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Abstract. This brief communication presents a parametric model for the wind direction rose, based on ellipse geometry. Such

a model supports standardisation and identification of generally representative cases, while also enabling systematic analyses

of wind rose “shape” impacts on the benefits of proposed wind farm design and control innovations. Formulations include

analytical wind direction rose modelling, model fitting to measured data via gradient descent minimisation of sum-of-square-

errors, and goodness-of-fit measures. Testing on wind direction data from real offshore wind farms confirms good performance,5

indicating this parametric model is useful to wind energy research and development efforts. Possible model extensions are also

discussed, including their benefits and drawbacks.

1 Introduction

At the wind farm scale, the direction of the wind strongly affects the levels of turbine-turbine interactions and, hence, the

flow conditions experienced by individual turbines (Meyers et al., 2022; Dallas et al., 2023). This, in turn, impacts energy10

production, optimal turbine layout, the efficacy of different wind farm control strategies, and turbine reliability (Slot et al.,

2018; Amiri et al., 2019; King et al., 2021; Stanley et al., 2023). The wind direction rose is therefore of broad importance to

wind farm design and operation. Despite this, to the best of the authors knowledge, a standard parametric model for the wind

direction rose is yet to be adopted by the industry. The benefits of such a model would include: 1) allowing for standardisation

and supporting the identification of typical or generally representative cases1 2) enabling the influence of wind rose “shape”15

on energy yield and reliability impacts resulting from proposed innovations to be systematically explored. For example, recent

studies on wake steering and turbine layout optimisation (King et al., 2021; Stanley et al., 2023) report increased energy yields

obtained for single candidate wind roses at each modeled wind farm. The robustness and generality of these studies would be

enhanced if, instead, yield increases were determined across a range of wind roses, obtained by systematically varying model

parameters. While various circular distributions have been proposed in the literature, their complexity, difficulty of fitting,20

and relatively large parameter-sets render them impractical for such applications (Mardia and Jupp, 2009; Kim and SenGupta,

2021; Yang et al., 2022; Yang and Dong, 2024). This brief communication therefore proposes a novel and simple parametric

model for the wind direction rose, utilising ellipse geometry to minimise the required number of model parameters.

1For example, we see this for wind speed distributions, where a Weibull distribution with shape parameter close to 2 is common (Shu and Jesson, 2021).
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Section 2 develops the parametric wind direction rose model, along with necessary theory to allow for fitting to measured

data and evaluation of goodness-of-fit. Example implementations are then provided in Section 3. Use cases and possible model25

extensions are discussed in Section 4, before Section 5 concludes the paper.

2 Methodology

2.1 Standard ellipse equations

The ellipse, which generalises the concept of a circle, has the following standard parametric form,

(x,y) = (acos(θ), bsin(θ)) for 0≤ θ ≤ 2π,30

where the ellipse’s axes (of length 2a and 2b) align with the coordinate system’s x and y axes, respectively. More generally, if

the ellipse is rotated by an angle ϕ while remaining centered at the origin, its parametric form becomes,

(x,y) =
(
acos(θ)cos(ϕ)− bsin(θ)sin(ϕ),

acos(θ)sin(ϕ)+ bsin(θ)cos(ϕ)
)

for 0≤ θ ≤ 2π,35

Note, any ellipse of the latter form may be reduced to the former via a simple change of coordinates. Without loss of generality

we therefore focus on the first parametric form. The total area enclosed by an ellipse is,

A= πab.

2.2 Ellipses of unit area

Imposing the restriction A= 1 it follows that,40

b=
1

πa
,

and, hence, the number of parameters defining the ellipse is reduced to one, i.e. just a. An ellipse of unit area may be naturally

interpreted as a wind direction rose by defining the probability of the wind blowing from between directions θ1 and θ2 to be

equal to the area enclosed by the ellipse between those two angles. As such, a formula for ellipse segment areas is required.

This may be obtained by observing that an ellipse with semi-major axis a (aligned with x) and semi-minor axis b (aligned with45

y) becomes a circle if the y-axis is scaled by a factor of a/b (see Figure 1). This scaling effects the segment angles θ1 and θ2,

resulting in adusted angles (for a unit-area-ellipse) of,

θ̃1 = tan−1

(
a

b
· y1
x1

)
= tan−1

(
πa2 tan(θ1)

)
θ̃2 = tan−1

(
a

b
· y2
x2

)
= tan−1

(
πa2 tan(θ2)

)
.
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Figure 1. Ellipse (a) and scaled-ellipse (b) geometry. Note, in the region x2 < x < x1, ỹ+(x) is defined as being located on the circle itself.

The above equations hold for pairs of segment angles falling within the first quadrant of the ellipse. The area of the circle50

segment in scaled axes is simply,

πa2

(
θ̃2 − θ̃1
2π

)
=

1

2
a2
(
θ̃2 − θ̃1

)
. (1)

Observing that segment areas may, in general, be written in the form (see Figure 1),

x1∫
0

(ỹ+(x)− ỹ−(x))dx,

it readily follows that scaling the y-axis directly scales the calculated area. As such, the area bounded by θ1 and θ2 within the55

unit-area-ellipse (in the original coordinate system) is given by,

Aθ1,θ2 =
b

a
· 1
2
a2
(
θ̃2 − θ̃1

)
=

1

2π

(
tan−1

(
πa2 tan(θ2)

)
−tan−1

(
πa2 tan(θ1)

))
. (2)

2.3 An elliptical wind direction rose60

As outlined above, an ellipse of unit area may be naturally interpreted as a wind direction rose, with the probability associated

with any direction segment equal to that segment’s area - all of which is determined by the single parameter, a. Consider the case

where wind directions bins are centered on values θc,i (including 0 and π/2 rads) and of width 2δθ, where i= 1, . . . ,2π/2δθ.
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The elliptical wind direction rose with elliptical parameter a is defined as,

Pel(θwind = θc,i,a) =



Aθc,i+,θc,i− if θc,i > 0 and θc,i < π/2

2Aδθ,0 if θc,i = 0

2Aπ
2 ,π2 −δθ if θc,i = π/2

Obtained via symmetries

if π/2< θc,i < 2π,

(3)65

where θc,i+ = θc,i + δθ and θc,i− = θc,i − δθ. Note also that tan−1
(
πa2 tan(π/2)

)
= π/2. As indicated above, directional

probabilities outside the first quadrant may be obtained via symmetries, by reflecting those values across horizontal and/or

vertical axes. In computational terms, this amounts to copying, reordering and concatenating the relevant numerical arrays. As

a result of these same symmetries, it follows that bins which are opposite (in the context of reflections about the vertical axis)

have identical probabilities, i.e.,70

Pel(θwind = θc,i,a) =



Pel(θwind = π− θc,i,a)

if θc,i > 0 and θc,i < π/2,

Pel(θwind = 3π− θc,i,a)

if θc,i >
3π
2 and θc,i < 2π.

The latter case was written in the above form to maintain all angles between 0 and 2π. Symmetrical “circular” and “bi-

directional” wind roses may therefore be readily obtained by setting only a single parameter, a. Via rotation of the resulting

elliptical wind rose, one may then set the principal directions in bi-directional cases.

2.4 Establishing a prevailing wind direction - the folding parameter75

Many sites are not equally bi-directional, and instead have a single prevailing wind direction which dominates. To account

for such cases, one may take an elliptical (non-rotated) wind rose and reallocate (i.e,“fold”) a certain proportion of probability

mass from left-hand-plane segments onto their right-half-plane counterparts. This results in a wind rose with a single prevailing

wind direction. Formally, the generalised elliptical wind direction rose with elliptical parameter a and folding parameter f
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(0≤ f ≤ 1) is defined as,80

Pg(θwind = θc,i,a,f) =



(1− f)Pel(θwind = θc,i,a)

if π/2< θc,i < 3π/2,

(1+ f)Pel(θwind = θc,i,a)

if 0≤ θc,i < π/2 or 3π/2< θc,i ≤ 2π,

Pel(θwind = θc,i,a),

if θc,i = π/2 or 3π/2.

(4)

The symmetries in the elliptical distribution of directional probabilities guarantee this generalised parametric form is a true

probability distributions, i.e. the sum of all directional probabilities remains 1.

As previously, this generalised wind direction rose may be rotated in order to specify a prevailing wind direction, θprev.

Formally,85

P †
g (θwind = θc,i,a,f,θprev) = Pg(θwind = θc,i − θprev,a,f). (5)

2.5 Fitting a generalised elliptical wind direction rose to measured data

Assume we have a vector of wind direction-segment probabilities, P̂, obtained from measured data and specified for a given

set of wind direction bins, centered on values θc (each of width 2δθ). Further, we assume the circular mean (Dallas et al.,

2023) of the measured wind direction data is known. The prevailing wind direction, θprev, of the parametric model is set equal90

to the bin centre-value, denoted θ̄c, of the bin into which the directional mean falls. Alternatively, θprev may be set equal to the

centre-angle of the direction bin with largest probability mass (the mode direction). The best approach in practice was found

to be that of fitting both cases, then keeping the one which results in the smallest error2. Fitting a generalised elliptical wind

direction rose to P̂ may then be formulated in the context of sum-of-square-errors,

SSE(a,f) =
2π/2δθ∑
i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2
,95

specifically, the minimisation thereof with respect to parameters a and f ,

min
a,f

SSE(a,f).

Since a > 0 and 0≤ f ≤ 1, a constrained optimisation would be required for the problem in its current form. However, observ-

ing that only a2 appears within the fitting formulation (Equation 2), the constraint on a may simply be removed for the purposes

2The proposed approach therefore applies the following heuristic: the θprev value resulting in the “best fitting” model is likely either the (circular) mean

direction of the dataset, or the highest probability direction; and if neither of these results in a good fit, then a good fit is unlikely to be obtained for any choice

of θprev.
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of optimisation, and then reinstated by taking the absolute value of the result. Unconstrained optimisation which respects the100

restriction on f may be achieved by setting,

f =
1

1+ e−ϕf

and performing unconstrained optimisation over ϕf . Partial derivatives may then be obtained, allowing for gradient-descent

based optimisation. In the following formulas, P †
g,i will denote the probability attributed by the model, P †

g , to the ith direction

bin:105

∂SSE
∂a

(a,f) =

2π/2δθ∑
i=1

2
(
P †

g,i − P̂i

) ∂P †
g,i

∂a

∂SSE
∂ϕf

(a,f) =

2π/2δθ∑
i=1

2
(
P †

g,i − P̂i

) ∂P †
g,i

∂ϕf

∂Aθ1,θ2

∂a
=

atan(θ2)

π2 tan2(θ2)a4 +1
− atan(θ1)

π2 tan2(θ1)a4 +1

∂P †
g,i

∂ϕf
=



−f2e−ϕfPel(θwind = θ̃c,i,a)

if π/2< θ̃c,i < 3π/2,

f2e−ϕfPel(θwind = θ̃c,i,a)

if 0≤ θ̃c,i < π/2 or 3π/2< θ̃c,i ≤ 2π,

0,

if θ̃c,i = π/2 or 3π/2.

where θ̃c,i = θc,i − θprev. The partial derivatives ∂P †
g,i/∂a are readily obtained using ∂Aθ1,θ2/∂a (see Equations 3-5). The full110

expression is not included here for the sake of brevity.

2.5.1 Assessing goodness-of-fit

A coefficient of determination, typically denoted R2, may be calculated for the resulting fit to measured data:

R2 = 1−

∑2π/2δθ
i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2
∑2π/2δθ

i=1

(
P̂i − P̂

)2 ,

with P̂ the mean of all measured directional probabilities. This value falls between 0 and 1 and describes the proportion of115

total variance, present in the measured data, captured by the fitted model. The root-mean-squared-error may also be calculated

when assessing goodness of fit,

RMSE =

√√√√2δθ

2π

2π/2δθ∑
i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2
.
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Considering the above, one may observe that these measures provide both a normalised
(
R2
)

and an absolute (RMSE) measure

for goodness of fit. It is highlighted that, as a consequence, the RMSE-scale is dependent on the chosen number of direction120

bins.

3 Results

Example generalised elliptical wind direction roses are shown in Figure 2, along with their associated parameter values. This

demonstrates the flexibility of the proposed parametric model. Each direction rose may be rotated to obtain any required

prevailing wind direction (or directions, when f = 0). Results from fitting the parametric model to real wind direction rose125

data are shown in Figure 3. These example cases include direction-bin sizes of 5◦, 15◦ and 30◦, which together span the

standard range seen in practice (as a point of reference, IEC 61400-12-3:2002 specifies a direction-bin size of 10◦ during

measurement-based site calibration of power performance). A good fit is achieved in most cases, indicating the proposed

model is representative of real wind direction roses. Goodness-of-fit values highlight the fact that the RMSE-scale is dependent

on the number of wind direction bins. Since R2 values are normalised, they can be seen to provide a strong indication of model130

fit-quality that is independent of the number of bins. Limitations of R2 should be kept in mind when utilising it to assess

goodness-of-fit3 (Hahn, 1973; Barrett, 1974). However, in the current case the aim is not that of producing a predictive model,

hence, the main limitations of R2 are unlikely to be of significance here. It is interesting to note that the various fitted parametric

models include both mean and mode θprev cases, as well as cases where the two coincide. Finally, results highlight that a good

fit to measured data will not be achieved in all cases (Figure 3e), but, such instances will be flagged by low R2 scores.135

4 Discussion

The results presented in the previous section indicate the presented parametric model will likely prove useful to wind energy

research and development efforts. To support such utility, the current section seeks to clarify the intended use cases for the

model, and to outline opportunities for its extension.

Beginning with the former, it is highlighted that the generalised elliptical wind direction rose, P †
g , is proposed as a direction-140

distribution counterpart to the Weibull wind speed distribution; i.e. it captures the general shape of typical wind direction

distributions within a simple model with a small parameter-set. As outlined in Section 1, such a model provides an opportunity

for standardisation, the identification of typical parameter ranges, and sensitivity analyses concerning direction rose shape

impacts. As such, the proposed model is expected to provide utility in generalised studies which consider a range of possible

site conditions (for example, when evaluating a proposed innovation’s broad efficacy or when seeking to elucidate fundamental145

relationships or mechanisms within wind farms). If, on the other hand, an analysis is being undertaken for a known site

with empirical wind rose, there is no need for a parametric model. In such cases the site’s empirical wind rose should be

used directly. A possible exception to this is when undertaking complex turbine-layout optimisations at specified sites. The
3R2 alone does not determine how well a fitted model may be used for prediction. In effect, it therefore only partially measures the usefulness of the fitted

model (Hahn, 1973; Barrett, 1974).
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Figure 2. Example generalised elliptical wind direction roses, showcasing the various forms the parametric model can generate. Parameter

values are given in each case.

proposed direction-rose model could provide a smoothed version of a site’s empirical wind rose to facilitate a fast first-pass

optimisation, the result of which may then be used to initialise a second-round optimisation using the site’s full empirical wind150

rose. Reductions in overall optimisation times for such analyses might therefore be supported by the proposed model.

Secondly, it is pertinent to consider how the current direction rose model could be extended. One might consider alternative

approaches to “folding” the ellipse. For example the current discontinuity, when transitioning between 1−f and 1+f regions

(Equation 4), could be smoothed by linearly scaling from 1− f to 1+ f about the ellipse circumference (or similar). Another

possibility is the addition of a second folding parameter, which acts to fold the distribution across the other (semi-major) axis of155

the ellipse. Improved fitting might also be achieved via inclusion of the prevailing wind direction (θprev) within the optimisation

procedure; however, this would require the fitting procedure to be extended to ensure robustness against local minima. The

heuristic approach utilised in the current work, to determine prevailing wind direction, was incorporated to circumvent this

very issue. Finally, mixture models which linearly combine two or more generalised elliptical wind direction roses (scaled

by proportional weightings which sum to one) allow for more complex multi-modal wind direction rose realisations, see160

Figure 4. Many of these outlined model extensions require an expansion of the model parameter-set, which in turn increases

the complexity and difficulty of model fitting. Additionally, there is an important balance to be struck between generality

and specificity in this context. While increasingly complex versions of the proposed model would certainly fit ever closer to

empirical wind rose datasets, the utility associated with having a small parameter-set (representative cases, parameter ranges,
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Figure 3. Wind direction roses as measured at real offshore wind farms (blue), and the corresponding best-fit generalised elliptical wind

direction model (red) in each case. Goodness-of-fit measures are also provided. Wind farms include a) Horns Rev 1 (Pedersen et al., 2023)

b) Lillgrund (Pedersen et al., 2023) d) Borssele (Kainz et al., 2024) and e) Princess Amalia (Python Wind Rose). The wind rose in c) is from

(King et al., 2021).
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Figure 4. Example mixture model which combines two generalised elliptical wind direction roses to generate a tri-modal distribution.

The constituent parametric models have parameter values of (a1,f1,θprev1) = (0.8,0.1,180◦) and (a2,f2,θprev2) = (1.1,1,260.5◦) and

summation coefficients of 0.85 and 0.15, respectively.

standardisation) could also be undermined or completely lost. Careful consideration should therefore be afforded to these165

competing factors.

5 Conclusions

A parametric model for the wind direction rose has been presented, based on ellipse geometry and then extended to allow a

prevailing wind direction to be established. Relevant equations were developed to allow the parametric model to be fitted to

measured data, via gradient descent minimisation of sum-of-square-errors. Testing on real offshore wind farm data indicated the170

parametric model is indeed representative. R2 and RMSE goodness-of-fit measures were utilised, with the former providing

a strong indication of model suitability which is independent of the number of direction bins. It was highlighted that the

proposed parametric model will not always provide an accurate fit, but that the R2 value should flag when this is the case.

Overall, presented results indicated good performance for the proposed direction rose model. Use cases and possible model

extensions were then discussed, including the need to balance generality with specificity when undertaking any such extension.175

It should be appreciated that the proposed model describes wind direction distributions only, and is independent of wind speed.

Depending on context, a single Weibull wind speed distribution may be applied across all bins, separate Weibull distributions

may be defined for the “prevailing” and “non-prevailing” half circles, or a different Weibull distribution may be defined for

each bin. It is hoped the presented parametric model will prove valuable to the wind industry, by providing an opportunity

for standardisation and enabling systematic analyses of wind direction distribution impacts and sensitivities for proposed wind180

farm design and control innovations.

Code and data availability. A demonstrator Python implementation of the proposed model, along with all data used in this brief communi-

cation, can be accessed via the following link: https://doi.org/10.15129/cb41576e-892e-4415-a849-9af38bc6ad1d .
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