
Authors’ response
Dear Editor, Reviewers,

We deeply appreciate the opportunity to submit a revised version of the manuscript titled "Probabilistic surrogate modeling
of damage equivalent loads on onshore and offshore wind turbines using mixture density networks" to Wind Energy Science.
We thank the reviewers for their constructive, detailed and insightful comments on our manuscript and the time and effort they5
have dedicated to providing useful feedback. We are certain that their input has contributed greatly to the quality and clarity of
the article.

The reviewer’s comments have been listed in order below in italic text, followed by our responses in normal text. The
modifications are highlighted in the manuscript in teal. Please find a point-by-point response to the reviewers’ comments and
concerns below.10

Best regards,
Deepali Singh, Richard P. Dwight, Axelle Viré

Reviewer 1

Q 1.1 In Section 3.3, it is mentioned that “The 10-minute fatigue is calculated using short-term damage equivalent loads
(DELST )”. But, Section 4.1 says “The network is trained on the tower base fore-aft moment standard deviation (TwrBsMyt15
[kN-m] stddev)”. It is not clear what are the inputs and outputs of the surrogate. Please formulate the surrogate model formally
and mathematically.

Reply:

– The reviewer is right in noting that the output list is not mentioned clearly apart from a brief mention in Section 3.3.
We have included an additional explanation in Section 3.3, page 14, line 641, to make the output list more explicit. The20
model is trained on the 10-min. statistics including the standard deviation and DELST .

– In Table 2 a new column has been included to indicate which input variables are used for each case.

– An additional explanation has been added in Section 4.1 to clarify why TwrBsMyt [kN-m] stddev was chosen for the
convergence study. Essentially, we noted that this channel was particularly difficult to train, with the highest average
dW2 value among all channels. Models are data-dependent, and each channel ideally requires a separate sensitivity study25
on the number of training samples needed for convergence, the model architecture, and the model hyperparameters.
However, for practical purposes, we assume that if a model can perform well on the channel with the poorest metrics, it
should also perform well, if not optimally, on the other load channels using the same network architecture.

Q 1.2 Section 3.5 Accuracy metric should be better explained with more detailed information. Equation 18: It is not clear if
the summation is over the whole test dataset or over the seed repetitions of each test sample. How many samples are drawn30
from the MDN output distribution to compute the statistics (mean, std, and the quantiles)? Equation 19: How are the quantile
functions computed, by combining closed-form formulations for each Gaussian or through sampling directly from the output
mixed distribution?

Reply: Text with additional explanation about the Wasserstein distance and its calculation has been added to page 17, line 687.
The text covers answers to the three questions posed by the reviewer. In summary,35

– The summation is over the entire test dataset. It is reflected in Equation (20).

1



– We used 5000 samples from the MDN output to calculate the distribution statistics.

– The quantile functions for calculating the Wasserstein distance are obtained from the samples of the empirical distribu-
tions: 5000 samples from MDN output and 300 from the seed repetitions in OpenFAST.

Q 1.3 The seed repetitions with the same input variables are not necessary since the prediction is inferred from neighboring40
inputs, however, it also means that many neighborhood points are still required to have a good estimate of aleatory uncertainty.
In addition, when modelling in high dimensional input space, the actual distance between the test point and the input points
might be far. What is the robustness of the model in such case?

Reply: As the reviewer correctly noted, the larger the degrees of freedom, the larger the space between the neighboring points.
The goodness of fit of the model would depend on the rate of change of the statistics of the underlying distributions. The45
gradient of the standard deviation, in particular, is much harder to infer from a cloud of points than the gradient of the mean. A
small dataset could result in biased estimates of the standard deviation.

In practice, we see in this case that the prediction accuracy is higher in the case of the onshore turbine with only three
features as opposed to the offshore case with six. The convergence plots Figure 7b and Figure 8b show the models approaching
convergence at different rates for the two cases but appear to have robust dW2(Y, Ŷ ) estimates once the training sample size50
is above 3500. It can also be seen that dW2(Y, Ŷ ) converges to a higher value in the offshore case, and it is not evident that
adding more training samples or using a larger network increases the accuracy of prediction. The convergence, in the offshore
case, could indicate either that this is the best estimate of standard deviation achievable, given the information the model has, or
that the number of samples needed to capture the variation in the standard deviation is much larger than the maximum training
sample size that we tested. This could be an interesting future follow-up of this study.55

On page 22, line 753, this explanation has been included in the text.

Q 1.4 Line 215 “It pushes the coefficients of uninformative features towards zero, effectively pruning the feature space." Addi-
tional explanations or references would improve the reader’s comprehension.

Reply: A reference has been added on page 10, line 572 to the LASSO paper which contains more information about the
regularization methodology. We also amended the section to replace lower case characters l1 and l2 to λ for L1 and L2 as it60
was unnecessary to introduce new symbols here.

Q 1.5 Table 1. What is the sensitivity of mixture component numbers in terms of accuracy and computational resources?

Reply: We performed a sensitivity study to the number of components with 2, 4, 12, and 20 components for the tower bottom
fore-aft DELST channel with 4500 training samples. Figure 1 shows the normalized 2-Wasserstein distance values plotted as
a function of the number of mixture components the MDN was trained on. The MDN consisted of two layers with ten neurons65
each. The box plots are based on 10-fold training to quantify the uncertainty associated with the choice of the training subsam-
ple. The difference in the predictions is not very significant and seems to be robust against changes in this hyperparameter.

Q 1.6 Please describe what is the specific purpose of having two different test datasets TEST1 and TEST2.

Reply: TEST1 is a randomly sampled subset of the training space, whereas TEST2 is an ordered sample. The intention with
TEST2 was to be able to plot heatmaps for turbulence intensity vs wind speed, such as the plots in Figure 15. This explanation70
is included on page 15, line 664.

Q 1.7 Figure 3: Why is the marginal distribution of alpha a deterministic value only? Isn’t it a uniform distribution for the
‘train’ and ‘test 1’ according to Table 2?
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Figure 1. The normalized Wasserstein distance for the tower bottom fore-aft DELST trained on 4500 training samples, as a function of the
number of mixture components.

Reply: The reviewer is right to note this, as it is an artifact of the pairplot due to the samples in TEST2 taken at a single value
of α. The pairplot in Figure 4 is replaced to show only the marginal distribution histograms of the training data set in Figure 5.75

Q 1.8 Figure 6: Please define the spread of the boxes and whiskers (within which quantiles?).

Reply: The boxes and whiskers follow the Matplotlib standards. For clarity, the definitions are now explicitly addressed on
page 19, line 718. The boxes extend between the first (Q1) and third (Q3) quartile of the data, and the horizontal line across
the box indicates the median. The difference between Q1 and Q3 defines the interquartile range (IQR). The upper whisker
extends to the largest data values that are within 1.5IQR above Q3. The lower whisker, similarly, extends to the lowest data80
point within 1.5IQR below Q1. The outliers are visible as dots beyond the whisker boundaries.

Q 1.9 Line 174 “L-BFGS-B algorithm” Limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm for simple bound
constraints is not defined.

Reply: The full form has been added to the text on page 8, line 530, as requested.

Reviewer 285

Q 2.1 Clarify the difference between design standards and site specific analysis

Reply: We have modified the introduction to clarify the difference between certification and site-suitability assessment on
page 2, line 339. The site suitability assessment provides the assurance that the environmental conditions that affect the loading,
durability and operation of the turbines are in accordance with the design. This is a preliminary analysis performed before
designing a site-specific tower. Certification based on design standards involves a more rigorous analysis, for which only90
industry-standard engineering tools are used. The surrogate is not intended to perform certification assessment, but rather
provide a quick estimate of the loads for any site, using the design standards as a framework to define the DLCs.

Section 1 on page 2, line 339 has been modified to clarify the distinction to the reader.

Q 2.2 What is being "designed" during site analysis? Towers and foundations? Or just checking stock design of rotor/nacelle.
Clarify for the reader a bit more at the start. Also has implications; eg if we find we need to change the tower design, have to95
rebuild the surrogate (which is expensive!)
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Reply: In this study, we are not designing any part using the surrogate. However, the framework could be extended to include
geometric parameters, soil properties, water depth, and other factors, depending on the application. We are using the surrogate
solely to estimate loads on a wind turbine where the nacelle and blades are already fixed in terms of design, with a reference
tower.100

Linked to the previous comment of the reviewer, the paragraph on page 2, line 339 in Section 1 provides more clarification
on the context for which the surrogate is used.

Q 2.3 Include references/discussion to older freq domain model to show how long been around/lineage

Reply: As a response to reviewer 3, we have decided to remove the line about the frequency domain models from the text. This
is because the frequency domain models are not used for estimating fatigue loads and may create confusion for the reader.105

Q 2.4 Are 10 minutes simulations enough for off-shore turbines? Standards specific length to include important wave impacts

Reply: The surrogate may also be trained on simulations that are longer than 10 minutes if the resources allow it. Our aim
was to quantify the variation in loads due to uncertainty in inflow conditions, typically addressed in certification requirements
with 10-minute simulations using six seeds or a single 60-minute simulation. Long simulations to capture very low-frequency
sea states do not significantly impact tower or blade loads in fixed-bottom cases. However, they are crucial for floating wind110
turbines, particularly for estimating mooring line fatigue. In this paper, we evaluate the uncertainty estimated by the surrogate
against 300 random initializations of the inflow parameters, thereby covering a very wide range of variation per test case.
Therefore, we believe 10-minute simulations are sufficient for this application.

Q 2.5 Around line 35 would be nice to have more discussions of the importance of linearity and nonlinear. Contrast what
linearized models miss of the physics vs data driven models115

Reply: We have included more information on page 2, line 351 about the non-triviality of modeling fatigue loads, which better
explains the benefit of using data-driven models for this application.

New text: Modeling the relationship between the DELST and environmental conditions is non-trivial. Fatigue is a multiscale
phenomenon that depends on the material composition, composite structure, part dimensions, and dynamic inflow. This makes
it challenging to model using low-fidelity physics-based approaches. As a consequence, data-driven surrogate models can120
be beneficial, as they do not require prior knowledge of the underlying physics and can infer complex relationships from
observations alone. Especially in systems where analytical closed-form solutions are intractable or the physical properties
cannot be easily modeled (Jiang et al., 2020), data-driven surrogates provide a great advantage.

Q 2.6 Is it just aleatoric uncertainty? It’s true the physical system itself has embedded uncertainty, but in the context of a
surrogate the choice and extent of the feature selection and training dataset represent epistomalogical sources of uncertainty.125

Reply: Aleatoric uncertainty occurs due to unpredictable variation in the features or in the system’s performance which cannot
be reduced with the addition of more knowledge. On the other hand, epistemic uncertainty can, in principle, be eliminated with
sufficient knowledge, hyperparameter tuning and expert judgements. Although we try to identify the sources of uncertainty, it
is quite difficult to differentiate between them from the surrogate model’s predictions as they are often combined.

The reviewer’s comment refers, first, to the epistemic uncertainty associated with the choice of the features used for training.130
The site conditions are limited to a certain number of parameters and are generally only available as aggregates. In the context
of simulation-based training, we control the parameters that change between each simulation. Therefore, the variation seen in
the fatigue response in our dataset can only be caused by variations in one of the chosen features. We assume that we have
carefully selected the features affecting the fatigue loads in reality, considering what is typically measured at a representative
site. A second way of adding more knowledge is to train the model on the same number of features but provide the entire time135
series of the wind and waves at different grid locations as input. This could reduce the uncertainty in the response (epistemic),
but it is not possible to obtain all this information in practice, especially for the application for which the surrogate is designed.
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To summarize, because we are limited by the amount of knowledge we have about the site (number of features and time
resolution), the uncertainty in the fatigue response is considered primarily aleatoric.

The reviewer also refers to the presence of epistemic uncertainty due to the choice of training dataset. This can be investigated140
to an extent by performing a convergence study up to a point where there is no significant improvement in the predictions at
locations where the model is tested, as is done in Section 4.1. We show that adding more training data samples does not improve
the predictions, thus the epistemic uncertainty associated with the number of training samples is not significant, although not
zero.

Finally, we cannot quantify the epistemic uncertainty associated with the choice of hyperparameters with the standard neural145
network framework. However, we have performed hyperparameter sensitivity studies to minimize this uncertainty and ensure
the robustness of the model.

The text in Section 1 has been restructured as a response to other comments, on page 3, line 374, and no longer explicitly
mentions the uncertainty type.

Q 2.7 Section 1.1; if we know the pdf of Y, how does that get used for design verification? E.g. what do we to get cumulative150
lifetime fatigue and extreme ultimate loads extrapolation? Nice to have clarity on model usage there, beyond being able to
provide variance and pdf info from the surrogate

Reply: The main purpose of a surrogate of such kind is to reduce the training cost associated with seed repetitions. In addition,
it provides estimates of uncertainty with respect to loads and a more robust estimate of mean response. In current design or
certification frameworks, there is no requirement for the quantification of the uncertainty of the loads. However, Li and Zhang155
(2019) have extrapolated the 50-year accumulated fatigue damage in the mooring lines, tower etc. which could be beneficial
for cost reduction when designing the site-specific tower. As we move towards a reliability based design process in the future,
probabilistic surrogates will prove to be useful.

Q 2.8 Explain what heteroscedasticity actually is and where is comes from in wind turbine context

Reply: The heterogeneity in the variance of the conditional pdf across different operating conditions is known as heteroscedas-160
ticity.

The definition of heteroscedasticity is included now on page 3, line 405. The sentence just before this is modified to make
the link between wind turbine load response and heteroscedasticity clear.

Q 2.9 Line 105 add ref to non-heteroscedastic paper. Also later in section talk about Kriging and GPR; clarify these are
essentially the same165

Reply: The clarification has been included on page 6, line 457. The non-heteroscedastic Kriging papers in the context of wind
turbine load prediction are listed in the following line.

Q 2.10 Section 2.1; mention GP challenges in terms of passing though (or not) the training points depending on detailed
implementation and variants of eqn 2. See also line 344

Reply: Computing the inverse of the dense covariance matrix KXX in GPR calculations is expensive, with a computational170
complexity of O(n3) and a memory complexity of O(n2) (Rasmussen and Williams, 2006). Due to these computational
limitations, GPR models are typically not scaled to very large training datasets. We had to, therefore, constrain our model to
2500 training samples in Section 4.1. This explanation is now reflected on page 8, line 522.

Q 2.11 Line 221; l1 and l2 variables aren’t actually defined in the eqns above? Meaning lambda values?

Reply: Correct, they are the same as the lambda values and it was unnecessary to introduce new variables in the section. The175
text is now amended on page 10, line 578 to clarify that we are referring to λ of the L1 and L2 regularization functions.
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Q 2.12 Fig 2 implied hidden layers of various widths, but table 1 only defines 2 hidden layers not their widths

Reply: We have updated Table 1 with the network width hyperparameter and added additional text on page 10, line 583 to
explain that 2 network architectures were investigated in subsequent sections.

Q 2.13 Below eqn 17 mention m=10 for blades but before said not looking at blade loads?180

Reply: We are considering also the blade loads, as shown in figures Figure 14 and Figure 13.

Q 2.14 Line 298; not clear what Test2 is. "alter only wind speed and turb;" but still creating how many new sims?

Reply: We have updated the text on page 15, line 664 to include the number of simulations (24) that comprise TEST2.

Q 2.15 Fig 3 redo axis labels. Eg "speed" is windspeed? I’d suggest using the Greek variables directly to avoid confusion

Reply: We have redone plot Figure 5 to update the labels to greek letters that match the notation used in Table 2.185

Q 2.16 Fig 5. Say in caption what MDN [ x, x] denote. What is x?

Reply: The caption is updated in Figure 7 and Figure 8 to mention that the numbers in the square brackets indicate the width
of the first and second layer of the 2-layer neural network.

Q 2.17 In the results it’s not clear how GPR is being used. Eg fig 5; does that 4 separate GPRs trained independently, one for
each predicted quantity? I can’t see where this is explicitly in results section190

Reply: The quantities shown in Figure 8 are derived from the conditional pdf predicted by one single GPR. We added infor-
mation on page 17, line 683 and page 17, line 687 to explain that the quantities used for judging the accuracy of the model are
derived empirically from the conditional distribution predicted by the model for each test case.

Q 2.18 Around line 370 confused if the r squared value is so dependent on choice of training subset, what is table 4 actually
showing us? Is that for an average across multiple training sets?195

Reply: Around line 370, what we meant to say was that the absolute value of R2 would certainly be different if we used a
different test dataset, or 20 or 200 test samples instead of TEST1+TEST2. It is still, however, an important measure of accuracy
if two models were to be compared on the same exact test database. This is the purpose of showing the values in Table 5.

Q 2.19 Should make mention in table 4 for Sigma of the GPR you have negative values. This is a typical for me statistical
definition of r squared so good to remind the reader what this means in the context of training and test data200

Reply: We have updated Section 4.2, page 23, line 777, with information about the negative R2 values that indicate no corre-
lation between the GPR model’s σ predictions and the reference σ values from OpenFAST. This behavior is in line with the
expectations, as standard GPR cannot follow the heterogeneity in the variance/standard deviation.

Q 2.20 Would be nice to see a bit more discussion on how the results changed for the different load channels you’re looking at
EG tower bottom versus later bending205

Reply: We have included Table 6 with the comparison of R2 values for GPR and MDN for various load channels. On page 24,
line 788, we elaborate further on the difference in the results between the load channels.

Q 2.21 Figure 7 and the discussion would indicate some optimum number of samples between 500 and 4500. The GPR uses
500. The conclusions talk about reduced simulation needs with the proposed mdn method, so it would be nice to revisit what
practicalities these numbers of samples and plies in terms of creating a database. Back to the use case in terms of how the210
model might need to be rebuilt when changing tower heights, etc in intended use cases for the tool.

Reply: This is a good addition to the conclusion and we have modified the text in Section 5, page 28, line 835.
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Reviewer 3

Q 3.1 The objectives of the study or hypotheses should be stated in the introduction. The original contribution of the paper to
the field should be clearly stated in the introduction.215

Reply: Section 1 on page 3, line 382 has been updated to state the objectives of the study and the novelty of the methodology.
New text:The primary objective of this study is to develop a probabilistic data-driven surrogate that maps 10-minute statis-

tics of wind and wave conditions (X ∈ R6), to the corresponding 10-minute load statistics including DELST and standard
deviation (Y ∈ R). We introduce a novel framework for load surrogate modeling that reduces training costs by eliminating seed
repetitions without sacrificing prediction accuracy. This probabilistic modeling approach allows for uncertainty propagation220
and quantification, enabling informed decision-making. In this study, we compare the performance of a highly flexible machine
learning method, the mixture density network (MDN) (Bishop, 1994a), with the widely used Bayesian approach of Gaussian
process regression (GPR). The surrogates are tested using the onshore and offshore versions of the IEA 10-MW reference
wind turbine. The load for training the surrogate are calculated using an open-source, multi-fidelity, multi-physics solver called
OpenFAST (NREL, 2022; Jonkman, 2013).225

Q 3.2 L20 You are missing a general description and references to the most used aeroelastic models: OpenFAST, HAWC2,
Bladed, Flex, etc

Reply: References to some of the models have been included on page 2, line 340 in Section 1.

Q 3.3 L32: The reference to ”fast frequency-domain reduced-order models” seems disconnected from the article. It should be
either removed, or explained why these techniques are interesting. If these techniques are interesting, why not testing them in230
the article? Are these ROMs a way to replace the aeroelastic model (OpenFast)? Are the probabilistic surrogates presented in
the article relevant for ROMs. I do not necessarily agree to describe ROMs as physics-based models, as they can be trained on
simulations just as your load surrogates. Are aeroelastic models not physics-based?

Reply: We agree that the frequency models seem out of place for load emulation. Initially, the idea was to give general
examples of models that can solve for interesting quantities quicker than time domain aeroelastic models. However, this does235
create confusion about the objective of this study. We have removed the section about the frequency domain solvers and
reframed Section 1 for clarity.

Q 3.4 L42: The uncertainty due to the presence of unknown or inexpressible features is an epistemic uncertainty. Epistemic
uncertainties represent lack of knowledge and therefore they could be reduced by for example: improving the accuracy of a
measurement, or increasing the number of degrees of freedom (DOF) used to characterize a phenomena. If you represented240
the uncertainty in the turbulent-wind and sea-state field with more degrees of freedom (let’s say a grid with three wind/wave
components) you would not have this uncertainty. Since you use few integrated quantities to represent the inflow you have the
epistemic uncertainty of the flow realization.

Reply: In the context of the application of site analysis, we generally only have access to site data in terms of 10-minute
statistics of wind and wave parameters. If we are restricted in a practical sense to provide only the integrated quantities to the245
model, then the intrinsic randomness becomes an irreducible uncertainty- i.e., it does not decrease no matter how many training
samples we provide. Therefore, we referred to it as aleatoric in this paper. Please also refer to the response provided to reviewer
2, comment 6 (Q2.6).

Q 3.5 L57: TurbSim is not a turbulence model, but a software. You should refer to the turbulence model used, i.e. Mann?
KAimal spectra? etc. You should also report the parameters used on the spectra.250
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Reply: We have updated the text on page 3, line 399 and also included more information about the spatial coherence parameters
and the boundary layer stability in Section 3.

Q 3.6 L68: Deterministic models can be used to build probabilistic surrogates similar to the ones you propose: Quantile
regression proposes the use of multiple deterministic surrogates to predict the local distribution (Koenker, Roger, and Kevin
F. Hallock. 2001. ”Quantile Regression.” Journal of Economic Perspectives, 15 (4): 143-156. DOI: 10.1257/jep.15.4.143)255
(Meinshausen, N. and Ridgeway, G., 2006. Quantile regression forests. Journal of machine learning research, 7(6).). You
should add a sentence here on this. Note that these types of probabilistic surrogates need to have multiple seeds in the training
in order to compute the local quantiles.

Reply: This is now specified on page 4, line 412. We mention in the text now that deterministic models are used for modeling
conditional statistics such as the mean, variance and quantiles of the conditional distribution.260

Q 3.7 Figure 1: The deterministic model should also have the explicit dependency on the inputs y^(x).

Reply: Figure 2 is modified to be consistent with the notation in the rest of the paper, so we don’t explicitly mention the
dependence on x in the notation anymore.

Q 3.8 L96: This sentence needs to be re-written for more clarity. These probabilistic models can be train without having to
simulate multiple inflows for each input vector, because the methods can infer the local distribution based on the samples265
available in the neighborhood. This point is later clarified in L240-L242. But is should be clear from the beginning.

Reply: On page 5, line 440, we have added the following lines to the text: The probabilistic surrogate modeling approaches
can be trained without having to simulate multiple seed repetitions for each operating condition, as they can infer the condi-
tional response based on neighboring samples. The training time can, therefore, be significantly shorter compared to existing
frameworks.270

Q 3.9 L265: Missing citation to Sobol.

Reply: On page 12, line 627, the citation to the original paper where Sobol sequencing was introduced has been added.

Q 3.10 L270: The distribution of wave state parameters is fitted using KDE based on what? The following text and Table 2 are
confusing because you focus on the lower and upper bounds, but this is not relevant for the KDE.

Reply: The wave state parameters are based on joint scatter from some representative sites. The min and max in Table 2 just275
indicate the minimum and maximum values of Hs and Tp in the scatter. Agree that this could be confusing for the reader, but
perhaps it is useful to know the range of values.

Q 3.11 Table 2: The distribution of the turbulent wind field parameters is reported to be uniform in table 2, but seems not to be
the case on the marginal distributions on Figure 3. This table should be accurate description of the simulations.

Reply: The samples for the turbulent wind parameters are uniformly sampled jointly in three dimensions. That’s why the280
marginal distribution of the wind speed shows more data samples at low wind speeds, as the bounds for the turbulence intensity
and shear exponent are not uniform.

Q 3.12 Table 2: Why use a random uniform distribution of seeds and not just an increasing seed number? Consecutive seed
numbers will provide a similarly independent field as ”random” seeds.

Reply: Agreed. Seed numbers could have been sequential too.285
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Q 3.13 Table 3: The symbol ∆ needs to be defined as the discretization step.

Reply: ∆ is now defined in the caption of Table 4.

Q 3.14 Figure 3: The marginal distributions should be presented as histograms and not as KDEs as it gives a wrong sense of
the actual distribution.

Reply: The figure is updated to Figure 5 and just reflects the marginal distributions of the training data with histograms instead290
of KDE.

Q 3.15 Figure 3: The marginal for the shear exponent should be re-scaled to show the distribution of the train and test 1,
instead of focusing on test 2.

Reply: The figure is now updated to Figure 5 and now just reflects the marginal distributions of the training data.

Q 3.16 Figure 4: The outliers at high wind speed that give low moments (and that cause the bi-modal local distributions) should295
be highlighted and explained. Why do they occur?

Reply: At high wind speeds in the simulations, we found at some conditions, the regimes jumped between normal operation
and shutdown beyond cut off wind speed. This is reflected in the loads that either show normal loading or close to zero, because
the wind turbine is no longer operating.

Q 3.17 L336: It is not clear why you are using the standard deviation instead of the damage equivalent load for the convergence300
study. I expect the DEL to be harder because of the power exponent. This should be corrected.

Reply: The performance was very similar for DEL and standard deviation, with slightly less accurate predictions for standard
deviation- perhaps due to a larger scatter. This was the reason for choosing standard deviation. We have added clarification text
in Section 4 to explain why standard deviation was used. We believe that the convergence plots will not change in a significant
manner if we consider DEL instead of standard deviation.305

Q 3.18 Table 4: The label should explicitly state that these are R2 results.

Reply: The title of Table 5 is updated with additional text stating these are R2 results.

Q 3.19 L407: The description of the reference local distribution should be given in the methodology, i.e. table 3. and not here.

Reply: The number of seeds and samples used for the analysis have now been mentioned in Section 3, page 18, line 693.

Q 3.20 L418: The conclusion of the causes of the low performance at low TI should be illustrated by showing the local310
distributions, as you did in figures 11 or 12.

Reply: Figure 16 has been added to the manuscript with conditional pdf plots corresponding to the poor prediction regions at
low turbulence intensity (4%) values in Figure 15a.
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