
Full-Scale Wind Turbine Performance Assessment using TPI: A
Study of Aerodynamic Degradation and Operational Influences
Tahir H. Malik1 and Christian Bak2

1Vattenfall, Amerigo-Vespucci-Platz 2, 20457, Hamburg, Germany
2DTU Wind and Energy Systems, Frederiksborgvej 399, 4000 Roskilde, Denmark

Correspondence: Tahir H. Malik (tahir.malik@vattenfall.de)

Abstract. This study investigates how blade aerodynamic modifications, including Leading Edge Roughness (LER), influence

wind turbine performance over their operational lifespan. It introduces a methodology developed to examine the intricate

relationship between blade erosion, blade enhancements, operations and maintenance (O&M) events, control programmable

logic controller (PLC) parameter updates and their cumulative impact on turbine efficiency. Analysing data from twelve multi-

megawatt offshore turbines over a twelve-year period, the investigation hinges on the integration of SCADA data, O&M records5

and air density corrections. A key contribution is the development of the Turbine Performance Integral (TPI) method, which,

for the investigated turbines, leverages generator speed and power output data to track performance trajectories. Seasonal-Trend

Decomposition using Locally Estimated Scatterplot Smoothing (STL) further isolates long-term trends and seasonal variations

in performance. Despite data availability and quality limitations, the study reveals significant findings concerning the impact

of software updates on turbine control strategies, the variable effects of blade repairs and enhancements and the complex10

interaction between O&M events and performance. This works’s strength lies in its methodical approach and statistical rigour,

offering a path forward for effectively monitoring wind turbine efficiency and advancing renewable energy.

1 Introduction

The detrimental effect of Leading Edge Roughness (LER) or Leading Edge Erosion (LEE) on aerofoil characteristics has been

investigated through wind tunnel experiments and various studies on the impact of erosion and roughness on wind turbine15

annual energy production (AEP) (Mishnaevsky Jr et al. (2021)). Erosion has the potential to cause significant AEP losses,

with some studies predicting reductions of up to 7% (Han et al. (2018); Maniaci et al. (2016); Bak et al. (2020); Bak (2022)).

However, a key challenge remains in identifying and validating these computed energy losses when analysing supervisory

control and data acquisition (SCADA) data from operational wind turbines (Ding et al. (2022)). This challenge is manifested

by a continued absence of an established correlation between blade erosion and turbine performance underscoring a lack of20

deeper understanding of the underlying reasons.

Wind turbine performance assessment is especially challenging in the academic and owner-operator environment due to

limited access to quality data from wind turbines (Pandit et al. (2023); Leahy et al. (2019)). Where data is accessible, it is to

a restricted set of sensors or SCADA channels, typically sampled at a lower rate, or it may be available for very limited time
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periods (Yang et al. (2014)). Such restrictions hinder comprehensive data analysis and conclusive research findings (Badihi25

et al. (2022); Gonzalez et al. (2019)). Usually, little to no information on specifications of the turbine, such as blade profiles or

aerofoil polars is available such as those tested by Krog Kruse et al. (2021) and Gaudern (2014), with several reasons contribut-

ing to this limitation. One of the primary factors being intellectual property protection by original equipment manufacturers

(OEMs), since their significant research and development (R&D) investments help them maintain their advantage in a highly

competitive market. Additionally, suppliers are often hesitant to empower customers with detailed data that could be leveraged30

in, for example, a performance warranty claim. Moreover, the owner-operator faction of the industry has seen limited success

in gleaning valuable turbine performance data from SCADA systems (Ding et al. (2022)), which has not created a compelling

incentive for a push towards suppliers to provide more comprehensive data, nor has it sparked a cost-benefit argument for

owner-operators for investing in higher quality data or more expensive dedicated condition monitoring systems (CMS) (Yang

et al. (2014); Tautz-Weinert and Watson (2017)). This situation has culminated in a lack of drive from customers to push for35

better data accessibility and quality, exacerbating the challenge of wind turbine performance assessment as well as impeding

innovation and progress in the field (Pandit et al. (2023)). Furthermore, the controller of the wind turbine often remains a ’black

box’ (Aho et al. (2012)) to owners, operators and academics, making the assessment of the turbine’s behaviour in response to

atmospheric conditions, operations and maintenance (O&M) events, upgrades or blade conditions highly challenging, leading

to inconclusive or, in the worst case, incorrect conclusions. Developing a reliable performance evaluation method is crucial, as40

is enhancing the efficiency of current wind turbine fleets, where even marginal performance gains can translate into significant

economic and environmental benefits.

To address these challenges, wind turbine SCADA data was analysed and an understanding of the wind turbine controller

underlying turbine behaviour in response to atmospheric conditions, O&M events and modified blade aerodynamics was ap-

plied. The goal was to discern the effect of leading edge roughness from the numerous variables and uncertainties affecting its45

performance, which may be likened to finding a needle in a haystack. The developed method avoids the need for direct wind

speed measurements, for the turbine under study, reducing uncertainty and providing insights previously difficult to achieve

with currently available SCADA data (Butler et al. (2013); Albers (2012)).

This study aims to dissect measurement data from twelve multi-megawatt offshore wind turbines to determine the specific

effects of modified blade aerodynamics on their performance and separate these relatively minor effects from the plethora of50

events that affect a wind turbine over its lifetime.

The distinguishing aspect of this work lies in the development of a method where a single turbine indicates performance

shifts, without use of wind speed measurements, customised for the OEM and the turbine’s specific controller. Comprehensive

O&M data for wind turbines is a rarity in the academic field, as is the opportunity to modify blade aerodynamics to assess

its impact on turbine performance. The present investigation leverages these aspects to assess turbine performance, creating55

insights to enable more informed business decisions, predictive maintenance strategies and ultimately enhance the energy yield

as well as longevity of the turbines. Ultimately, attempting to shed a light on how many kilowatt hours are lost due to the

limited understanding of field performance influenced by blade erosion.
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2 Method

The present study employs a detailed analysis of wind turbine measurement SCADA data to assess the influence on perfor-60

mance due to various factors. These causes include seasonal variations, O&M events and turbine component degradation.

A particular emphasis is laid on evaluating the effect on performance due to modified blade aerodynamics resulting from

blade erosion and enhancements. These particular causes of performance alterations are known to have relatively smaller

performance deviations, especially when compared to other, more prominent sources of variation such as main component

malfunctions (Dao et al. (2019); Yang et al. (2014); see also a general study by Astolfi et al. (2020)). The presented method-65

ology, concentrates on the separation of causes of variation of performance deviations and their individual contributions. For

this purpose twelve front-row, offshore multi-megawatt turbines within a wind farm were selected for their direct exposure

to undisturbed dominant wind conditions. Due to confidentiality reasons neither the site nor the wind turbine type shall be

described in detail. However, to provide context for the results, the average wind speed at the site is approximately 8.6 m/s, the

wind turbine has a nominal power between than 2 and 3 MW and is a horizontal-axis, three-bladed model.70

2.1 Data collection

2.1.1 Operations and Maintenance (O&M) data

A detailed compilation of maintenance records was undertaken, which were subsequently consolidated with the SCADA data.

This dataset included dates and details for inspection and maintenance activities such as blade repair, blade leading edge

protection (LEP), application of blade enhancements such as aftermarket vortex generators and Gurney flaps, component75

repairs or replacements, turbine curtailments and outages etc. An auxiliary source of data was a System Applications and

Products (SAP) or accounting database, that held records of O&M billing dates and respective costs. However, due to the

transactional nature of the SAP records, they were used only to a very limited extent as their date did not reflect the actual date

an O&M event took place on a wind turbine, rather the date when the work was billed to the business.

It is important to recognise the challenges in assembling a complete and precise record of all repairs for the wind farm80

in question. This can be attributed to occasional gaps in reports, variability in maintenance records over some periods and

instances of data loss - similar challenges have been encountered by others in the field (Leahy et al. (2019)). Recognising

repercussions of these discrepancies on the findings shall be addressed and deliberated in Section 3, as the inherent integrity of

these records had implications on the depth and accuracy of the analysis.

The O&M events compiled for the selected wind farm were categorised under the following main categories, with a detailed85

breakdown shown in Figure 8:

– Control PLC Parameter Update - Only the approximate date of the last update is recorded. Previous updates’ dates are

unavailable

– Mechanical Repairs (e.g., gearbox replaced, generator bearing replaced)

– Blade Maintenance (e.g., blade repaired, blade enhancements)90
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– Sensor and Instrumentation (e.g., wind sensor replaced, generator high temperature)

– Fluid Maintenance (e.g., gearbox oil change, hydraulic oil change)

– Other

2.1.2 Wind turbine SCADA data

The data used in this study were sourced from twelve individual wind turbines situated in the first row of an offshore wind95

farm with exposure to predominant wind conditions. This selection mitigated wake effects of other turbines or wind parks. A

comprehensive twelve year dataset, with SCADA data sampled every second, was employed to improve accuracy (Badihi et al.

(2022)) while searching for small performances changes. This of course created computational challenges due to the associated

increased volume of data (Pandit et al. (2023)).

The SCADA system records various parameters at regular intervals. From the limited available sensors, the following pa-100

rameters relevant to this study were collected:

– Nacelle wind speed ν (m/s)

– Nacelle direction (o)

– Ambient Temperature T (K)

– Blade pitch angle β(o)105

– Rotor speed ω (RPM)

– Generator speed Ω (RPM)

– Power production P (kW)

– Power setpoint demand P (kW)

– Turbine operational state (e.g. waiting for wind, curtailed, cable unwind)110

Additionally, relevant parameters were collected from an onsite meteorological mast (located on the offshore substation)

and the EMD International database (via WindPRO EMD International A/S (2023)). The following obtained metrics were

used separately to account and correct for variations in air density, the importance of which was highlighted by Farkas (2011):

Atmospheric Pressure P (Pa), Ambient Temperature T (K) and Air Density ρ (kg/m3).
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2.2 Pre-processing115

The SCADA dataset utilised in this study was pre-computed from the wind turbine’s high-frequency data archive, where

a sensor’s signal is only updated when a change is recorded. Due to the substantial volume of data generated, it is worth

noting that these high frequency records are retained on the turbine for only a limited duration. The employed dataset was

sampled at one-second intervals. Consequently, any missing values encountered were filled using the ’previous value’ method,

which replaces each missing value with the most recent, preceding, non-missing value. In the absence of historical high-120

frequency data, this approach to handling missing values reduces the computational demands while attempting to minimise the

introduction of potential bias or inaccuracies.

Certain derived variables were also computed to aid data filtering. For instance, the tip speed ratio (λ) was calculated using

rotor speed and horizontal wind speed measurements. Additionally, the nacelle direction was used as a proxy for wind direction

despite it being influenced by the turbine’s control algorithm hysteresis and rotor wake.125

Furthermore, the air density (ρ) calculated at the substation was compared with that from the EMD International’s database

and found to be a close match. Due to occasional gaps in the meteorological mast data, the EMD data, available at hourly

intervals, were employed for analysis - of course adding some degree of uncertainty. The gaps between the hourly timestamps

were filled using linear interpolation. An adjusted power value was computed based on the obtained air density and was used

in all subsequent analysis.130

The data was filtered and processed in accordance with the guidelines outlined in International Electrotechnical Commission

(IEC) 61400-12-1 (Commission et al. (2017)).

2.3 Density correction

To isolate wind turbine performance variation influencing factors, it is crucial to adjust for variables that introduce uncertainty,

to whatever extent possible. Air density is one such variable (Farkas (2011)) in the ’haystack’ of uncertainties that confound135

the data. Wind kinetic energy being proportional to turbine power, correcting for air density variations over time is essential,

as demonstrated by Butler et al. (2013).

The power generated by a wind turbine may be expressed by:

P =
1

2
ρv3ACp (1)

where P is the mechanical power generated by the wind turbine, ρ is the air density, A is the swept area of the wind turbine140

(calculated as πD2

4 where D is the rotor diameter), v is the wind speed and Cp is the power coefficient of a turbine at the design

load case. The maximum theoretical value of Cp is 0.593, according to Betz’s law.

In this analysis, the turbine power output is adjusted for site-specific temperature, pressure and consequent air density

variations. Thus standardising the data and partially reducing an aspect of seasonal or atmospheric induced variations over

time. The adjusted power Padj is calculated by correcting the measured power output Pmeas for air density variations. This is145

achieved by using the density ratio, which is the quotient of the mean air density ρ̄ over the instantaneous air density ρ at the

time of measurement. The adjusted power is given by:
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Padj = Pmeas ×
(
ρ̄

ρ

)
(2)

where Padj is the adjusted power output, Pmeas is the measured power output, ρ̄ is the mean air density over the measure-

ment period and ρ is the instantaneous air density at the time of measurement.150

The mean air density is calculated from the available air density data and the instantaneous air density is obtained from

synchronised environmental data obtained from EMD International A/S (2023).

2.4 Wind turbine control - data analysis

Developing a method for measuring power performance from SCADA data necessitates a comprehensive understanding of

the individual turbine and manufacture’s control algorithm. Every OEM has developed its own unique control strategy to155

manage turbine loads and optimise power production. These proprietary control philosophies (Aho et al. (2012)), that are

closely guarded intellectual property, highlight their significance in the competitive landscape. Importantly, turbines within the

same family can exhibit variations in control strategies due to incremental revisions. Moreover, a turbine’s control system may

undergo significant changes during its operational lifespan, either through software or hardware upgrades. These upgrades,

at times offered as paid customer services, can markedly alter the turbine’s performance and the dynamics of performance160

measurement; this has been ascertained by empirical observations made during this study.

In this context, the chosen approach is tailored to the unique control strategies employed in the particular turbine model

under investigation. The specific turbine model utilises both generator torque and blade pitch as primary handles to regulate

turbine speed. For the turbines analysed in this study, the blade pitch angle and rotor speed are dynamically adjusted based

on the current wind conditions, aiming to optimise energy capture. Consequently, under varying wind conditions, the turbine’s165

generator speed and power output are expected to change dynamically in partial load. Existing literature provides examples

of wind turbine controllers that incorporate wind measurement alongside torque measurement (Bolik (2004)). This detailed

description of the controller describes how the rotor is operated at low wind speed with the controller ensuring a mix of torque

as a function of rotor speed and constant tip speed ratio. In this region of the power curve, the blade pitch curve is relatively

flat (as seen later in Figure 1). At higher wind speeds, the rated power is kept constant by pitching the blades.170

2.5 Turbine Performance Integral: A method for assessing wind turbine performance

This study introduces an approach to assess wind turbine performance. Traditional power curve analysis (power vs. wind

speed) suffers from significant uncertainty in representative wind speed measurement. This work explores an alternative metric

to enhance assessment accuracy. For this turbine, monitoring the generator speed and power output in the partial load region,

marked by its relatively inactive pitch, provides insight into whether the turbine is operating as expected. A discrepancy,175

where the power output does not increase as expected with increasing generator speed, may indicate potential issues such as

mechanical wear and tear, an O&M event, or component inefficiency. Essentially, analysing the relationship generator speed

versus power output, in this operational region, can serve as a proxy for turbine performance and a tool or ’virtual sensor’ for
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long-term performance monitoring. This approach may reveal performance changes due to aspects such as changes in blade

aerodynamics due to erosion or application of blade enhancements.180

Datasets of each turbine are loaded for the twelve year period. The integral or area under the generator speed curve between

20% and 37% of normalised power is monitored, a region empirically determined by observing linear segments of this curve -

where the pitch angle is minimally active (see Figures 1 and 2). Buffers are added on each side of the range to accommodate

transient behaviour. Within the specified power range, an increase in area under the curve, indicates that the turbine has to

rotate at higher speeds to generate the same amount of power. Thus, an increase in this area reflects a decrease in the turbine’s185

efficiency. Over the observation period, the trend of this integral provides a metric for the turbine’s performance trajectory:

an increasing area suggests a deteriorating performance, while decreasing area indicates an improvement. Thus, the integral,

with units of RPM·kW (rad·W/s), is indicative of this turbine’s performance trajectory and shall be referred to as Turbine

Performance Integral (TPI).

The analysis centres on the use of a ring buffer, which is initialised and then updated weekly to record average values for190

each power pin. For the trapezoidal integration calculation within defined bounds, the approach computes the integral under

the curve. A consistent buffer size ensures standardised data smoothing across all turbines.

Data processing involves several steps: filling missing bins, updating the ring buffer and estimating the seasonal component.

In particular, the estimation of the seasonal component leverages Seasonal and Trend Decomposition using Locally Estimated

Scatterplot Smoothing (STL), which breaks down the data into long-term trend, seasonal trend and residual short-term remain-195

der, a process elaborated on in Section 2.6.

Finally, the power output is adjusted for air density (ρ). A moving average filter is applied to smooth the data and a de-trended

plot is generated for better visualisation.

This methodology provides a robust framework for dissecting and evaluating the performance of wind turbines over a spec-

ified period and varying time frames considering various performance-altering factors. It allows the identification of seasonal200

trends, short-term variations and long-term performance trends, offering valuable insight into wind turbine’s performance evo-

lution. Notably, in this turbine’s case, this method is effective without direct wind speed measurements.

2.6 Seasonal trend decomposition

After calculating the TPI virtual sensor signal from the generator speed-power relationship, Seasonal and Trend Decomposition

using Loess is employed to extract valuable insights from the time-series data. STL is a robust and adaptable time-series205

decomposition technique introduced by Cleveland et al. (1990) with widespread applications (Sanchez-Vazquez et al. (2012);

Hafen et al. (2009); Anderson et al. (2013); Xu et al. (2023); Verbesselt et al. (2010)). Decomposition models have otherwise

been proposed in the application of wind forecasting (Prema and Rao (2015)). Its suitability for analysing the wind turbine

performance integral stems from the presence of both trend and seasonal components in the data.

Following the methodology described by Cleveland et al. (1990), STL decomposes a time series into three components:210

seasonal, trend and residual. This decomposition is mathematically represented as follows:
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Yt = Tt +St +Rt (3)

where Yt denotes the observed data at time t, Tt is the trend component, St is the seasonal component and Rt is the residual

component.

The long term trend component isolates the underlying progression of turbine performance over extended periods. Unwanted215

seasonal elements and random noise are filtered out, providing a smoothed signal representing factors such as O&M events,

cumulative wear and tear of the wind turbine or longer term climatic changes.

The seasonal component captures cyclical atmospheric conditions related effects and variations over multiple years. It ef-

fectively attempts to remove the provided signal of the multitude of weather effects such as turbulence patterns and other wind

patterns. For this study, the frequency of this component is set to an annual frequency, essentially ’telling’ the function where220

to expect a repeating pattern in the signal, which aligns with the periodicity expected in wind data. This approach reveals per-

formance trends within a calendar year. Notably, STL decomposition does not artificially create seasonality; a missing seasonal

component at the fed cycle, or an incorrect frequency specification or absent seasonal pattern, results in a very apparent weak

or missing decomposition.

The short term remainder component of the signal encapsulates what is left over from the time series after removal of the225

long term and seasonal trends and is constituted by erratic or erroneous fluctuations. The variations seen in this component

may on occasion be attributed to transient technical issues or daily weather changes or may remain unaccounted-for factors

due to immediately unknown causes that may include erroneous data.

The implementation of STL in the methodology was done through MATLAB’s "trenddecomp" function (The MathWorks,

Inc. (2023)) applied to the virtual TPI signal generated from the relationship between generator speed and turbine power.230

2.7 Data visualisation

Data visualisation plays a crucial role in interpreting the insights derived from the STL decomposition results. A multi-panel

figure with a common x-axis (time) and individual y-axes for each panel was employed to effectively present the findings in a

comprehensive view. This structure facilitates the simultaneous examination of the trend, seasonal and remainder components,

revealing their interaction over time. This was applied for each wind turbine for the twelve year period of analysis.235

The common x-axis, representing time, provides a reference point for all subplots, enhancing the understanding of the con-

current evolution of these components. Each panel of the stacked plot is dedicated to one component of the STL decomposition:

long-term trend, seasonal trend, short-term remainder and the combination of these components. By examining patterns within

each component, one can determine seasonal and long-term trend impacts on overall wind turbine performance and identify

potential anomalies.240
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2.8 Statistical analysis

Moving beyond visual assessment and accounting for data uncertainty and limited sample sizes for certain categories, the

application of statistical methods is imperative. While observational analysis provides valuable initial insights, it does not fully

account for the intrinsic and nuanced variability within the dataset. The use of statistical tests provides a scientific methodology

to determine the likelihood that observed effects genuinely exist and are not merely coincidental artefacts. This study aims to245

determine the significance of observed performance differences and ensure the reliability of the findings through appropriate

statistical analysis. A sequence of statistical analysis is employed to gain an understanding of the dataset and the study’s

findings. First the normality of the ’difference’ values across each event category is assessed to determine the appropriate

statistical tests. Then, significance tests are conducted to evaluate whether the performance differences for each category are

significantly different from zero. Finally, optimal sample sizes are considered through power analysis to ensure the reliability250

of findings. The following sections outline the rationale behind each statistical method.

Normality tests are conducted to determine the distribution characteristics of the data, as this information is crucial for

selecting appropriate statistical tests. For the normality assessment, the selection of suitable statistical tests for the analysis

depends on the distribution characteristics of the ’Difference’ values across each event category. The Shapiro-Wilk test (Shapiro

and Wilk (1965)), known for its efficacy in assessing deviations from normality, was employed to test the null hypothesis that255

these values originate from a normally distributed population. It is important to note that this test can be sensitive to sample

size, especially for very small or very large samples, with optimal performance for sample sizes around 20-50, its application

requires careful consideration. A p-value threshold of 0.05 was used. Results above this threshold do not definitively prove

normality but rather as an absence of sufficient evidence to the contrary, justifying a working assumption of normality.

Significance test are carried out to determine whether the observed performance differences for each event category are sta-260

tistically significant or merely due to chance. Significance tests were conducted to assess whether the performance differences

for each event category were significantly different from zero. The choice of significance test was contingent upon the results

of the normality assessment. Depending on the normality of the data in each category, as determined by the Shapiro-Wilk test,

either parametric one-sample t-tests (Student (1908)), for normally distributed data, or non-parametric Wilcoxon signed-rank

tests were utilised. The latter being particularly valuable for non-normally distributed data (Wilcoxon (1945)), offering an alter-265

native to parametric tests. This test has been previously employed in studies regarding condition monitoring and fault detection

in wind turbines by Dao (2022).

Sample size considerations are given to ensure that the study has sufficient statistical power to detect meaningful effects

and to provide reliable results. The optimal sample size depends on a desired level of statistical power, the magnitude of the

effect size to be detected and the variability within the dataset. A power analysis (Cohen (1988)) was conducted to ascertain270

the minimum sample size necessary to detect a statistically significant effect with a specified confidence level. The desired

power was set at 0.8, representing an 80% probability of correctly rejecting the null hypothesis when it indeed is false. The

alpha, or significance level, was set to 0.05 for the alpha level, indicating a 5% risk of erroneously rejecting the null hypothesis

when it is true. Particular attention was paid to categories with limited sample sizes (fewer than 20 data points), as these can
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reduce the power of statistical tests and increase the risk of errors. The effect size, indicative of the magnitude of the difference275

aimed to detect, was estimated from the current data set using Cohen’s d as a metric, alongside measures of variability such

as the standard deviation. It is important to acknowledge that using sample data as an estimate of the effect size and sample

standard deviation as an estimate of the true population standard deviation is an approximation. The actual sample size required

may vary considerably depending on the true effect size and population variability, which are unknown a priori. Therefore, the

results of the power analysis should be interpreted as an initial guide, subject to refinement as more data becomes available.280

3 Results and Discussion

3.1 The effects of software updates

Figure 1 and 2 illustrate the evolution of the pitch angle and normalised generator speed, respectively, as functions of power

output for the initial decade of a turbine’s operation, segmented into annual intervals. The analysis indicates recognisable

alterations in the operational trajectory of both parameters within the first half of the observed period. These changes appear285

to coincide with the rollout of turbine manufacturer software updates while the turbines were under an OEM service contract.

Each update likely altered both the pitch versus power and generator speed versus power curves relationships. In subsequent

years, without any software updates, the curves stabilised, showing no significant deviations. This supports the hypothesis that

these updates were the causal factor in the observed shifts.
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Beyond the shift itself, these alterations suggest specific impacts. In the higher power range, where the generator speed290

is constant and the turbine’s control solely relies on the pitch, a progressive annual decrease in pitch angle of up to 2o was

observed at power levels approaching the upper threshold of the nominal capacity, until year five of operation.

In the lower normalised power range, despite the pitch angle remaining constant and unaltered, the generator exhibited

progressively higher relative power outputs at specific normalised generator speeds over the initial five years. This increase is

noteworthy, with relative power gains reaching up to 10% of nominal capacity at generator speeds close to the upper limit of295

the nominal operating range.

As the turbine power increases, the point of maximum thrust, known as the ’knee’ of the power curve, is reached around the

rated power. Here, the turbine blades initiate their pitching, thereby relieving loads on the blades. These findings suggest that

the change in the relation between pitch and generator speed as a function of power is not as a consequence of degradation

of the rotor performance, but more likely due to software updates resulting in more aggressive pitch control, increasing blade300

loading as they pitched in more frequently. This shift in control strategy boosted power output, albeit potentially at the expense

of reduced blade and turbine component longevity. Despite these changes, an Original Equipment Manufacturer (OEM) may

describe this adjustment as ’load neutral’ or within the turbine’s certified design tolerances.

These observations raise questions as to whether such ’uprates’ in power are strategic decisions, balancing immediate gains

against long-term component durability. One may also consider whether such business-impacting decisions were made solely305

by the supplier, or collaboratively with the owner. Consideration must be given to economic aspects, weighing immediate

benefits against component lifespan, particularly in light of potentially less favourable future energy tariffs.

Such software updates introduce an additional variable into the complex ’haystack’ of factors or uncertainties that can

obscure the relatively smaller performance shifts caused by blade erosion. Accurate documenting and logging of these updates,

along with their tangible effects on turbine control, is imperative to be factored into assessments. Changes in parameters can310

significantly alter conclusions regarding the turbine’s response and are critical in the inclusion in holistic long term performance

evaluations.

3.2 Seasonal trend decomposition

The analysis of the time series data for the twelve year period of analysis revealed the distinct trend components influencing

the generator speed versus power or TPI characteristics for the twelve wind turbines. Figure 3 exemplifies a single turbine’s315

decomposition. To reiterate, as detailed earlier in Section 2.5, a TPI decrease reflects improved turbine performance.

The Long Term Trend subplot highlights the fundamental performance trend within the data. While it experienced variations

over the analysed time period, the trend remained stable considering its variation between the start and end dates of the time

frame. This trend and its correlation with the lifecycle events of the twelve turbines shall be further discussed in Section 3.4.

The Seasonal Trend definitively confirms expected cyclic patterns. Notably, seasonality in turbine performance emerges320

distinctly with peaks during summer and troughs in winter. A deeper exploration of this trend is undertaken in Section 3.3.

The third subplot of Figure 3 illustrates the Short Term Remaining (STR). This represents the residual fluctuations after

accounting for the long-term and seasonal trends, capturing unexpected events or anomalies beyond the other trends.
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Lastly, the combined subplot integrates the effects of Long Term Trend, Seasonal Trend and STR providing a holistic

representation of the raw signal over time.325

3.3 Seasonal influence

Figure 4 depicts the superimposed seasonal trend signals for all twelve turbines. Despite the inherent noise in the data, clear

seasonal patterns emerge, characterised by pronounced peaks indicating reduced performance in the summer months and

noticeable troughs signifying improved performance during the winter. This counterintuitive direction stemming from the

turbine specific approach used in the TPI calculation.330

The analysis encompassed a dataset spanning several years, focusing on the summer peaks, considering May to September

time periods and winter troughs, spanning December to Mid March. Extreme performance values were extracted from these

seasons and their distribution was presented using a violin plot (Bechtold (2016); Bechtold et al. (2021)) in Figure 5 to visualise

the distribution of these extreme values across the two seasons. This figure highlights the contrasting oscillatory performance

of the turbines across these seasons.335
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Figure 4. Seasonal Performance Patterns: Summarised Seasonal Trends Across Twelve Turbines.

However, it is noteworthy that the peaks and troughs are inconsistent between the twelve turbines, despite their shared

operational environment. This inconsistency may arise from the underlying method of deriving the TPI where a ring buffer,

accumulates data before generating the signal. Consequently, such buffering introduces a downstream lag in the TPI signal that

depends on, non weather dependent, factors specific to each turbine, such as outages or repairs. The extent of this lag generated

by this method is reflected in the varying dates of summer peaks or winter troughs for individual turbines within a given season.340

While the ring buffer runs dynamically, individual tuning of buffer parameters for each turbine may offer an opportunity for

method refinement (discussed in Section 3.5).

Additionally, Figure 4 suggests muted and diverse summer and winter extremes for all turbines post-2020. This could

potentially be caused by greater weather instability in recent years or cumulative ring buffer effects. These factors may also

explain the spread of extreme values observed in Figure 5.345

This approach using the TPI demonstrates that distinct seasonal variations in an individual turbine performance can be

detected without direct wind speed measurements, or comparing the single turbine to a group or using combined data from

multiple sources. Essentially, an individual turbine can distinctly reveal performance fluctuations driven by seasonal dynamics.
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Figure 5. Seasonal Performance Extremes for Twelve Turbines: A Comparative Analysis of Summer and Winter Variability. Lower values

indicate enhanced performance, while higher values denote reduced efficiency.

However, the evident variance in seasonal performance peaks and troughs across the twelve turbines, also underscore the

challenges tied to this approach. Notably, the winter troughs signify a more enhanced or improved performance compared to350

the summer peaks. With a sharper understanding of the dates of seasonal variations, one may strategically schedule outages

or operations and maintenance, maximising energy production. Furthermore, anticipating periods of high and low generation,

strategies can be formulated for energy storage, distribution and consumption, ensuring grid stability and efficient utilisation.

In the context of climate change, broader performance trends observed across multiple turbines, unrelated to specific events,

may be indicative of changing weather patterns affecting turbine performance. This common environmental impact may be355

studied to further understand how the performance of turbines is affected by weather. Time series decomposition tools can

help differentiate event-driven changes from seasonal, potentially climate-related trends. Future research could include data

normalisation to enhance this distinction. Given the shared climatic conditions, normalising the performance of a turbine

against the daily average performance of all turbines could isolate the effects of events from those caused by broader weather

influences, offering a purer perspective on the direct impacts of weather on turbine performance.360
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3.4 Long term trend

Depicted in Figure 6 are the superimposed long term trend signals of all twelve turbines. Three broad yet distinct clusters

among the turbine performances emerge. Turbines sharing similar trajectories of decrease, increase, or variation across the

long-term trend component were thus grouped, suggesting possible shared drivers.
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Figure 6. Grouped Long-Term Trends in Turbine Performance: Analysis of Shared Trajectories Among Twelve Turbines.

– Group One (light blue): Early Performance Improvement - Turbines 2, 4, 7 and 12 predominantly exhibit a downward365

trajectory in TPI, indicating an improvement in performances. This improvement is particularly apparent up to approx-

imately 2017. The early improvement may potentially be associated with the iterative software updates rolled out to

these turbines, as discussed in Section 3.1. Post 2017 these turbines performance seems to stabilise and become more

consistent, likely due to the end of service contract with the OEM and cessation of further software updates.

– Group Two (dark blue): Late Performance Decline - Turbines 3, 5 and 9 show a similar improvement in performance370

during earlier years to Group One. However, they subsequently experience a drop with a progression of time. An excep-

tion being Turbine 5, that exhibits a later stage improvement and also displays slight performance undulations through

its operational lifespan, in a pattern similar to those seen for Group 3.
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– Group Three (red): Synchronised Performance Variability - Turbines 1, 6, 8, 10 and 11, exhibit predominantly synchro-

nised performance fluctuations, albeit with a lag between them, that may be ascribed to the ring buffer affects. This375

affect was seen earlier in the seasonal trend for the turbines in Figure 4, in Section 3.3. In the cluster, Turbine 11 notably

deviates from the common longer term trend path, exhibiting characteristics of Group One, especially towards the later

progression of time. Despite this, most turbines in this group show an improvement in trend in the earlier years relative

to Groups One and Two, that may be attributable to software updates. It should be noted, however, that updates for cer-

tain turbines may have been applied at differing intervals. In later sections, this shared performance pattern is explored380

more thoroughly, aiming to correlate it with specific events in the timelines of these turbines. If common events are not

identified, it may be plausible that these commonalities are attributed to long term climatic changes, though this would

need to be reconciled with Group One’s lack of similar effects.

As illustrated in the long-term trend graph of Figure 6, it is evident that the aggregation method and data handling techniques

can greatly influence the interpretation of performance trends. The application of a ring buffer, consistent across all turbines385

in the analysis, in data processing, while not explicitly shown in the graph, underpins the observed performance trends by

controlling the flow and smoothing of the input data. A smaller buffer size provides a detailed, immediate view, ideal for

detecting short-term variations and immediate operational issues. On the other hand, a larger buffer size offers a comprehensive

overview, highlighting long-term trends and gradual changes but potentially missing brief anomalies. Future studies could

involve analysing the effects of different buffer sizes to assess their impact on the long-term performance trajectories, providing390

insights into the optimal data processing parameters for trend analysis. This would refine the analytical model, potentially

offering a more tailored approach to understanding each turbine’s unique performance characteristics.

3.5 Influence of erosion, blade enhancements and Operations and Maintenance (O&M) events

This section aims to uncover correlations between specific maintenance activities, blade modifications and the observed long-

term TPI trends of individual turbines. Efforts taken to compile a comprehensive record of maintenance activities are outlined395

Section 2.1. Compiled field maintenance reports and financial accounting data sourced from SAP were amalgamated and

overlaid visually on the long-term trend component in Figure 7 for Turbine 1.

To reduce subjectivity in this assessment and observational bias of visual correlations an automated approach was used to

quantify the influence of various event categories on the TPI long-term trend gradient. The gradient was calculated between

two points: the first two weeks prior to an event, accounting for repair time - and another three weeks after the event to capture400

potential trend deviations. Varying the temporal buffers around the events resulted in analogous outcomes for the analysis. It is

important to note that the analysis presented here is based solely on the field maintenance reports. The accounting SAP data,

despite being a potential source of event information, was not utilised in this analysis due to the incorrect event dates associated

with the works. This limitation caused by the temporal discrepancies in the SAP data, is significant as it results in a partial view

of the event data, affecting the comprehensiveness and accuracy of the analysis. Figure 8 presents the results as violin plots,405

visually summarising the performance impact distribution for each event category.
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Figure 7. Overlay of Maintenance Activities and Blade Modifications on Long-Term TPI Trends.

The plot provides an overview of the performance impact distribution for each event category, deliberately focused on densest

region, while retaining the rare (three) outliers in the underlying data. The direction towards the positive signifies a reduction

in turbine performance. The white dot represents the median of the distribution, the bar in the centre the interquartile range and

the whiskers the remaining distribution. Each shape provides the distribution of individual performance impact events for the410

category. The bulge of the shape at different gradients represents the density of event data points at that value. Essentially, the

spread of data within a category is easily identified by its shape. Additionally, categories of events that have the most variable

effects on turbine performance and those that tend to have consistently positive or negative impacts can be identified.

Key observations and limitations from this analysis include:

– Controller PLC parameter or Software Updates (Latest): Numerous software updates were applied to all twelve turbines415

over the first five years of operation. The plot represents the impact of only the last software update applied in the last

quarter of 2015. The category shows a relatively narrow distribution that is negatively skewed indicating that the updates

often improved turbine performance. The effects were first observed by the change in turbine operational trajectory in

Figure 1 and 2. These performance changes align with observations of the Long Term Trend of the turbines in Section
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Figure 8. Event Impact on TPI Trend: Violin plots summarising the performance impacts post-events, derived from gradients calculated

around event timings based on field reports, excluding SAP data due to date discrepancies.
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3.4 and Figure 6, although, in the earlier figure, with a wider overview, a somewhat continuous improvement over the420

first five years of the turbine life, was observed for the numerous iterative updates.

– Blade Repairs (all): Interpreting the impact of blade repairs, it is important to note, that new blades may not always

precisely match the aerodynamicist’s intended profile due to manufacturing variances - tolerances for which are treated

as intellectual property by manufacturers - which subtly affecting baseline performance (Ernst et al. (2014); Loeven

and Bijl (2008)). Regarding uptower repairs, a wider distribution with a slight positive performance bias suggests that425

such repairs can sometimes lead to a decrease in turbine performance. However, the variance is wide, indicating that

the impact can be inconsistent. This is a curious and unexpected result. However, digging deeper one must acknowledge

that not all blade repairs have a positive influence on the blade aerodynamics. Blade repairs often aim to stop or prevent

progression of structural damage to a blade leading edge. The blade leading edge is sanded and filler applied after which

leading edge protection (LEP) may be applied. The task is labour-intensive requiring trained, skilled personnel, often430

working under sub-optimal conditions, challenges that are amplified in offshore uptower environments. These repairs

often result in the blade leading edge no longer matching its original and intended aerodynamic profile, resulting in a

reduction in efficiency (Katnam et al. (2015)). In the case of the underlying dataset represented here, all blade repairs

including those that are known to be defective and thus detrimental to turbine performance are included. It is therefore

prudent to break down the category of blade repairs into those that result in a cleaner blade profile and those that435

are likely to have degraded the turbine performance. Additionally, it is crucial to consider the seasonal timing of blade

repairs, predominantly conducted during the summer months, which may inadvertently introduce a bias into the analysis.

This seasonal scheduling of maintenance activities, driven by operational and logistical considerations, especially in an

offshore environment, could skew the observed performance trends, creating an uncorrected seasonal bias that influences

the interpretation of the TPI’s long-term performance trajectory.440

– Blade Inspections: Although inspections may be a precursor to repairs, this category comprises of events or data points

when the turbine blades were simply inspected and no works were conducted. The category can serve as somewhat of a

control, since no actual physical changes were made to the turbine blade. The very wide distribution with a slight nega-

tive skew suggests that blade inspections can sometimes lead to improved performance, but not consistently. The degree

of slight negative skew may be interpreted as perhaps the uncertainty of the method. This is since there should in fact445

be no expected change in turbine performance and is, of course, not reflecting reality. However, it is worth speculating

that during some of these inspections, the work instructions may have encompassed a pitch re-calibration, potentially

influencing these outcomes. While this remains speculative, such re-calibrations, if they occur, could inadvertently im-

pact performance, thereby slightly altering the expected ’no change’ scenario post-inspection. Similar to blade repairs,

the timing of these inspections, often aligned with the summer months for operational convenience, introduces an uncor-450

rected seasonal bias into the analysis.

– Blade Enhancements: A number of turbines in the wind farm were furnished with third party Gurney flaps and vortex

generators as an experiment to understand their impact on the turbine performance. Three of these turbines were in
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population under investigation. The efficacy of these enhancements, hinges on their positional design tolerance and

consequently precise application, which is notably more challenging in uptower installations than in controlled factory455

conditions, potentially impacting the observed performance outcomes. These blade enhancements were not applied in

collaboration of the OEM and thus there was no associated controller changes made - software updates being under

the exclusive mandate of the OEM and integral to the turbine’s certification. It was noted that the wind anemometer

of these turbines showed a step change in measurement of wind speed compared to their neighbours in the same row,

which would have a direct impact on the turbine’s operational setpoint, considering its control utilises the anemometer460

for its operation. The upshot of these changes to the aerodynamic profile of the blade is that the distribution is positively

skewed with a relatively narrow distribution, indicating that blade enhancements often lead to a decrease in performance

for the three turbines. Although, one should consider that this is on the basis of a very small population size.

– Gearbox, Generator replacement: These categories both show a slight improvement in turbine performance as would

be expected when a faulty major component such as these is replaced. Although, since these categories each have a465

population of one. The high uncertainty should be considered while making conclusions.

– Generator Bearing Replaced, Generator Repaired, Pitch Hydraulic Pump Replaced: These categories show, to varying

degrees a reduction in turbine performance. The exclusion of some additional generator bearing faults, as noted in the

accounting SAP data but not time-matched with or entirely absent in the repair reports, highlights a limitation of the

analysis.470

– Pitch System Issue: This category shows a neutral impact. Again, the high uncertainty due to it being a population of

one should be considered while making conclusions. However, again, an important consideration in the interpretation

of these results is the discrepancy in the recording of events between different data sources. Notably, numerous pitch

ram replacements were identified in the accounting SAP data, which were not captured in the field maintenance reports.

This discrepancy is significant, as the replacement of a critical component such as the pitch ram could have a substantial475

impact on the turbine’s performance, potentially affecting its ability to correctly adjust blade pitch in response to wind

conditions. The absence of these events in the repair reports introduces a limitation in the analysis, as the influence of

pitch ram replacements on turbine performance remains unaccounted for.

Additionally, one may consider the mechanical integration of the blade root end, pitch bearing and hub. Over time

the blade root flange surface could deviate from design specifications such as its flatness and perpendicularity. Such480

deviations could potentially compromise the turbine’s ability to accurately adjust the blade pitch, further influencing

performance outcomes.

– Gearbox Oil Change, Hydraulic Oil Change: These are both maintenance categories that would not be expected to have

an impact on the turbine’s performance. This expected result is seen in case of the former, Gearbox oil change, where

the median value is very close to zero, however, with a wide variance but normal spread in results.485
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Hydraulic Oil Change shows a reduction in performance but again with a wide variance but normal spread. Hypothe-

sising, the thoroughness of the employed maintenance procedures, might influence outcomes. Particularly regarding the

degassing of hydraulic fluid, failing which can lead to a significant loss of performance. However, this connection is

speculative and also highlights the need for further investigation and refinement of the data and method employed by the

study.490

The dataset for Blade Repair contained all blade repairs, including those that were known to have a detrimental impact on

the turbine performance. Here, in Figure 9, this repair is split into two populations, where one is known to be defective LEP

and the other to be the remaining LEP application and repairs. It should be noted that the latter population is still likely to

contain faulty applications of LEP and that this analysis does not account for the uncorrected seasonal bias, discussed earlier

regarding blade repairs.495

Figure 9. Dichotomy in Blade Repair Outcomes: Evaluating Performance Impact of Defective LEP vs. Repairs and Non-Defective LEP

Applications. Note: Includes potential unaccounted faulty LEP in the latter category without correcting for seasonal biases.

– LEP - Defective: From the dataset of Blade Repairs (all), those of a known LEP repair to have had a detrimental effect on

the blade leading edge were extracted. Blade repair technicians reported that this LEP left the blade in a tacky and sticky
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condition gathering contaminants within the first few days and weeks of application, with the strong recommendation to

cease all further application of the product. The results of the impact on performance of the LEP show a strongly positive

skew indicating a detrimental impact on the turbine performance. Note that a single outlier at 279.5, while retained in500

the data, has been omitted from the plots focus.

– LEP and Blade Repairs (Remaining): This is the remainder of the the complete Blade Repair dataset after removal of

the known detrimental or defective LEP. A slight negative bias suggests that blade repairs can sometimes lead to an

improvement in turbine performance. However, the variance is wide, indicating that the impact can be inconsistent. This

inconsistency may be attributed to the various practical challenges associated with blade repairs and LEP application,505

discussed earlier. These earlier described factors can influence the aerodynamic efficiency of the blade post-repair, once

it deviates from its intended profile, potentially leading to performance that may be worse than certain levels of erosion.

From Figure 8 one can observe which event categories tend to have a stronger or weaker impact on turbine performance. A

concentration of event data points in a further away from zero, such as in the case of the positive gradient of blade enhancements

indicates a greater reduction in turbine performance.510

Although corrections were made for atmospheric conditions, including air density, temperature and humidity, the analysis

does not consider the variability of other atmospheric conditions and factors such as turbulence, wind shear or veer. These

factors, despite being excluded, are crucial for a comprehensive understanding as they can significantly influence the power

output of wind turbines (Wharton and Lundquist (2012); Murphy et al. (2019); St Martin et al. (2016); Kim et al. (2021)).

Variations in these conditions can lead to discrepancies between actual and expected performance, potentially confounding515

the analysis if not correctly factored in. For instance, the wind profile’s alignment with the rotor plane directly influences

the efficiency of energy capture (Wan et al. (2015)). Yaw misalignment, can also lead to performance degradation. A yaw

offset can cause uneven loading on the turbine blades, increased mechanical stress and reduced energy capture efficiency

(van Dijk et al. (2016)). This misalignment may be caused maintenance issues or sensor inaccuracies and can result in a

sustained loss of performance. Moreover, the use of nacelle direction as a surrogate for wind direction introduces additional520

complexity. This complexity arises from both the potential for dynamic yaw misalignment, influenced by the turbine’s control

algorithm hysteresis and the possibility of static yaw misalignment, which could result in a constant offset in wind direction

measurements.

The integrity of a turbine’s foundational and structural elements, such as its blades and tower, are paramount to its perfor-

mance. Over time, shifts or deterioration in these structures can subtly influence performance metrics, potentially skewing data525

analysis if not accounted for. Further, it is important to acknowledge the role of dynamic forces and environmental conditions

on turbine blade performance. Centrifugal force, wind loading and the thermal expansion of blades, depending on environmen-

tal conditions, can also influence the angle of attack (AoA), twist and prebend of blade profiles, consequently altering the blade

polars (Loeven and Bijl (2008)). Additionally, the health of mechanical components like gearboxes and drivetrain is crucial;

wear and tear on these components can lead to performance degradation that maintenance records may not immediately reflect.530

Sensor accuracy and calibration are also critical factors. The drift in precision and calibration of instruments like anemometers
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and power meters can significantly impact the reliability of the data collected (Pindado et al. (2012)). Considering these as-

pects, it is evident that there may be a myriad of other influential events and factors that have not been captured in the analysis,

which could affect the results. The omission of such details underscores the complexity of turbine performance analysis and

the necessity for comprehensive data integration and meticulous scrutiny to inform accurate interpretations.535

The analysis of turbine performance was further complicated by the imprecise temporal recording of O&M events and the

notable absence of crucial event records. The investigation was hindered by the discrepancies between the financial accounting

SAP database and the repair reports; the SAP database logged several critical events regarding major components, such as pitch

ram replacements, yaw faults, generator bearing faults (CMS Comms) and a wind anemometer replacement which were absent

in the repair documentation. This discrepancy likely arose because the data foundation is SAP accounting reports, where dates540

often correspond to billing rather than the actual repair dates. Consequently, there are likely other significant O&M events

affecting the twelve turbines that were crucial to the analysis but were not recorded. This gap between event occurrence

and its documentation lead to inconclusive results, as the analysis may have have overlooked key incidents that substantially

impacted turbine performance, skewing the understanding of cause-and-effect relationships within the operational data and

having tangible implications on the accuracy of interpretations of trends seen in Figure 8.545

However, the inherent date lag, together with the fixed buffer size designated for data smoothing, introduces an element of

uncertainty in this alignment. The buffer size, set to process 1000 data points at a time, influences the temporal resolution of

the analysis. Especially, given the variability in the lag over time and between turbines, which can span up to several weeks or

even months, identifying specific O&M events becomes challenging. For instance, if a turbine exhibits a sudden change in its

performance, attributing this decline to a specific event becomes ambiguous when there’s a potential delay of of an unknown550

period in the signal. The buffer’s role in data processing could inadvertently synchronise disparate events or mask the true

temporal sequence, thereby complicating the interpretation of causality within the operational timeline of the turbines. Such

delays can lead to misinterpretations, where an O&M activity may be mistakenly attributed with a performance change that

actually occurred due to a completely different event, or combination of sequentially occurring events. This is particularly

evident in the noise seen in Figure 7, where the proximity of numerous events potentially distorts the clarity of cause and555

effect, diminishing the reliability of conclusions drawn from the data.

A salient consequence of the date lag, as elaborated in the Section 3.3, is its potential impact on the accuracy and reliability

of the long performance trend signal. When assessing the TPI over an extended period, it was attempted to align these observed

trends with specific operational and maintenance (O&M) events to derive insights into changes turbine performance.

In light of the errors introduced by the variable lag, it is imperative to account for its influence when interpreting the long-560

term trend data for an individual turbine and which becomes more challenging when comparing data across different turbines.

Potential solutions might involve refining the data collection methodology, employing advanced analytical techniques to correct

for the lag, or using supplementary data sources to corroborate the observed trends.

Moreover, for wind farm owners and operators, the lack of temporal precision of conclusions has tangible implications.

Strategic decisions, such as scheduling maintenance, outages, resource allocation, or forecasting of energy outputs, rely heavily565
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on the accuracy of such long-term trend data. Inaccuracies or uncertainties can lead to inefficiencies, increased operational costs

and missed opportunities for performance optimisation.

Overcoming these challenges may allow further work on comparative analysis, where one can also conduct a comparative

analysis between turbines. In cases such as when a specific event leads to a performance drop in one turbine but not in another.

In such examples it would be compelling to investigate the underlying reasons. The reasons may vary from difference in570

maintenance history, age, to phenomenon such as difference in software updates.

A further avenue of investigation may be temporal analysis. Analysing the data over time may provide insights into whether

there are specific periods where the impact on turbine performance is more pronounced. This may be achieved by plotting the

gradient over time for each category of event.

3.6 Statistical analysis575

3.6.1 Normality assessment

The normality tests were conducted using the ‘swtest‘ function available in MATLAB, as implemented by BenSaïda (2024).

The Shapiro-Wilk test outcomes, shown in see Table 1, indicate varied distribution patterns across categories. Notably, cat-

egories such as blade enhancements and generator repaired did not show sufficient evidence of non-normality. In contrast,

categories like blade repairs and generator bearing replaced suggest non-normal distributions. Categories yielding inconclusive580

results, marked by NaN p-values, highlight the need for cautious result interpretation due to insufficient data points. These

findings guide subsequent analyses: data that does not show sufficient evidence of non-normality is amenable to parametric

tests, while non-normal data requires non-parametric methods.

3.6.2 Significance tests

Significance test results are outlined in Table 2. Notably, the category of Blade Enhancements showed a statistically signif-585

icant difference from zero, indicating that events in this category have a measurable impact on turbine performance. It is

worth considering the potential impact of experiment-wise error – the increased likelihood of false positives when conducting

multiple tests. A conservative approach, such as a Bonferroni correction, could be explored to address this, which would sig-

nificantly lower the threshold for statistical significance. While blade enhancements do show significant changes, this is only

if experiment-wise error is not corrected for. Essentially, without correcting for multiple comparisons, the risk of Type I errors590

(false positives) increases, potentially leading to overstating the significance of some findings. This suggests the need for a

larger dataset to reinforce and enhance the reliability the findings - especially for categories where sample sizes were limited.

However, the employed conservative approach is appropriate given the study’s assumptions and the exploratory nature of this

analysis.

Other categories, such as Software Update - Latest and Blade Repairs, did not exhibit statistically significant differences,595

suggesting that events in these categories may not have a distinguishable impact on performance. In the case of software
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Category Description p-value Test Result

Controller PLC parameter or Software Update - Latest 0.0063 Fail

Blade Repairs 1.23× 10−7 Fail

Blade Enhancements 0.7122 Pass

Gearbox Replaced NaN Inconclusive

Generator Replaced NaN Inconclusive

Generator Bearing Replaced 3.00× 10−8 Fail

Generator Repaired 0.4156 Pass

Pitch System Issue NaN Inconclusive

Pitch Hydraulic Pump Replaced 0.5850 Pass

Blades Inspection 1.32× 10−9 Fail

Gearbox Oil Change 0.0467 Fail

Hydraulic Oil Change 0.9054 Pass

LEP and Blade Repairs 0.2332 Pass

LEP - Defective 0.0023 Fail
Table 1. Results of Shapiro-Wilk Normality Test

Category Description p-value Significance

Controller PLC parameter or Software Update - Latest 0.380 No

Blade Repairs 0.530 No

Blade Enhancements 0.046 Yes

Generator Bearing Replaced 0.658 No

Generator Repaired 0.777 No

Pitch Hydraulic Pump Replaced 0.537 No

Blades Inspection 0.062 No

Gearbox Oil Change 0.787 No

Hydraulic Oil Change 0.353 No

LEP and Blade Repairs 0.493 No

LEP - Defective 0.063 No
Table 2. Results of Significance Tests for Performance Differences
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updates it must be acknowledged that only the approximate date of the last update was logged, which likely influenced the

outcome.

It is important to acknowledge the limitations inherent in these tests. Certain categories like gearbox replaced and generator

replaced yielded inconclusive results due to the insufficiency of data, highlighting the necessity for cautious interpretation600

and potentially more extensive data collection for these specific categories. Additionally, this analysis operates under the as-

sumption that events within each category are mutually exclusive for simplicity. However, this assumption does not accurately

represent the complex interactions or compounded effects of multiple events. Moreover, the impact of external factors, pre-

viously discussed, such as weather conditions or the ageing of turbine components, although not captured in this data, likely

significantly influence turbine performance.605

3.6.3 Sample size considerations

Required sample sizes in Table 3 highlight the disparity across event categories. Notably, blade enhancements has a small

required sample size due to a larger, easily detected effect, whereas gearbox oil change requires a substantially larger sample

size, pointing to either negligible effects or intrinsic high variability within this category, necessitating a large sample for

detecting a significant effect. For categories with an ’NaN’ result, such as generator replaced, it suggests that the sample size610

calculation was not feasible. Indicating impracticalities in sample size calculation due to no sample standard deviation.

Category Req. Sample Size Req. Sample Size (Log Scale)

Controller PLC parameter - Latest 13456 104

Blade Enhancements 2 100

Gearbox Replaced 0 0

Generator Replaced NaN -

Generator Repaired 820 103

Pitch System Issue NaN -

Pitch Hydraulic Pump Replaced 87 102

Gearbox Oil Change 1206830 106

Hydraulic Oil Change 119 102

LEP and Blade Repairs 306 103

LEP - Defective 29 101

Table 3. Required Sample Size for Statistical Power with Logarithmic Scale Comparison

These sample size estimates serve as valuable guidelines, the sample size estimates should be anticipated as conservative

orders of magnitude, indicating the quantity of data required to confidently detect significant effects in each category. As-

sumptions have been made such as normality for all distributions in the power study whilst there is evidence to the contrary.

Collecting data of these sizes shall enhance the power of the statistical tests and bolster the reliability of the results. How-615
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ever, practical considerations, such as logistical feasibility and resource availability, must also be factored into any decisions

regarding further data collection efforts.

4 Conclusions

This study aimed to quantify energy losses in multi-megawatt wind turbines using SCADA data, focusing on the effects

of leading edge roughness. However, significant uncertainties in the data posed major challenges to accurately quantifying620

aerodynamic losses, hindering the study’s original goal. Despite this, the study successfully highlighted the complexity involved

in such analyses and also brought to light the significant challenges in accurately quantifying the aerodynamic efficiency

reductions and subsequent AEP losses caused by blade leading edge roughness. A paramount challenge revealed is the accurate

quantification of these losses, hindered by the dynamic nature of wind and compounded by operational constraints such as

limited data availability, especially in documenting operations & maintenance events and the quality of the available data.625

In response, a methodological framework was developed, integrating SCADA data with detailed O&M records to assess the

impact of blade aerodynamic modifications. This approach aims to isolate the effects of these modifications amidst a multitude

of factors influencing turbine performance. A key contribution of this work is the development of a controller-informed Turbine

Performance Integral (TPI) method for the investigated turbine. Furthermore, STL is employed to further isolate long-term and

trends and seasonal variations in performance.630

The proposed methodology focuses on the isolating the individual contributions of various factors to performance deviations.

Notably, the efficacy of the TPI method is demonstrated by its ability to detect distinct seasonal variations in individual turbine

performance without relying on direct wind speed measurements, comparison to other turbines, or the use of combined data

sources.

The study confronted significant hurdles in accessing comprehensive, high-quality data, a persistent challenge in wind tur-635

bine performance analysis. OEM’s often restrict data access to safeguard intellectual property, thus limiting in-depth analytical

possibilities. Moreover, the opaque nature of turbine control systems further complicates the understanding of turbine behaviour

under diverse conditions. Additionally, the investigation uncovered distinct seasonal trends with performance reductions dur-

ing warmer months and improvements in colder months, demonstrated through overlaid seasonal trend signals. This trend,

confirmed by the overlaid seasonal trend signals of all twelve turbines, validates the viability of the suggested TPI methodolog-640

ical framework. The clear emergence of these seasonal patterns, despite the inherent noise in the data, underscores the crucial

influence of atmospheric conditions on turbine efficiency and emphasises the need for adaptive maintenance strategies

Software updates, particularly in the initial operational phase of the turbine, were found to be the very likely reason to sig-

nificantly influence the performance, enhancing power output but also raising concerns about their long-term impact on turbine

component’s operational lifespan. The study also determined that blade repairs and enhancements have variable impacts on645

turbine performance. Completing repairs closer to the original aerodynamic design typically improved performance, whereas

deviations, such as those by faulty LEP repairs or introduction of third party blade enhancements, without appropriate con-
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troller adjustments led to a reduced efficiency. Thus highlighting the importance of maintaining aerodynamic integrity in blade

maintenance procedures.

Rigorous statistical analysis helped distinguish impacts attributable to specific maintenance activities, such as blade en-650

hancements, on turbine performance. These findings emphasise the necessity of a substantial volume of events to establish

confidence in results, highlighting the importance of statistical validation in performance analysis. Correlating O&M events

with performance data trends revealed discernible effects on turbine performance, yet challenges in establishing precise cause-

effect relationships arose due to temporal lags, seasonal biases of occurrence of certain events categories and data recording

inaccuracies, calling for careful data interpretation. The study thus stresses the critical need for maintaining accurate and655

comprehensive records.

The diverse long-term performance trends identified among different turbine groups suggest responses to operational, main-

tenance and environmental factors or, alternatively, may be attributed to data collection inaccuracies. This necessities a cus-

tomised analytical approach for each turbine or group, tailored to their specific operational context. Future research should

emphasise enhanced tracking of O&M events, refinement of data analysis methods, addressing data gaps and advancing analyt-660

ical techniques. This may include application of machine learning algorithms for more nuanced insights as well a longitudinal

studies which are crucial for understanding the effects of ageing and environmental changes on turbine performance. Broader

data access negotiations with OEMs, exploration of turbine control systems, integration of comprehensive environmental data

and an economic analysis of maintenance strategies are also vital for advancing wind turbine performance optimisation.
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