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Abstract. This brief communication presents a parametric model for the wind direction rose, based on ellipse geometry. Such

a model supports standardisation and identification of generally representative cases, while also enabling systematic analyses

of wind rose “shape” impacts on the benefits of proposed wind farm design and control innovations. Formulations include

analytical wind direction rose modelling, model fitting to measured data via gradient descent minimisation of sum-of-square-

errors, and goodness-of-fit measures. Testing on wind direction data from real offshore wind farms confirms good performance,5

indicating this parametric model is useful to wind energy research and development efforts.

1 Introduction

At the wind farm scale, the direction of the wind strongly affects the levels of turbine-turbine interactions and, hence, the

flow conditions experienced by individual turbines (Meyers et al., 2022; Dallas et al., 2023). This, in turn, impacts energy

production, optimal turbine layout, the efficacy of different wind farm control strategies, and turbine reliability (Slot et al.,10

2018; Amiri et al., 2019; King et al., 2021; Stanley et al., 2023). The wind direction rose is therefore of broad importance to

wind farm design and operation. Despite this, to the best of the authors knowledge, a standard parametric model for the wind

direction rose is yet to be adopted by the industry. The benefits of such a model would include: 1) allowing for standardisation

and supporting the identification of typical or generally representative cases1 2) enabling the impacts of wind rose “shape” on

the energy yield and reliability resulting from proposed innovations to be systematically explored. For example, recent studies15

on wake steering and turbine layout optimisation (King et al., 2021; Stanley et al., 2023) report the energy uplift obtained for

a single candidate wind rose. The robustness and generality of these studies would be enhanced if, instead, energy uplift were

determined across a range of wind roses, obtained by systematically varying model parameters. While direction inclusive joint

probability distributions have been proposed in the literature, their complexity and large parameter-sets render them impractical

for such applications (Yang et al., 2022; Yang and Dong, 2024). This brief communication therefore proposes a novel simple20

parametric model for the wind direction rose, utilising ellipse geometry to minimise the number of parameters required.

1For example, we see this for wind speed distributions, where a Weibull distribution with shape parameter close to 2 is common (Shu and Jesson, 2021).
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Section 2 develops the parametric wind direction rose model, along with necessary theory to allow for fitting to measured

data and evaluation of goodness-of-fit. Example implementations are then provided in Section 3, before Section 4 concludes

the paper.

2 Methodology25

2.1 Standard ellipse equations

The ellipse, which generalises the concept of a circle, has the following standard parametric form,

(x,y) = (acos(θ), bsin(θ)) for 0≤ θ ≤ 2π,

where the ellipse’s axes (of length 2a and 2b) align with the coordinate system’s x and y axes, respectively. More generally, if

the ellipse is rotated by an angle ϕ while remaining centered at the origin, its parametric form becomes,30

(x,y) =
(

acos(θ)cos(ϕ)− bsin(θ)sin(ϕ),

acos(θ)sin(ϕ) + bsin(θ)cos(ϕ)
)

for 0≤ θ ≤ 2π,

Note, any ellipse of the latter form may be reduced to the former via a simple change of coordinates. Without loss of generality

we therefore focus on the first parametric form.35

It is further assumed, again without loss of generality, that a > b. In this case, a is called the semi-major axis and b is called

the semi-minor axis. This being the case, the “shape” of the ellipse may be captured via its eccentricity,

e =

√
1− b2

a2
.

Eccentricity, which falls between 0 and 1, may be interpreted as a dimensionless measure of the ellipse’s “deviation" from

being circular. When e = 0 the ellipse is circular, with the ellipse becoming increasingly long and flat as e→ 1. The total area40

enclosed by an ellipse is,

A = πab.

2.2 Ellipses of unit area

Imposing the restriction A = 1 it follows that,

b =
1
πa

,45

and, hence, the number of parameters defining the ellipse is reduced to one, i.e. just a. A one-to-one correspondence between

a and e then exists in this restricted case,

e =

√
1− 1

π2a4
.
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Figure 1. Ellipse (a) and scaled-ellipse (b) geometry.

Recall that this specific formula holds for a > b, which in this case is when a > 1/πa. An ellipse of unit area may be naturally

interpreted as a wind direction rose by defining the probability of the wind blowing from between directions θ1 and θ2 to be50

equal to the area enclosed by the ellipse between those two angles. As such, a formula for ellipse segment areas is required.

This may be obtained by observing that an ellipse with semi-major axis a (aligned with x) and semi-minor axis b (aligned with

y) becomes a circle if the y-axis is scaled by a factor of a/b (see Figure 1). This scaling effects the segment angles θ1 and θ2,

resulting in adusted angles (for a unit-area-ellipse) of,

θ̃1 = tan−1

(
a

b
· y1

x1

)
= tan−1

(
πa2 tan(θ1)

)
55

θ̃2 = tan−1

(
a

b
· y2

x2

)
= tan−1

(
πa2 tan(θ2)

)
.

The area of the circle segment in scaled axes is simply,

πa2

(
θ̃2− θ̃1

2π

)
=

1
2
a2
(
θ̃2− θ̃1

)
. (1)

Observing that segment areas may, in general, be written in the form (see Figure 1),

x1∫

0

(ỹ+(x)− ỹ−(x))dx,60

it readily follows that scaling the y-axis directly scales the calculated area. As such, the area bounded by θ1 and θ2 within the

unit-area-ellipse (in the original coordinate system) is given by,

Aθ1,θ2 =
b

a
· 1
2
a2
(
θ̃2− θ̃1

)

=
1
2π

(
tan−1

(
πa2 tan(θ2)

)

−tan−1
(
πa2 tan(θ1)

))
. (2)65
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2.3 An elliptical wind direction rose

As outlined above, an ellipse of unit area may be naturally interpreted as a wind direction rose, with the probability associated

with each direction segment equal to its area - all of which is determined by the single parameter, a. Consider the case where

wind directions bins are centered on values θc,i (including 0 and π/2 rads) and of width 2δθ, where i = 1, . . . ,2π/2δθ. The

elliptical wind direction rose with elliptical parameter a is defined as,70

Pel(θwind = θc,i,a) =





Aθc,i+,θc,i− if θc,i > 0 and θc,i < π/2

2Aδθ,0 if θc,i = 0

2Aπ
2 , π

2−δθ if θc,i = π/2

Obtained via symmetries

if π/2 < θc,i < 2π,

where θc,i+ = θc,i + δθ and θc,i− = θc,i− δθ. Note also that tan−1
(
πa2 tan(π/2)

)
= π/2. As indicated above, directional

probabilities outside the first quadrant may be obtained via symmetries, by reflecting those values across horizontal and/or

vertical axes. In computational terms, this amounts to copying, reordering and concatenating the relevant numerical arrays. As

a result of these same symmetries, it follows that bins which are opposite (in the context of reflections about the vertical axis)75

have identical probabilities, i.e.,

Pel(θwind = θc,i,a) =





Pel(θwind = π− θc,i,a)

if θc,i > 0 and θc,i < π/2,

Pel(θwind = 3π− θc,i,a)

if θc,i > 3π
2 and θc,i < 2π.

The latter case was written in the above form to maintain all angles between 0 and 2π. Symmetrical “circular” and “bi-

directional” wind roses may therefore be readily obtained by setting only a single parameter, a. Via rotation of the resulting

elliptical wind rose, one may then set the principal direction in bi-directional cases.80

2.4 Specifying a prevailing wind direction - the folding parameter

Many sites are not be equally bi-directional, and instead have a single prevailing wind direction which dominates. To account

for such cases, one may take an elliptical (non-rotated) wind rose and reallocate (i.e,“fold”) a certain proportion of probability

mass from left-hand-plane segments onto their right-half-plane counterparts. This results in a wind rose with a single prevailing

wind direction. Formally, the generalised elliptical wind direction rose with elliptical parameter a and folding parameter f85
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(0≤ f ≤ 1) is defined as,

Pg(θwind = θc,i,a,f) =





(1− f)Pel(θwind = θc,i,a)

if π/2 < θc,i < 3π/2,

(1 + f)Pel(θwind = θc,i,a)

if 0≤ θc,i < π/2 or 3π/2 < θc,i ≤ 2π,

Pel(θwind = θc,i,a),

if θc,i = π/2 or 3π/2.

The symmetries in the elliptical distribution of directional probabilities guarantee this generalised parametric form is a true

probability distributions, i.e. the sum of all directional probabilities remains 1.

As previously, this generalised wind direction rose may be rotated in order to specify a prevailing wind direction, θprev.90

Formally,

P †
g (θwind = θc,i,a,f,θprev) = Pg(θwind = θc,i− θprev,a,f).

2.5 Fitting a generalised elliptical wind direction rose to measured data

Assume we have a vector of wind direction-segment probabilities, P̂, obtained from measured data and specified for a given

set of wind direction bins, centered on values θc (each of width 2δθ). Further, we assume the circular mean (Dallas et al.,95

2023) of the measured wind direction data is known. The prevailing wind direction, θprev, of the parametric model is set equal

to the bin centre-value, denoted θ̄c, of the bin into which the directional mean falls. Alternatively, θprev may be set equal to the

centre-angle of the direction bin with largest probability mass (the mode direction). The best approach in practice was found

to be that of fitting both cases, then keeping the one which results in the smallest error. Fitting a generalised elliptical wind

direction rose to P̂ may then be formulated in the context of sum-of-square-errors,100

SSE(a,f) =
2π/2δθ∑

i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2

,

specifically, the minimisation thereof with respect to parameters a and f ,

min
a,f

SSE(a,f).

Since a > 0 and 0≤ f ≤ 1, a constrained optimisation would be required for the problem in its current form. However, observ-

ing that only a2 appears within the fitting formulation (Equation 2), the constraint on a may simply be removed for the purposes105

of optimisation, and then reinstated by taking the absolute value of the result. Unconstrained optimisation which respects the

restriction on f may be achieved by setting,

f =
1

1 + e−ϕf
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and performing unconstrained optimisation over ϕf . Partial derivatives may then be obtained, allowing for gradient-descent

based optimisation:110

∂SSE
∂a

(a,f) =
2π/2δθ∑

i=1

2
(
P †

g − P̂i

) ∂P †
g

∂a

∂SSE
∂ϕf

(a,f) =
2π/2δθ∑

i=1

2
(
P †

g − P̂i

) ∂P †
g

∂ϕf

∂Aθ1,θ2

∂a
=

atan(θ2)
π2 tan2(θ2)a4 + 1

− atan(θ1)
π2 tan2(θ1)a4 + 1

∂P †
g

∂ϕf
=





−f2e−ϕf Pel(θwind = θ̃c,i,a)

if π/2 < θ̃c,i < 3π/2,

f2e−ϕf Pel(θwind = θ̃c,i,a)

if 0≤ θ̃c,i < π/2 or 3π/2 < θ̃c,i ≤ 2π,

0,

if θ̃c,i = π/2 or 3π/2.

where θ̃c,i = θc,i− θprev. The partial derivative ∂P †
g /∂a is readily obtained using ∂Aθ1,θ2/∂a, however, the full expression is115

not included for the sake of brevity.

2.5.1 Assessing goodness-of-fit

A coefficient of determination, typically denoted R2, may be calculated for the resulting fit to measured data:

R2 = 1−
∑2π/2δθ

i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2

∑2π/2δθ
i=1

(
P̂i− P̂

)2 ,

with P̂ the mean of all measured directional probabilities. This value falls between 0 and 1 and describes the proportion of120

total variance, present in the measured data, captured by the fitted model. The root-mean-squared-error may also be calculated

when assessing goodness of fit,

RMSE =

√√√√2δθ

2π

2π/2δθ∑

i=1

(
P †

g (θwind = θc,i,a,f,θprev)− P̂i

)2

.

3 Results

Example generalised elliptical wind direction roses are shown in Figure 2, along with their associated parameter values. This125

demonstrates the flexibility of the proposed parametric model. Each direction rose may be rotated to obtain any required

prevailing wind direction (or directions, when f = 0).

6

https://doi.org/10.5194/wes-2024-187
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



0°

45°

90°

135°

180°

225°

270°

315°

0.04

0.08

0.12

0°

45°

90°

135°

180°

225°

270°

315°

0.04

0.08

0.12

0°

45°

90°

135°

180°

225°

270°

315°

0.04

0.08

0.12

0°

45°

90°

135°

180°

225°

270°

315°

0.04

0.08

0.12

a) b)

c) d)

a = 0.68
f = 0

a = 0.90
f = 0

a = 0.68
f = 0.4

a = 0.90
f = 0.4

Figure 2. Example generalised elliptical wind direction roses, showcasing the various forms the parametric model can generate. Parameter

values are given in each case.

Results from fitting the parametric model to real wind direction rose data are shown in Figure 3. A good fit is achieved in

most cases, indicating the proposed model is representative of real wind direction roses. Goodness-of-fit values highlight the

fact that the RMSE-scale is dependent on the number of wind direction bins. Since R2 values are normalised, they can be seen130

to provide a strong indication of model fit-quality that is independent of the number of bins. Limitations of R2 should be kept

in mind when utilising it to assess goodness-of-fit (Hahn, 1973; Barrett, 1974). However, in the current case the aim is not that

of producing a predictive model, hence, the main limitations of R2 are unlikely to be of significance here. It is interesting to

note that the various fitted parametric models include both mean and mode θprev cases, as well as cases where the two coincide.

Finally, results highlight that a good fit to measured data will not be achieved in all cases (Figure 3e), but, such instances will135

be flagged by low R2 scores.

4 Conclusions

A parametric model for the wind direction rose has been presented, based on ellipse geometry and extended to allow specifica-

tion of a prevailing wind direction. Relevant equations were developed to allow the parametric model to be fitted to measured

data, via gradient descent minimisation of sum-of-square-errors. Testing on real offshore wind farm data indicated the paramet-140

ric model is indeed representative. R2 and RMSE goodness-of-fit measures were utilised, with the former providing a strong

indication of model suitability which is independent of the number of direction bins. It was highlighted that the proposed para-
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Figure 3. Wind direction roses as measured at real offshore wind farms (blue), and the corresponding best-fit generalised elliptical wind

direction model (red) in each case. Goodness-of-fit measures are also provided. Wind farms include a) Horns Rev 1 (Pedersen et al., 2023)

b) Lillgrund (Pedersen et al., 2023) d) Borssele (Kainz et al., 2024) and e) Princess Amalia (Python Wind Rose). The wind rose in c) is from

(King et al., 2021).
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metric model will not always provide an accurate fit, but that the R2 value should flag when this is the case. It should also be

appreciated that the proposed model describes wind direction distributions only, and is independent of wind speed. Depending

on context, a single Weibull wind speed distribution may be applied across all bins, separate Weibull distributions may be145

defined for the “prevailing” and “non-prevailing” half circles, or a different Weibull distribution may be defined for each bin.

It is hoped that the presented parametric model proves valuable to the wind industry by providing an opportunity for stan-

dardisation and enabling systematic analyses of wind direction distribution impacts and sensitivities for proposed wind farm

design and control innovations.

Code and data availability. All code and data will be made freely available. A Python toolbox is being finalised, and will be made available150

with the final manuscript on publication.
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