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Abstract. This paper investigates fault detection in offshore wind permanent magnet synchronous generators (PMSG) for

demagnetization and eccentricity faults (both static and dynamic) at various severity levels. The study utilizes a high-speed

PMSG model, on the NREL 5-MW reference offshore wind turbine, and at the rated wind speed, to simulate healthy and faulty

conditions. An unsupervised convolutional autoencoder (CAE) model, trained on simulated signals from the generator in its

healthy state, serves for anomaly detection. The main aim of the paper is to evaluate the possibility of fault detection by means5

of high-resolution electrical and electromagnetic signals, given that the typically low-resolution standard measurements used

in SCADA systems of wind turbines often impede the early detection of incipient failures. Signals analyzed include three-

phase currents, induced shaft voltage, electromagnetic torque, and magnetic flux (airgap and stray) from different directions

and positions. The performance of CAE models is compared across time and frequency domains. Results show that in the time

domain, stator three-phase currents effectively detect faults. In the frequency domain, stray flux measurements, positioned at10

the top, bottom, and sides of outside the stator housing, demonstrate superior performance in fault detection and sensitivity

to fault severity levels. Particularly, radial components of stray flux can successfully distinguish between eccentricity and

demagnetization.

1 Introduction

Permanent magnet synchronous generators (PMSGs) have been recently popular in offshore wind applications driven by ad-15

vancements in permanent magnet materials and high-efficiency power electronics. Figure 1, sourced from the Global Offshore

Wind Report 2022 (GWEC, 2022), illustrates the evolution of drivetrain technologies in offshore wind turbines within the Eu-

ropean and Chinese markets from 2016 to 2021. The data indicate that in 2016, the market share of PMSGs was approximately

60% in Europe and 10% in China. By 2021, these shares had risen significantly, with PMSGs accounting for 100% of the

market share in Europe and 80% in China.20

Distinct from traditional doubly-fed induction generators (DFIGs), PMSGs leverage permanent magnets to generate the

magnetic field, thereby eliminating the need for a separate excitation system. This design eliminates components like slip rings

and brushes, leading to higher reliability and reducing maintenance requirements. Available in both medium-speed and direct-
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Figure 1. Trend of offshore wind turbine drivetrain technology between 2016 and 2021 (GWEC, 2022)

drive configurations, these generators offer higher power density and efficiency, with added benefits such as improved grid

stability because of a faster response to wind speed changes (Moghadam and Nejad, 2020; Freire and Cardoso, 2021; Carroll25

et al., 2015). However, despite their increased reliability, PMSGs are not completely immune to faults and have their own

challenges, particularly in harsh offshore environments. Consequently, reliable condition monitoring and early fault detection

are essential to minimize production loss and prevent unexpected downtime in these machines (Nejad et al., 2022; Huang et al.,

2023; Yang, 2009; Mahmoud et al., 2024).

PM machines, in general, are susceptible to several types of faults that can impact their functionality (Choi et al., 2018;30

Kudelina et al., 2021). Stator failures are common, which can include insulation faults and issues with the connections in

the stator windings (Wang et al., 2014; Nyanteh et al., 2013; Hoang Nguyen et al., 2023; Ortiz-Medina et al., 2023). Airgap

eccentricity can cause operational disturbances such as vibrations and noise and may lead to mechanical stress and uneven

wear (Valavi et al., 2013; Ebrahimi et al., 2009, 2014; Tong et al., 2020). Demagnetization of the permanent magnets is also a

critical fault, often triggered by excessive heat, leading to a permanent reduction in the generator’s efficiency and power output35

(Faiz and Mazaheri-Tehrani, 2017; Huang et al., 2023; Ebrahimi et al., 2022; Wang et al., 2016). Additionally, failures in the

cooling and control systems can significantly impact the PMSG’s performance (Borchersen and Kinnaert, 2016). The cooling

system is crucial for maintaining an optimal operational temperature and preventing overheating, while the control system

manages the generator’s operational parameters (Freire and Cardoso, 2021).

This study examines the problems of demagnetization and eccentricity failures, which are commonly encountered in PMSGs.40

Currently, there is a lack of established techniques to effectively address these issues and meet the requirements of the wind
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sector. The demagnetization issue is exacerbated in offshore environments where thermal management is more difficult due to

excessive humidity, maintenance, and accessibility concerns (Gyftakis et al., 2023). Demagnetization in PMSGs can be either

local or distributed, each showing distinct fault signatures. Local demagnetization refers to the loss of magnetic properties in

specific areas of the magnetic poles, often due to localized overheating or physical damage. Distributed demagnetization, on45

the other hand, involves a uniform reduction in magnetic strength across the entire magnet, typically resulting from prolonged

exposure to high temperatures or electrical faults (Choi et al., 2018; Choi, 2021). Eccentricity is also characterized as static and

dynamic. Static eccentricity is characterized by a constant offset between the rotor and stator, leading to an uneven magnetic

field and potentially causing vibrations and wear. Dynamic eccentricity involves a varying distance between the rotor and stator

during rotation, which can result in fluctuating magnetic forces, additional stress on bearings, and operational instability (Freire50

and Cardoso, 2021; Kudelina et al., 2021).

Various monitoring techniques are employed for the purpose of condition monitoring and fault detection of electrical

machines, including PMSGs, depending on the specific type of failure. Vibration analysis, which commonly utilizes high-

resolution accelerometer data (Dibaj et al., 2022, 2023), is performed to identify defects such as mechanical unbalance and

bearing damage (Ágoston, 2015; Ali et al., 2019; Ding et al., 2022), eccentricity (Ogidi et al., 2015; Su and Chong, 2007), and55

electrical faults (Singh and Sa’ad Ahmed, 2004; Su et al., 2011). However, early-stage electrical and electromagnetic faults do

not often produce significant mechanical vibrations and, therefore, are not easily detectable from vibration signatures. Temper-

ature monitoring techniques such as Supervisory Control and Data Acquisition (SCADA) system (Zhao et al., 2017; Qiu et al.,

2016) or infrared thermography (Stipetic et al., 2012; Lopez-Perez and Antonino-Daviu, 2017) can detect problems related to

bearings (Choudhary et al., 2021), short circuits in stator coils (Khanjani and Ezoji, 2021), and cooling systems (Borchersen60

and Kinnaert, 2016). However, temperature-based methods face challenges, including difficulty in sensor placement to accu-

rately identify specific faults, the sensor’s general sensitivity that might only offer a broad temperature overview rather than

detailed hotspots, and the potential influence of environmental conditions on temperature readings, which may affect the pre-

cise identification of problems. Furthermore, temperature measurements, as a part of SCADA systems, are unable to capture

fast dynamics and provide fault discrimination to the required level because of low-resolution data.65

In this work, electrical and electromagnetic signals, including stator phase currents, induced shaft voltage, electromagnetic

torque, and magnetic flux density inside and outside the airgap, are analyzed and compared for fault detection in PMSG.

Harmonic analysis of electrical and electromagnetic signals is a common technique for identifying faults in PM machines

across various industries and applications, as supported by various studies (Valavi et al., 2018, 2013; Bernier et al., 2023; Da

et al., 2013; Zhang et al., 2021). Furthermore, advanced signal processing methods such as Wavelet Transform (Ehya et al.,70

2022a) and Hilbert Huang Transform (Zhang et al., 2021) are also used to extract harmonic characteristics from these signals.

Despite these approaches, the effectiveness of these measurements, particularly the electromagnetic ones, in providing early

failure warnings in large MW-scale offshore PMSGs has yet to be established. Additionally, it is important to note that certain

measurements examined in this work, such as phase currents, might also be integrated into the SCADA systems of wind

turbines. However, the raw data of these measurements are typically downsampled in SCADA systems to a 10-min resolution.75
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The main drawback with the downsampled data of SCADA systems is that they cannot pinpoint incipient failures in PMSG as

early as possible, highlighting an essential area for research on the capabilities of these measurements.

Recent advancements in computational power and cloud computing have significantly shifted industrial asset management

towards machine learning and artificial intelligence techniques (Peres et al., 2020; Lei et al., 2020). This shift aims to address the

inefficiencies of traditional data management methods in handling the vast amounts of data involved in large-scale applications80

like offshore wind farms. Moreover, machine learning models are known for their scalability and flexibility (Lu et al., 2024).

They don’t have the limitation of traditional methods in maintaining accuracy as the scale of data and model complexity

increases. Nguyen et al. (Hoang Nguyen et al., 2023) implemented a gradient boosting machine for detecting inter-turn short-

circuit faults and local demagnetization using current and stray flux measurements. Cai et al. (Cai et al., 2021) utilized vibration

and acoustic emission data with a combined complementary ensemble empirical model decomposition and Bayesian network85

model for fault detection in rolling element bearings. Huang et al. (Huang et al., 2023) developed a semi-supervised rule-based

classifier for demagnetization fault diagnosis, while Tan et al. (Tan et al., 2020) explored the use of current measurements

combined with an artificial neural network (ANN) for detecting faults in converter systems of PMSGs. Penrose (Penrose, 2022)

investigated the application of k-Nearest Neighbors (KNN) for fault classification and linear regression models for estimating

RUL, providing a 30-day advance notification of failures in small electric machines using basic data inputs. Ehya et al. (Ehya90

et al., 2022b) examined different machine learning and signal processing techniques for diagnosing inter-turn short-circuit

faults in salient pole synchronous generators. Despite these advances, the application of machine learning for fault detection in

MW-scale wind PMSGs is still largely unexplored (Freire and Cardoso, 2021).

Therefore, this study adopts a machine learning model for unsupervised anomaly detection, trained on collected simulated

measurements in the healthy state. Unlike supervised learning, which requires a significant amount of labeled data with prede-95

fined class labels for training, unsupervised learning does not rely on labeled data. This characteristic is particularly beneficial

in offshore wind applications, where acquiring extensive labeled fault-related data is challenging. Moreover, supervised learn-

ing methods often struggle to generalize to unseen fault scenarios. Consequently, a convolutional autoencoder (CAE) model is

utilized, known for its capability to process complex and high-dimensional data efficiently.

In summary, this study aims to conduct a comparative analysis of different measurements—three-phase currents, induced100

shaft voltage, electromagnetic torque, and airgap and stray magnetic flux density—for the purpose of wind turbine PMSG

anomaly detection using a CAE model. As mentioned earlier, despite the potential availability of a few of these measurements

in SCADA systems, they are often recorded at a low resolution, typically every 10 minutes. The primary focus of this work

is to explore the effectiveness of high-resolution measurements for the early detection of potential failures. The sensitivity of

these measurements against the studied fault cases, including demagnetization and static and dynamic eccentricity at various105

fault severity, will be analyzed. Simulated measurements will be collected from a simulation high-speed PMSG, designed and

modeled based on the specifications of the NREL 5-MW reference offshore wind turbine (Jonkman et al.), tailored for offshore

wind applications.

The remainder of the paper is structured as follows: Section 2 describes the generator model, measurements, and studied fault

cases. Section 3 discusses the anomaly detection methodology employed in this study, including the CAE model, threshold110
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Table 1. Drivetrain specification (Jonkman et al.)

Parameter Value

Rated rotor speed (rpm) 12.1

Rated generator speed (rpm) 1173.7

Gearbox ratio 1:97

Electrical generator efficiency 94.4%

Generator inertia about high-speed shaft (kg.m2) 534.116

Equivalent drive-shaft torsional-spring constant (kN.m/rad) 867637

Equivalent drive-shaft torsional-damping constant (kN.m/(rad/s)) 6215

Fully-deployed high-speed shaft brake torque (N.m) 28116.2

High-speed shaft brake time constant (sec) 0.6

determination, and performance metrics. Section 4 contains the results and discussion. Finally, the conclusion is outlined in

Section 5.

2 Generator model

A wind generator was designed according to the specifications and requirements detailed in "Definition of a 5-MW Reference

Wind Turbine for Offshore System Development," a technical report published by the National Renewable Energy Laboratory115

(NREL) (Jonkman et al.). Table 1 presents the drivetrain specifications as outlined in the report.

Following these specifications, a high-speed PMSG was developed and optimized. Figure 2 illustrates the two-dimensional

(2-D) cross-section of the designed PMSG along with its magnetic field distribution. The analysis of the generator’s perfor-

mance was conducted using ANSYS Motor-CAD, a specialized electrical machine design software. The generator features a

surface-mounted permanent magnet configuration with six poles and 54 slots. To minimize eddy current losses, the permanent120

magnet blocks are segmented both radially and axially, which enhances efficiency and reduces the risk of demagnetization.

The wind generator is capable of producing 5.177 MW of electromagnetic power at the rated speed, achieving an efficiency

of 98.74%. The line current and voltage are measured at 1092 Arms and 3184 Vrms, respectively. A performance analysis

confirms that the generator meets the target power output with exceptional efficiency.

2.1 Measurements125

In this study, a collection of simulated measurements from the PMSG model, as detailed in Table 2, are used in the anomaly

detection task aimed at identifying fault cases outlined in Section 2.2. This set of collected data includes high-resolution

induced shaft voltage, electromagnetic torque, stator phase currents, as well as airgap and stray magnetic flux, including both

radial and tangential components at various positions. Variations observed in these measurements can indicate different types
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Figure 2. Radial Cross-Section and Magnetic Field Distribution of the Generator

Figure 3. Position of the flux sensors in the simulation wind PM generator model

of faults depending on the symptoms manifested in the signal. For instance, flux sensors provide insights into the behavior of130

the magnetic field. Faults that introduce imbalances or irregularities to the rotating magnetic field can be identified using these

sensors. Flux monitoring has been recently popular thanks to advancements in sensor technology and low-cost and compact

flux sensors such as search coils and hall-effect sensors (Mazaheri-Tehrani and Faiz, 2022). Figure 3 indicates the position

of flux sensors implemented in the simulation model in this study. Also, Figure 4 shows some examples of the time-domain

waveform of simulated signals. As explained earlier, the motivation of this study extends to comparing the performance of the135

anomaly detection model trained with these simulated high-resolution signals to examine the diagnostic capabilities of each

measurement type.
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Table 2. Simulated electrical and electromagnetic measurements

Measurement

V sh Induced shaft voltage

Te Electromagnetic torque

Is Stator three phase currents (3 signals)

SFr5 Stray flux sensor - radial component, outside stator housing with a distance of 5mm (top, bottom, and side locations - 4 signals)

SFt5 Stray flux sensor - tangential component, outside stator housing with a distance of 5mm (top, bottom, and side locations - 4 signals)

SFr10 Stray flux sensor - radial component, outside stator housing with a distance of 10mm (top, bottom, and side locations - 4 signals)

SFt10 Stray flux sensor - tangential component, outside stator housing with a distance of 10mm (top, bottom, and side locations - 4 signals)

AFrt Airgap flux sensor - radial component at tooth position (top, bottom, and side locations - 4 signals)

AFtt Airgap flux sensor - tangential component at tooth position (top, bottom, and side locations - 4 signals)

AFrs Airgap flux sensor - radial component at slot position (top, bottom, and side locations - 4 signals)

AFts Airgap flux sensor - tangential component at slot position (top, bottom, and side locations - 4 signals)

(a) (b)

(c) (d)

Figure 4. Time-domain waveform of the simulated data: (a) radial components of airgap flux (top, bottom, and side locations), (b) induced

shaft voltage, (c) electromagnetic torque, (d) stator three-phase currents
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Table 3. Partial demagnetization with six cases

Fault description

Fault case 1 (FC1) One pole all segments (10%)

Fault case 2 (FC2) One pole all segments (20%)

Fault case 3 (FC3) 2 segments of one pole (40% & 20%)

Fault case 4 (FC4) 2 segments of one pole (80% & 40%)

Fault case 5 (FC5) 2 segments of all poles (20% & 10%)

Fault case 6 (FC6) 2 segments of all poles (40% & 20%)

2.2 Fault cases

Two main categories of faults in the PMSG model are considered: partial demagnetization and eccentricity, which includes

both static and dynamic forms. The investigation is on a series of fault cases within these categories. The aim is to evaluate the140

performance of anomaly detection method in varying degrees of fault severity using different measurement variables.

Partial demagnetization faults, outlined in Table 3, are explored through six distinct scenarios, each simulating varying levels

of magnetic flux density reduction across the generator’s permanent magnets. The first and second cases, FC1 and FC2, model

a mild uniform 10% and 20% demagnetization affecting all segments of a single pole. FC3 and FC4 model more localized

demagnetization, where only two segments of a single pole are demagnetized at different severities, 40%, and 20% for FC3145

and 80% and 40% for FC4, respectively. FC5 and FC6 extend this localized demagnetization to multiple poles, with two

segments of all poles undergoing demagnetization at 20% and 10% for FC5 and 40% and 20% for FC6, respectively.

Eccentricity, characterized by the misalignment of the rotor relative to the stator in the 2D (x-y) plane, is assessed through

static and dynamic conditions across six cases as shown in Table 4. Dynamic eccentricity, from FC1 to FC3, addresses a variable

misalignment where the rotor’s axis orbits around the stator’s axis at severities of 5%, 15%, and 25%, respectively. Conversely,150

static eccentricity cases, FC4 to FC6, examine the impact of a fixed rotor offset from the stator axis, also at severities of 5%,

15%, and 25%, respectively. The degree of eccentricity is quantified by the offset value of the shifted axis relative to the airgap

length in the healthy condition.

3 Methodology

3.1 Convolutional Autoencoders155

Autoencoders (AE), developed originally as neural network models for copying input to output, have significantly evolved to

play a crucial role in unsupervised learning, dimensionality reduction, and data denoising (Goodfellow et al., 2016). In anomaly

detection, AEs are particularly effective; they are trained on normal data to learn its representation, and anomalies are identified

based on the higher reconstruction error when the model encounters data that deviates from this learned normal behavior. This
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Table 4. Static (SE) and dynamic (DE) eccentricity with six different degrees

Fault description

Fault case 1 (FC1) Dynamic (5%)

Fault case 2 (FC2) Dynamic (15%)

Fault case 3 (FC3) Dynamic (25%)

Fault case 4 (FC4) Static (5%)

Fault case 5 (FC5) Static (15%)

Fault case 6 (FC6) Static (25%)

Figure 5. Typical autoencoder architecture

higher reconstruction error is because the AE, trained on normal or healthy data, finds it challenging to reconstruct these new160

or deviant patterns. As mentioned previously, the unsupervised approach is advantageous in anomaly detection in wind turbine

applications where anomalies are rare and often not labeled.

A typical AE consists of two main parts: the encoder and the decoder. The encoder compresses the input data as a sequence of

data points x = [x1,x2,x3, ...,xn] into a lower-dimensional representation known as feature space h = [h1,h2,h3, ...,hd](d <

n), and the decoder reconstructs the data back to its original form x̂ = [x̂1, x̂2, x̂3, ..., x̂n] from this compressed representation165

as shown in Fig. 5. The formulation for a single-layer encoder and a single-layer decoder is described as follows:
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m: Number of input variables

n: Length of input vectors

l: Number of convolution layers

Figure 6. Convolutional autoencoder architecture

h = f(x) = s(W1x+b1) (1)

x̂ = f(h) = s(W2h+b2) (2)

where W1 and W2 are weight matrices, b1 and b2 are bias vectors. s(.) is the activation function, which is commonly a

Sigmoid function σ(t) = 1/(1+ e−t) or a Rectified Linear Unit (ReLU) function ReLU(t) = max(0, t) for the encoder and170

decoder parts. For the output layer, this function can be a Sigmoid or a linear function, depending on the type of input data (Wu

et al., 2021). The architecture of AE is adaptable, allowing for the modification of the number and size of its hidden layers to

suit the complexity of the input data (Li et al., 2021). Given a set of training data {x(i)}Ni=1, the AE model is typically trained

by minimizing the cost function J , often measured by mean squared error (MSE), through the back-propagation algorithm

(Rumelhart et al., 1986), expressed as:175

JMSE(W,b) =
1

N

N∑
i=1

∥xi − x̂i∥2 (3)

This study employs multi-variable measurements like magnetic flux density measured at different angles. For such data,

a standard one-dimensional AE will not work. In addition, the typical feed-forward AE doesn’t take into account the spatial

structure of data, therefore reducing the accuracy of the reconstruction process. To solve this, the convolutional autoencoder

(CAE) model is used in this study. The CAE uses convolutional and deconvolutional layers instead of the fully connected layers180

found in the regular feed-forward autoencoder, as shown in Figure 6.

The first part of the CAE works by compressing the data using a series of steps that involve convolution and pooling.

The convolution layers perform operations that apply a filter to the input, which helps to capture important parts of the data

depending on the filter used. After each convolution layer, a pooling step follows. This step usually uses a max-pooling layer,
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Figure 7. Comparison between original input and reconstructed output of CAE model for induced shaft voltage signal: (a) time-

domain/healthy, (b) time-domain/demagnetization FC6, (c) frequency-domain/healthy, and (d) frequency-domain/demagnetization FC6.

which reduces the size of the output from the convolution by picking the highest value from each segment of the input data185

covered by the filter. The second part of the CAE is about decoding the features that the first part extracted. This is done with

deconvolutional layers. These layers increase the size of the input through a special convolution process to rebuild the input

data in the output, making sure it’s the same size as it was originally.

Figures 7 (a)-(d) provide examples of this reconstruction process using induced shaft voltage measurements in both time-

domain and frequency-domain representations. Notably, as illustrated in Figures 7 (b) and (d), the CAE model struggles to190

reconstruct instances of faulty data accurately. This discrepancy results in a noticeable error between the original and recon-

structed data, highlighting this approach’s capability to identify anomalies.
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Figure 8. Histogram of anomaly scores for training data and threshold determination for two different signals: (a) SFt5, (b) AFtt

3.2 Threshold determination

For anomaly detection using the reconstruction error obtained by the CAE model, there should be a fault threshold to differ-

entiate between healthy and faulty (anomalies) cases. In this study, the fault threshold is established based on the maximum195

reconstruction error observed in the training dataset. Existing works on data-driven anomaly detection across various applica-

tions have established similar fault thresholds based on the reconstruction error for healthy training data (Chen et al., 2021;

Xiang et al., 2022; Campoverde-Vilela et al., 2023; Givnan et al., 2022). The training data comprises instances representing the

healthy state of the PMSG. As mentioned, each training sample x(i) is passed through the CAE model to obtain a reconstructed

output x̂(i). The discrepancy between the original and reconstructed data points, quantified using the MSE cost function, serves200

as the reconstruction error e(i) = MSE(x(i), x̂(i)). The fault threshold α is then determined as the maximum reconstruction

error observed in the training data as follows:

α=maxNi=1e
(i) (4)

where N is the size of the training dataset. As an example, Figures 8 (a) and (b) show the histogram of reconstruction errors or

anomaly scores for training (healthy) data and the fault threshold determination for two distinct measurements. These figures205

clearly demonstrate that the thresholds are data-driven, varying in accordance with the input measurements of the CAE model.

Any test sample with a reconstruction error exceeding the threshold would be considered an anomaly.
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3.3 Overall procedure of anomaly detection method

The steps taken in the anomaly detection of the PMSG model are briefly described in this section and outlined in Figure 9. The

methodology includes several stages as follows:210

1. Data collection: The initial step involves the comprehensive gathering of target measurements, introduced in Table 2

from the PMSG model.

2. Data preprocessing: Once collected, the measurements are preprocessed. As the first step, the signals are segmented into

shorter-length signals to prepare training, validation, and test datasets for the CAE model. Segmented signals are then

normalized to aid in efficient training, prevent numerical issues, and ultimately lead to better model performance and215

generalization. Both time-domain and frequency-domain measurements are fed into the model to compare the model

performance in both cases for different measurements.

3. Model training: With the data prepared, the next phase is the training of the CAE model. It should be noted that dis-

tinct CAE models are trained for different measurements, depending on the type of input data, either time-domain or

frequency-domain. The model learns to identify patterns and features of the input data representative of the normal220

operational state of the PMSG model.

4. Threshold determination: As discussed in Section 3.2, a key aspect of the methodology is establishing a reliable fault

threshold. The optimal choice of this threshold is crucial for effectively differentiating between normal and faulty states

and ensuring a precise alarm triggering. This study utilizes the maximum reconstruction error value from the training

dataset as the fault threshold.225

5. Anomaly detection: The final step involves the actual detection of anomalies. The trained CAE model is employed

to analyze new data, identifying deviations from the norm. Any reconstruction error exceeding the established fault

threshold is considered indicative of an anomaly in the PMSG model.

3.4 Performance metrics

In this study, two performance metrics are used to evaluate the performance of the CAE model for anomaly detection:230

– F1 score: This metric combines precision and recall to provide a single score for the model’s overall accuracy in anomaly

detection (Miele et al., 2022; Wang et al., 2019). Precision indicates what proportion of identified anomalies are true

anomalies, and its equation is as follows:

precision =
TP

TP+FP
(5)

where TP is the number of correctly identified anomalies (true positives), and FP is the number of misclassified normal235

samples as anomalies (false positives). Recall also specifies what proportion of true anomalies are identified and is
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Figure 9. Overall procedure of anomaly detection method

determined as follows:

recall =
TP

TP+FN
(6)

where FN is the number of misclassified anomaly samples as normal (false negative). F1 score ranges from 0 to 1, where

1 represents perfect precision and recall, and is defined as:240

F1 score = 2× precision× recall

precision+ recall
(7)

– Silhouette coefficient: This metric assesses the quality of clustering in unsupervised machine learning tasks, with scores

ranging from -1 to 1 (Rousseeuw, 1987). In this study, the Silhouette score is used to calculate the average distance

between the cluster of identified anomalies and the cluster of healthy data. A higher Silhouette coefficient indicates

better separation between normal and anomaly clusters. The Silhouette coefficient for each sample i is calculated as245

follows:

SC(i) =
b(i) − a(i)

max[a(i), b(i)]
(8)

where a(i) is the average distance between sample i and all other samples in the same cluster. b(i) is also the minimum

distance between sample i and all samples in another cluster, not containing sample i.

Both metrics provide comprehensive insights into the performance and reliability of the CAE model in detecting anomalies250

using different measurement variables.
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4 Results and discussion

4.1 Data preparation

The procedure for anomaly detection begins with collecting simulated measurements from the PMSG model under both healthy

and various faulty conditions. These measurements are then divided into shorter-length signals to ensure an adequate amount of255

training and test data for the CAE model. To compare the performance of different measurements, both time-domain data (raw

segmented signals) and frequency-domain data (spectrum of segmented signals) are inputted into the CAE model. Following

the standard approach for anomaly detection, the training dataset consists only of measurements from the healthy state, while

the test dataset encompasses all states, including healthy and different faulty conditions. The original signals are sampled at a

rate of Fs = 21.132 kHz. The fundamental frequency of the generator model under study is calculated as f = (Ns×P )/120 =260

58.69 Hz, where Ns represents the synchronous speed of the generator at its rated speed of 1173.7 RPM, and P denotes the

number of poles (six in this case).

For time-domain data inputted into the CAE model, the length of segmented signals is set to twice the period of the funda-

mental frequency, resulting in 720 sample points per segment. Additionally, the segmentation process includes overlap between

consecutive segments equivalent to one period of the fundamental frequency, which is 360 sample points. It’s important to high-265

light that for frequency-domain data, where a higher resolution in obtaining the frequency spectrum is required, the segmented

signals have a longer duration of 30 times the period of the fundamental frequency or 10800 sample points. This longer dura-

tion leads to smaller training and test datasets for the frequency-domain cases compared to the time-domain cases. It should

be noted that only the first 720 sample points of the frequency spectrum are fed into the model in order to have the same CAE

model architecture for time-domain and frequency-domain cases. The segmentation and feeding procedure into the CAE model270

for both time-domain and frequency-domain cases is illustrated in Figure 10.

4.2 Anomaly detection results: time domain inputs

The CAE model’s reconstruction errors or anomaly scores trained with time-domain data for demagnetization and eccentricity

faults are illustrated in Figures 11 and 12, respectively. These figures highlight the reconstruction error values within a yellow

region for the set of healthy training samples, where the highest error value defines the fault threshold, marked by a horizontal275

dotted red line. Similarly, the green region represents the reconstruction errors for healthy test samples. The outcomes of

performance metrics are detailed in Table 5. According to the F1 score results, nearly all signals can train a CAE model that

effectively detects demagnetization fault cases. In contrast, for eccentricity fault cases, only specific signals—induced shaft

voltage (V sh), electromagnetic torque (Te), stator phase currents (Is), and the tangential component of airgap flux at tooth

positions (AFtt)—achieve full accuracy in fault detection. The Silhouette coefficient, which measures the degree of separation280

between anomaly clusters and the healthy cluster, shows that V sh, Te, Is, and AFtt signals provide superior separation for

both demagnetization and eccentricity faults.

The sensitivity of the CAE model to fault severity is also evaluated using the trend of anomaly score values for fault scenarios.

It is expected that cases with higher fault severity should correspond to higher anomaly scores. Among the models trained
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Figure 10. Signal segmentation process

with the signals featured, the model trained with three-phase Is signals demonstrates sensitivity to the severity across all285

types of demagnetization faults, as illustrated in Figure 11 (d). However, the V sh-based trained model does not adequately

reflect the severity for FC3 and FC4 cases, which are localized demagnetization in one pole, with the anomaly scores for FC4

unexpectedly lower. Other models, including those trained with Te), stray, and airgap flux signals, fail to differentiate between

the severities of FC5 and FC6 cases, both involving localized demagnetization across all poles.

For eccentricity faults, both dynamic (FC1-FC3) and static (FC4-FC6), as presented in Figure 12, the Is and V sh signals290

are effective in distinguishing between different degrees of eccentricity for both cases, with anomaly scores increasing as the

degree of eccentricity raises. However, outputs of the CAE model trained with Te signal do not display a consistent trend with

respect to the eccentricity degree. The results for FC2 test samples, which exhibit a 15% dynamic eccentricity, are also poor

when the model is trained with AFtt signals.

In summary, the CAE model, trained with time-domain data from three-phase stator currents, reliably provides anomaly295

detection for both demagnetization and eccentricity fault cases. The efficacy of this model with frequency domain data will be

further assessed in subsequent analyses.
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Figure 11. Anomaly detection results of time-domain measurements for demagnetization fault cases: (a) V sh, (b) Te, (c) Is (single phase),

(d) Is (three phase), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts
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Figure 12. Anomaly detection results of time-domain measurements for static and dynamic eccentricity fault cases: (a) V sh, (b) Te, (c) Is

(single phase), (d) Is (three phase), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts
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Table 5. Performance metric results of anomaly detection models trained with time-domain data

Demagnetization Eccentricity

Input variable F1 Silhouette F1 Silhouette

V sh 1.0000 0.9863 1.0000 0.9890

Te 1.0000 0.9996 1.0000 0.9998

Is (single phase) 0.9993 0.9999 0.9993 0.9998

Is (three phases) 1.0000 0.9999 1.0000 0.9999

SFr5 0.9980 0.8592 0.0650 0.1690

SFr10 1.0000 0.8600 0.0690 0.0840

SFt5 1.0000 0.8990 0.3000 0.2400

SFt10 1.0000 0.9100 0.3400 0.3500

AFrt 1.0000 0.9500 0.8700 0.7800

AFrs 1.0000 0.9400 0.5100 0.4900

AFtt 1.0000 0.9721 1.0000 0.9835

AFts 0.9300 0.8600 0.8000 0.6600

4.3 Anomaly detection results: frequency domain inputs

In this section, segmented signals are transformed into the frequency domain. This transformation allows for the frequency

information of simulated data to be utilized by the CAE model, thereby enhancing its predictive accuracy. The use of frequency-300

domain information has been found to improve prediction outcomes for certain signals. To illustrate this, the power spectral

density (PSD) spectra for a variety of signals are shown in Figure 13. These include healthy data, demagnetization in FC5

and FC6 (two segments of all poles), and static eccentricity (FC4-FC6). Upon examination of these figures, it is observed that

fluctuations in frequency content associated with faults, as well as the appearance of characteristic fault frequencies, are more

prominently visible in specific signals, notably those from flux sensors and electromagnetic torque.305

Similar to the anomaly detection results in the time domain, the anomaly scores for frequency-domain training and test

samples, utilizing various models, are depicted in Figures 14 and 15 for demagnetization and eccentricity faults, respectively.

Additionally, the performance of these models is evaluated and presented in terms of F1 and Silhouette scores, as shown in

Table 6.

The CAE model, when trained with the V sh signal, demonstrates reliable anomaly detection results in demagnetization310

cases, as depicted in Figure 14 (a), highlighting both detection accuracy and sensitivity to fault severity. However, in the

context of eccentricity faults, this model exhibits somewhat poorer performance in detecting FC3 (25% dynamic eccentricity)

and in being sensitive to different levels of fault severity, as illustrated in Figure 15) (a).
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Figure 13. Power spectral density plots of simulated signals under healthy and faulty states

While the Te signal achieves full detection accuracy for both types of faults according to Table 6, similar to the results in

the time domain, the anomaly scores do not align with the actual severity levels of the fault cases. This discrepancy is evident315

in the results depicted in Figures 14 (b) and 15 (b).

Stator current signals (Is) yield anomaly scores that are entirely below the fault threshold line for demagnetization cases, and

partially below for eccentricity cases, as illustrated in Figures 14 and 15 (c) and (d). This outcome aligns with expectations,

as the comparison of the frequency spectra of the Is signal between healthy and faulty states, shown in Figures 13 (e) and

(f), reveals only minor shifts attributable to the faults. Furthermore, it is noteworthy that, according to Figures 14 and 15 (c)320

and (d), the CAE model tends to assign lower anomaly scores to faulty samples than to healthy ones. This issue is attributed
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Figure 14. Anomaly detection results of frequency-domain measurements for demagnetization fault cases: (a) V sh, (b) Te, (c) Is (single

phase), (d) Is (three phase), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts
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Figure 15. Anomaly detection results of frequency-domain measurements for static and dynamic eccentricity fault cases: (a) V sh, (b) Te,

(c) Is (single phase), (d) Is (three phase), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts
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Table 6. Performance metric results of anomaly detection models trained with frequency-domain data

Demagnetization Eccentricity

Input variable F1 Silhouette F1 Silhouette

V sh 1.00 0.9912 0.9733 0.9321

Te 1.00 0.9999 1.0000 0.9922

Is (single phase) - - 0.8623 0.7760

Is (three phases) - - 0.8230 0.6561

SFr5 1.00 0.9220 0.9692 0.7914

SFr10 1.00 0.9190 0.7300 0.8580

SFt5 1.00 0.9320 1.0000 0.6943

SFt10 1.00 0.9500 1.0000 0.700

AFrt 0.91 0.9620 1.0000 0.9400

AFrs 0.91 0.9670 0.6900 0.9400

AFtt 0.91 0.9845 1.0000 0.9899

AFts 0.91 0.9950 0.7000 0.9400

to the subtle feature shifts caused by faults and the CAE model’s complexity, which enables it to capture a broad spectrum

of features, including those not directly indicative of anomalies. The model’s high complexity, advantageous for identifying

complex patterns in normal data, might also unexpectedly improve its ability to reconstruct faulty samples. This is because the

model, with its extensive layers and multitude of parameters, can generalize well to data variations that resemble the healthy325

samples it was trained on, even if they are not identical. Consequently, subtle feature shifts due to faults are not adequately

penalized, resulting in lower anomaly scores for faulty samples. This phenomenon is not unique to stator current signals; it has

also been observed in other scenarios, such as the FC5 demagnetization case with airgap flux sensors, as depicted in Figures 14

(i)-(l). Addressing this issue requires a comprehensive understanding of model complexity and its effects on anomaly detection,

which is beyond the scope of this study.330

Stray flux sensors, both radial and tangential components, demonstrate strong performance by achieving full accuracy and

sensitivity in demagnetization cases, as evidenced in Figures 14 (e)-(k). In the context of eccentricity faults, the radial compo-

nents (SFr5 and SFr10) exhibit effective detection of dynamic eccentricity (FC1-FC3) test samples, with the severity levels

being distinctly identifiable. However, these signals, particularly SFr10, fail to detect some test samples associated with static

eccentricity (FC4-FC6), as reflected by the F1 scores (96.92% for SFr5 and 73% for SFr10) in Table 6 and Figures 15 (e)335

and (f). On the other hand, tangential component signals (SFt5 and SFt10) achieve full F1 scores, and the models trained on

these signals are sensitive to varying severity levels of both dynamic and static eccentricities, as shown in Figures 15) (g) and

(h). Nevertheless, based on Silhouette scores, it is observed that radial components offer a superior separation between healthy

and faulty clusters in cases of eccentricity faults.
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Regarding airgap flux sensors, the anomaly scores related to demagnetization, as presented in Figures 14 (i)-(l), reveal an340

inability to detect test samples for FC5, which represents a low-severity, localized demagnetization affecting all poles. Further-

more, both the radial and tangential components of the airgap flux sensors positioned at the slot (AFrs and AFts) fail to detect

static eccentricity cases, as indicated in Figures 15 (j) and (l). However, the tooth sensor, especially its tangential component

(AFtt), gives precise results for eccentricity cases that accurately reflect the severity levels of the faults, as demonstrated in

Figure 15 (k).345

In summary, CAE models trained on the frequency content from stray flux sensors at all four top, bottom, and side positions

- tangential components in both 5mm and 10mm distance, and radial components in 5mm distance outside the stator housing -

demonstrate full accuracy and sensitivity in detecting anomalies associated with both demagnetization and eccentricity faults.

Moreover, the radial and tangential components of airgap flux sensors located at the tooth are fully capable of identifying all

types of eccentricity anomalies, accurately reflecting their severity levels. These findings highlight the potential of adopting350

flux monitoring techniques—well-established in other industries for their cost-efficient and easy-to-install sensors—in the fault

detection of large MW offshore wind generators. The utilization of such sensors, especially stray flux sensors enhanced with

frequency information, presents a promising strategy for the condition monitoring of these systems.

To conclude the discussion section, Table 7 provides a comprehensive and detailed summary of all anomaly detection

outcomes derived from the previously analyzed signals. This table outlines the detection accuracy for each fault case, alongside355

the sensitivity to fault severity, across both time and frequency domains. The table is organized such that the first row associated

with each domain presents the detection accuracy results, while the second row specifies whether the signal in question is

capable of monitoring changes in fault severity levels. It should be noted that for the purposes of this table, detection accuracies

exceeding 95% are considered to constitute acceptable accuracy. This structured presentation ensures a clear and concise

overview of the study’s findings.360

Table 7: Summary of anomaly detection results

Studied fault

Demagnetization Eccentricity

Signal Domain FC1 FC2 FC3 FC4 FC5 FC6 FC1 FC2 FC3 FC4 FC5 FC6

V sh Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✗ ✓ ✓ ✓

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✗ ✗

Te Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✗ ✗ ✗

Continued on next page

24



Table 7 continued from previous page

Studied fault

Demagnetization Eccentricity

Signal Domain FC1 FC2 FC3 FC4 FC5 FC6 FC1 FC2 FC3 FC4 FC5 FC6

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✗ ✗ ✓ ✗ ✗

Is - single phase Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✗ ✗ ✓ ✓ ✓

Freq. ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

✗ ✗ ✗ ✗ ✗

Is - three phases Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

Freq. ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗

✗ ✗ ✗ ✗ ✗

SFr5 Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

✓ ✓ ✗ ✗ ✗

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

SFt5 Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

✓ ✓ ✗ ✗ ✗

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

SFr10 Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

✓ ✓ ✗ ✗ ✗

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✗

SFt10 Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

✓ ✓ ✗ ✗ ✗

Freq. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

AFrt Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Continued on next page
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Table 7 continued from previous page

Studied fault

Demagnetization Eccentricity

Signal Domain FC1 FC2 FC3 FC4 FC5 FC6 FC1 FC2 FC3 FC4 FC5 FC6

✓ ✓ ✗ ✓ ✓

Freq. ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

AFtt Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✗ ✗ ✓

Freq. ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

AFrs Time ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

✓ ✓ ✗ ✓ ✓

Freq. ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✗

AFts Time ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

✓ ✓ ✓ ✓ ✓

Freq. ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✗

Abbreviations: V sh, Induced shaft voltage; Te, Electromagnetic torque; Is, Stator phase current; SFr5, Stray flux sensor - radial component,

outside stator housing with a distance of 5mm (4 signals); SFt5, Stray flux sensor - tangential component, outside stator housing with a distance

of 5mm (4 signals); SFr10, Stray flux sensor - radial component, outside stator housing with a distance of 10mm (4 signals); SFt10, Stray flux

sensor - tangential component, outside stator housing with a distance of 10mm (4 signals); AFrt, Airgap flux sensor - radial component at tooth

position (4 signals); AFtt, Airgap flux sensor - tangential component at tooth position (4 signals); AFrs, Airgap flux sensor - radial component365

at slot position (4 signals); AFts, Airgap flux sensor - tangential component at slot position (4 signals); Demagnetization: FC1, One pole all

segments 10%; FC2, One pole all segments 20%; FC3, 2 segments of one pole 40% & 20%; FC4, 2 segments of one pole 80% & 40%; FC5, 2

segments of all poles 20% & 10%; FC6, 2 segments of all poles 40% & 20%; Eccentricity: FC1-FC3, Dynamic 5-25%; FC4-FC6, Static 5-25%.

4.4 Fault discrimination capability of selected measurements

This section evaluates the performance of the CAE anomaly detection model, focusing on its fault discrimination capability.370

The analysis covers models trained on selected signals from both the time and frequency domains, as discussed in earlier

sections and presented in Table 7. The CAE model, trained with time-domain signals of three-phase current Is, achieved

perfect accuracy in detecting anomalies and showed sensitivity to variations in fault severities, as depicted in Figures 11 (d)
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and 12 (d). In the frequency domain, models trained with stray flux signals - tangential components in both 5 mm (SFt5)

and 10 mm (SFt10) distances and radial components in 5 mm distance (SFr5) - proved to be more effective in detecting375

anomalies than others.

The ability of these models to distinguish between two specific types of faults is assessed by analyzing the reconstruction

errors. This analysis is presented in Figures 16 (a)-(d) for Is, SFt5, SFt10, and SFr5 signals, respectively. While Is signals

allow for perfect differentiation between different fault cases, there is a noticeable overlap in anomaly score ranges between

eccentricity and demagnetization faults, as shown in Figure 16 (a). This overlap makes establishing a clear separation boundary380

challenging between eccentricity and demagnetization, as anomaly scores for FC1 and FC3 demagnetization faults are lower

than those for eccentricity faults. A similar issue is observed with the tangential stray flux (SFt5 and SFt10) measurements, as

indicated in Figures 16 (b) and (c). However, the CAE model trained with radial stray flux (SFr5) measurements demonstrates

a clear ability to differentiate between the two fault types based on their anomaly scores, as shown in Figure 16 (c).

These findings indicate that radial stray flux measurements, taken from 5 mm outside the stator housing, not only accurately385

detect anomalies and assess fault severity but also effectively distinguish between eccentricity and demagnetization faults in

PMSG. Further exploration of fault classification and diagnosis will be the focus of future work.

4.5 Comparison with other machine learning models

As a comparison study and to prove the robustness of the CAE anomaly detection model, this section includes a comparison of

three distinct models for unsupervised anomaly detection: One-Class Support Vector Machine (SVM), K-Nearest Neighbors390

(KNN), and K-Means. All models are trained on a dataset of 400 normal samples using time-domain data of three-phase current

measurements Is and tested using 100 untrained normal samples and 100 samples under demagnetization and eccentricity fault

conditions. The One-Class SVM, employing an RBF kernel, focuses on defining a decision function that envelops the region

of normal data, treating all other areas as anomalies. The K-Means model, configured with a single cluster, detects anomalies

based on the distance from data points to the centroid of normal data, with a threshold set at the 99th percentile of these395

distances. The KNN model, using 10 neighbors, identifies anomalies based on the average distance to the nearest neighbors,

applying a threshold at the 99th percentile to define outliers. Each model’s performance was evaluated based on their F1 score

and accuracy, with results summarized in Table 8 and illustrated through confusion matrices in Figure 17. The CAE model

achieved the highest accuracy at 100%, while the compared traditional models recorded accuracies between 85-90%. It should

be noted that the performance of these traditional models may diminish as data complexity increases, highlighting challenges400

in scaling these models to more complex or larger datasets. On the other side, it should also be noted that, the CAE deep

learning model, requires extensive fine-tuning of numerous hyperparameters and significantly longer training times.

5 Conclusions

This study has successfully demonstrated the application of convolutional autoencoder (CAE) models for anomaly detection

in offshore wind permanent magnet synchronous generators (PMSGs), addressing demagnetization and eccentricity faults of405
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Figure 16. Anomaly detection results for both eccentricity and demagnetization: (a) time domain Is (three phases), (b) frequency domain

SFt5, (c) frequency domain SFt10, and (d) frequency domain SFr5.

Table 8. Comparison of performance metrics for anomaly detection models

Metric K-Means KNN One-Class SVM CAE (proposed)

F1 Score 0.8361 0.8672 0.8878 1.0000

Accuracy (%) 85.5 85.0 88.0 100.0

varying severity. Utilizing a simulation high-speed PMSG model designed based on the specifications of the NREL 5-MW

reference offshore wind turbine, this research employed unsupervised CAE models trained on healthy state simulation data

to analyze a range of signals, including three-phase currents, induced shaft voltage, electromagnetic torque, and airgap and

stray magnetic flux. While some of these measurements, such as phase currents, are typically included in the Supervisory

Control and Data Acquisition (SCADA) systems of wind turbines, they are often at a low resolution. A key limitation of this410
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Figure 17. Confusion matrices for performance evaluation across different anomaly detection models trained with time-domain data of

three-phase stator current measurements.

downsampled data is its inability to detect emerging failures in PMSGs as promptly as necessary. Hence, this study aimed

to evaluate the potential of high-resolution measurements for the early detection of possible failures in PMSGs. The findings

indicate that three-phase currents in the time domain, along with a combination of top, bottom, and side positions of stray flux

sensors—both tangential and radial components in the frequency domain—significantly enhance anomaly detection accuracy

and fault severity sensitivity. Notably, the radial components of stray flux sensors proved capable of differentiating between415

types of eccentricity and demagnetization faults. The findings suggest that using flux monitoring techniques, with cost-efficient

and easily installed stray flux sensors with frequency information, could be an effective strategy for early fault detection in large
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MW offshore wind generators. Future work will focus on further validating these results with experimental data and exploring

the impact of varying measurement resolutions to determine the minimum resolution necessary for early fault detection, thereby

confirming the models’ effectiveness in practical scenarios.420
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