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Abstract. Wind farm control concepts require awareness and observation methods of the inner-farm flow field. The relative

location of the wake, to which a downstream turbine is exposed, is of high interest. It can be used as feedback to support closed-

loop wake-steering control, ultimately leading to higher power extraction and fatigue load reduction. With increasing fidelity,

not only time-averaged wakes but also instantaneous wake conditions, subject to meandering and wind direction changes, are

considered within a controller. This paper presents a quantitative field comparison of two independently applied wake centre5

estimation methods: a scanning lidar and an Extended Kalman Filter (EKF) based on the rotor loads of the waked turbine. No

ground truth is available in the field environment, therefore the methodology accounts for the fact that two uncertain estimates

are compared. The lidar estimates, with a derived uncertainty in the order of 0.05 rotor diameters D, can be used as a suitably

precise reference to draw conclusions regarding the load-based EKF. The EKF uses Coleman-transformed blade root bending

moments, linked to the wake centre position via an analytical model with a low number of tuning parameters. The model10

can easily be trained with aeroelastic simulations including the Dynamic Wake Meandering model. The formulation adds

robustness to the tracking and allows to determine the confidence in the wake position estimate, which can be used for wake

impingement detection or for a wake-steering controller to judge whether a yaw manoeuvre is adequate. The results indicate

agreement of the methods with root-mean-square errors of 0.2D for low and moderate turbulence intensity, and 0.3D for

turbulence intensities above 12%. The paper focuses on wake position estimation but also outlines a methodology, how wind15

farm models or wind field reconstruction techniques can be validated with complementary lidar data.
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1 Introduction

Wind farm flow control allows to partly compensate wake-induced power losses or load increases. Either wake steering, static

induction control, or wake mixing strategies are employed to that purpose (Meyers et al., 2022). So far, mostly open-loop

approaches are considered for wake steering, namely misaligning or dynamically actuating the upstream turbine(s) without20

considering feedback of the wake-exposed turbines (see e.g. Fleming et al. (2017); Doekemeijer et al. (2021)). Here, the yaw

controller relies on engineering models regarding the wake trajectory it tries to aim for. While robust formulations can account

for wind direction variability (Rott et al., 2018; Simley et al., 2020), optimal wake deflection cannot be guaranteed, since

outer influences and wake dynamics can hardly be accounted for. The wake trajectory is impacted by atmospheric stability and

further subject to the meandering motion (Larsen et al., 2015; Sengers et al., 2023).25

The consequent next step is to close the loop by providing suitable feedback signals to a wind farm controller. Meyers

et al. (2022) explicitly mention the need for state estimation on wind farm level, i.e. for the awareness of the flow conditions

within the farm. Standard SCADA data and basic instrumentation of modern wind turbines, e.g. strain gauges for blade root

bending moments, allow to use the rotor as a sensor. Rotor effective measurements such as power, torque and collective blade

loads provide observability towards rotor effective wind speeds (Soltani et al. (2013); Bottasso et al. (2018); Lio et al. (2023);30

Coquelet et al. (2024)). This can be used as direct feedback or to tune an analytical flow model as shown by Doekemeijer

and van Wingerden (2020) and Becker et al. (2022). Yet, the observability is limited, as shown e.g. by Doekemeijer and

van Wingerden (2020), where the estimator can hardly distinguish which half of the rotor is exposed to a partial wake, especially

under uncertain wind direction information. In order to increase the spatial observability of non-uniform turbine inflow, the

rotor imbalances - resulting from shear, yaw misalignment or wake impingement - can be encountered (Bertelè et al., 2017).35

These rotor imbalances, such as yaw- and tilt-moments, are related to the harmonics of the blade root bending moments. The

Coleman transform describes the translation from the rotating to the non-rotating coordinate system.

Ultimately relevant for wake-steering control is the wake position within the wind farm, which is the feature that a wind

farm controller aims to manipulate. Existing methods for the wake position estimation are either based on wind turbine rotor

loads or on Light Detection and Ranging (lidar) measurements. The load-based approaches described by Bottasso et al. (2018)40

and Schreiber et al. (2020) aim at qualitative impingement detection and include a field validation. Time-averaged position

tracking is shown by Cacciola et al. (2016) in aeroelastic simulations and by Schreiber et al. (2016) in a wind tunnel.

Yet, the dynamics caused by wind direction changes and wake meandering are not taken into account here. Braunbehrens

et al. (2023) show that these dynamic scales are relevant for the inner-farm flow and but also challenging for an estimator

to capture. As outlined by Larsen et al. (2008) and further described in section 2.2.2, the spatial scales in the order of 2-2045

rotor diameters (or their complementary time scales) need to be considered in the context of wake meandering. Dynamic EKF

formulations are shown by Dong et al. (2021) and Onnen et al. (2022), using blade loads but also taking the meandering

dynamics into account. Yet, these methods are only tested in simulation environments, where the wake position is known.

The lidar-based wake-tracking methodologies depend on the lidar type. The online approaches for wind farm control pur-

poses use short-range forward-looking lidars, usually considering a low number of fixed beams for cost-efficiency (Raach50
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et al., 2017; Lio et al., 2021). Kalman filter formulations are used for robustness under the sparse spatial observability owing

to the low number of beams. It that they similar to the load-based attempts but can further include the wake deficit shape to the

estimation Lio et al. (2021). In contrast, long-range scanning lidars provide high spatial resolution of the flow field. Due to their

high costs, they are not considered for commercial applications in the context of real-time wind farm flow control. Instead, they

are mainly used in experimental campaigns for scientific validation of wake behaviour (Trujillo et al., 2011; Machefaux et al.,55

2015; Bromm et al., 2018; Brugger et al., 2022). Both wake steering (Bromm et al., 2018) and wake meandering (Brugger

et al., 2022) effects can be resolved.

In section 4.2 the results of the load- and lidar-based wake estimation approaches mentioned above are compared to the

approach presented in this paper, considering the individual testing conditions and performance metrics. At this point, the

research gap can be concluded as follows: Existing work for load-based wake tracking lacks either60

– a consideration of wake dynamics and time resolution, or

– a field validation, or

– (in case of a field validation) an independent reference to compare with.

The objective of this work is to fill the gap by addressing all three aspects: The work shows direct estimation of the instanta-

neous wake centre position in a field experiment with two utility-scale wind turbines. The load-based estimate is compared to65

the wake position probed with a scanning lidar, which serves as an independent reference. To that purpose, the uncertainty of

the lidar estimate is quantified using analytic error propagation following the GUM (Guide to the expression of uncertainty in

measurement; JCGM, 2020). The lidar data processing orients at existing work of Machefaux et al. (2015) and Bromm et al.

(2018), isolating the quasi-instantaneous wake deficit in a moving frame of reference.

The remainder of the paper is structured as follows: In section 2 the methodology is described, starting with the field setup,70

followed by the load-based EKF and the lidar-related data processing, including an uncertainty consideration. In section 3 the

results are presented. First, the experimental conditions are characterised, then the wake position estimates are compared. In

section 4, the findings are discussed, ranged and compared with literature. Concluding remarks are given in section 5.

2 Methodology

2.1 Field experiment75

The wind farm used in this work consists of two Eno126 turbines, built by Eno Energy Systems GmbH near the village Kirch

Mulsow near Rostock, Germany close to the baltic sea. The surrounding nature of the test site has agricultural vegetation, with

patches of trees and bushes between the fields. The measurements used for this paper are from February and March 2021.

Further investigations of the experiments at this site are reported in (Hulsman et al., 2022; Sengers et al., 2023; Kidambi Sekar

et al., 2024). The turbines are spaced by 2.7 rotor diameters along south-westerly direction (compare Figure 1), which is also80

the prevailing wind direction for this site. For brevity, the turbines are called WT1 and WT2 in the following, with WT1 located
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in the south-west, thus mostly being the upstream turbine. Each turbine has a rotor diameter D of 126 m and a rated power of

3.5 MW. The hub heights are 117 m and 137 m, for WT1 and WT2, respectively. In addition to standard operational signals,

both turbines are equipped to measure blade root bending moments in flapwise and edgewise directions with strain gauges and

fiber-optical sensors. This paper uses the fiber-optical sensors by Polytech Wind Power Technology Germany GmbH (formerly85

Fos4X GmbH). Both turbines’ nacelle yaw orientation is tracked with interconnected differential Global Navigation Satellite

System devices (GNSS; Trimble type 3 Zephyr mode, three antennas on WT1 and two on WT2, see Trimble (2025)). The

increased accuracy of the yaw angle probing in comparison to the inbuilt yaw encoders is relevant for the post-processing

of the lidar measurements, as recommended by Bromm et al. (2018). The rotor azimuth angle information of WT2 was not

available, thus the angle was reconstructed from the the gravity-dominated edgewise blade loads as shown in Appendix A.90

A met mast is located 2.6D north of WT1 (see Figure 1). The wind speed and direction are probed with cup anemometers

and vanes (Thies Clima, type 4.3352.00.400 (Thies-Clima, 2025b) and type 4.3151.00.212 (Thies-Clima, 2025a), respectively)

at z1 = 54 m and z2 = 112 m. Both the turbine and met the mast data is stored at 50Hz.

The wind shear exponent α is calculated from the met mast measurements according to the power law:

α=
log(u2/u1)

log(z2/z1)
, (1)95

where ui, i ∈ 1,2 are the wind speed and zi, i ∈ 1,2 are the height of the wind cup anemometers.

A pulsed scanning lidar (Leosphere WindCube 200S) is installed on the nacelle of WT1, facing in downstream direction.

Within the wind direction sector under investigation, the lidar performs horizontal trajectories (single Plan Position Indicator -

PPI). The scanned sector covers a range of 120◦ with a scanning speed of 2◦s−1 and range gates between 50 m and 1630 m.

The coordinate systems involved in the post processing and further details regarding the lidar trajectory are described in section100

2.3.1.

Within the wind direction interval [191◦,259◦], active wake steering control is tested. At intervals of 30min the controller

of WT1 toggles between greedy and intentional yaw misalignment. The yaw update frequency is at 30s and the misalignment

is realised via manipulation of the nacelle vane signal. The assessment of the wake steering controller is not the focus of this

paper, yet it is important to regard its role when discussing the wake constellations.105
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Figure 1. Wind farm layout at Kirch Mulsow test site; left: turbine spacing and distance to the met mast indicated; right: wind sectors for the

control-experiment indicated; adapted from Hulsman et al. (2022). © OpenStreetMap contributors 2024. Distributed under the Open Data

Commons Open Database License (ODbL) v1.0.

2.2 Load-based wake tracking

In this section, the methods used for the load-based wake tracking algorithm and usage of training data are described. Core

of the tracking algorithm is an Extended Kalman Filter (EKF), which links the load measurements from a wake-exposed

wind turbine with the physical knowledge about the wake dynamics. An EKF incorporates nonlinear state- and measurement

transition functions via local linearisation around the current state estimate (Brown and Hwang, 1992). The interaction between110

the individual aspects of the load-based wake tracking problem is shown in the overview chart in Figure 2. The EKF and its

sub-components are described in the following sections. In section 2.2.1, the EKF formulation and the definition of states

and inputs takes place. Section 2.2.2 defines the state transition function f(), including a consideration of the involved wake

physics. Section 2.2.3 defines the measurement transition function h(), so the linkage between wake position and rotor loads.

Note, that the estimation task is here formulated for the general, 2-dimensional case, so considering the horizontal and115

vertical wake position. Due to the measurement setup and the single PPI scans of the lidar, only a comparison of the horizontal

component is possible, which is also more relevant. The vertical position is considered less relevant for the application, because

i) it has lower position variance due to wind direction changes and meandering Braunbehrens and Segalini (2019), and ii) it

cannot be manipulated by wake-steering control.

2.2.1 General EKF setup120

A discrete EKF is implemented, where k denotes the time index, (̂·) an estimate, xk ∈ RNx the state vector and yk ∈ RNy the

measurement vector, with dimensions Nx = 4 and Ny = 3. The state vector contains the wake positions (yw,zw) in a WT2-

oriented coordinate system (compare section 2.3.1), as well their first derivatives with time (vc,wc). The measurement vector
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Pre-processing

ෝ𝒙𝑘 = 𝑓 ෝ𝒙𝑘−1 + 𝐊𝑘 𝑒𝑦,𝑘
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𝑒𝑦,𝑘
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− 
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state estimate ෝ𝒙𝑘 (containing wake centre
position), state covariance 𝐏𝑘

x

Measurement model 
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Figure 2. Block diagram of the dynamic wake tracking algorithm, showing the input and output signals to the EKF

yk contains the Coleman-transformed non-rotating rotor loads, further described in subsection 2.2.3.

xk = [yw,zw,vc,wc]
T , yk = [Myaw,Mtilt,Mcol]

T (2)125

The EKF algorithm consists of the steps presented in Equations (3-7). An ‘a priori’ value is denoted (·)−. The model

xk+1 = f(xk,nx,k) describes the state transition, and the measurement model yk = h(xk,ny,k) describes the static mapping

between the system state and measurements, where nx,k ∈ RNx and ny,k ∈ RNy represent white noise acting on the state and

output equation, respectively, with zero mean and covariance matrices Q and R. The state covariance matrix is denoted Pk. It

is initialized as Pk=0 =Q. The local linearisations of the state transition model and the measurement model around a current130

state are denoted Fk and Hk, respectively. Note, that the state transition model f(xk,nx,k) used in this work is formulated as

a linear operation (see next subsection). Thus, the linearisation in Equation 4 is not necessary and F can be directly constructed

from Equation 8. In the scope of this work, the EKF is applied at 1Hz sampling frequency.

Prediction Step:135

x̂−
k = f(x̂k−1,0) (3)

P−
k = FkPk−1F

T
k +Q with Fk =

∂f(xk−1,0)

∂x
(4)

Measurement Update Step:

Kk =P−
k H

T
k (HkP

−
k H

T
k +R)−1 with Hk =

∂h(x−
k ,0)

∂x
(5)140

x̂k = x̂−
k +Kk (yk − ŷk)︸ ︷︷ ︸

innovation ey,k

with ŷk = h(x̂−
k ,0) (6)

Pk = (I−KkHk)P
−
k (7)
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2.2.2 Dynamic model145

The dynamic model f() describes how the system state evolves over time. In this study, the model should capture how the wake

centre position changes over time. Depending on the atmospheric conditions and the wind farm control strategy, the wake

trajectory is subject to various dynamic influences. Time scales of wind direction changes, wake-steering control and wake

meandering need to be incorporated by the dynamic model of the EKF, while effects corresponding to small-scale turbulence

with no expressiveness towards the wake position need to be rejected.150

For the inner-farm effect of wind direction variability, Simley et al. (2020) suggest a distinction between low- and high-

frequency wind direction. The high-frequency share refers to oscillatory point-measurements (e.g. a nacelle vane) at hub height

of a wind turbine, while the low-frequency share describes the dominant mean wind direction across the wind farm. Using a

combination of field measurements and LES, Simley et al. (2020) identify the boundary between high- and low-frequency

wind direction at 0.0037 Hz, for a scenario at 8 ms−1 ambient wind speed and wind turbines of 126 m rotor diameter155

(NREL 5MW). Rott et al. (2018) suggest to regard a time window of 5 minutes (=̂ 0.0033 Hz), which is very similar. Us-

ing the same non-dimensional type of expression as in (Larsen et al., 2008; Lio et al., 2021), this frequency can be expressed as

fc,WD ≈ u∞/(20D), where u∞ is the ambient undisturbed mean wind speed. Depending on the perspective, a high-frequency

wind direction variation can also be seen as the vector addition of longitudinal and transversal wind speed components, so a

turbulence phenomenon.160

Wake meandering in the atmospheric boundary layer is driven by turbulence patterns considerably larger than the wake

deficit scale (Trujillo et al., 2011). Larsen et al. (2008) introduced the DWM model, which translates this split of scales to a

random walk trajectory, where the wake deficit is seen as a passive tracer. Larsen et al. define the default cut-off frequency of

the meandering motion as fc = u∞/(2Dw), where Dw is the wake diameter (in near wake applications also the rotor diameter

D is a valid choice). Note, that this is the theoretical limit, up to which a wake deficit is regarded as a passive tracer. Lio et al.165

(2021) show in a field study with a lidar-based EKF featuring an auto-correlation term of the wake position time history that

the dominant spectral share of the meandering motions can be up to a factor 10 slower.

In conclusion, the frequency range of u∞
20D ≤ f ≤ u∞

2D is relevant for meandering. Wake position changes at slower time

scales do not require a higher order model. The meandering time scales are thus modeled with first-order differential equations.

This work uses a cut-off frequency of fc = 0.01Hz. The changes in lateral and vertical wake position are described via the170

characteristic velocities vc(t) and wc(t), whose change rates are modeled as low pass-filtered white noise:

ẏw(t) = vc(t)+nx,1(t) (8a)

żw(t) = wc(t)+nx,2(t) (8b)

v̇c(t) =−ωc vc(t)+ωcnx,3(t) (8c)

ẇc(t) =−ωcwc(t)+ωcnx,4(t) , (8d)175
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where ωc = 2πfc. The equations are discretized for their implementation in the state transition function f(xk,nx,k). Note

that the nx,i represents the ith element of the noise vector nx. The time index k is omitted here, because the continuous

representation is chosen. Since the noise terms enter linearly, they are incorporated in the EKF formulation via the additive

noise covariance matrix Q.

2.2.3 Measurement model180

The measurement model h() is a mapping from the state to the measurement - in this study a link from the wake centre

position to the rotor loads. The model must fulfill certain criteria: It should be computationally inexpensive, such that it can be

computed online in each filter iteration. Look-up tables with pre-computed information are preferable here (see e.g. Schreiber

et al. (2020); Soltani et al. (2013)). Moreover, the model has to be differentiable, such that its local sensitivity to a change

in state or input can be determined. Finally, it should be robust and lead to a convergence of the estimate, even if the state185

at initialization is far off. The measurement vector yk contains the Coleman transformed, non-rotating flapwise blade root

bending moments according to Equation 9. The time index k is omitted from the notation for better readability.

y =


Myaw

Mtilt

Mcol

+ny =
2

3


sin(Ψ) sin(Ψ+ 2π

3 ) sin(Ψ+ 4π
3 )

cos(Ψ) cos(Ψ+ 2π
3 ) cos(Ψ+ 4π

3 )

1/2 1/2 1/2




Mf,1

Mf,2

Mf,3

+ny , (9)

where Ψ denotes the rotor azimuth position and Mf,i denotes the ist blade flapwise blade root bending moment.

190

In the following, the parameterised model is derived in Eqs. 10-13. All fitting parameters introduced in this scope are listed

in Table 1. The model is subsequently fitted to training data generated in aeroelastic simulations with enabled DWM model

(Larsen et al., 2008). Figure 3 shows the contour shape of the model and Figure 4 an example of training data and fitting.

The yaw and tilt moment depend on the wake position (yw,zw) relative to the rotor. Let these be expressed in polar co-195

ordinates centered at the hub, where rw =
√
y2w + z2w is the distance of the hub to the wake centre. The ratio between rotor

tilt and yaw moment yields information about the angle θ, the angular position of a wake in the rotor plane, quantified as

θ = atan(yw/zw), using a four-quadrant inverse tangent. In order to get the absolute magnitude of the wake-induced rotor

imbalance, the quantity M̃(rw) is introduced, as

M̃(rw) =
√
(Myaw(rw,θ)− b)2 +(Mtilt(rw,θ)− c)2 . (10)200

A reformulation yields the following compact formulation of the yaw and tilt moments,

Myaw(r,θ) = M̃(rw) · sin(θ+ d)+ b (11a)

Mtilt(r,θ) = M̃(rw) · cos(θ+ d)+ c , (11b)
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where b,c describe offsets to the moments that do not originate from the wake, such as a moment due to tilt overhang or

vertical shear. An optional term for phase delay is denoted as d, describing how an inert blade reacts to a change of local wind205

speed, also known as yaw-tilt coupling (see Lu et al. (2015) and Mulders et al. (2019)). The quantity M̃(rw) is defined in

Equation 12, where M̃max and Rmix are fitting constants.

M̃(rw) =


M̃max sin

(
πrw

2Rmix

)
if |rw|<Rmix

M̃max exp
(
2
(

rw
Rmix

− 1
)2)

if |rw| ≥Rmix

(12)

Although wake tracking based only on rotor imbalance (Myaw, Mtilt) was found to be possible, the stability and convergence

behaviour can be enhanced by including the collective moment Mcol (Onnen et al., 2022). The relation between rw and Mcol210

is linked to the control strategy of the wind turbine and the rotor effective wind speed (REWS). A larger rw leads to a higher

REWS, until the wake is so far from the rotor centre that no overlap with the rotor takes place and the REWS approaches u∞.

This means that in the partial load region, Mcol is suppressed with more wake overlap, so for decreasing rw. In the full load

region, the blades are pitched to keep the power (∝ u3) constant, which implies that the thrust and the flapwise moments (∝ u2)

decrease with increasing wind speed. The highest loading can be seen at rated wind speed. Consequently, Mcol increases with215

more wake overlap in the full load region, down to the point when the REWS becomes smaller than the rated wind speed. Mcol

is fitted with a Gaussian function of σ =Rmix. The constants M∞ and M0 describe the collective moment for rw →∞ and

rw = 0 respectively.

Mcol(r) =M∞ − (M∞ −M0) exp
(
− r2w
2R2

mix

)
(13)

The characteristic shape of the measurement model as described above is illustrated in Figure 3.220

-1 0 1

-1

0

1

-1 0 1 -1 0 1

min

max

Figure 3. Contour plot of the measurement model outputs in dependency of the wake position. Normalized with their respective maximum

and minimum for confidentiality. The fitting parameter d is indicated, describing the phase-offset of the yaw-tilt-coupling.

The parameters of the measurement model (see Table 1) are fitted to a set of training data from aeroelastic simulations within

the framework of FASTfarm (Branlard et al., 2022) via a non-linear least-squares regression. The field setup is replicated in
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Table 1. Fitting parameter for the measurement model h()

Parameter Unit Description

Rmix m wake overlap resulting in the largest yaw/tilt moment; an approximation is

Rmix = (R+Rw)/2, i.e. the mean of rotor radius and wake deficit radius

M̃max Nm maximal value of yaw/tilt moment (reached at wake overlap Rmix)

b Nm wake-independent offset of yaw moment

c Nm wake-independent offset of tilt moment

d ◦ phase angle to describe yaw-tilt-coupling

M0 Nm collective moment at full wake overlap

M∞ Nm collective moment at no wake overlap

the simulations, but the position of WT1 is subsequently shifted laterally from -1.5D to +1.5D in steps of 0.5D. The dynamic

wake meandering model (DWM) is enabled, and the curled wake model is chosen (Branlard et al., 2022). As an example, a

subset of the training data at 10ms−1 ambient wind speed is given in Figure 4, showing the non-dimensionalized yaw moment225

in dependency of the wake position yw. Each scatter color refers to one location of WT1. The combination of wake meandering

and different WT1 positions results in a wide range of wake constellations being covered. In case of a constellation with larger

downstream spacing, thus larger meandering amplitudes, even less WT1 positions could be considered for the generation of

training data.

The fit parameters depend on the ambient conditions, most prominently on the ambient wind speed. Information of the wake230

deficit is implicitly contained in the parametric model. Especially in case of large downstream distances, ambient turbulence

and atmospheric stability is impacting the wake mixing. In the present case however, the streamwise spacing is too short for

the ambient turbulence to show a notable impact on the modeled wake mixing, and thus on the fitting parameters. The impact

of shear on the wake deficit is not fully accounted for in the simulation environment, especially in relation to wake-asymmetry

(as discussed later in section 4.1). Thus, it is decided to only create training data in dependency of the ambient wind speed,235

resulting in a 1-dimensional lookup-table (LUT) of fitting parameters. This requires 63 simulations (7 WT1 positions and

9 wind speeds, 4-12 ms−1), each with a duration of 600s, a TI of 10% and α= 0.25. Only one stochastic seed per wind

field proved sufficient, since the set for one ambient condition already combines the results of seven simulations with their

respective wind field (referring to the seven lateral WT1-positions). Depending on the scenario, a higher-dimensional LUT can

be required. A consideration of ambient TI is required in case of larger streamwise spacing,to adequately resolve the impact240

of turbulent mixing in the far-wake region. Also, including ambient shear could be a further step, preferably with a refined

modeling of its impact on the wake deficit.

In addition to the parameter fitting, the training data allow to seize the order of magnitude of the load variance, linked

to turbulence and dynamic events such as load over- and undershoots. This variance is regarded in the noise tuning of the
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Figure 4. Training data and model fit of the yaw moment; each scatter color refers to a prescribed position of WT1. Normalized with the

respective maximum and minimum for confidentiality. The fitting parameter Rmix, M̃max, and c are indicated, showing the width, amplitude

and offset of the model.

EKF when choosing the entries in the measurement covariance matrix R. The measurement covariance of the yaw moment245

is increased by a factor of 10 in situations, when the turbine is yawing, to prevent a misinterpretation of the yaw moments

occurring here.

2.3 Lidar data processing

This section describes the steps from the initial scanning lidar measurements to a wake position in a WT2-based coordinate

system. An uncertainty analysis is included, to show the eligibility of the lidar measurements as a suitably precise reference.250

2.3.1 Coordinate systems

Different coordinate systems occur in the scope of this work. An overview is shown in Table 2. Ultimately, the lidar-probed

wake positions should serve as the reference for the load-based tracking of WT2, thus a WT2-centered coordinate system is

targeted. The relations between the coordinate systems are given in Equations (14-16) and an overview is sketched in Figure 5.

The x- and y-offsets in Equation 16 refer to the 2.7D spacing in ground-based coordinates. The lidar performs horizontal single255

PPI scans. An elevation of δ = 1.3◦ is used to account for the average nacelle tilt during operation, determined via the GNSS

system on WT1. The lidar azimuth angle χ covers a range of 120◦ with a scanning speed of 2◦s−1. The range gate centre is

denoted dr and spans from 50 m to 1630 m in steps of 10 m. The nacelle yaw angles are denoted γ1 and γ2 for WT1 and WT2,

respectively.
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Table 2. Coordinate systems

Coordinate system Notation Axes

Lidar based (·)Li spherical, azimuth χ (positive clockwise), elevation δ, range dr , rotates with WT1 yaw γ1

WT1 based (·)WT1 cartesian, right-handed, x in positive in downstream direction of WT1, z: elevation, origin at rotor centre

Ground based (·)GB cartesian, right-handed, x: Easting, y: Northing, z: elevation, origin at WT1 foundation

WT2 based (·)WT2 cartesian, right-handed, x in positive in downstream direction of WT2, z: elevation, origin at rotor centre


x

y

z


WT1

= dr


cos(χ)cos(δ)

sin(χ)cos(δ)

sin(δ)


Li

(14)260


x

y

z


GB

=


−sin(γ1) cos(γ1) 0

−cos(γ1) −sin(γ1) 0

0 0 1




x

y

z


WT1

+


0

0

hWT1

 (15)


x

y

z


WT2

=


−sin(γ2) −cos(γ2) 0

cos(γ2) −sin(γ2) 0

0 0 1




x− 252.8m

y− 227.6m

z


GB

+


0

0

−hWT2

 (16)

265

2.3.2 Wake centre estimation

The horizontal wind speed uh is the projection of the lidar line-of-sight wind speed uLOS on the wind direction Φ obtained by

the nearby met mast:

uh =
uLOS

cos(χ+ γ1 −Φ)cos(δ)
(17)270

Note that (γ1 −Φ) expresses the yaw misalignment of WT1. Equation (17) assumes zero lateral and vertical wind speed

components v,w, which is equivalent to the assumption of identical wind direction at the met mast and the probing position.

The impact of this assumption on the uncertainty is discussed in section 2.3.3. The wake position is identified via the horizontal

velocity uh within the upstream area of WT2, defined by xWT2 ∈ [−110,−90] m and yWT2 ∈ [−200,200] m. The upstream

distance is a trade-off between maintaining proximity to WT2 while being less affected by its induction zone (Kidambi Sekar275
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Figure 5. Illustration of the coordinate systems as defined in Table 2

et al., 2024). The subsequent wake centre identification is linked to the definition of the wake centre itself, as discussed by

Vollmer et al. (2016) and Coudou et al. (2018). A comprehensive overview of different lidar-based tracking methodologies is

given by Trujillo (2017). Following Vollmer et al. (2016), a robust approach via the minimum in density of virtual available

power is used:

yw = argmax
yWT2

(p ∗ fM ) with fM (yWT2) =

−1 if |yWT2| ≤ D
2

0 otherwise
(18)280

where (. ∗ .) denotes a convolution and fM a square-shaped masking function. The density of available power is defined as

p(yWT2) = u3
h.

Figure 6. Wake centre identification from lidar measurements in WT2-based coordinate system. The wind direction here is 205◦, resulting

in a partial wake constellation.
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2.3.3 Uncertainty estimation

The uncertainty of the wake position yw is subject to

– the lidar probe position uncertainty285

– the uncertainty in the horizontal wind speed at the probe position, when projected from the line-of-sight velocity

– the sensitivity of the wake centre identification method towards the wind speed uncertainty

In principle, an uncertain probe position could further influence the probed wind speed, e.g. when measuring at a different

altitude than expected in a sheared or veered flow. This can be corrected for, as shown by Schneemann et al. (2021) for a

long-range lidar experiment with range gates of multiple kilometers. In the work presented here, the probe position uncertainty290

is sufficiently small to neglect the effect of wind speed gradients at the probe position (see later in Figure 7). The probe position

is subject to the measurement uncertainties listed in Table 3. Their propagation through the coordinate transform in Equations

(14-16) is formulated by Equation (19), following the GUM standard (JCGM, 2020), where the expression (.)◦2 denotes the

element-wise square operation for a vector. Also, the square-root is to be understood element-wise. The uncertainties are

illustrated in Figure 7 for a full alignment case (Φ= γ1 = γ2 = 228◦). Note, that the uncertainties depend on the instantaneous295

constellation.

Table 3. Uncertainties in the scope of the lidar data processing; values relate to the 95% confidence interval for normally distributed uncer-

tainties (i.e. a coverage factor of 2)

Quantity Variable Uncertainty

Lidar elevation δ ±2◦ (impacted by WT1 tilt motion)

Lidar azimuth χ ±0.5◦ (see Schneemann et al. (2021))

Range gate centre∗ dr 2 m

Mean wind direction Φ ±2 ◦ (see Schneemann et al. (2021); Simley et al. (2020))

WT1 yaw (GNSS based) γ1 ±0.5◦

WT2 yaw (GNSS based) γ2 ±0.5◦

LOS wind speed uLOS ± 0.1 ms−1

∗range gate centre as a result of pulse length and time of travel; the range gate volume is considerably larger


∆x

∆y

∆z


WT2

=

√(
∂xWT2

∂γ1
∆γ1

)◦2

+

(
∂xWT2

∂γ2
∆γ2

)◦2

+

(
∂xWT2

∂δ
∆δ

)◦2

+

(
∂xWT2

∂χ
∆χ

)◦2

(19)
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Figure 7. Illustration of uncertainty propagation: Probe position uncertainty in x,y,z and horizontal wind speed uncertainty; WT2-based

coordinate system

The uncertainty in the line-of-sight projection of the wind speed ∆uh can again be expressed considering the geometry:300

∆uh =

√(
∂uh

∂χ
∆χ

)2

+

(
∂uh

∂γ1
∆γ1

)2

+

(
∂uh

∂Φ
∆Φ

)2

+

(
∂uh

∂δ
∆δ

)2

+

(
∂uh

∂uLOS
∆uLOS

)2

(20)

The impact of the wind speed uncertainty on the wake centre identification is investigated. If the wind speed uncertainties were

randomly distributed along yWT2, the convolution integral would hardly be affected, since it smoothens on a scale of 1D.

However, it is more likely to have a wind speed uncertainty which is correlated along yWT2, e.g. as the result of a misaligned305

lidar beam. This would promote wind speeds at one end of the probing area while suppressing them at the other end. The bias

would have a magnitude of ±5% within the wake probing range, as visible in Figure 7d. Figure 8 shows a normalized wake

deficit example, which is corrupted by a linear bias of ±5%. Applying the convolution method according to Equation (18)

yields a mis-assessment in the order of ±1 m ( < 0.01D) for all possible wake positions yw. Note, that this is no longer a

standard uncertainty according to the GUM, since it contains the worst-case assumption of a linear bias. Also note that the mis-310

assessment of the method depends on the wake deficit. A less pronounced wake deficit would have less impact in comparison

to a correlated wind speed uncertainty. Qualitatively, the investigation showed the convolution method to be very robust and

hardly affected by the expected range of wind speed uncertainty. The uncertainty of the probe y-position and the wake centre

identification uncertainty are subsequently added. The calculation is applied for each full lidar snapshot individually.
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Figure 8. Example of convolution method to extract the wake centre position; impact of wind speed uncertainty on wake centre identification:

Generic double-Gaussian deficit as found situ is distorted by two exemplary linear biases of ±5%, which can be obtained from Figure 7

3 Results315

In this section, the results of the field experiment and the wake estimation are reported. In section 3.1, the wake conditions

contained in the data set are described, considering both the wake position variability and the wake deficit shape. In section

3.2, the wake position estimates of the load-based EKF and the lidar are compared.

3.1 Wake condition characterisation

This first part of the result section gives an overview of the wake conditions contained in the test data set. A histogram320

of the ambient conditions is shown in Figure 9. In total, 1800 one-minute samples (30 hours) of wake constellations are

contained. The wind speed distribution does not show the converged shape of a Weibull distribution yet, but the tendency

is recognizable. A large share of high shear and low turbulence intensity is on hand, which is an indicator for very stably

atmospheric conditions. Note here, that atmospheric stability often follows diurnal cycles, while the data set only contains data

from 05:00 to 21:00 UTC, since the wind turbines often operated at a noise reduction mode during night time, which would325

not have been representative. Also note, that the indicated yaw misalignment does not distinguish between intentional and

unintentional yaw misalignment.
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Figure 9. Histogram of ambient conditions contained in the investigated data set; all measurements refer the met mast (except for γ1, which

is probed via GNSS on WT1)
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3.1.1 Wake position variability

In Figure 10, the wake position yw, as identified from the lidar scans, is plotted versus the wind direction. It shows higher

spreading than suggested by the pure geometry, namely the turbine positions and the assumption of linear wake propagation330

parallel to the wind direction, indicated in red. The spreading has a magnitude of up to ≈ 40 m or 0.3D, which is considerably

larger than the order of uncertainty connected with the wake centre identification, as discussed in section 2.3.3. The spreading

could originate from wake meandering, wind direction changes propagating through the test field, and wake steering control.

The impact of the wake steering controller can be estimated by employing the analytical wake deflection model of Jiménez

et al. (2009) or Larsen et al. (2020) and the available information of the yaw misalignment of WT1. These models give335

similar results, but the latter does not require any parameter fitting. Figure 10b shows results for the Jiménez model, which on

average successfully encounters the direction and magnitude of wake deflections for the sector in which wake steering control

was active (191◦ − 259◦). Note, that toggling between conventional and wake steering control was on hand, thus also many

situations with no intentional yaw misalignment are contained in the plot. While the scattering range resulting from the Jiménez

model is similar to the observed scattering seen in the lidar data, these scatters are not necessarily concurrent in time. Also, the340

double-sided deviations of the lidar probed wake positions from the geometry line are not captured.
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Figure 10. Wake centre position yw in dependency of wind direction: Geometry denotes the pure consideration of farm geometry and linear

wake propagation in main wind direction, Jimenéz denotes an analytic wake deflection model. Center lines of zero deflection and full turbine

alignment (228◦) are marked.

3.1.2 Wake deficits

Figure 11 shows the wake deficits recorded by the lidar, superimposed within wind speed bins of 0.5 m/s. The instantaneous

deficits are aligned along their identified wake centre, thus the horizontal axis in Figure 11 is defined as r = yWT2− yw (com-

pare section 2.3.1). Each snapshot is plotted transparent, such that darker areas indicate higher occurrences of similar deficits.345

Some individual wake deficits differ considerably from the dominant bin average. The wake deficit shows the characteristic
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Figure 11. Spaghetti plot of the observed wake deficits per individual lidar scan, aligned along their identified wake centre; binned in steps

of 0.5 ms−1; plotted transparent to visualize frequent occurrences of similar wake deficits

double-Gaussian shape of a near wake. Especially for larger wind speeds, a strong asymmetry is observed, pronouncing the

wake at negative coordinates r (referring to the right side when facing downstream; compare Figure 6).

The co-occurence of the asymmetry with ambient conditions is documented in Figure 12. A strong impact is visible when

filtering for the power law coefficient α, describing the shear profile. Figure 12a indicates that the wake asymmetry is more350

pronounced at strong shear, connected to atmospheric stable conditions. For low shear coefficients, the wake deficits are rather

symmetric. Larger wind speed variations among the deficits as well as in the non-waked area are on hand here, which again

is attributed to the atmospheric stability. Figure 12b shows a distinction of wake deficits with respect to yaw-misalignment

situations, which are known to cause a kidney-shaped curled wake (see e.g. Bartl et al. (2018) and Sengers et al. (2023)). While

the main asymmetry of the double Gaussian deficit, i.e. the magnitude difference of the two wake peaks, is linked to the ambient355

shear, a tendency towards a broader peak at the pronounced side of the wake is seen in case of negative yaw misalignment. This

finding is to be treated with care, since it is based on small data availability (compare Figure 9). The role of the wake deficit in

this context is further discussed in section 4.

3.2 Wake position estimates

This section shows the behaviour of the wake position estimation via load-based EKF and lidar recordings under various360

ambient conditions. Details are shown in a time series plot and lidar snapshots of the flow field, while the general performance

is seized with bar plots of performance metrics applied on the entire data set.
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Figure 12. Wake deficits within wind speed bin 7.5 − 8ms−1; a) colour coded for two ranges of shear profile, defined by power law

coefficient α; b) colour coded with respect to yaw misalignment of WT1

Figure 13 shows a six hour wake position time series on 19th of February, including several lidar recorded snapshots of the

instantaneous flow situation in the wind farm. The corresponding ambient conditions as recorded by the nearby metmast are

shown in Figure 14. Within the shown time span, the wind direction changes from 250◦ to 200◦, resulting in a full sweep of the365

wake across the rotor of WT2 (full alignment is at 228◦). Constellations of partial wake, full wake and barely impinging wake

are covered. At the same time, the wind ramps up from 5 to 9 ms−1, and the atmospheric conditions change from unstable to

stable, indicated by high TI, high wind direction variability and low α in the afternoon compared to low TI, low wind direction

variability and high α in the evening hours. The EKF is initialized at yw = 0 m and converges to the approximate wake position

within approximately 2min. Snapshots associated with a variety of conditions - labeled a) to e) - are analyzed in detail.370

a) Partial wake (at 14:16): A wake constellation at yw ≈−D/2, which agrees with the EKF estimate. The flow dynamics are

high at this point in time, which can be seen in the position changes captured by the EKF as well as in the wind field.

b) Full wake (at 15:21): While correctly identified by the EKF, the confidence interval of the EKF is slightly increased here.

This is connected to decreased observability, a result of the flat gradient ∂Mcol

∂yw

∣∣∣
yw≈0

used by the local linearisation of the

measurement model.375

c) Yaw misalignment (from 15:40 to 16:00): A high yaw misalignment (≈ 15◦) of WT1 is present. The wake steering effect

displays with a prominent wake position change, which is also visible in the flow situation of snapshot c. Both the lidar and the

EKF capture the steep change in wake position in this time span.

d) Meandering (16:30 and 16:50): The wake position oscillates several times between 0.5D and 1D. The time scales of these

oscillations are around 300s (referring to spatial scales of 14D at 6 ms−1 ambient wind speed, compare section 2.2.2). This380

is at the higher end of the dynamic range of the EKF, yet close to the transition between what is defined as meandering and as

farm-effective wind direction variability.

e ) Barely impinging wake (from 18:00 to 18:40): The wind direction approaches 200◦ and the average wake position moves

from 1D to 1.5D, which leads to ceasing wake impingement. The loss of observability goes along with increased state

covariance, thus a larger confidence interval of the EKF estimate. In case of no wake impingement, the 2σ confidence is385
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Figure 13. Top: Time series of wake position estimate by load-based EKF and lidar; the uncertainty range for both methods is indicated

Bottom: Snapshots of the instantaneous flow situation in the wind farm; ground-based coordinates are used; WT1 indicated in black, WT2

in red; the time instances a-e refer to the indications in the time series plot on top

close to 0.5D for multiple time instances in a row (in case of a single iteration increase, it could also mean a measurement

outlier). The EKF position estimate stays approximately at the last known position but cannot be regarded as expressive here.

The EKF behaviour can further be assessed based on a spectra of the wake position time series, given in Figure 15. The

cut-off frequency of the EKF formulation fc is indicated, which is also close to the band limit of the lidar scanning speed.

Within 10−3 Hz to 10−2 Hz, the PSD of EKF and lidar estimates is similar and decays with approximately -20dB/dec. At390

higher frequencies, the EKF shows a trend of -40dB/dec, where the additional attenuation is linked to the filter formulation.

The filter also contributes to the rejection of changes in wake position faster than fc, which might be suggested by higher-order

load variations.

The performance of the entire test data set is ranged with performance metrics. The estimates of lidar and EKF are compared

with the root-mean-squared-error (RMSE), defined as395

RMSE =

√√√√ 1

N

N∑
k=1

(yEKF
w,k − yLw,k)

2 . (21)

The RMSE does not capture the uncertainty consideration yet. The additional metric inRange is introduced in Equation 22,

denoting whether the estimates are within each other’s 2σ uncertainty range. It further accounts for the fact, that no ground

truth exists. Instead, two uncertainty-containing signals are compared.
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Figure 14. Ambient conditions on 19th of February, same time instance as shown in Figure 13; ambient wind speed u∞ and wind direction

Φ are shown both as 1Hz and 10min average; the TI refers to 10min bins by definition and the same was applied to power law coefficient α

and WT1 yaw misalignment γ1 −Φ.
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Figure 15. Power spectral density (PSD) of the wake position yw, estimated by EKF and by Lidar

21



inRange=
1

N

N∑
k=1

Ωk with Ωk =

1
∣∣∣yEKF

w,k − yLw,k

∣∣∣< 2
√
(σEKF

k )2 +(σL
k )

2

0 else
(22)400

The results are shown in Figure 16, where binning with respect to the ambient conditions is applied, revealing the dependency

on ambient wind speed, shear, TI and WT1 yaw misalignment. The share of data within the respective data bin is shown in

Figure 9, to allow assessing the results under consideration of the underlying statistical evidence. E.g., the RMSE of a bin

that contains only 3% of the available data can be considered less expressive than a bin that represents 20% of the data set.

The RMSE is generally around 0.2D and the inRange indicator around 90%. No clear systematic dependency towards ambient405

wind speed and shear level is seen. The RMSE varies slightly among the bins, yet the inRange indicator is not notably affected.

A trend for the turbulence intensity is visible, namely from 0.2D RMSE and inRange of 95% at low TI to 0.3D RMSE and

inRange of 75% at high TI. The data availability decreases towards higher TI, yet the trend is persistent over all bins and for

both metrics. At small yaw misalignments of WT1 the RMSE is lowest. Strong negative yaw misalignments seem to increase

the RMSE. Yet this finding is to be treated with care, since the data availability is comparably low here.410
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Figure 16. RMSE of wake position estimate (EKF vs. lidar), binned with respect to the ambient conditions; the orange bars refer to the right

y-axis and represent the inRange indicator, so whether the difference between the position estimates is covered by their uncertainty intervals

4 Discussion

In this section, the results are interpreted and ranged. First, the influence of the site specifications on the results is discussed,

considering the generalizability of the findings. Secondly, the wake tracking performance is discussed. The comparison to
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existing works in literature considers their individual testing conditions an performance metrics. Finally, the applicability of

the presented wake tracking in the context of wind condition awareness and wind farm flow control is discussed.415

4.1 Evaluation of the experimental conditions and data processing methods

Site and wake conditions

The test site has very close spacing between the turbines, resulting in a near wake with characteristic double-Gaussian deficit

shape. The consequence for the estimation task is twofold. On the one hand, the wind speed deficit is very pronounced, so

it leaves a considerable footprint on the rotor of a subsequent turbine. On the other hand, a double-Gaussian wake deficit is420

a more complex structure, thus requiring higher degrees of freedom for its description in comparison to a single-Gaussian

(Keane et al., 2016). The scanning lidar can resolve this and even an EKF-based four fixed-beam staring lidar approach as

described by Lio et al. (2021) shows sufficient observability. Existing works on estimation using turbine measurements either

do not consider near wake features (Doekemeijer and van Wingerden, 2020; Cacciola et al., 2016), or assume a quasi-steady

wake velocity deficit to be known a priori (Dong et al., 2021). The latter is similar to this work, where the wake deficit is425

implicitly contained in the training data. Even more complexity is added due to the occasional wake asymmetry, reported in

the context of Figure 11. The wake asymmetry is found to dominantly co-occur with strong wind shear and to increase with

ambient wind speed, and thus also rotational speed. An interaction of wake rotation and the sheared flow is assumed. The

rotational component in the wake flow, in opposite direction to the rotor rotation, could cause an ‘upwash’ of wind speeds from

low altitudes on the right side of the rotor (facing downstream, thus negative on the y-axis) and a ‘downwash’ of wind speeds430

from higher altitudes on the left side. The direction of wake rotation and the observed orientation of the wake asymmetry would

support this explanation. A comparable near wake asymmetry is reported by Bromm et al. (2018) in a similar field campaign.

A minor co-occurence of wake asymmetry and large WT1 yaw misalignments (> 10◦) is found, matching the expectation with

regard to the curled wake phenomena (Bartl et al., 2018; Sengers et al., 2023). Yet, data availability of large yaw misalignments

is not considered sufficient to draw a clear conclusion on curled wakes, which are also not in focus of this work.435

Another consequence of small downstream distance is a low meandering amplitude (Machefaux et al., 2015). It is expected

that the load-based EKF would have been able to capture higher meandering amplitudes, as shown in a wind tunnel experiment

with tailored meandering wake conditions (Onnen et al., 2023). In the given field setup, however, a considerable share of the

involved wake position dynamics can be accounted on wind direction changes and active yaw control.

Uncertainty440

The uncertainty consideration for the lidar estimate is deliberately chosen to be mainly based on analytical error propagation

rather than on statistical approaches. On the one hand, this choice allows to identify and unravel the impact of individual

quantities’ contributions to the combined uncertainty of the processed wake position. In this case, the wind speed uncertainty

shows negligible impact when locating a coherent flow structure. The major contributions originate from the propagation of

geometric uncertainties. These can be limited with adequately precise measurement equipment, such as the GNSS encoders for445

the nacelle yaw probing used in this setup. On the other hand, the uncertainty is available for every time instance independently,
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thus not depending on the data set size, as it would be the case for a statistically derived uncertainty. The lidar estimate generally

has a combined 2σ-uncertainty below 0.06D, which makes it a suitable reference in comparison to the difference between the

lidar- and the load-based method, which is at the order of 0.2D (RMSE). Trujillo (2017) names 0.05D as the accuracy of

lidar-based wake position extraction at short downstream distances, which is very similar to this work. The uncertainty of450

the EKF estimate is directly taken from its state covariance matrix (Eichstadt et al., 2016). The involved linearisation of the

measurement model is similar to the first-order approximations used for analytic error propagation.

4.2 Wake tracking performance

In contrast to a simulation study, a pure performance assessment of one wake tracking methodology is not possible in a field

experiment, since no ground truth exists as reference. Instead, two uncertainty-containing estimates from two different methods455

are compared. The wake position estimated with the scanning lidar can be regarded as an attempt to provide a reference value

closer to a virtual ground truth.

Impact of ambient conditions

The match between lidar and load-based position estimates shows no clear dependency on the ambient wind speed. Small

variations among the bins could originate from a limited data set size, which might not equal out coinciding instances of460

certain wind speeds with e.g. certain turbulence intensities. An indication for a not fully converged data set is the wind speed

histogram in Figure 9, showing that the occurring wind speeds do not fully represent the shape of a Weibull distribution. In a

simulation study, no direct impact of the ambient wind speed on the estimation is reported, as long as both the wake-causing

turbine and the estimating turbine are not operating at the transition of partial to full load range (Onnen et al., 2022).

The observed increase of RMSE with TI is expected and agrees with simulation studies of load-based estimation (Dong et al.,465

2021; Onnen et al., 2022) and field results of lidar-based wake estimation (Lio et al., 2021). Higher turbulence intensities affect

both the shape of the instantaneous wake deficit and the dynamics of the wake position. The information contained in the blade

root loads is typically not sufficient to distinguish between both aspects, especially when their characteristic time scales are

overlapping. The definition of the cut-off frequency in the dynamic model of the EKF leads to a rejection of turbulent scales

smaller than the rotor scale. Deviations of the wake deficit shape that persist at scales of multiple rotor diameters could be470

misinterpreted as a change in wake position. This holds for the method described in this work, where wake deficit information

is indirectly contained in the training data, as well as for methods that aim to estimate the wake deficit online, yet on slow

time scales (Lio et al., 2021). The relation between the instantaneous wake deficit and the wake centre position further impacts

the respective definitions of the wake centre: The convolution with density of available power (as applied on the lidar data,

compare section 2.3.2) always considers the entire wake deficit. In case of non-symmetry it identifies its centre with a shift475

towards the more pronounced side of the wake deficit. The load based method, however, solely judges the share of the deficit

which overlaps with the estimating turbine.

An impact of the wind shear on of the tracking performance could have been expected, as the asymmetry of the wake deficit

shows to be influenced. Yet, the low shears often coincide with high TI, both as features of atmospheric instability. It is not
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possible to fully isolate the effects from shear and TI, and although the wake asymmetry due to high shears would lead us to480

expect a worse tracking performance, this was not observed.

Comparison to other wake estimation methods

The comparison to other existing methods considers the respective performance metrics, the test environment (simulations,

wind tunnel, or field), and the underlying methods and assumptions. Cacciola et al. (2016) show static inaccuracies of 0.1-0.2 D

for the determination of the wake centre position at TI= 5%, 10% in aeroelastic simulations. Each position estimate is based on485

10 min averaging and a least-squares-fit of rotor-effective horizontal shear with respect to the rotor loads. Bottasso et al. (2018)

show detection ratios per location interval (discretized with 0.25D) as a performance measure. The detection method compares

the difference in EKF-estimated sector-effective wind speeds with a threshold, which again is subject to scheduling with the

ambient conditions. It is also tested in an aeroelastic environment, both in static wake conditions and in a scenario where a

single-Gaussian wake deficit follows a sine trajectory at a frequency of f ≈ u∞/(2D). The simulations allow for a ground490

truth reference, but other than that, the detection ratio is similar to the inRange metric used in this paper. Bottasso et al. (2018)

show a detection ratio close to 100% for static wakes and 5% TI, which decreases to approximately 75−80% at 10% TI. This

is similar to the results reported in Figure 16. The works also agree that ambient shear decreases the accuracy, while estimation

is still possible under moderate yaw misalignment of the tracking turbine. At full wake constellations, the method of Bottasso

et al. (2018) has no observability, because the wake-induced rotor loads are not asymmetric. Here, the comparison between the495

methods lacks, because they do not use the undisturbed wind speed. But, as also pointed out by the authors, the blind spot at

full wake could be avoided when comparing the ambient wind speed with the rotor-effective wind speed, or redundantly with

the collective blade loads, as done in this paper. Onnen et al. (2022) test a nearly identical EKF formulation as in this work

with aeroelastic simulations using the DWM model and the DTU 10MW turbine. RMSE of 0.05D, 0.1D, 0.2D is found for

turbulence intensities of 5%, 10%, 15%, respectively. A similar RMSE is shown in another aeroelastic study by Dong et al.500

(2021) with a similar load-based EKF. In general, the field test shows increased RMSE in comparison to the simulational tests,

which likely occurs due to the more uncertain environment. The qualitative tracking ability, as quantitized with the detection

ratio or inRange indicator is not notably impacted.

Wind tunnel results with two model turbines of 2m diameter are shown by Schreiber et al. (2016). The methodology is

similar to the one of Cacciola et al. (2016), and a time averaging of 1min is used, which corresponds to approximately 1hour505

in the field, considering the scaling. Static inaccuracies of 0.1-0.2 D are found, in sheared inflow and 8% TI. Dynamic wind

tunnel tests are shown by Onnen et al. (2023), where a 1.8m model turbine is exposed to wake conditions tailored with an

active grid. The estimation accuracy is below 0.1D (RMSE). This is considerable lower than in the field tests shown here, most

likely due to the controlled environment, a low ambient TI and no wind direction variability.

To the author’s knowledge, the only field test of load-based wake estimation is reported by Schreiber et al. (2020). Qualitative510

wake impingement detection (left / right / full wake) is successfully shown, where the farm layout and the assumption of wake

propagation parallel to the met mast wind direction serve as a reference. The availability of a scanning lidar in this work allows

for a quantitative assessment while probing with higher spatial and temporal resolution. Further field experiments with scanning

lidar-based wake position identification are reported by Bromm et al. (2018), where a propagated uncertainty of 0.05-0.1D is
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stated, similar to this work. Lio et al. (2021) show wake position tracking with simultaneous estimation of the deficit shape515

and shear profile. It is based on a few-beam staring lidar and an EKF considering the wake meandering dynamics. A RMSE of

0.05D, 0.12D, 0.18D is shown, for 5%, 10%, 15% TI respectively. In their work, the reference is a 1Hz least-squares fit of a

parametrized deficit to 178-point scans by three synchronized lidar WindScanners. The tracking is slightly more precise than

in this work, while Lio’s method is based on different inputs and requires less external information.

4.3 Applicability520

Load-based and lidar-based wake estimation techniques have different outlooks for application. While lidars are still in the early

industrial adaption phase, load-based approaches can be a reliable alternative and implemented using solely the standard sensors

of modern wind turbines. This comes at the cost of slightly reduced observability, or dependency on external information. The

accuracy of the load-based tracking also needs to be ranged in relation to the expected magnitude of wake deflections due to

wake steering control. At very short turbine spacing, such as in this experiment, the uncertainty of the EKF estimate is close525

to the expected magnitude of wake deflections Jiménez et al. (2009). The conclusion is, that purely using the wake position

as closed-loop feedback is a too narrow consideration. Still, this paper shows that satisfying wake estimation with the ability

to support robust closed-loop wake steering with suitable feedback information of high spatial and temporal resolution is

possible. The time resolution helps especially when not only considering the absolute wake position estimate (which might

e.g. be corrupted by an aberated wake deficit), but the change in wake position, which can be the intended response to a530

wake-steering maneuver. The required knowledge of the ambient conditions can arguably be estimated by a front row wind

turbine (Soltani et al., 2013). Wake steering is, contrary to active wake control using a de-rating strategy, mostly applicable

in low turbulent stable situations. This is also where the methodology shows best performance in the field, in agreement to

expectations according to simulations.

This paper focuses on the wake position as an exemplary aspect of wind condition awareness. A similar data set and pro-535

cessing chain could also be used to validate wind farm models or wind field reconstruction based on in-situ probings. Future

work will be to embed sensor based estimation within dynamic wind farm models (Becker et al., 2022; Lejeune et al., 2022),

thus to couple analytic models, e.g. for the wake deficit or wake deflection. The relevance of open-loop approaches in wind

farm flow control persists, since the impact of every control action is delayed by the advection duration of wakes. Closed-loop

yaw control does not necessarily need to happen at very fast time scales, where its effect could overlap with those of wake540

meandering. State estimation could also support as a feedback, whether the open-loop models predict as expected, or (online)

re-calibration is necessary (see Hulsman et al. (2024)). Furthermore, the estimation of wake constellations yields information

of the farm-effective wind direction. It can complement error-prone and point-probing nacelle vane signals, thus contribute to

a consensus-based farm-effective wind direction (Annoni et al., 2019).
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5 Conclusions545

The paper presents a quantitative field comparison of two independently applied wake centre estimation methods: a nacelle-

based scanning lidar and an EKF based on rotor loads. The methodology accounts for the fact that there is no ground truth in

the field by a detailed uncertainty evaluation. The lidar estimates have an uncertainty in the order of 0.05D, which is a suitably

precise reference to draw conclusions regarding the load-based EKF. It is a step forward in spatial resolution in comparison to

the assumption of wake propagation parallel to the main wind direction. Both tracking methods agree with a RMSE of 0.2D550

for low to moderate TI, while increasing to 0.3D for a TI above 12%. The EKF formulation further yields the uncertainty

of the state estimate as a byproduct, thus it self-indicates how certain or ‘observable’ a situation is. Insights to the full flow

field with the lidar allow to identify the observability limits of the load-based EKF, e.g. to distinguish between the influence of

exact wake shape and the wake centre position. Due to close turbine spacing and frequent high shear conditions, the observed

wake deficits in this work are rather complex, mainly double-Gaussian, often asymmetric, and thus also influencing the wake555

centre definition. Yet, the methodology shows consistent behaviour even under these circumstances, which gives rise to the

expectation that it would work similarly well or even better in settings with single-Gaussian wakes, although the wake load

foot prints are relative weaker under such circumstances. While this paper focuses on the wake position as one aspect of wind

condition awareness, it also outlines how wind farm models or turbine-based wind field reconstruction can be validated with

complementary lidar data.560
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Appendix A: Determination of rotor angle via edgewise blade root loads

The rotor angle of WT2 was not available to the authors. It was reconstructed from the edgewise blade root bending moments

Me. The method is based on the assumption that gravity is the main force contributing to the variation of the edgewise blade

root bending moment (RBM). Let Ψ be the rotor angle, which is defined positive clockwise and zero for blade 1 pointing

upwards. Accordingly, each blade’s edgewise RBM is modeled as565

Me,1 = M̂e sin(Ψ)+ M̄e Me,2 = M̂e sin(Ψ+
2π

3
)+ M̄e Me,3 = M̂e sin(Ψ+

4π

3
)+ M̄e , (A1)

where M̂e is the amplitude and M̄e is a non-oscillating offset, connected to the rotor torque. Using the addition theorem of the

sine function

sin(a+ b) = sin(a)cos(b)+ sin(b)cos(a) , (A2)

this can be reformulated as570 
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The rotor angle is calculated as

Ψ= atan

(
M̂e sin(Ψ)

M̂e cos(Ψ)

)
. (A4)

To mitigate impact of the blade loads not behaving purely harmonic, e.g. due to tower shadow and non-uniform inflow, the

nominator and denominator in Equation (A4) are filtered with a zero-phase low pass filter. The filtering at this point avoids575

filtering a non-continuous angle signal. The resulting determination of the rotor angle is shown for field data in Figure A1 and

shows the expected behavior. The method was additionally validated with the aeroelastic model of the turbine in openFAST,

where the rotor angle is available.
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Figure A1. Identification of the rotor angle (on right y-axis) from edgewise blade loads (on left y-axis); loads were non-dimensionalized for
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