed:

– The general numerical optimization problem in (14).

– The SMPPT algorithm for the case with individual power constraints.325

– The GGSMPPT which also reduces the net azimuthal loads by furling.

The azimuthal misalignment for the three control algorithms at steady state is shown in Fig. 31, and the corresponding power

output is shown in Fig. 32. It is clear that all three algorithms perform identically in terms of power, but only the GGSMPPT

algorithm approximates the optimal furling angle. One of the consequences of this is the difference in bending moments

shown in Fig. 33. Both the numerically optimal solution and the GGSMPPT algorithms have the same, constant bending330

moment at high freestream wind velocities, while the SMPPT bending moment keeps increasing with wind strength because

the multirotor remains aligned with the wind. These results show that furling could be a viable alternative to pitch control in

multirotor systems, and that the control system for such a design could be both computationally efficient and almost optimal

by implementing the GGSMPPT controller.

The work presented here has been simplified under the stated assumptions, so it is not to be regarded as a complete analysis335

of the system. An effect mentioned in E. Muljadi (1998) which has not been included here considers the azimuthal torque

generated on a single rotor when furling, in addition to the increase in flap loads and possibly increased noise. However, the

smaller, potentially more rigid, multirotor blades might not be influenced as much by these effects as large rotor blades. Other

aspects, such as how the furling shall be performed and its effects on the system have also not been investigated. Traditionally,

furling has often been implemented with mechanical devices or actuators as discussed in Chirca et al. (2020), but these wear340

out over time. Using differential thrusting, one could potentially eliminate these issues, possibly at the cost of slightly reducing

overall power production.
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Figure 31. Azimuthal offset for various control algorithms.

Figure 32. Power for various control algorithms.

8 Conclusions

This paper has presented the novel steady-state multirotor windturbine model and the high level control strategies presented in

Matras (2025). The novelty of the model stems from the inclusion of, an admittedly somewhat simplified version of, the aero-345

dynamic interactions between the rotors. These interactions predict some interesting phenomena for multirotor windturbines,

which as shown, can be leveraged to obtain simple high level control schemes that allow the use of a decoupled control strategy

on the single-rotor level. The solution to the complex optimization problem involving numerous rotors and states can thus be

approximated by an almost trivial algorithm.
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Figure 33. Bending moments about the bottom of the support.

These intriguing results open up many new questions and engineering challenges. Maybe the most fundamental area for350

future work involves the validation of the multirotor interaction effect and increasing the model’s fidelity to further investigate

the topic of furling. An investigation of furling and how this effect best is achieved naturally follows, as well as dynamic

considerations to establish stability and a baseline for control algorithms.

Author contributions. Dr. Pedersen developed the models in collaboration with Matras, who also implemented, simulated and described the

results and wrote the paper including all figures. Dr. Pedersen contributed as a supervisor during the whole process.355

Competing interests. The authors declare that they have no conflict of interest.

25

https://doi.org/10.5194/wes-2024-185
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Abdullah, M., Yatim, A., Tan, C., and Saidur, R.: A review of maximum power point tracking algorithms for wind energy systems, Renewable

and Sustainable Energy Reviews, 16, 3220–3227, https://doi.org/https://doi.org/10.1016/j.rser.2012.02.016, 2012.

Apata, O. and Oyedokun, D.: An overview of control techniques for wind turbine systems, Scientific African, 10, e00 566,360

https://doi.org/10.1016/j.sciaf.2020.e00566, 2020.

Barzegar-Kalashani, M., Seyedmahmoudian, M., Mekhilef, S., Stojcevski, A., and Horan, B.: Small-scale wind turbine

control in high-speed wind conditions: A review, Sustainable Energy Technologies and Assessments, 60, 103 577,

https://doi.org/https://doi.org/10.1016/j.seta.2023.103577, 2023.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Review, 59, 65–98,365

https://doi.org/10.1137/141000671, 2017.

Chirca, M., Dranca, M., Oprea, C. A., Teodosescu, P.-D., Pacuraru, A. M., Neamtu, C., and Breban, S.: Electronically Controlled Actuators

for a Micro Wind Turbine Furling Mechanism, Energies, 13, https://doi.org/10.3390/en13164207, 2020.

Dalala, Z. M., Zahid, Z. U., and Lai, J.-S.: New Overall Control Strategy for Small-Scale WECS in MPPT and Stall Regions With Mode

Transfer Control, IEEE Transactions on Energy Conversion, 28, 1082–1092, https://doi.org/10.1109/TEC.2013.2287212, 2013.370

Dunning, I., Huchette, J., and Lubin, M.: JuMP: A Modeling Language for Mathematical Optimization, SIAM Review, 59, 295–320,

https://doi.org/10.1137/15M1020575, 2017.

E. Muljadi, T. Forsyth, C. P. B.: Soft-Stall Control versus Furling Control for Small Wind Turbine Power Regulation, windpower ’98 ;

Conference date: 27-04-1998 Through 01-05-1998, 1998.

Guenoune, I., Plestan, F., and Chermitti, A.: Control of a new structure of twin wind turbine, in: 2016 IEEE International Conference on375

Renewable Energy Research and Applications (ICRERA), pp. 490–495, https://doi.org/10.1109/ICRERA.2016.7884385, 2016.

Innes, M.: Flux: Elegant Machine Learning with Julia, Journal of Open Source Software, https://doi.org/10.21105/joss.00602, 2018.

Innes, M., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M. C., Joy, N. M., Karmali, T., Pal, A., and Shah, V.: Fashionable Modelling with

Flux, CoRR, abs/1811.01457, https://arxiv.org/abs/1811.01457, 2018.

Jamieson, P.: Innovation in wind turbine design, Wiley, Chichester, West Sussex ; Hoboken, N.J, 1st ed edn., ISBN 978-0-470-69981-2,380

oCLC: ocn719429298, 2011.

Jamieson, P. and Branney, M.: Structural Considerations of a 20MW Multi-Rotor Wind Energy System, Journal of Physics: Conference

Series, 555, 012 013, https://doi.org/10.1088/1742-6596/555/1/012013, 2014.

Joglekar, M. and Loewy, R.: An Actuator-disc analysis of helicopter wake geometry and the corresponding blade response, USAAVLABS

Technical Report 96-66, U.S.ARMY Air Mobility Research and Development Laboratory, 1970.385

Johnson, W.: Helicopter Theory, Dover Books on Aeronautical Engineering Series, Dover Publications, ISBN 9780486682303, https://books.

google.cv/books?id=SgZheyNeXJIC, 1994.

Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5MW Reference Wind Turbine for Offshore System Development,

Tech. rep., National Renewable Energy Laboratory (NREL), https://doi.org/10.2172/947422, 2009.

MacMahon, E. and Leithead, W.: Performance Comparison of Optimised and Non-Optimised Yaw Control for a Multi Rotor System, in:390

2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 1638–1643, IEEE, Copenhagen, ISBN 978-1-5386-7698-1,

https://doi.org/10.1109/CCTA.2018.8511353, 2018.

26

https://doi.org/10.5194/wes-2024-185
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Manwell, J. F., McGowan, J. G., and Rogers, A. L.: Wind Energy Explained: Theory, Design and Application, Wiley, Chichester, U.K, 2nd

edition. edn., ISBN 9780470015001, 2010.

Matras, F.: Modeling, Simulation and Control of Multirotor Systems, Ph.D. thesis, Norwegian University of Science and Technology, 2025.395

Matras, F. and Pedersen, M. D.: On the Necessity of Dynamic Inflow, Modeling, Identification and Control, 45, 29–39,

https://doi.org/10.4173/mic.2024.1.3, 2024.

Matras, F., Reinhardt, D. P., Gryte, K., and Dinhoff Pedersen, M.: Homogeneous Parametric Modeling of Airloads, SYSTEM THEORY,

CONTROL AND COMPUTING JOURNAL, 3, 1–11, https://doi.org/10.52846/stccj.2023.3.1.44, 2023.

Matras, F., Årsandøy, F. X. N., and Pedersen, M. D.: Modeling, Analysis and Optimization of Multirotor Power Consump-400

tion, in: 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 2680–2685,

https://doi.org/10.1109/CoDIT62066.2024.10708188, 2024.

Myriad Wind Energy Systems: Developing modular wind energy for a more affordable and sustainable future, https://www.myriadwind.com/,

2024.

Sandhu, N.: Performance and Economic Analysis of Multi-Rotor Wind Turbine, EMITTER International Journal of Engineering Technology,405

6, 289, https://doi.org/10.24003/emitter.v6i2.298, 2018.

Schlichting, H. and Shapiro, A. H.: Boundary Layer Theory, Sixth Edition, Journal of Applied Mechanics, 35, 846–846,

https://doi.org/10.1115/1.3601336, 1968.

Skogestad, S. and Postlethwaite, I.: Multivariable feedback control : analysis and design, 2005.

Spagnolo, F., Papageorgiou, D., Galeazzi, R., Thomsen, J. S., and Sørensen, K. H.: Extremum Seeking Control for Multi-Rotor Wind Turbine410

in the Full-Load Region, IFAC-PapersOnLine, 53, 5386–5391, https://doi.org/10.1016/j.ifacol.2020.12.1525, 2020.

Sørensen, K. H., Knudsen, T., Filsoof, O. T., Hovgaard, T. G., Grunnet, J. D., Neto, J. X. V., and Wisniewski, R.: Multi-Rotor Wind Turbine

Control Challenge - A Benchmark for Advanced Control Development, in: 2018 IEEE Conference on Control Technology and Applica-

tions (CCTA), pp. 1615–1622, IEEE, Copenhagen, ISBN 978-1-5386-7698-1, https://doi.org/10.1109/CCTA.2018.8511511, 2018.

van der Laan, M. P., Andersen, S. J., Ramos García, N., Angelou, N., Pirrung, G. R., Ott, S., Sjöholm, M., Sørensen, K. H., Vianna Neto,415

J. X., Kelly, M., Mikkelsen, T. K., and Larsen, G. C.: Power curve and wake analyses of the Vestas multi-rotor demonstrator, Wind Energy

Science, 4, 251–271, https://doi.org/10.5194/wes-4-251-2019, 2019.

Wächter, A. and Biegler, L. T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,

Mathematical Programming, 106, 25–57, 2006.

Wind Catching Systems AS: Designed for floating wind, https://windcatching.com/, 2021.420

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S., Dvornek, N., Papademetris, X., and Duncan, J. S.: AdaBelief Optimizer: Adapting Stepsizes by

the Belief in Observed Gradients, 2020.

27

https://doi.org/10.5194/wes-2024-185
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.


