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Abstract. Wind farm control concepts require awareness and observation methods of the inner-farm flow field. The relative
location of the wake, to which a downstream turbine is exposed, is of high interest. It can be used as feedback to support closed-
loop wake-steering control, ultimately leading to higher power extraction and fatigue load reduction. With increasing fidelity,
not only time-averaged wakes but also instantaneous wake conditions, subject to meandering and wind direction changes, are
considered within a controller. This paper presents a quantitative field comparison of two independently applied wake centre
estimation methods: a scanning lidar and an Extended Kalman Filter (EKF) based on the rotor loads of the waked turbine. No
ground truth is available in the field environment, therefore the methodology accounts for the fact that two uncertain estimates
are compared. The lidar estimates, with a derived uncertainty in the order of 0.05 rotor diameters D, can be used as a suitably
precise reference to draw conclusions regarding the load-based EKF. The EKF uses Coleman-transformed blade root bending
moments, linked to the wake centre position via an analytical model with a low number of tuning parameters. The model
can easily be trained with aeroelastic simulations including the Dynamic Wake Meandering model. The formulation adds
robustness to the tracking and allows to determine the confidence in the wake position estimate, which can be used for wake
impingement detection or for a wake-steering controller to judge whether a yaw manoeuvre is adequate. The results indicate
agreement of the methods with root-mean-square errors of 0.2 D for low and moderate turbulence intensity, and 0.3 D for
turbulence intensities above 12%. The paper focuses on wake position estimation but also outlines a methodology, how wind

farm models or wind field reconstruction techniques can be validated with complementary lidar data.
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1 Introduction

Wind farm flow control allows to partly compensate wake-induced power losses or load increases. Either wake steering, static
induction control, or wake mixing strategies are employed to that purpose (Meyers et al., 2022). So far, mostly open-loop
approaches are considered for wake steering, namely misaligning or dynamically actuating the upstream turbine(s) without
considering feedback of the wake-exposed turbines (see e.g. Fleming et al. (2017); Doekemeijer et al. (2021)). Here, the yaw
controller relies on engineering models regarding the wake trajectory it tries to aim for. While robust formulations can account
for wind direction variability (Rott et al., 2018; Simley et al., 2020), optimal wake deflection cannot be guaranteed, since
outer influences and wake dynamics can hardly be accounted for. The wake trajectory is impacted by atmospheric stability and
further subject to the meandering motion (Larsen et al., 2015; Sengers et al., 2023).

The consequent next step is to close the loop by providing suitable feedback signals to a wind farm controller. Meyers
et al. (2022) explicitly mention the need for state estimation on wind farm level, i.e. for the awareness of the flow conditions
within the farm. Standard SCADA data and basic instrumentation of modern wind turbines, e.g. strain gauges for blade root
bending moments, allow to use the rotor as a sensor. Rotor effective measurements such as power, torque and collective blade
loads provide observability towards rotor effective wind speeds (Soltani et al. (2013); Bottasso et al. (2018); Lio et al. (2023);
Coquelet et al. (2024)). This can be used as direct feedback or to tune an analytical flow model as shown by Doekemeijer
and van Wingerden (2020) and Becker et al. (2022). Yet, the observability is limited, as shown e.g. by Doekemeijer and
van Wingerden (2020), where the estimator can hardly distinguish which half of the rotor is exposed to a partial wake, especially
under uncertain wind direction information. In order to increase the spatial observability of non-uniform turbine inflow, the
rotor imbalances - resulting from shear, yaw misalignment or wake impingement - can be encountered (Bertele et al., 2017).
These rotor imbalances, such as yaw- and tilt-moments, are related to the harmonics of the blade root bending moments. The
Coleman transform describes the translation from the rotating to the non-rotating coordinate system.

Ultimately relevant for wake-steering control is the wake position within the wind farm, which is the feature that a wind
farm controller aims to manipulate. Existing methods for the wake position estimation are either based on wind turbine rotor
loads or on Light Detection and Ranging (lidar) measurements. The load-based approaches described by Bottasso et al. (2018)
and Schreiber et al. (2020) aim at qualitative impingement detection and include a field validation. Time-averaged position
tracking is shown by Cacciola et al. (2016) in aeroelastic simulations and by Schreiber et al. (2016) in a wind tunnel.

Yet, the dynamics caused by wind direction changes and wake meandering are not taken into account here. Braunbehrens
et al. (2023) show that these dynamic scales are relevant for the inner-farm flow and but also challenging for an estimator
to capture. As outlined by Larsen et al. (2008) and further described in section 2.2.2, the spatial scales in the order of 2-20
rotor diameters (or their complementary time scales) need to be considered in the context of wake meandering. Dynamic EKF
formulations are shown by Dong et al. (2021) and Onnen et al. (2022), using blade loads but also taking the meandering
dynamics into account. Yet, these methods are only tested in simulation environments, where the wake position is known.

The lidar-based wake-tracking methodologies depend on the lidar type. The online approaches for wind farm control pur-

poses use short-range forward-looking lidars, usually considering a low number of fixed beams for cost-efficiency (Raach
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et al., 2017; Lio et al., 2021). Kalman filter formulations are used for robustness under the sparse spatial observability owing
to the low number of beams. It that they similar to the load-based attempts but can further include the wake deficit shape to the
estimation Lio et al. (2021). In contrast, long-range scanning lidars provide high spatial resolution of the flow field. Due to their
high costs, they are not considered for commercial applications in the context of real-time wind farm flow control. Instead, they
are mainly used in experimental campaigns for scientific validation of wake behaviour (Trujillo et al., 2011; Machefaux et al.,
2015; Bromm et al., 2018; Brugger et al., 2022). Both wake steering (Bromm et al., 2018) and wake meandering (Brugger
et al., 2022) effects can be resolved.

In section 4.2 the results of the load- and lidar-based wake estimation approaches mentioned above are compared to the
approach presented in this paper, considering the individual testing conditions and performance metrics. At this point, the

research gap can be concluded as follows: Existing work for load-based wake tracking lacks either

— a consideration of wake dynamics and time resolution, or
— a field validation, or

— (in case of a field validation) an independent reference to compare with.

The objective of this work is to fill the gap by addressing all three aspects: The works-work shows direct estimation of the
instantaneous wake centre position in a field experiment with two utility-scale wind turbines. The load-based estimate is
compared to the wake position probed with a scanning lidar, which serves as an independent reference. To that purpose, the
uncertainty of the lidar estimate is quantified using analytic error propagation following the GUM (Guide to the expression of
uncertainty in measurement; JCGM, 2020). The lidar data processing orients at existing work of Machefaux et al. (2015) and
Bromm et al. (2018), isolating the quasi-instantaneous wake deficit in a moving frame of reference.

The remainder of the paper is structured as follows: In section 2 the methodology is described, starting with the field setup,
followed by the load-based EKF and the lidar-related data processing, including an uncertainty consideration. In section 3 the
results are presented. First, the experimental conditions are characterised, then the wake position estimates are compared. In

section 4, the findings are discussed, ranged and compared with literature. Concluding remarks are given in section 5.

2 Methodology
2.1 Field experiment

The wind farm used in this work consists of two Eno126 turbines, built by Eno Energy Systems GmbH near the village Kirch
Mulsow near Rostock, Germany close to the baltic sea. The surrounding nature of the test site has agricultural vegetation, with
patches of trees and bushes between the fields. The measurements used for this paper are from February and March 2021.
Further investigations of the experiments at this site are reported in (Hulsman et al., 2022; Sengers et al., 2023; Kidambi Sekar
et al., 2024). The turbines are spaced by 2.7 rotor diameters along south-westerly direction (compare Figure 1), which is also

the prevailing wind direction for this site. For brevity, the turbines are called WT1 and WT2 in the following, with WT1 located



85

90

95

100

105

in the south-west, thus mostly being the upstream turbine. Each turbine has a rotor diameter D of 126 m and a rated power of
3.5 MW. The hub heights are 117 m and 137 m, for WT1 and WT2, respectively. In addition to standard operational signals,
both turbines are equipped to measure blade root bending moments in flapwise and edgewise directions with strain gauges and
fiber-optical sensors. This paper uses the fiber-optical sensors by Polytech Wind Power Technology Germany GmbH (formerly
Fos4X GmbH). Both turbines’ nacelle yaw orientation is tracked with interconnected differential Global Navigation Satellite
System devices (GNSS; Trimble type 3 Zephyr mode, three antennas on WT1 and two on WT2, see Trimble (2025)). The
increased accuracy of the yaw angle probing in comparison to the inbuilt yaw encoders is relevant for the post-processing
of the lidar measurements, as recommended by Bromm et al. (2018). The rotor azimuth angle information of WT2 was not
available, thus the angle was reconstructed from the the gravity-dominated edgewise blade loads as shown in Appendix A.

A met mast is located 2.6 D north of WT1 (see Figure 1). The wind speed and direction are probed with cup anemometers
and vanes (Thies Clima, type 4.3352.00.400 (Thies-Clima, 2025b) and type 4.3151.00.212 (Thies-Clima, 2025a), respectively)
at z;1 = 54 m and zo = 112 m. Both the turbine and met the mast data is stored at SOHz.

The wind shear exponent « is calculated from the met mast measurements according to the power law:

log(usg /u
4= logg((zz;zll)) ’ M
where u;,7 € 1,2 are the wind speed and z;,¢ € 1,2 are the height of the wind cup anemometers.

A pulsed scanning lidar (Leosphere WindCube 200S) is installed on the nacelle of WT1, facing in downstream direction.
Within the wind direction sector under investigation, the lidar performs horizontal trajectories (single Plan Position Indicator -
PPI). The scanned sector covers a range of 120° with a scanning speed of 2°s~! and range gates between 50 m and 1630 m.
The coordinate systems involved in the post processing and further details regarding the lidar trajectory are described in section
2.3.1.

Within the wind direction interval [191°,259°], active wake steering control is tested. At intervals of 30min the controller
of WT1 toggles between greedy and intentional yaw misalignment. The yaw update frequency is at 30s and the misalignment
is realised via manipulation of the nacelle vane signal. The assessment of the wake steering controller is not the focus of this

paper, yet it is important to regard its role when discussing the wake constellations.
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Figure 1. Wind farm layout at Kirch Mulsow test site; left: turbine spacing and distance to the met mast indicated; right: wind sectors for the
control-experiment indicated; adapted from Hulsman et al. (2022). © OpenStreetMap contributors 2024. Distributed under the Open Data
Commons Open Database License (ODbL) v1.0.

2.2 Load-based wake tracking

In this section, the methods used for the load-based wake tracking algorithm and usage of training data are described. Core of
the tracking algorithm is an Extended Kalman Filter (EKF), which links the load measurements from a wake-exposed wind
turbine with the physical knowledge about the wake behaviourdynamics. An EKF incorporates nonlinear state- and measure-
ment transition functions via local linearisation around the current state estimate (Brown and Hwang, 1992). The interaction
between the individual aspects of the load-based wake tracking problem is shown in the overview chart in Figure 2. The EKF
and its sub-components are described in the following sections. In section 2.2.1, the EKF formulation and the definition of
states and inputs takes place. Section 2.2.2 defines the state transition function f(), and-seetionincluding a consideration of the
involved wake physics. Section 2.2.3 defines the measurement transition function h(), so the linkage between wake position

Note, that the estimation task is here formulated for the general, 2-dimensional case, so considering the horizontal and

vertical wake position. Due to the measurement setup and the single PPI scans of the lidar, only a comparison of the horizontal

component is possible-The-herizontal-wake position-is-also-infoeus-in-the-contextof-, which is also more relevant. The vertical
osition is considered less relevant for the application, because i) it has lower position variance due to wind direction changes
and meandering Braunbehrens and Segalini (2019), and ii) it cannot be manipulated by wake-steering control.

2.2.1 General EKF setup

A discrete EKF is implemented, where &k denotes the time index, (-) an estimate, ), € R™V= the state vector and y;, € R the
measurement vector, with dimensions N, = 4 and IV, = 3. The state vector contains the wake positions (Y, zw) in a WT2-

oriented coordinate system (compare section 2.3.1), as well their first derivatives with time (v, w.). The measurement vector
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Figure 2. Block diagram of the dynamic wake tracking algorithm, showing the input and output signals to the EKF

Yy}, contains the Coleman-transformed non-rotating rotor loads, further described in subsection 2.2.3.
_ T _ T
LT = [ywvzwavmwc] s Y = [Myaw>Mtilt7Mcol] (2)

The EKF algorithm consists of the steps presented in Equations (3-7). An ‘a priori’ value is denoted (-)~. The model
i1 = f(xk,ny k) describes the state transition, and the measurement model y;, = h(xy,n, ;) describes the static mapping
between the system state and measurements, where n, , € RV« and n, ; € RVv represent white noise acting on the state
and output equation, respectively, with zero mean and covariance matrices Q and R. The state covariance matrix is denoted
Py. It is initialized as Pi—q = Q. The local linearisations of the state transition model and the measurement model around a
current state are denoted F;, and H, respectively. Note, that the state transition model f(x, 1, ;) used in this work ean-be
is formulated as a linear operation (see next subsection). Thus, the loeal-linearisation in Equation 4 is not necessary in-every
iteration—and I can be directly pre-eemputedconstructed from Equation 8. In the scope of this work, the EKF is applied at
1 Hz sampling frequency.

Prediction Step:

&7 = fl@r1.0) ©
P, =F,P,_F/+Q with F,= 0f(@e-1,0) (:’g;’o) )
Measurement Update Step:
Oh(x; ,0

Ky = P,:H{(HkP,:H{ +R) ! with Hy, = % (5)
ii:kZ:fEl; + K, (yk—Qk) with ’ngh(ilz,O) (6)

——

innovation ey x

P, = (I — Kk;Hk)P,; )
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2.2.2 Dynamic model

The dynamic model f() describes how the system state evolves over time. In this study, the model should capture how the wake
centre position changes over time. Depending on the atmospheric conditions and the wind farm control strategy, the wake
trajectory is subject to various dynamic influences. Time scales of wind direction changes, wake-steering control and wake
meandering need to be incorporated by the dynamic model of the EKF, while effects corresponding to small-scale turbulence
with no expressiveness towards the wake position need to be rejected.

For the inner-farm effect of wind direction variability, Simley et al. (2020) suggest a distinction between low- and high-
frequency wind direction. The high-frequency share refers to oscillatory point-measurements (e.g. a nacelle vane) at hub height
of a wind turbine, while the low-frequency share describes the dominant mean wind direction across the wind farm. Using a
combination of field measurements and LES, Simley et al. (2020) identify the boundary between high- and low-frequency

wind direction at 0.0037 Hz, for a scenario at 8 ms—!

ambient wind speed and wind turbines of 126 m rotor diameter
(NREL 5MW). Rott et al. (2018) suggest to regard a time window of 5 minutes (= 0.0033 Hz), which is very similar. Us-
ing the same non-dimensional type of expression as in (Larsen et al., 2008; Lio et al., 2021), this frequency can be expressed as
fewD = s /(20D), where uo, is the ambient undisturbed mean wind speed. Depending on the perspective, a high-frequency
wind direction variation can also be seen as the vector addition of longitudinal and transversal wind speed components, so a
turbulence phenomenon.

Wake meandering in the atmospheric boundary layer is driven by turbulence patterns considerably larger than the wake
deficit scale (Trujillo et al., 2011). Larsen et al. (2008) introduced the DWM model, which translates this split of scales to a
random walk trajectory, where the wake deficit is seen as a passive tracer. Larsen et al. define the default cut-off frequency of
the meandering motion as f. = us /(2D ), where Dy, is the wake diameter (in near wake applications also the rotor diameter
D is a valid choice). Note, that this is the theoretical limit, up to which a wake deficit is regarded as a passive tracer. Lio et al.
(2021) show in a field study with a lidar-based EKF featuring an auto-correlation term of the wake position time history that
the dominant spectral share of the meandering motions can be up to a factor 10 slower.

In conclusion, the frequency range of 55 < f < 5% is relevant for meandering. Wake position changes at slower time
scales do not require a higher order model. The meandering time scales are thus ineorporated-with-a-modeled with first-order
expressiondifferential equations. This work uses a cut-off frequency of f. = 0.01 Hz. The changes in lateral and vertical wake
position are described via the characteristic velocities v.(¢) and w,(t), whose change rates are modeled as low pass-filtered

white noise:

Y (t) = ve(t) +n,1(2) (8a)
Zw(t) = we(t) + 1y ,2(t) (8b)
Ve(t) = —weve(t) +weng 3(t) (8¢)
te(t) = —wewe(t) + wenaalt) (8d)
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where w, = 27 f.. The equations are discretized for their implementation in the state transition function f(xy,n, ). Note
that the n, ; represents the it" element of the noise vector n,. The time index k is omitted here, because the continuous
representation is chosen. Since the noise terms enter linearly, they are incorporated in the EKF formulation via the additive

noise covariance matrix Q.
2.2.3 Measurement model

The measurement model h() is a mapping from the state to the measurement - in this study a link from the wake centre
position to the rotor loads. The model must fulfill certain criteria: It should be computationally inexpensive, such that it can be
computed online in each filter iteration. Look-up tables with pre-computed information are preferable here (see e.g. Schreiber
et al. (2020); Soltani et al. (2013)). Moreover, the model has to be differentiable, such that its local sensitivity to a change
in state or input can be determined. Finally, it should be robust and lead to a convergence of the estimate, even if the state
at initialization is far off. The measurement vector y; contains the Coleman transformed, non-rotating flapwise blade root

bending moments according to Equation 9. The time index £ is omitted from the notation for better readability.

My ) sin(¥)  sin(U+2F)  sin(V+ 47) Mg,
Yy=| Myuy |tny,= 3 cos(¥) cos(¥+ %) cos(¥+4T) Mo | + 1y, )
Mcol 1/2 1/2 1/2 Mf’g

where ¥ denotes the rotor azimuth position and My ; denotes the 7** blade flapwise blade root bending moment.

In the following, the parameterised model is derived in Egs. 10-13. All fitting parameters introduced in this scope are listed
in Table 1. The model is subsequently fitted to training data generated in aeroelastic simulations with enabled DWM model

(Larsen et al., 2008). Figure 3 shows the contour shape of the model and Figure 4 an example of training data and fitting.

The yaw and tilt moment depend on the wake position (¥, 2vw) relative to the rotor. Let these be expressed in polar co-
ordinates centered at the hub, where ry, = \/m is the distance of the hub to the wake centre. The ratio between rotor
tilt and yaw moment yields information about the angle 6, the angular position of a wake in the rotor plane, quantified as
0 = atan (yw /2w), using a four-quadrant inverse tangent. In order to get the absolute magnitude of the wake-induced rotor

imbalance, the quantity M () is introduced, as

M () = /(M (1. 8) = B)2 + (Myie (1. 0) — )2, (10)
A reformulation yields the following compact formulation of the yaw and tilt moments,

My (r,0) = M (1) -sin(0 +d) + b (11a)
M (1,0) = M (1) ~cos(0+d)+c, (11b)
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where b, c describe offsets to the moments that do not originate from the wake, such as a moment due to tilt overhang or
vertical shear. An optional term for phase delay is denoted as d, describing how an inert blade reacts to a change of local wind
speed, also known as yaw-tilt coupling (see Lu et al. (2015) and Mulders et al. (2019)). The quantity M (rw) is defined in

Equation 12, where Mmax and R,y are fitting constants.

=~ . . .
R M ax sin (72}% w ) if 79| < Rmix
maix

M(ry)=1< _ 2 (12)
M pax EXP <2 (Ri:,v;x — 1) ) if |rw| > Rumix

Although wake tracking based only on rotor imbalance (Myayw , Mii1¢) was found to be possible, the stability and convergence
behaviour can be enhanced by including the collective moment M., (Onnen et al., 2022). The relation between 7, and M.
is linked to the control strategy of the wind turbine and the rotor effective wind speed (REWS). A larger r,, leads to a higher
REWS, until the wake is so far from the rotor centre that no overlap with the rotor takes place and the REWS approaches .
This means that in the partial load region, M. is suppressed with more wake overlap, so for decreasing r,. In the full load
region, the blades are pitched to keep the power (o ©?) constant, which implies that the thrust and the flapwise moments (o< u?)
decrease with increasing wind speed. The highest loading can be seen at rated wind speed. Consequently, M, increases with
more wake overlap in the full load region, down to the point when the REWS becomes smaller than the rated wind speed. M.
is fitted with a Gaussian function of 0 = R,,,;. The constants M., and M, describe the collective moment for r,, — oo and

rw = 0 respectively.

2
Meoi(r) = Moo — (Mo — My) exp <_2R¥ A ) (13)

The characteristic shape of the measurement model as described above is illustrated in Figure 3.

Mo M, Mo
1 — - ~ max
WA
-1 — min
1 0 1 - 0 1 -1 0 1
y“’ /D yvv' /D y“' /D

Figure 3. Contour plot of the measurement model outputs in dependency of the wake position. Normalized with their respective maximum

and minimum for confidentiality. The fitting parameter d is indicated, describing the phase-offset of the yaw-tilt-coupling.

The parameters of the measurement model (see Table 1) are fitted to a set of training data from aeroelastic simulations within

the framework of FASTfarm (Branlard et al., 2022) via a non-linear least-squares regression. The field setup is replicated in
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Table 1. Fitting parameter for the measurement model /()

Parameter Unit  Description

Ruix m wake overlap resulting in the largest yaw/tilt moment; an approximation is

Rumix = (R+ Rw)/2, i.e. the mean of rotor radius and wake deficit radius

M max Nm  maximal value of yaw/tilt moment (reached at wake overlap Rix)
b Nm  wake-independent offset of yaw moment
c Nm  wake-independent offset of tilt moment
d ° phase angle to describe yaw-tilt-coupling
My Nm  collective moment at full wake overlap
Mo Nm  collective moment at no wake overlap

the simulations, but the position of WT1 is subsequently shifted laterally from -1.5 D to +1.5 D in steps of 0.5 D. The dynamic
wake meandering model (DWM) is enabled, and the curled wake model is chosen (Branlard et al., 2022). As an example, a
subset of the training data at 10ms~! ambient wind speed is given in Figure 4, showing the non-dimensionalized yaw moment
in dependency of the wake position y,,. Each scatter color refers to one location of WT1. The combination of wake meandering
and different WT1 positions results in a wide range of wake constellations being covered. In case of a constellation with larger
downstream spacing, thus larger meandering amplitudes, even less WT1 positions could be considered for the generation of
training data.

The fit parameters depend on the ambient conditions, most prominently on the ambient wind speed. Information of the wake
deficit is implicitly contained in the parametric model. Especially in case of large downstream distances, ambient turbulence
and atmospheric stability is impacting the wake mixing. In the present case however, the streamwise spacing is too short for
the ambient turbulence to show a notable impact on the modeled wake mixing, and thus on the fitting parameters. The impact
of shear on the wake deficit is not fully accounted for in the simulation environment, especially in relation to wake-asymmetry
(as discussed later in section 4.1). Thus, it is decided to only create training data in dependency of the ambient wind speed,
resulting in a 1-dimensional lookup-table (LUT) of fitting parameters. This requires 63 simulations (7 WT1 positions and 9
wind speeds, 4-12 ms™ 1), each with a duration of 600s, a TI of 10% and o = 0.25. Only one stochastic seed per wind field

proved sufficient, since the ef

larger streamwise spacing; set for one ambient condition already combines the results of seven simulations with their respective
be required. A consideration of ambient TI is required in case of larger streamwise spacing,to adequately resolve the impact
of turbulent mixing in the far-wake region. Also, including ambient shear could be a further step, preferably with a refined
modeling of its impact on the wake deficit.

10
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Figure 4. Training data and model fit of the yaw moment; each scatter color refers to a prescribed position of WT1. Normalized with the

respective maximum and minimum for confidentiality. The fitting parameter Rmix, Mmax, and c are indicated, showing the width, amplitude

and offset of the model.

In addition to the parameter fitting, the training data allow to seize the order of magnitude of the load variance, linked
to turbulence and dynamic events such as load over- and undershoots. This variance is regarded in the noise tuning of the
EKF when choosing the entries in the measurement covariance matrix R. The measurement covariance of the yaw moment
is increased by a factor of 10 in situations, when the turbine is yawing, to prevent a misinterpretation of the yaw moments

occurring here.
2.3 Lidar data processing

This section describes the steps from the initial scanning lidar measurements to a wake position in a WT2-based coordinate

system. An uncertainty analysis is included, to show the eligibility of the lidar measurements as a suitably precise reference.
2.3.1 Coordinate systems

Different coordinate systems occur in the scope of this work. An overview is shown in Table 2. Ultimately, the lidar-probed
wake positions should serve as the reference for the load-based tracking of WT2, thus a WT2-centered coordinate system is
targeted. The relations between the coordinate systems are given in Equations (14-16) and an overview is sketched in Figure 5.
The x- and y-offsets in Equation 16 refer to the 2.7D spacing in ground-based coordinates. The lidar performs horizontal single
PPI scans. An elevation of § = 1.3° is used to account for the average nacelle tilt during operation, determined via the GNSS
system on WT1. The lidar azimuth angle y covers a range of 120° with a scanning speed of 2°s~!. The range gate centre is
denoted d, and spans from 50 m to 1630 m in steps of 10 m. The nacelle yaw angles are denoted ~y; and 2 for WT1 and WT2,

respectively.

11
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Table 2. Coordinate systems

Coordinate system  Notation Axes
Lidar based (s spherical, azimuth y (positive clockwise), elevation J, range d.., rotates with WT1 yaw ~y;
WT1 based (wr cartesian, right-handed, z in positive in downstream direction of WT1, z: elevation, origin at rotor centre
Ground based (e cartesian, right-handed, z: Easting, y: Northing, z: elevation, origin at WT1 foundation
WT2 based (w2 cartesian, right-handed, z in positive in downstream direction of WT2, z: elevation, origin at rotor centre
R cos(x) cos(9)
Y =d, | sin(x)cos() (14)
z sin(4) ,
L7 dwr Li
x —sin(vy1) cos(y1) O x 0
y = | —cos(y1) —sin(y) 0 y + 0 (15)
L 2 g 0 0 1 z L hwr1
x —sin(y2) —cos(y2) O x —252.8m 0
Yy = cos(y2) —sin(y2) O y—227.6m + 0 (16)
L z Jwra 0 0 1 z aB _hWT2

2.3.2 Wake centre estimation
The horizontal wind speed wy, is the projection of the lidar line-of-sight wind speed uz0s on the wind direction ® obtained by
the nearby met mast:

_ uros
h cos(x + 71 — @) cos(9)

a7

Note that (; — ®) expresses the yaw misalignment of WT1. Equation (17) assumes zero lateral and vertical wind speed
components v, w, which is equivalent to the assumption of identical wind direction at the met mast and the probing position.
The impact of this assumption on the uncertainty is discussed in section 2.3.3. The wake position is identified via the horizontal
velocity uy, within the upstream area of WT2, defined by xy 72 € [—110,—90] m and yw 72 € [—200,200] m. The upstream

distance is a trade-off between maintaining proximity to WT2 while being less affected by its induction zone (Kidambi Sekar
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Figure 5. Illustration of the coordinate systems as defined in Table 2

et al., 2024). The subsequent wake centre identification is linked to the definition of the wake centre itself, as discussed by
Vollmer et al. (2016) and Coudou et al. (2018). A comprehensive overview of different lidar-based tracking methodologies is
given by Trujillo (2017). Following Vollmer et al. (2016), a robust approach via the minimum in density of virtual available
power is used:

-1 if |ywre <2

yw =argmax(px far)  with  far(ywr2) = (18)
ywT2 0 otherwise

where (. *.) denotes a convolution and f); a square-shaped masking function. The density of available power is defined as

p(ywr2) = U;?i
55

400

200 1

ywr2 [m]
o
Yy

-200 [

upstream area WT 2

-400 + ® wake centre
-200 0 200 400 600
Twre [m]

Figure 6. Wake centre identification from lidar measurements in WT2-based coordinate system. The wind direction here is 205°, resulting

in a partial wake constellation.
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2.3.3 Uncertainty estimation

The uncertainty of the wake position y,, is subject to

— the lidar probe position uncertainty
290 — the uncertainty in the horizontal wind speed at the probe position, when projected from the line-of-sight velocity

— the sensitivity of the wake centre identification method towards the wind speed uncertainty

In principle, an uncertain probe position could further influence the probed wind speed, e.g. when measuring at a different

altitude than expected in a sheared or veered flow. This can be corrected for, as shown by Schneemann et al. (2021) for a
long-range lidar experiment with range gates of multiple kilometers. In the work presented here, the probe position uncertainty

295 is sufficiently small to neglect the effect of wind speed gradients at the probe position (see later in Figure 7). The probe position
is subject to the measurement uncertainties listed in Table 3. Their propagation through the coordinate transform in Equations

(14-16) is formulated by Equation (19), following the GUM standard (JCGM, 2020), where the expression (.)°? denotes the
element-wise square operation for a vector. Also, the square-root is to be understood element-wise. The uncertainties are

illustrated in Figure 7 for a full alignment case (® = v; = 2 = 228°). Note, that the uncertainties depend on the instantaneous

300 constellation.

Table 3. Uncertainties in the scope of the lidar data processing; values relate to the 95% confidence interval for normally distributed uncer-

tainties (i.e. a coverage factor of 2)

Quantity Variable Uncertainty
Lidar elevation 6 +2° (impacted by WT1 tilt motion)
Lidar azimuth X 40.5° (see Schneemann et al. (2021))
Range gate centre” dy 2m
Mean wind direction P +2 ° (see Schneemann et al. (2021); Simley et al. (2020))
WTI yaw (GNSS based) " +0.5°
WT?2 yaw (GNSS based) Y2 +0.5°
LOS wind speed ULOS +0.1 ms!

*range gate centre as a result of pulse length and time of travel; the range gate volume is considerably larger

A Oxwr2 ° OTwr2 ’ dxwra  \ Oxwr2 > | 0zwre o2 Oxwr2 |
o 072 96 ox om 02

wT2

19)
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Figure 7. Illustration of uncertainty propagation: Probe position uncertainty in «,y, z and horizontal wind speed uncertainty; WT2-based

coordinate system

The uncertainty in the line-of-sight projection of the wind speed Auy, can again be expressed considering the geometry:
8uh 2 8uh 2 8uh 2 8uh 2 8uh 2
Aup = —A —A — AP —Ad A 20
up, \/( ax X) + (871 n| 3% + 55 + Bupos uLos (20)

The impact of the wind speed uncertainty on the wake centre identification is investigated. If the wind speed uncertainties were

randomly distributed along yy 72, the convolution integral would hardly be affected, since it smoothens on a scale of 1 D.
However, it is more likely to have a wind speed uncertainty which is correlated along yy 12, e.g. as the result of a misaligned
lidar beam. This would promote wind speeds at one end of the probing area while suppressing them at the other end. The bias
would have a magnitude of £5% within the wake probing range, as visible in Figure 7d. Figure 8 shows a normalized wake
deficit example, which is corrupted by a linear bias of +5%. Applying the convolution method according to Equation (18)
yields a mis-assessment in the order of &1 m ( < 0.01 D) for all possible wake positions y,. Note, that this is no longer a
standard uncertainty according to the GUM, since it contains the worst-case assumption of a linear bias. Also note that the mis-
assessment of the method depends on the wake deficit. A less pronounced wake deficit would have less impact in comparison
to a correlated wind speed uncertainty. Qualitatively, the investigation showed the convolution method to be very robust and
hardly affected by the expected range of wind speed uncertainty. The uncertainty of the probe y-position and the wake centre

identification uncertainty are subsequently added. The calculation is applied for each full lidar snapshot individually.
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Figure 8. Example of convolution method to extract the wake centre position; impact of wind speed uncertainty on wake centre identification:

Generic double-Gaussian deficit as found situ is distorted by two exemplary linear biases of +=5%, which can be obtained from Figure 7

3 Results

In this section, the results of the field experiment and the wake estimation are reported. In section 3.1, the wake conditions
contained in the data set are described, considering both the wake position variability and the wake deficit shape. In section

3.2, the wake position estimates of the load-based EKF and the lidar are compared.
3.1 Wake condition characterisation

This first part of the result section gives an overview of the wake conditions contained in the test data set. A histogram
of the ambient conditions is shown in Figure 9. In total, 1800 one-minute samples (30 hours) of wake constellations are
contained. The wind speed distribution does not show the converged shape of a Weibull distribution yet, but the tendency
is recognizable. A large share of high shear and low turbulence intensity is on hand, which is an indicator for very stably
atmospheric conditions. Note here, that atmospheric stability often follows diurnal cycles, while the data set only contains data
from 05:00 to 21:00 UTC, since the wind turbines often operated at a noise reduction mode during night time, which would
not have been representative. Also note, that the indicated yaw misalignment does not distinguish between intentional and

unintentional yaw misalignment.

Wind Speed Shear Turbulence Intensity Wind Direction Yaw Misalignment WT1
400 400 600 600
600
s 400 400 400
2200 200
g 200 200 200
95
0 0 0 0 0
X9 oA Q0N 0 02 04 06 0 0.05 01 015 195 215 235 255 -10 0 10
u [m/s] a ] TI [-] @ [°] (m— @) [7]

Figure 9. Histogram of ambient conditions contained in the investigated data set; all measurements refer the met mast (except for 1, which
is probed via GNSS on WT1)
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3.1.1 Wake position variability

In Figure 10, the wake position vy, as identified from the lidar scans, is plotted versus the wind direction. It shows higher
spreading than suggested by the pure geometry, namely the turbine positions and the assumption of linear wake propagation
335 parallel to the wind direction, indicated in red. The spreading has a magnitude of up to ~ 40 m or 0.3 D, which is considerably
larger than the order of uncertainty connected with the wake centre identification, as discussed in section 2.3.3. The spreading
could originate from wake meandering, wind direction changes propagating through the test field, and wake steering control.
The impact of the wake steering controller can be estimated by employing the analytical wake deflection model of Jiménez
et al. (2009) or Larsen et al. (2020) and the available information of the yaw misalignment of WT1. These models give
340 similar results, but the latter does not require any parameter fitting. Figure 10b shows results for the Jiménez model, which on
average successfully encounters the direction and magnitude of wake deflections for the sector in which wake steering control
was active (191° — 259°). Note, that toggling between conventional and wake steering control was on hand, thus also many
situations with no intentional yaw misalignment are contained in the plot. While the scattering range resulting from the Jiménez
model is similar to the observed scattering seen in the lidar data, these scatters are not necessarily concurrent in time. Also, the

345 double-sided deviations of the lidar probed wake positions from the geometry line are not captured.

300 300
Lidar estimate
200 200 KN . Geometry .
NG Geometry + Jiménez
100 100 b
El
5 0 0
>
-100 -100
-200 -200
-300 -300
180 200 220 240 260 280 180 200 220 240 260 280
wind direction @ [°] wind direction @ [°]

Figure 10. Wake centre position y,, in dependency of wind direction: Geometry denotes the pure consideration of farm geometry and linear
wake propagation in main wind direction, Jimenéz denotes an analytic wake deflection model. Center lines of zero deflection and full turbine

alignment (228°) are marked.

3.1.2 Wake deficits

Figure 11 shows the wake deficits recorded by the lidar, superimposed within wind speed bins of 0.5 m/s. The instantaneous
deficits are aligned along their identified wake centre, thus the horizontal axis in Figure 11 is defined as r = yy 2 — yy (com-
pare section 2.3.1). Each snapshot is plotted transparent, such that darker areas indicate higher occurrences of similar deficits.

350 Some individual wake deficits differ considerably from the dominant bin average. The wake deficit shows the characteristic
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Figure 11. Spaghetti plot of the observed wake deficits per individual lidar scan, aligned along their identified wake centre; binned in steps

of 0.5 ms™1; plotted transparent to visualize frequent occurrences of similar wake deficits

double-Gaussian shape of a near wake. Especially for larger wind speeds, a strong asymmetry is observed, pronouncing the
wake at negative coordinates r (referring to the right side when facing downstream; compare Figure 6).

The co-occurence of the asymmetry with ambient conditions is documented in Figure 12. A strong impact is visible when
filtering for the power law coefficient «, describing the shear profile. Figure 12a indicates that the wake asymmetry is more
pronounced at strong shear, connected to atmospheric stable conditions. For low shear coefficients, the wake deficits are rather
symmetric. Larger wind speed variations among the deficits as well as in the non-waked area are on hand here, which again
is attributed to the atmospheric stability. Figure 12b shows a distinction of wake deficits with respect to yaw-misalignment
situations, which are known to cause a kidney-shaped curled wake (see e.g. Bartl et al. (2018) and Sengers et al. (2023)). While
the main asymmetry of the double Gaussian deficit, i.e. the magnitude difference of the two wake peaks, is linked to the ambient
shear, a tendency towards a broader peak at the pronounced side of the wake is seen in case of negative yaw misalignment. This
finding is to be treated with care, since it is based on small data availability (compare Figure 9). The role of the wake deficit in

this context is further discussed in section 4.
3.2 Wake position estimates

This section shows the behaviour of the wake position estimation via load-based EKF and lidar recordings under various
ambient conditions. Details are shown in a time series plot and lidar snapshots of the flow field, while the general performance

is seized with bar plots of performance metrics applied on the entire data set.
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Figure 12. Wake deficits within wind speed bin 7.5 — 8ms™ "; a) colour coded for two ranges of shear profile, defined by power law

coefficient a; b) colour coded with respect to yaw misalignment of WT1

Figure 13 shows a six hour wake position time series on 19th of February, including several lidar recorded snapshots of the
instantaneous flow situation in the wind farm. The corresponding ambient conditions as recorded by the nearby metmast are
shown in Figure 14. Within the shown time span, the wind direction changes from 250° to 200°, resulting in a full sweep of the
wake across the rotor of WT2 (full alignment is at 228°). Constellations of partial wake, full wake and barely impinging wake
are covered. At the same time, the wind ramps up from 5 to 9 ms~*!, and the atmospheric conditions change from unstable to
stable, indicated by high TI, high wind direction variability and low « in the afternoon compared to low TI, low wind direction
variability and high « in the evening hours. The EKF is initialized at ¢, = 0 m and converges to the approximate wake position
within approximately 2 min. Snapshots associated with a variety of conditions - labeled a) to e) - are analyzed in detail.

a) Partial wake (at 14:16): A wake constellation at y, =~ —D/2, which agrees with the EKF estimate. The flow dynamics are
high at this point in time, which can be seen in the position changes captured by the EKF as well as in the wind field.

b) Full wake (at 15:21): While correctly identified by the EKF, the confidence interval of the EKF is slightly increased here.
% used by the local linearisation of the

Yw 0

This is connected to decreased observability, a result of the flat gradient
measurement model.

¢) Yaw misalignment (from 15:40 to 16:00): A high yaw misalignment (=~ 15°) of WT1 is present. The wake steering effect
displays with a prominent wake position change, which is also visible in the flow situation of snapshot c. Both the lidar and the
EKF capture the steep change in wake position in this time span.

d) Meandering (16:30 and 16:50): The wake position oscillates several times between 0.5 D and 1 D. The time scales of these
oscillations are around 300s (referring to spatial scales of 14 D at 6 ms~! ambient wind speed, compare section 2.2.2). This
is at the higher end of the dynamic range of the EKF, yet close to the transition between what is defined as meandering and as
farm-effective wind direction variability.

e ) Barely impinging wake (from 18:00 to 18:40): The wind direction approaches 200° and the average wake position moves
from 1D to 1.5D, which leads to ceasing wake impingement. The loss of observability goes along with increased state

covariance, thus a larger confidence interval of the EKF estimate. In case of no wake impingement, the 20 confidence is
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Figure 13. Top: Time series of wake position estimate by load-based EKF and lidar; the uncertainty range for both methods is indicated
Bottom: Snapshots of the instantaneous flow situation in the wind farm; ground-based coordinates are used; WT1 indicated in black, WT2

in red; the time instances a-e refer to the indications in the time series plot on top

close to 0.5 D for multiple time instances in a row (in case of a single iteration increase, it could also mean a measurement
outlier). The EKF position estimate stays approximately at the last known position but cannot be regarded as expressive here.

The EKF behaviour can further be assessed based on a spectra of the wake position time series, given in Figure 15. The
cut-off frequency of the EKF formulation f. is indicated, which is also close to the band limit of the lidar scanning speed.
Within 1072 Hz to 10~2Hz, the PSD of EKF and lidar estimates is similar and decays with approximately -20dB/dec. At
higher frequencies, the EKF shows a trend of -40dB/dec, where the additional attenuation is linked to the filter formulation.
The filter also contributes to the rejection of changes in wake position faster than f,., which might be suggested by higher-order
load variations.

The performance of the entire test data set is ranged with performance metrics. The estimates of lidar and EKF are compared

with the root-mean-squared-error (RMSE), defined as

N

1
RMSE = N};w&,‘?—y&,m : @D

The RMSE does not capture the uncertainty consideration yet. The additional metric inRange is introduced -which-denotes
in Equation 22, denoting whether the estimates are within each ethers-other’s 2o uncertainty range. It further accounts for the

fact, that no ground truth exists. Instead, two uncertainty-containing signals are compared.
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Figure 15. Power spectral density (PSD) of the wake position y, estimated by EKF and by Lidar
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The results are shown in Figure 16, where binning with respect to the ambient conditions is applied, revealing the dependency
on ambient wind speed, shear, TI and WT1 yaw misalignment. The share of data within the respective data bin is shown in
Figure 9, to allow assessing the results under consideration of the underlying statistical evidence. E.g., the RMSE of a bin
that contains only 3% of the available data can be considered less expressive than a bin that represents 20% of the data set.
The RMSE is generally around 0.2 D and the inRange indicator around 90 %. No clear systematic dependency towards ambient
wind speed and shear level is seen. The RMSE varies slightly among the bins, yet the :n Range indicator is not notably affected.
A trend for the turbulence intensity is visible, namely from 0.2 D RMSE and ¢nRange of 95 % at low TI to 0.3 D RMSE and
inRange of 75 % at high TI. The data availability decreases towards higher TI, yet the trend is persistent over all bins and for
both metrics. At small yaw misalignments of WT1 the RMSE is lowest. Strong negative yaw misalignments seem to increase

the RMSE. Yet this finding is to be treated with care, since the data availability is comparably low here.
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Figure 16. RMSE of wake position estimate (EKF vs. lidar), binned with respect to the ambient conditions; the orange bars refer to the right

y-axis and represent the inRange indicator, so whether the difference between the position estimates is covered by their uncertainty intervals

4 Discussion

In this section, the results are interpreted and ranged. First, the influence of the site specifications on the results is discussed,

considering the generalizability of the findings. Secondly, the wake tracking performance is discussed. The comparison to
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existing works in literature considers their individual testing conditions an performance metrics. Finally, the applicability of

the presented wake tracking in the context of wind condition awareness and wind farm flow control is discussed.

4.1 Evaluation of the experimental conditions and data processing methods

Site and wake conditions
The test site has very close spacing between the turbines, resulting in a near wake with characteristic double-Gaussian deficit
shape. The consequence for the estimation task is twofold. On the one hand, the wind speed deficit is very pronounced, so
it leaves a considerable footprint on the rotor of a subsequent turbine. On the other hand, a double-Gaussian wake deficit is
a more complex structure, thus requiring higher degrees of freedom for its description in comparison to a single-Gaussian
(Keane et al., 2016). The scanning lidar can resolve this and even an EKF-based four fixed-beam staring lidar approach as
described by Lio et al. (2021) shows sufficient observability. Existing works on estimation using turbine measurements either
do not consider near wake features (Doekemeijer and van Wingerden, 2020; Cacciola et al., 2016), or assume a quasi-steady
wake velocity deficit to be known a priori (Dong et al., 2021). The latter is similar to this work, where the wake deficit is
implicitly contained in the training data. Even more complexity is added due to the occasional wake asymmetry, reported in
the context of Figure 11. The wake asymmetry is found to dominantly co-occur with strong wind shear and to increase with
ambient wind speed, and thus also rotational speed. An interaction of wake rotation and the sheared flow is assumed. The
rotational component in the wake flow, in opposite direction to the rotor rotation, could cause an ‘upwash’ of wind speeds from
low altitudes on the right side of the rotor (facing downstream, thus negative on the y-axis) and a ‘downwash’ of wind speeds
from higher altitudes on the left side. The direction of wake rotation and the observed orientation of the wake asymmetry would
support this explanation. A comparable near wake asymmetry is reported by Bromm et al. (2018) in a similar field campaign.
A minor co-occurence of wake asymmetry and large WT1 yaw misalignments (> 10°) is found, matching the expectation with
regard to the curled wake phenomena (Bartl et al., 2018; Sengers et al., 2023). Yet, data availability of large yaw misalignments
is not considered sufficient to draw a clear conclusion on curled wakes, which are also not in focus of this work.

Another consequence of small downstream distance is a low meandering amplitude (Machefaux et al., 2015). It is expected
that the load-based EKF would have been able to capture higher meandering amplitudes, as shown in a wind tunnel experiment
with tailored meandering wake conditions (Onnen et al., 2023). In the given field setup, however, a considerable share of the

involved wake position dynamics can be accounted on wind direction changes and active yaw control.

Uncertainty

The uncertainty consideration for the lidar estimate is deliberately chosen to be mainly based on analytical error propagation
rather than on statistical approaches. On the one hand, this choice allows to identify and unravel the impact of individual
quantities’ contributions to the combined uncertainty of the processed wake position. In this case, the wind speed uncertainty
shows negligible impact when locating a coherent flow structure. The major contributions originate from the propagation of
geometric uncertainties. These can be limited with adequately precise measurement equipment, such as the GNSS encoders for

the nacelle yaw probing used in this setup. On the other hand, the uncertainty is available for every time instance independently,
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thus not depending on the data set size, as it would be the case for a statistically derived uncertainty. The lidar estimate generally
has a combined 2¢-uncertainty below 0.06 D, which makes it a suitable reference in comparison to the difference between the
lidar- and the load-based method, which is at the order of 0.2 D (RMSE). Trujillo (2017) names 0.05D as the accuracy of
lidar-based wake position extraction at short downstream distances, which is very similar to this work. The uncertainty of
the EKF estimate is directly taken from its state covariance matrix (Eichstadt et al., 2016). The involved linearisation of the

measurement model is similar to the first-order approximations used for analytic error propagation.
4.2 Wake tracking performance

In contrast to a simulation study, a pure performance assessment of one wake tracking methodology is not possible in a field
experiment, since no ground truth exists as reference. Instead, two uncertainty-containing estimates from two different methods
are compared. The wake position estimated with the scanning lidar can be regarded as an attempt to provide a reference value

closer to a virtual ground truth.

Impact of ambient conditions

The match between lidar and load-based position estimates shows no clear dependency on the ambient wind speed. Small
variations among the bins could originate from a limited data set size, which might not equal out coinciding instances of
certain wind speeds with e.g. certain turbulence intensities. An indication for a not fully converged data set is the wind speed
histogram in Figure 9, showing that the occurring wind speeds do not fully represent the shape of a Weibull distribution. In a
simulation study, no direct impact of the ambient wind speed on the estimation is reported, as long as both the wake-causing
turbine and the estimating turbine are not operating at the transition of partial to full load range (Onnen et al., 2022).

The observed increase of RMSE with TI is expected and agrees with simulation studies of load-based estimation (Dong et al.,
2021; Onnen et al., 2022) and field results of lidar-based wake estimation (Lio et al., 2021). Higher turbulence intensities affect
both the shape of the instantaneous wake deficit and the dynamics of the wake position. The information contained in the blade
root loads is typically not sufficient to distinguish between both aspects, especially when their characteristic time scales are
overlapping. The definition of the cut-off frequency in the dynamic model of the EKF leads to a rejection of turbulent scales
smaller than the rotor scale. Deviations of the wake deficit shape that persist at scales of multiple rotor diameters could be
misinterpreted as a change in wake position. This holds for the method described in this work, where wake deficit information
is indirectly contained in the training data, as well as for methods that aim to estimate the wake deficit online, yet on slow
time scales (Lio et al., 2021). The relation between the instantaneous wake deficit and the wake centre position further impacts
the respective definitions of the wake centre: The convolution with density of available power (as applied on the lidar data,
compare section 2.3.2) always considers the entire wake deficit. In case of non-symmetry it identifies its centre with a shift
towards the more pronounced side of the wake deficit. The load based method, however, solely judges the share of the deficit
which overlaps with the estimating turbine.

An impact of the wind shear on of the tracking performance could have been expected, as the asymmetry of the wake deficit

shows to be influenced. Yet, the low shears often coincide with high TI, both as features of atmospheric instability. It is not
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possible to fully isolate the effects from shear and TI, and although the wake asymmetry due to high shears would lead us to

expect a worse tracking performance, this was not observed.

Comparison to other wake estimation methods

The comparison to other existing methods considers the respective performance metrics, the test environment (simulations,
wind tunnel, or field), and the underlying methods and assumptions. Cacciola et al. (2016) show static inaccuracies of 0.1-0.2 D
for the determination of the wake centre position at TI= 5%, 10 % in aeroelastic simulations. Each position estimate is based on
10 min averaging and a least-squares-fit of rotor-effective horizontal shear with respect to the rotor loads. Bottasso et al. (2018)
show detection ratios per location interval (discretized with 0.25 D) as a performance measure. The detection method compares
the difference in EKF-estimated sector-effective wind speeds with a threshold, which again is subject to scheduling with the
ambient conditions. It is also tested in an aeroelastic environment, both in static wake conditions and in a scenario where a
single-Gaussian wake deficit follows a sine trajectory at a frequency of f & u../(2D). The simulations allow for a ground
truth reference, but other than that, the detection ratio is similar to the in Range metric used in this paper. Bottasso et al. (2018)
show a detection ratio close to 100 % for static wakes and 5% TI, which decreases to approximately 75 — 80 % at 10% TI. This
is similar to the results reported in Figure 16. The works also agree that ambient shear decreases the accuracy, while estimation
is still possible under moderate yaw misalignment of the tracking turbine. At full wake constellations, the method of Bottasso
et al. (2018) has no observability, because the wake-induced rotor loads are not asymmetric. Here, the comparison between the
methods lacks, because they do not use the undisturbed wind speed. But, as also pointed out by the authors, the blind spot at
full wake could be avoided when comparing the ambient wind speed with the rotor-effective wind speed, or redundantly with
the collective blade loads, as done in this paper. Onnen et al. (2022) test a nearly identical EKF formulation as in this work
with aeroelastic simulations using the DWM model and the DTU 10MW turbine. RMSE of 0.05 D, 0.1 D, 0.2 D is found for
turbulence intensities of 5%, 10%, 15 %, respectively. A similar RMSE is shown in another aeroelastic study by Dong et al.
(2021) with a similar load-based EKF. In general, the field test shows increased RMSE in comparison to the simulational tests,
which likely occurs due to the more uncertain environment. The qualitative tracking ability, as quantitized with the detection
ratio or inRange indicator is not notably impacted.

Wind tunnel results with two model turbines of 2m diameter are shown by Schreiber et al. (2016). The methodology is
similar to the one of Cacciola et al. (2016), and a time averaging of 1 min is used, which corresponds to approximately 1 hour
in the field, considering the scaling. Static inaccuracies of 0.1-0.2 D are found, in sheared inflow and 8 % TI. Dynamic wind
tunnel tests are shown by Onnen et al. (2023), where a 1.8 m model turbine is exposed to wake conditions tailored with an
active grid. The estimation accuracy is below 0.1 D (RMSE). This is considerable lower than in the field tests shown here, most
likely due to the controlled environment, a low ambient TT and no wind direction variability.

To the author’s knowledge, the only field test of load-based wake estimation is reported by Schreiber et al. (2020). Qualitative
wake impingement detection (left / right / full wake) is successfully shown, where the farm layout and the assumption of wake
propagation parallel to the met mast wind direction serve as a reference. The availability of a scanning lidar in this work allows
for a quantitative assessment while probing with higher spatial and temporal resolution. Further field experiments with scanning

lidar-based wake position identification are reported by Bromm et al. (2018), where a propagated uncertainty of 0.05-0.1 D is
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stated, similar to this work. Lio et al. (2021) show wake position tracking with simultaneous estimation of the deficit shape
and shear profile. It is based on a few-beam staring lidar and an EKF considering the wake meandering dynamics. A RMSE of
0.05D,0.12D, 0.18 D is shown, for 5%, 10%, 15 % TI respectively. In their work, the reference is a 1Hz least-squares fit of a
parametrized deficit to 178-point scans by three synchronized lidar WindScanners. The tracking is slightly more precise than

in this work, while Lio’s method is based on different inputs and requires less external information.
4.3 Applicability

Load-based and lidar-based wake estimation techniques have different outlooks for application. While lidars are still in the early
industrial adaption phase, load-based approaches can be a reliable alternative and implemented using solely the standard sensors
of modern wind turbines. This comes at the cost of slightly reduced observability, or dependency on external information. The
accuracy of the load-based tracking also needs to be ranged in relation to the expected magnitude of wake deflections due to
wake steering control. At very short turbine spacing, such as in this experiment, the uncertainty of the EKF estimate is close
to the expected magnitude of wake deflections Jiménez et al. (2009). The conclusion is, that purely using the wake position
as closed-loop feedback is a too narrow consideration. Still, this paper shows that satisfying wake estimation with the ability
to support robust closed-loop wake steering with suitable feedback information of high spatial and temporal resolution is
possible. The time resolution helps especially when not only considering the absolute wake position estimate (which might
e.g. be corrupted by an aberated wake deficit), but the change in wake position, which can be the intended response to a
wake-steering maneuver. The required knowledge of the ambient conditions can arguably be estimated by a front row wind
turbine (Soltani et al., 2013). Wake steering is, contrary to active wake control using a de-rating strategy, mostly applicable
in low turbulent stable situations. This is also where the methodology shows best performance in the field, in agreement to
expectations according to simulations.

This paper focuses on the wake position as an exemplary aspect of wind condition awareness. A similar data set and pro-
cessing chain could also be used to validate wind farm models or wind field reconstruction based on in-situ probings. Future
work will be to embed sensor based estimation within dynamic wind farm models (Becker et al., 2022; Lejeune et al., 2022),
thus to couple analytic models, e.g. for the wake deficit or wake deflection. The relevance of open-loop approaches in wind
farm flow control persists, since the impact of every control action is delayed by the advection duration of wakes. Closed-loop
yaw control does not necessarily need to happen at very fast time scales, where its effect could overlap with those of wake
meandering. State estimation could also support as a feedback, whether the open-loop models predict as expected, or (online)
re-calibration is necessary (see Hulsman et al. (2024)). Furthermore, the estimation of wake constellations yields information
of the farm-effective wind direction. It can complement error-prone and point-probing nacelle vane signals, thus contribute to

a consensus-based farm-effective wind direction (Annoni et al., 2019).
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5 Conclusions

The paper presents a quantitative field comparison of two independently applied wake centre estimation methods: a nacelle-
based scanning lidar and an EKF based on rotor loads. The methodology accounts for the fact that there is no ground truth in
the field by a detailed uncertainty evaluation. The lidar estimates have an uncertainty in the order of 0.05 D, which is a suitably
precise reference to draw conclusions regarding the load-based EKF. It is a step forward in spatial resolution in comparison to
the assumption of wake propagation parallel to the main wind direction. Both tracking methods agree with a RMSE of 0.2 D
for low to moderate TI, while increasing to 0.3 D for a TI above 12%. The EKF formulation further yields the uncertainty
of the state estimate as a byproduct, thus it self-indicates how certain or ‘observable’ a situation is. Insights to the full flow
field with the lidar allow to identify the observability limits of the load-based EKF, e.g. to distinguish between the influence of
exact wake shape and the wake centre position. Due to close turbine spacing and frequent high shear conditions, the observed
wake deficits in this work are rather complex, mainly double-Gaussian, often asymmetric, and thus also influencing the wake
centre definition. Yet, the methodology shows consistent behaviour even under these circumstances, which gives rise to the
expectation that it would work similarly well or even better in settings with single-Gaussian wakes, although the wake load
foot prints are relative weaker under such circumstances. While this paper focuses on the wake position as one aspect of wind
condition awareness, it also outlines how wind farm models or turbine-based wind field reconstruction can be validated with

complementary lidar data.
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Appendix A: Determination of rotor angle via edgewise blade root loads

The rotor angle of WT2 was not available to the authors. It was reconstructed from the edgewise blade root bending moments
M,. The method is based on the assumption that gravity is the main force contributing to the variation of the edgewise blade
root bending moment (RBM). Let ¥ be the rotor angle, which is defined positive clockwise and zero for blade 1 pointing

upwards. Accordingly, each blade’s edgewise RBM is modeled as

. . . 9 _ . 4 _
M,1 = M,sin(¥) + M. M, 5 = M,sin(¥ + ?ﬁ) + M, M, 5= M,sin(¥ + %) 1M, (A1)

where M, is the amplitude and M, is a non-oscillating offset, connected to the rotor torque. Using the addition theorem of the

sine function
sin(a + b) = sin(a) cos(b) + sin(b) cos(a), (A2)

this can be reformulated as

M., 10 1 M, sin(¥) M, sin(®) 10 1 M.,
M., | =] -2 @ 1 M, cos(0) & M, cos(U) | = -1 @ 1 Meso | - (A3)
Me,B _% _§ 1 Me Me _% _§ 1 Me,S
The rotor angle is calculated as
¥ = atan ALD() . (Ad)
M, cos(T)

To mitigate impact of the blade loads not behaving purely harmonic, e.g. due to tower shadow and non-uniform inflow, the
nominator and denominator in Equation (A4) are filtered with a zero-phase low pass filter. The filtering at this point avoids
filtering a non-continuous angle signal. The resulting determination of the rotor angle is shown for field data in Figure A1 and
shows the expected behavior. The method was additionally validated with the aeroelastic model of the turbine in openFAST,

where the rotor angle is available.
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Figure A1. Identification of the rotor angle (on right y-axis) from edgewise blade loads (on left y-axis); loads were non-dimensionalized for
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