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Abstract. The interplay of momentum surrounding wind farms significantly influences wake recovery, affecting the speed at 

which wakes return to their free-stream velocities. Under stable atmospheric conditions, wind farm wakes can extend over 

considerable distances, leading to sustained vertical momentum flux downstream, with variations observed throughout the 

diurnal cycle. Particularly in regions such as the US Great Plains, stable conditions can induce low-level jets (LLJs), impacting 10 

wind farm performance and power output. This study examines the implications of wake recovery using long-term 

observations of vertical momentum flux profiles across diverse atmospheric conditions. In these observations, several key 

findings were observed, such as a) LLJ heights are altered downstream of a wind farm, especially when the LLJs are below 

250 m above ground level, b) a notable impact of LLJ height on wake recovery is observed using momentum flux profiles at 

upwind and downwind location, wherein LLJs between 250 m and 500 m above ground level resulted in larger momentum 15 

transfer within the wake (i.e., smaller velocity deficit) compared to LLJs below 250 m above ground level, c) largest 

momentum flux variability is observed during stable atmospheric conditions, with non-negligible variability observed during 

neutral and unstable atmospheric conditions, d) detection of wake effects is almost always observed throughout the 

atmospheric boundary layer height, and finally e) enhancement of wake recovery is observed in the presence of propagating 

gravity waves.  These insights deepen our understanding of the intricate dynamics governing wake recovery in wind farms, 20 

advancing efforts to model and predict their behaviour across varying atmospheric contexts. In addition, the performance of 

large-eddy simulation-based semi-empirical internal boundary layer height model estimates incorporating real-world 

atmospheric and turbine inputs was evaluated using observations during LLJ conditions. 

1 Introduction 

Wind turbine wakes, i.e., velocity deficits due to extraction of the kinetic energy from an operating wind turbine, are 25 

observed to extend several kilometres during stable atmospheric conditions both onshore and offshore (Hirth et al., 2012; Banta 

et al., 2015; Krishnamurthy et al., 2017; Fernando et al., 2019; Ahsbahs et al., 2020; Zhan et al., 2020). Wind farm wakes from 

a large cluster of wind turbines in mesoscale model simulations and offshore observations can reach over 50 km downwind 

under stable atmospheric conditions (Platis et al., 2018; Lundquist et al., 2019, Schneemann et al., 2020). Large-eddy 

simulations of large wind farms also show that wind farm wakes can alter the surface momentum and heat fluxes (Calaf et al., 30 
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2011). Wind farm wakes are known to impact the local meteorological conditions by, for instance, increasing or decreasing 

the temperature and enhancing turbulence downwind of a wind farm (Baidya Roy et al., 2004; Smith et al., 2013; Siedersleben 

et al., 2018; Miller and Keith, 2018, Bodini et al., 2021), although the intensity of the impact depends on atmospheric stability, 

local atmospheric processes, orientation of the wind farms, downwind distance, number and operative regimes of wind 

turbines, etc. 35 

 

In operational wind farms, intra-farm wakes can result in significant power losses and it is important to understand 

the dissipation of wakes within a wind farm.  The effect of a wind turbine is to decrease the mean velocity and increase the 

turbulent kinetic energy above the rotor layer (the layer from the bottom of the wind turbine blade tip to the top of the blade 

tip, VerHulst and Meneveau, 2014). The turbulent transport term in a steady-state filtered-energy equation includes the 40 

entrainment of the mean momentum due to turbulence and the entrainment of the turbulent kinetic energy due to fluctuating 

velocities (Allaerts and Meyers, 2017). Downwind of a wind farm, the recovery of a wind turbine wake within the rotor layer 

largely occurs due to enhanced entrainment of the vertical momentum flux from the boundary layer (Abkar and Porte-Agel, 

2013; Yang et al., 2014; VerHulst and Meneveau, 2014; Abkar and Porte-Agel, 2014; Lu and Porte-Agel, 2015). The maximum 

energy produced by a large (>100MW) land-based wind farm is then constrained by the momentum flux between the 45 

surrounding atmosphere and the flow within the wind farm. Therefore, measuring the entrainment of the mean momentum due 

to turbulence upwind and downwind of an operational wind farm can provide insight into the momentum balance of wakes 

within a wind farm.  The momentum balance can be a function of various locally observed atmospheric phenomena, such as 

low-level jets (LLJ), gravity waves, high shear/veer events etc. Atmospheric stability is known to impact the extent of wake 

propagation downstream (Hansen et al., 2012, Barthelmie et al., 2012, Hirth et al., 2012, Smith et al. 2013, Krishnamurthy et 50 

al., 2017, Lundquist et al., 2019).  In conjunction with some of the local atmospheric features, the transfer of momentum within 

and outside the surrounding wind farm can show drastic spatial and temporal heterogeneity. 

Today’s wind turbines operate within the lowest 300 m of the atmospheric boundary layer (ABL), and in offshore or 

stable atmospheric conditions the ABL can be lower than 300 m (Shaw et al., 2022).  Although wind farms operate within 300 

m above ground level, their impacts can be observed through the entire depth of the boundary layer. Therefore, to accurately 55 

assess such impacts, observations of mean and turbulent characteristics of wind and temperature should extended up to the top 

of the ABL.  Remote sensing instruments, such as Doppler lidars, are capable of estimating the mean winds within the ABL 

(Frehlich, 1994, Frehlich, 2001, Peña et al., 2009, Krishnamurthy et al., 2013, Newsom and Krishnamurthy, 2021) as well as 

turbulence with accuracy comparable to sonic anemometers, which are considered a standard for atmospheric turbulence 

measurements (Frehlich and Cornman, 2001, Frehlich et al., 2006, Banakh and Smalikho, 1997, Krishnamurthy et al., 2012, 60 

Sathe et al., 2015, Bonin et al., 2017, Wildmann et al., 2019). Certain observational studies have validated the propagation of 

wakes for long distances downwind (more than 20 rotor diameters [RDs]), using targeted long-range scanning radar 

measurements (Hirth et al., 2012; Ahsbahs et al., 2020), satellite-based radar observations (Djath et al., 2018) and airborne 

observations (Lampert et al., 2020).  But other observations have also shown that wake deficits are small at larger RDs (~26 
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RDs) downstream of a multimegawatt wind farm (Smith et al., 2013). As wake extent grows laterally downwind of a wind 65 

farm, measuring velocity deficits at larger downwind distances can get very challenging, due to small deficits. Therefore, 

assessing the impact of wakes purely based on wind speed and turbulence intensity estimates at targeted observational 

locations, would not provide a good representation of wake dissipation. Large-eddy simulations have previously shown 

momentum deficit estimates within and above the wind farm rotor layer at large downwind distances (Stevens., 2016, Gadde 

and Stevens, 2021) and provide more realistic information about the influence of wind farm wakes on the atmospheric 70 

boundary layer. Therefore, accurately measuring momentum deficits at various downwind distances of a wind farm, rather 

than just mean winds and turbulence intensity profiles, might provide a better assessment of wind farm wakes. Recent studies 

have focused on observing momentum flux variability around a wind farm using in-situ observations on an aircraft (Syed et 

al., 2023), but there has not been a study, as per the authors knowledge, looking at any systematic and statistically significant 

trends in vertical momentum flux profiles under a variety of atmospheric conditions surrounding an operational wind farm.  75 

Therefore, it would be essential to know under what atmospheric conditions wakes recover faster, thereby reducing the impact 

on downwind wind farms or turbines for optimal siting of wind farms/turbines and power production estimates. 

Gravity waves and atmospheric bores are ubiquitous in the SGP region (Carbone et al., 1990, Davis et al., 2003, 

Geerts et al., 2017). Although most frequently observed during nocturnal and stable atmospheric conditions, they vary 

significantly in their period and amplitude. These nocturnal convective systems typically accompany high winds, intense rain 80 

and/or hail and sometimes tornadoes (Maddox, 1980).  The forecast skill of such atmospheric events is relatively low in both 

numerical weather prediction models and coarse-grid climate models (Davis et al., 2003, Pritchard et al., 2011).  They also 

typically include a LLJ within the atmospheric boundary layer, which supports the moisture transport above the stable 

boundary layer over the SGP (Berg et al., 2015, Krishnamurthy et al., 2021a). Primarily gravity waves create wave-like 

oscillations in the atmosphere due to the presence of a density gradient and bore disturbances are shown to have a significant 85 

upward displacement of wind within the troposphere (Rottman and Simpson, 1989, Parsons et al., 2019).  Such wave-like 

disturbances when reaching the surface, can create undulations in the mean winds depending on the period and wavelength of 

the wave.  Mountain waves have previously been known to impact the power production of a wind farm (Draxl et al., 2021) 

but the impact of propagating gravity waves on wake recovery is not very well understood. 

Wind farms create a step change in surface roughness and when the atmospheric boundary layer height (𝛿) is larger 90 

than the surface momentum roughness (𝑧0𝑚), an internal boundary layer (𝛿𝐼𝐵𝐿) is developed in the region downstream of the 

surface discontinuity (Elliot 1958, Taylor 1969, Calaf et al., 2013, Stevens et al., 2016, Krishnamurthy et al., 2023).  The 

boundary layer flow is observed to adjust to this new surface condition and grows with downstream distance (x). The growth 

of the internal boundary layer is a function of mean wind, thermal stratification or atmospheric stability, inversion height of 

the ABL, and surface turbulence characteristics. In the presence of a wind farm, the growth of an internal boundary layer is 95 

also a function of the mean wind turbine spacing and characteristics of the wind turbine performance (Calaf et al., 2013, 

Stevens 2016, Stevens and Meneveau, 2017).  The momentum flux into a wind farm replenishes the wake of the wind farm 

and the height of the internal boundary layer can reach up to 𝛿.  During stable atmospheric conditions, 𝛿𝐼𝐵𝐿 will grow to reach 
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𝛿 within a short distance from the leading edge of a wind farm, resulting in a fully developed IBL.  While most of the existing 

studies have been based on high-resolution models, limited long-term observations of 𝛿𝐼𝐵𝐿 growth are available in the 100 

literature.  Syed et al., 2023 showed spatial variability of momentum flux measurements from in-situ sensors onboard an 

aircraft upstream, above, and downstream of a wind farm, but did not provide a vertical profile up to the boundary layer. 

Therefore, estimating profiles of momentum flux up to the boundary layer depth can provide insights into the impact of internal 

boundary layers on wind farm dynamics. 

Dimensional arguments show that at far field, large x, as equilibrium conditions prevail, i.e., 𝑢∗
𝑑 𝑢∗

𝑢 =  ℱ1(𝑧0
𝑢 𝑧0

𝑑)⁄⁄ , 105 

where 𝑢∗
𝑑 and 𝑧0

𝑑  are downwind friction velocity and roughness length, ℱ1is an unknown function, while the superscripts u, 

refers to upwind estimates (Krishnamurthy et al., 2023).  In the presence of a wind farm, the model presented in Calaf et al., 

2010 assumes two constant stress levels, above (𝑢∗,ℎ𝑖
 ) and below (𝑢∗,𝑙𝑜

 ) the wind turbine, with the difference between those 

momentum layers given as 

 110 

𝑢∗,ℎ𝑖
2 =  𝑢∗,𝑙𝑜

2 + 
1

2
𝑐𝑓𝑡(〈�̅�〉𝑧ℎ

)
2
,               (1)  

 

where 〈�̅�〉𝑧ℎ
is the horizontally and time averaged velocity at hub-height, 𝑐𝑓𝑡 =  

𝜋𝐶𝑇

(4𝑆𝑥𝑆𝑦)⁄ , 𝐶𝑇 is the turbine coefficient of 

thrust, and lateral and transverse spacing between the wind turbines is given by Sx and Sy.  Using a logarithmic wind profile 

formulation (𝑈(𝑧) =  𝑢∗ ln(𝑧
𝑧0⁄ ) κ⁄ ), where κ is von Karman constant (0.4), a relationship for wind turbine roughness height 115 

of the wind farm (𝑧0,ℎ𝑖) can be estimated (Stevens 2016).  Thereby, the growth of the internal boundary layer due to a wind 

farm can be estimated using (Willingham et al., 2014) 

 

𝛿𝐼𝐵𝐿(𝑥)

𝑧0,ℎ𝑖
=  

𝛿𝐼𝐵𝐿(0)

𝑧0,ℎ𝑖
+ 𝐶1 (

𝑥

𝑧0,ℎ𝑖
)
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where, x is the downwind distance, 𝛿𝐼𝐵𝐿(0) is the internal boundary layer height of the wind turbine rotor top at the first row 

of the wind farm (equal to the wind turbine blade upper tip height), 𝑧0,ℎ𝑖 is the surface roughness due to the presence of a wind 

farm, and C1 is a growth constant (0.28) estimated from large-eddy simulation models (Calaf et al., 2010, Stevens, 2016).  The 

wind farm surface roughness is a function of the upwind surface friction velocity, wind turbine and farm parameters, and 

inflow mean wind conditions within the wind turbine rotor layer.  Existing large-eddy simulations estimates of internal 125 

boundary layers have typically used idealized conditions while real-world atmospheric conditions estimate of IBL might differ 

considerably due to competing atmospheric conditions. Therefore, observations of internal boundary layer growth are 

important to understand the impact of wind farms on the ABL and thereby the momentum balance surrounding a wind farm 

and associated wake replenishment. 
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In this paper we investigate the wake recovery of a wind farm, by investigating the momentum balance (primarily 130 

mean streamwise momentum flux [〈𝑢′𝑤′〉]) surrounding an operational wind farm near the Atmospheric Radiation 

Measurement (ARM) program Southern Great Plains (SGP) sites in Oklahoma during various site-specific atmospheric 

phenomena. Momentum flux profiles from scanning Doppler lidars and surface sonic anemometers are estimated for both 

upwind and downwind locations relative to the wind farm.    Information about the field campaign and site characteristics are 

given in Section 2.  Momentum flux profiles upwind and downwind of an operational wind farm during site-specific 135 

atmospheric conditions are discussed in Section 3. Wind farm IBL measurements, comparison of data with theoretical models 

are given in Section 4 and results are summarized in Section 5. 

 

2 Field campaign and site characteristics 

 140 

Oklahoma ranks third in the United States for installed wind capacity, providing over 37,418 GWh of electricity in 2022.  

The state generated approximately 44% of its electricity from wind energy in 2022, the third highest in the country, and 

provided enough electricity to power millions of U.S. homes. The landscape and topographic flows around SGP are relatively 

simple compared to complex terrain sites with low wind speed interannual variability (< 3%) and therefore are favored by 

wind farm developers (Krishnamurthy et al., 2021a).  145 

To investigate the interaction between wind farms and the ABL and improve our understanding of wind turbine and wind 

farm wake effects, the U.S. Department of Energy (DOE) funded a field campaign, American WAKE experiemeNt 

(AWAKEN), within and adjacent to King Plains wind farm near Enid, Oklahoma (Debnath et al., 2023, Moriarty et al., 2023).  

Figure 1 shows the domain of the AWAKEN field experiment, various locations with instruments deployed, and operational 

wind turbines within the domain.  Several remote sensing and in-situ sensors were deployed, please see Moriarty et al., 2024 150 

for additional details of the site setup and layout.   

In this article, data from primarily two instrumented sites are used for data analysis.  Site A2 is the inflow site and site H 

the outflow site to the King Plains wind farm during southerly wind directions.  Figure 1 shows a picture of both the sites and 

various instruments deployed.  Site A2 was instrumented with a Scanning Doppler lidar, short-range vertical profiling lidar, 

surface sonic anemometer, and a surface meteorological station, while site H had a scanning Doppler lidar, microwave 155 

radiometer, and two disdrometers.  Both the scanning lidars were oriented close to North, like the sonic anemometers.  Azimuth 

and elevation offsets for the scanning lidars were identified by using the stationary tower near the wind farm as a hard target. 

These offsets were used to correct the observed azimuth and elevation angles from the scanning Lidars (as described in 

Newsom and Krishnamurthy, 2020).  Frequent hard target scans were conducted to evaluate any drift in the levelling of the 

lidar, and none was observed during the period of study.  The internal pitch and roll of the lidars were constantly below 0.1 160 

degrees. In addition, boundary layer height estimates from a ceilometer at site A1 (also an inflow site) were used to evaluate 

the impact of boundary layer structure on wind farm wake propagation. The wind turbines deployed at the King Plains wind 

farm are GE 2.8 MW machines with a hub-height of 89 m and a rotor diameter (RD) of 127 m.  The average lateral and 
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transverse distance in southerly wind directions between wind turbines (over the Eastern sector of the King Plains wind farm, 

intersecting sites A1 and H) is approximately 3.15 RD (Sx) and 14.57 RD (Sy). Site A2 is approximately 40 RD upwind of 165 

the first row of the King Plains wind farm, site A1 is approximately 2 RD upwind, and site H is approximately 22 RD downwind 

of the last row of the King Plains wind farm. Additional details on various instruments deployed at the AWAKEN site can be 

found in Moriarty et al., 2024. 

Both scanning lidars installed at A2 and H run a composite scan routine that includes 20 minutes of six-beam profiling 

(Sathe et al., 2015) and 10 minutes of vertical stares. Wind profiles from 100 to 3000 m are obtained by applying the well-170 

established least squares fit to the radial velocity measurement from the six-beams (Newsom and Krishnamurthy, 2020). 

Momentum flux is also estimated through the technique described in Appendix A.2 applied to the upstream and downstream 

beams based on the selected wind direction sector of interest (see Eq. A.3). In the following, momentum flux measurements 

from the surface sonic anemometer at the respective site are also combined with the lidar retrieval to extend the observable 

range down to the surface. Measurements only from southerly wind directions, specifically from 166 degrees to 190 degrees 175 

are considered in this analysis. Additionally, since removing all outliers from lidar observations is challenging, the median of 

the sample will be presented in the remainder of the manuscript. 

Figure 2a shows the wind rose at 105 m above ground level from Doppler lidar measurements collected from March 

17, 2023, to September 10, 2023.  Wind directions are predominantly southerly during the duration of the study.  Figure 2b 

shows the distribution of various atmospheric stability conditions as a function of wind direction.  Atmospheric conditions 180 

were divided into various classes based on the Obukhov length (L) scale as provided in Krishnamurthy et al., 2021a and Table 

1 below.  Obukhov length, L, is given by 

 

𝐿 =  −
𝑢∗

3𝑇

𝑘𝑔〈𝑤′𝛩𝑣
′ 〉

,      (3) 

 185 

where T is the air temperature, g is the acceleration due to gravity, and 〈𝑤′𝛩𝑣
′〉 is the kinematic heat flux from sonic 

anemometers. 

At SGP C1 (which is ~21 km north of King Plains wind farm), stable atmospheric conditions are observed for more 

than 50% of the time. During neutral conditions, a larger percentage of winds are either easterly or northerly.  It is important 

to note that surface atmospheric stability might not always be representative of conditions at elevated levels, especially during 190 

transition periods (i.e., during sunset and sunrise). 

Table 1. Stability classification based on L thresholds. 

Stratification L 

Very stable 10 < L < 50 
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Stable 50 < L < 200 

Near-neutral stable 200 < L < 500 

Neutral |L| > 500 

Near-neutral unstable -500 < L < -200 

Unstable -200 < L < -100 

Very unstable -100 < L < -50 

 

  

Figure 1. (a) Southern great plains area with location of the AWAKEN field campaign (white box) shown. Various sites deployed 195 
(yellow stars and circles) during the AWAKEN field campaign, DOE ARM sites (magenta diamonds), and the wind turbines (black 
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circles) in the area (Moriarty et al., 2024). (b) Images of instruments deployed at site A2 (inflow to King Plains wind farm for 

dominant southerly wind directions) and (c) site H (downwind of King Plains wind farm) are also shown at the bottom. 

 

 200 

 

 

Figure 2. (a) Wind rose at 105 m AGL from a Doppler lidar at SGP central facility during all atmospheric conditions. (b) 

Atmospheric stability classification as a function of wind direction from March 17, 2023, to September 10, 2023. Various 

atmospheric stability classes are distinguished based on L and defined in Krishnamurthy et al. (2021) and Table 1. 205 
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3 Wake Recovery Observations 

To minimize the impacts of wakes from neighboring wind farms (including the Breckinridge and Armadillo Flats 

wind farms shown in Figure 1) in our analysis and to measure the impact of wakes from at least 3 rows of wind turbines, 

measurements only from southerly wind directions, especially from 166 degrees to 190 degrees are considered. Since the wind 210 

directions are predominantly southerly, sufficient data is available (1490 10-min samples) to accurately estimate the mean 

trends of momentum flux during specific atmospheric conditions.  Below, statistics of momentum flux variability under 

different atmospheric conditions, such as varying levels of thermal stratification (stability), the LLJs, high wind shear and veer 

conditions, ABL depth, and atmospheric gravity waves are assessed. 

 215 

3.1 Impact of atmospheric stability on wake recovery 

As shown in Figure 2b, when winds are southerly the atmospheric stability is predominantly (>50%) stable near the 

surface, with neutral conditions occurring about 20% of the time and unstable conditions observed for the remainder.  Figure 

3 shows median momentum flux (〈𝑢′𝑤′〉) profiles from the downwind (site H) and upwind (site A2) locations during stable, 

neutral, and unstable atmospheric conditions. In general, we observe higher negative momentum flux upwind of the wind farm 220 

near the surface with an asymptotic behaviour eventually reaching zero near δ, like a canonical atmospheric boundary layer.  

Downwind of the wind farm, enhanced -〈𝑢′𝑤′〉 is observed due to the shear and turbulence generated by the wind turbines. 

Stable conditions are observed to show larger deviations in momentum flux downwind of the wind farm compared to neutral 

or unstable atmospheric conditions.  The sign of momentum flux is tied to the vertical wind shear, as for sustenance of 

turbulence within a wind farm an increase in wind shear (positive) should result in negative momentum flux downwind of the 225 

wind farm.   

Therefore, in stable atmospheric conditions, due to large (positive) wind shear, the momentum flux must be negative 

to create downwind turbulence. As mentioned earlier, the wind farm wake propagates longer in stable conditions due to lower 

ambient turbulence compared to convective conditions, therefore at site A2 which is approximately 22 RD downwind of the 

last row of the King Plains wind farm, the region of enhanced vertical momentum flux due to the wind farm is expected to be 230 

more persistent and varies with the diurnal cycle (Figure 3a).  In Figure 3b and Figure 3c, larger momentum flux estimates are 

observed near the surface during unstable and neutral atmospheric conditions compared to stable conditions. Under neutral 

conditions, where shear is less positive and ambient turbulence is higher compared to stable conditions, the momentum flux 

generated by downwind wind turbines is anticipated to be lower or less persistent.  Consequently, wakes are not expected to 

travel as far. But in Figure 3b, significant momentum flux deficits are still observed at 22 RDs downwind during neutral 235 

conditions. A couple of possible reasons for this could be due to a) misclassification of atmospheric stability from surface flux 

measurements, i.e., surface atmospheric stability at hub-height is not representative of the true atmospheric state and b) higher 

wind shear observed during neutral conditions resulting in more negative momentum fluxes within the wind farm wake. The 

larger the vertical momentum flux, the faster the wake velocity recovers to a freestream value (Syed et al., 2023).  While during 
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unstable atmospheric conditions, wakes are expected to dissipate faster (convective mixing of the atmospheric boundary layer) 240 

and due to low wind shear, the momentum flux deficits are expected to be significantly lower. In Figure 3c, it is evident that 

during unstable conditions the momentum flux deficits are lower but still observed 22 RD downwind.  Overall, momentum 

flux deficits are greater during unstable conditions at higher altitudes, while they are larger during stable conditions at lower 

heights. One potential reason for deficits observed during unstable conditions at 22 RDs downwind could be the impact of 

convectional updrafts or downdrafts on the propagation of wake downwind of a wind farm (Berg et al., 2017, Wang et al., 245 

2020).  Additional analysis is required, ideally using high-resolution large-eddy simulations, to truly evaluate the impact of 

updrafts and downdrafts on wind farm wakes.  Overall, the median deficit observed over King Plains wind farm shows that 

the flow disturbance downwind of a wind farm can extend long distances (at least 22 RDs) in every atmospheric condition. 

Such differences are generally not very evident from solely observing wind profile observations upwind and downwind of a 

wind farm. 250 

As mentioned earlier, no observations of vertical profiles of momentum flux have been recorded to date within an 

operational wind farm, therefore, there is limited knowledge on the height at which the peak transfer of momentum occurs 

downwind of a wind farm. It is well known that the peak velocity deficit (upwind – downwind velocity) generally occurs at 

hub-height, but there are no observations showing the peak momentum deficit above the wind farm. Based on large-eddy 

simulation results, the peak momentum deficit is expected to occur near the upper edge of the wind turbine rotor layer (Abkar 255 

and Porte-Agel, 2015), but based on observations at King Plains wind farm, in stable conditions, at 22 RD downwind, peak 

momentum flux is consistently observed at ~0.36 RD above the wind farm. Therefore, the mean kinetic energy entrainment 

height into the wake is observed to occur higher than traditional LES models.  Additional comparisons between LES models 

and observations are required to further evaluate the wake recovery processes within the wind farm wake. 

 260 
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Figure 3. Momentum flux profiles at ~ 40 RD upwind (site A2) and 22 RD downwind (site H) of the King Plains wind farm during 

a) stable, b) near-neutral and c) unstable atmospheric conditions.  The vertical extent of the wind turbine rotor layer is also shown 

with horizontal dotted black lines.  Near surface Obukhov length (L) is used to differentiate between different stability conditions. 265 
Error bars represent the sample standard deviation at respective heights. Measurements only from southerly wind directions, 

specifically from 166 degrees to 190 degrees, and from 17 March 2023 to 10 September 2023 are considered in this analysis. 
 

3.2 Impact of LLJs on wake recovery 

Stable conditions produce LLJs in the U.S. Great Plains (Berg et al., 2015, Krishnamurthy et al., 2021a) whose 270 

characteristics can modulate wind farm performance/power output (Gadde and Stevens, 2020). There are several definitions 

of low-level jet height (ZLLJ) in the literature (Blackadar, 1959, Bonner 1968, Whiteman et al., 1997, Song et al., 2005, Kalverla 

et al., 2019, Debnath et al., 2020) but in this article is defined as per Song et al., 2005.  The definition is based on two criteria, 

1) wind speed maximum (i.e., LLJ nose) is observed within the lowest 2-km and is greater than at least >10 ms-1, and 2) wind 

speed drop-off above the jet-nose is observed and above a set threshold (at a minimum > 5 ms-1).  Three categories of the LLJs 275 

were identified based on varying thresholds of drop-off speeds and maximum nose wind speed (Song et al., 2005), although 

in this analysis all LLJ categories were combined.  Figure 4a shows the distribution of various near-surface atmospheric 
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stability classes during southerly wind directions (from 166 degrees to 190 degrees) during LLJ events and associated median 

ZLLJ for each atmospheric stability class.  It can be observed that lower ZLLJ values are typically associated with very stable or 

stable near-surface atmospheric conditions, while higher ZLLJ values are observed when the surface atmospheric stability is not 280 

stable, indicating a decoupled boundary layer (Vanderwende et al., 2015).  Therefore, there could be confounding influences 

of the near surface stability and LLJ influence on the wind farm wakes during such instances. Figure 4b shows LLJ nose wind 

speed as a function of median ZLLJ per wind speed bin and hub-height wind speed and Figure 4c shows ZLLJ as a function of 

hub-height wind speed. It is evident that, up to near rated wind speed (approximately 13 ms-1), a higher ZLLJ  results in a higher 

jet nose wind speed and a higher hub-height wind speed.  Overall, it is challenging to decipher various processes influencing 285 

wind farm wake recovery using observations but would be possible to isolate certain common features known to influence 

wind farm recovery (such as LLJ height, or atmospheric stability or atmospheric boundary layer or hub-height wind speed) 

and study the variability observed during such select features.   

As previously observed using historical measurements from the ARM SGP site, the ZLLJ generally falls within 500 m 

above ground level (Debnath et al, 2023).  Since the scanning lidar measurements start from ~100 m above ground level, in 290 

this analysis we only evaluate LLJs observed above the turbine hub-height (> 110 m).  Therefore, the observations are 

partitioned into two halves, a) 250 m < ZLLJ < 500 m and b) 110 m < ZLLJ < 250 m.  The partitioning was driven by selecting 

a height near the wind turbine rotor layer (25.5 m to 152.5 m) that could be impacted by the wind turbine, considering the 

frequency of LLJ events from southerly wind directions (which peaked around 250 m above ground level), and the observed 

peak in momentum flux during stable conditions, which occurred approximately 250 m above ground level as shown in Figure 295 

3.  Figure 5 shows vertical profiles of momentum flux and wind speed both upwind and downwind of the wind farm for 

different ZLLJs as mentioned above and further conditioned to only southerly wind directions (166 degrees to 190 degrees). 

During southerly LLJ events at the King Plains wind farm, it is being observed that the transfer of momentum into the wake 

of the wind farm is a function of the LLJ height. Higher ZLLJ is associated with larger momentum transfer within the wake and 

lower velocity deficit at 22 RD downwind.  In short, the wake recovery is faster when the LLJ height is higher.  This is mainly 300 

due to the shear generated turbulence below the ZLLJ and the enhanced momentum deficit developed due to the wind farm.  

The peak entrainment height is observed to marginally increase with higher ZLLJ.  These results support some of the hypotheses 

from previous LES model results on this topic (Gadde and Stevens, 2020).  One unique feature that is observed when 127 m 

< ZLLJ < 250 m, is that the ZLLJ is modulated due to the presence of the wind farm downwind of the wind farm, wherein the 

ZLLJ is consistently observed above the wind farm at 22 RD downwind. The downwind ZLLJ is approximately equal to the 305 

height of the internal boundary layer (δIBL) generated due to the presence of the wind farm.  In addition, during LLJ conditions, 

ZLLJ is typically assumed to be the top of the atmospheric boundary layer (δ, Liu and Liang 2010), as the turbulence above the 

ZLLJ is negligible. Figure 6 shows a schematic of the interaction between the wind farm, varying ZLLJs and growth of the internal 

boundary layer due to the presence of the wind farm. Figure 7 illustrates the probability distribution of LLJ events at the 

upwind site (A2) and downwind site (H) of the King Plains wind farm.  The data reveal that the difference in LLJ height 310 
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between the upwind and downwind sites is greater below approximately 250 to 300 m but diminishes at higher LLJ heights. 

Notably, there is a reduced frequency of LLJs observed downwind of the wind farm when LLJs occur below the rotor layer. 

Future research will focus on further analyzing the effects of LLJs that occur beneath the turbine rotor layer. 

 

  315 

 
Figure 4. (a) Distribution of various atmospheric stability classes (VS – Very Stable, Stable, NNS – Near-Neutral Stable, Neutral, 

NNUS – Near-Neutral Unstable, US – Unstable, VUS – Very Unstable, as per Sathe et al., 2015) during LLJ events from southerly 

wind directions and associated ZLLJ per stability class, (b) median LLJ nose wind speed (ULLJnose) as a function of ZLLJ and hub-

height wind speed (Uhub) at the upwind site (site A2), and (c)  ZLLJ as a function of Uhub.  The error bars indicate one standard 320 

deviation. Minimum ZLLJ is 110 m and maximum ZLLJ is 690 m AGL.  Measurements only from southerly wind directions, especially 

from 166 degrees to 190 degrees, and from 17 March 2023 to 10 September 2023 are considered in this analysis. 
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Figure 5. (a) Momentum flux and (b) horizontal wind speed profiles upwind (red, site A2) and downwind (blue, site H) of the King 325 

Plains wind farm during conditions when the ZLLJ is less than 250 m AGL at the upwind location (dash-dotted) and ZLLJ is between 

250 m and 500 m AGL (star dotted).  The vertical extent of the wind turbine rotor layer is also shown with horizontal dotted black 

lines.  Measurements only from southerly wind directions, especially from 166 degrees to 190 degrees, and from 17 March 2023 to 

10 September 2023 are considered in this analysis. 

 330 
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Figure 6. Schematic of impact of LLJs on wind farm boundary layer when (top) 100 m < ZLLJ < 250 m and (bottom) 250 m < ZLLJ < 

500 m. 335 
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Figure 7. Probability distribution of LLJ heights (ZLLJ) upwind (site A2, yellow bar graph) and downwind (site H, blue bar graph) 

of the King Plains wind farm during southerly wind directions. 

 

3.3 Impact during varying shear and veer (non-LLJ) conditions on wake recovery 340 

High wind shear and veer conditions are generally observed within a wind farm, but it is difficult to decouple the effects 

of shear or veer conditions compared to atmospheric stability conditions.  Nonetheless, it would be helpful to observe any 

consistent trends during such conditions as they are known to impact power production of a wind farm (Murphy et al., 2020).  

In addition, such findings may be informative for wind farm control concepts that yaw wind turbines away from the 

predominant wind direction at hub-height but do not currently consider the wind veer within the rotor layer (Fleming et al., 345 

2019).  Figure 8 and Figure 9 show median profiles of momentum flux and horizontal wind speed both upwind and downwind 

of the King Plains wind farm during non-LLJ events for various shear and veer conditions, respectively.  Estimates associated 

with positive and negative wind shear or veer conditions during southerly wind directions are provided.  
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Hub-height wind speed (𝑈(𝐻)) and shear exponent (𝛼) are estimated by fitting a power-law vertical wind profile to 

the wind speed data available within the rotor layer (here from 90 m to 153 m, due to lack of observations below 90 m). The 350 

power-law fit is conveniently recast into a linear fit through a log transformation as shown in Eq. 4 below: 

 

log 𝑈 (𝑧) = log 𝑈(𝐻) + 𝛼log (
𝑧

𝐻
)                        (4) 

 

Where log log (
𝑧

𝐻
)  and log log 𝑈(𝑧)  are the independent and dependent variables of the linear fit, respectively. Hub-height 355 

wind direction (𝜙(𝐻)) and veer (𝛽 ≡
𝜕𝜙

𝜕𝑧
) are estimated in a similar fashion but using a linear wind veer model, as follows: 

 

𝜙(𝑧) = 𝜙(𝐻) + 𝛽(𝑧 − 𝐻)                 (5) 

 

This approach for estimating hub height quantities has the advantage of leveraging all the available measurements while 360 

mitigating possible biases due to the lack of data in the lowest half of the rotor layer. 

Certain trends are immediately observed for cases with positive or negative shear conditions (Figure 8), where 

regardless of the wind shear profile, momentum deficits generated due to the wind farm are observed 22 RDs downwind of 

the wind farm. But both wind and momentum deficits are higher during conditions with high wind shear (0.5 < α < 2) compared 

to low or negative wind shear (α ≤ 0) cases.  Although a lower number of cases were recorded when the wind shear was low 365 

or negative at the King Plains wind farm compared to high wind shear cases. Median wind speeds at hub-height during both 

conditions are ~ 5 ms-1.  For cases with negative wind shear, the median wind speed differences between upwind and downwind 

are negligible but a clear trend in median momentum flux profiles are observed.  Traditionally it is expected for the wind speed 

to reach approximately 99% of the free stream wind speed, but in cases such as this where the wind speeds do reach near free 

stream, it could be erroneously assumed that the wind farm wake has completely been dissipated (Djath and Schulz-370 

Stellenfleth, 2019).  In reality, added turbulence due to the presence of a wind farm is not completely removed downwind of 

a wind farm under such circumstances. Additional research is needed to evaluate wind farm wake models or parameterization 

schemes during such canonical atmospheric conditions. 

Although during cases with positive (β > 0.1o m-1) and negative (β < -0.1o m-1) wind veer conditions, median wind 

speeds are closer to the cut-in wind speeds of the GE 2.8 MW wind turbines and therefore no momentum flux deficits are 375 

observed (Figure 9).  Both high and low wind veer cases show that the median wind speeds are relatively low at King Plains 

wind farm.  It is noted that the wind farm has also been observed to modify the wind direction downwind of a wind farm (not 

shown). 
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 380 

  
Figure 8.  (a) Momentum flux and (b) horizontal wind speed profiles upwind (red) and downwind (blue) of the King Plains wind 

farm during high (0.5 < α < 2, observed 53% of time) and negative (α ≤ 0, observed 2% of the time) wind shear conditions. 

Measurements only from southerly wind directions, especially from 166 degrees to 190 degrees, and from 17 March 2023 to 10 

September 2023 are considered in this analysis. 385 
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Figure 9. (a) Momentum flux and (b) horizontal wind speed profiles upwind (red) and downwind (blue) of the King Plains wind 

farm during high (β > 0.1o m-1
, observed 28.5% of the time) and negative (β < -0.1o m-1, observed 1% of the time) wind veer conditions. 

Measurements only from southerly wind directions, especially from 166 degrees to 190 degrees, and from 17 March 2023 to 10 390 

September 2023 are considered in this analysis. 
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3.4 Extent of wake within ABL 

The atmospheric boundary-layer height (δ) is an important parameter for understanding the exchange of momentum, 

heat, and moisture between the free troposphere and the surface. Unfortunately, estimating δ can be challenging and there is 395 

limited consensus on the best approach to estimate δ from remote sensing instruments (Kottahaus et al., 2023). Typically, 

instruments such as scanning Doppler lidars or ceilometers are used to estimate δ (Tucker et al., 2009, Krishnamurthy et al., 

2021b, Zhang et al., 2022).  A ceilometer was deployed at the inflow site A1 and is used to estimate δ during southerly wind 

directions for this evaluation. The boundary layer (or mixing) height, provided by the Vaisala CL-31 BL-View software, is 

based on three different algorithms a) gradient method (where the algorithm detects the gradient in backscatter profile), b) 400 

profile method (where the algorithm determines the mixing height by fitting an idealized backscatter profile to the observed 

range-corrected ceilometer backscatter profiles) and c) merged gradient and profile fit method (Zhang et al., 2022).  There are 

several filters applied to the data, such as cloud and precipitation filters, and additional outlier removal techniques (due to 

instrument noise). Figure 10 shows the median momentum flux and horizontal wind speed profiles during southerly wind 

directions and measurement co-located when concurrent ceilometer measurements were also available.  The median δ (~540 405 

m) at A1 from the ceilometer is below the height where both the median momentum flux estimates at sites A2 and H are near 

equal (~760 m). Therefore, it is observed that the median ceilometer δ does not accurately predict the height of the atmospheric 

boundary layer. There are several possible reasons for this, for example a) the ceilometer uses the gradient in backscatter 

aerosol concentrations to estimate δ, which might not always be the top of the boundary layer (Zhang et al., 2022), and b) 

upwind and downwind δ might be different due to the presence of the wind farm, therefore the δ estimated by the ceilometer 410 

well represents the δ at the inflow site (upwind momentum flux is observed to be close to zero).  Above δ, the momentum flux 

deficits due to the presence of the wind farm are negligible.  But overall, it is evident that the impact of the wind farms almost 

always reaches to the top of the atmospheric boundary layer.  Therefore, it is important to model not only the wind turbine 

rotor layer with high vertical resolution but up to δ to accurately assess the impacts of wind farms and wake recovery.   

 415 
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Figure 10. (a) Momentum flux and (b) horizontal wind speed profiles upwind (red) and downwind (blue) of the King Plains wind 

farm for all atmospheric conditions.  The median height of the ABL (δ) from ceilometer measurements is also shown.  Measurements 

only from southerly wind directions, especially from 166 degrees to 190 degrees are considered in this analysis. 

 420 

3.5 Impact of a gravity wave event on wake recovery  

  Figure 11 shows a time-height cross-section of vertical velocity as observed near ARM SGP central facility Doppler 

lidar (Newsom and Krishnamurthy, 2020, Krishnamurthy et al., 2021a) on 24th July 2023 from 0300 to 0400 hours UTC (1900 

to 2000 hours local time).  The vertical velocity clearly shows wave-like features at approximately 800 m AGL, where we 
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observe a positive and negative shift in vertical velocity.  Figure 12 shows median momentum flux and wind speed both upwind 425 

and downwind of the King Plains wind farm on 24th July 2023 from 0330 to 0400 UTC.  The winds were predominantly 

southerly during this event with a veer of 0.0375 o/m from surface up to the top of the boundary layer.  A nocturnal LLJ was 

also observed at approximately 220 m AGL at the inflow site and the gravity wave is propagating above the nocturnal stable 

atmospheric boundary layer (~ZLLJ).  The peak-to-peak amplitude of the gravity wave is observed to be ~600 m, which spans 

from 400 m above ~1000 m.   430 

As observed in Figure 12, the momentum flux deficit is significantly enhanced above and within the wake of the King 

Plains wind farm.  Estimates of vertical momentum flux deficits are more than three times the median estimates of momentum 

flux deficits observed during LLJ conditions (see Figure 5).  Downwind, as previously noted, the peak of a LLJ is observed to 

be displaced significantly above the wind farm which is a function of the enhanced mixing within the wind farm rotor layer.  

The higher the mixing, the larger the entrainment, and the higher the displacement of the LLJ.  Above the LLJ, the gravity 435 

wave is observed to have an inverse effect, where the momentum flux is positive, entailing momentum is transferred upwards 

to the gravity wave. The positive or negative transfer of momentum near the gravity wave probably depends on the updrafts 

or downdrafts of the wave, but over the 30-min average observations the overall transfer of momentum is upwards. The 

negative wind shear above the LLJ could also add to the extraction of momentum from the wind farm.  This reduces the 

intensity of the LLJ and the extracted momentum results in higher wind speeds above the LLJ downwind of the wind farm.  It 440 

is observed that, in this case, the wind farm has significantly altered the winds not only within the δ but also above it, 

modulating the shape and intensity of the LLJ.  Additional analysis would be needed to see the spatial impact of wind farms 

during gravity wave propagation and power production.  Next steps would be working towards a climatology of gravity waves 

in the region and its impact on wind farm performance. 

 445 
Figure 11. Time-height cross-section of vertical velocity (W) at ARM SGP central facility on 24-Jul-2023 from 03:00 to 04:00 UTC.  

The gaps in data every 15-minutes are when the lidar performs wind profiles (Newsom and Krishnamurthy, 2020). 
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Figure 12. (a) Momentum flux and (b) horizontal wind speed profiles upwind (red) and downwind (blue) of the King Plains wind 450 

farm during a gravity wave event on 24 July 2023 at 3:30 UTC. 

 

4 Comparisons of observed δIBL with theoretical estimates 

As discussed earlier, an internal boundary layer (δIBL) is developed due to a step change in surface roughness.  Turbulence 

is expected to be higher within the internal boundary layer (downwind of the surface roughness) compared to inflow (upwind 455 

of the surface roughness).  Wind farms create a step change in surface roughness and are known to develop internal boundary 
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layers downwind of a wind farm (Calaf et al., 2013, Stevens and Meneveau, 2017).  In addition to the roughness impacts of 

the wind turbines, the wind farm developed internal boundary layer is convolved with the wake of the wind turbines, which 

create additional momentum deficits downwind of the wind farm. Internal boundary layers can be estimated from a velocity 

profile, by identifying a kink in the velocity profile (Garratt et al., 1990).  Although this method provides a general trend, it is 460 

known to be not very accurate.  An alternative technique, proposed in Stevens 2016, is being implemented here, where the 

difference in streamwise momentum flux profiles upwind and downwind of a surface roughness change are used to estimate 

the growth of the internal boundary layer. Vertical momentum flux is responsible for the influx of momentum into the wake 

of a wind farm. Larger streamwise momentum flux deficits above the wind farm are mainly observed due to turbulence and 

shear generated by the wind turbines. Wind turbine wakes enhance vertical mixing above a wind farm, which results in a 465 

downward flow of momentum. The internal boundary layer height (δIBL) is the height when the upwind and downwind 

momentum flux estimates are approximately within 1 – 5% of each other above the wind farm. 

Wind farm δIBL is typically capped by δ but previously LES modelling results have shown to penetrate the upwind δ during 

LLJs (Gadde and Stevens, 2020).  As shown earlier, model formulations exist to estimate δIBL downwind of a wind farm (Eq. 

2).  But the growth constant and wind farm surface roughness formulations have been fine-tuned based on large-eddy 470 

simulations, and as per the author's knowledge, no significant analysis on the validation of such formulations have been 

conducted so far using real-world observations.  This article does not attempt to do that comparison in detail but is the start of 

such comparisons. The model formulations (Eq. 2) are sensitive to surface roughness in the presence of a wind farm (z0, hi) 

estimates and the growth constant (C), which can significantly vary δIBL estimates within the model (sensitivity analysis not 

shown for brevity).  The model formulations also do not explicitly restrict the growth of δIBL but are implicitly treated in models 475 

where the sub-grid scale mixing does not exceed δ, especially during stable atmospheric conditions. 

Figure 13 shows the difference in estimates of δIBL from observations and model formulations (Eq. 2) only during stable 

atmospheric conditions and in the presence of a LLJ. Since we have higher confidence in δIBL during these cases and δ already 

represents the top of the LLJ height, this also avoids introducing additional uncertainty from Ceilometer δ observations.  Some 

of the inputs to model formulations are provided by real-world observations, such as the lidar 10-minute average wind speed 480 

at hub-height, inflow surface friction velocity and roughness from sonic anemometers, thrust curve of the GE 2.8 MW wind 

turbine, and average wind turbine spacing in southerly wind directions. Given real-world inputs, the median δIBL difference 

between the model and observations is approximately 50 m, i.e., the model underestimates the δIBL. During some extreme cases 

(ΔδIBL > 200 m) the model does not behave due to in-consistent wind directions for a sustained period (several hours). 

Additional research is needed with large-eddy simulations or numerical weather prediction models with real-world forcing to 485 

assess the recovery and growth of δIBL at an operational wind farm. 
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Figure 13. Probability distribution of δIBL difference between observations and a semi-empirical model (Eq. 2) during stable 

atmospheric conditions and in presence of a LLJ. 490 

 

 

5 Conclusions 

These novel observations reveal the temporal and spatial variability of momentum balance within and above the wind 

farm wakes during regional specific atmospheric conditions. Profiles also show the growth of the internal boundary layer and 495 

allow quantification of the accuracy of current large-eddy simulation-based approximations in estimating the growth of the 

internal boundary layer (IBL). 

The momentum balance surrounding a wind farm may impact wake recovery.  The greater the momentum flux, the faster 

the wake velocity recovers to a freestream value. Wind farm wakes are known to propagate long distances during stable 

atmospheric conditions, and thereby the vertical momentum flux added due to the presence of the wind farm is more persistent 500 

at downwind locations and varies with the diurnal cycle.  Stable conditions also produce LLJs in the US Great Plains, which 

are known to impact the performance and power output of commercial wind farms.  Figure 6 shows a schematic of the impact 

of varying ZLLJ on wind farm wake recovery and modulation of the flow downwind of the wind farm. Therefore, long-term 

measurements of vertical momentum flux upwind and downwind of a wind farm can provide a holistic view of the physical 

mechanisms behind wake recovery during various atmospheric conditions.  In this study, we have evaluated the impact on 505 

wake recovery using long-term observations of vertical momentum flux through the boundary layer during a variety of 

atmospheric conditions.  Overall, some highlights of the observations are mentioned below: 
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1. Wind farms alter LLJ characteristics downwind of the wind farm, by elevating the height of the jet above the wind 

farm (see Figure 5 and Figure 6), 

2. The height of the LLJ significantly impacts wind farm wake recovery downwind, with higher ZLLJs resulting in faster 510 

wake recovery (see Figure 5 and Figure 6), 

3. Negative wind shear during non-LLJ cases show short wake propagation at 22 RD downwind of a wind farm, 

4. Wind farm wake impacts are observed through the δ (see Figure 10), 

5. Gravity waves enhance wake recovery and accelerates winds above the LLJ downwind of a wind farm (see Figure 

12), and lastly, 515 

6. Large-eddy simulation-based theoretical δIBL models show a large spread given real-world inputs of the atmosphere 

and turbine. 

Finally, we have highlighted several areas of research in this article that still need to be conducted to understand the 

dynamics of the wind farm influenced atmospheric boundary layer, mentioned below: 

1. Additional comparisons between LES models and observations are required to further evaluate the wake recovery 520 

processes within a wind farm wake.  Since most mesoscale wake model parameterizations are assessed using outputs 

from LES models. 

2. It is important to model not only the wind turbine rotor layer with high vertical resolution but up to the top of the δ to 

accurately assess the impacts of wind farms and wake recovery (as shown in Figure 10). As it is important to 

understand the entrainment of winds from the ABL to the wind farm wake boundary layer. 525 

3. Recommend long term (1-year +) evaluation of wind farm wake models or parameterizations using long-term 

atmospheric flux observations through the boundary layer to assess the true performance of such models. 

4. Analysis would be needed to see the spatial impact of wind farms during gravity wave propagation and power 

production. 

5. Research is needed with large-eddy simulations or numerical weather prediction models with real-world forcing to 530 

assess the recovery and growth of δIBL at an operational wind farm. 

Future work will focus on developing a methodology to classify gravity waves in the region and assess the power production 

impacts in the presence of gravity waves at the King Plains wind farm site. In addition, comparison of observations and models 

will be conducted to refine wind farm parameterization schemes within numerical weather models. 

 535 

Appendix A: Flux estimation algorithms and approach 

Herein we provide details of the algorithms used to estimate momentum fluxes from surface-based anemometers and 

scanning Doppler lidars and a methodology to estimate the height of the internal boundary layer from upwind and downwind 

momentum flux profiles. 
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A.1 Momentum flux estimates from sonic anemometers 540 

Sonic anemometers are considered a standard for estimating atmospheric turbulence parameters (Wilczak et al., 2001, 

Wilczak et al., 2019, Fernando et al., 2019).  Three-dimensional (3-D) acoustic anemometers provide measurements of winds 

and temperature at high temporal frequency (>= 20 Hz), which supports calculation of higher order statistics with good 

accuracy (Cook and Sullivan, 2020). The sign conventions of the 3-D winds vary for different manufacturers and for Gill Sonic 

anemometers, which were deployed for this project, the sign conventions are defined as positive for upward vertical wind 545 

component (𝑤) and upward atmospheric fluxes, 𝑢 wind component (North-South) is positive towards North and 𝑣 wind 

component (East-West) is positive towards the West.  The raw and flux data files are generated as per Cook and Sullivan, 

(2020), and contain 30-minutes of post-processed data and estimates of turbulent fluxes.  The sonic data is post-processed by 

first applying a de-spiking procedure (Goring and Nikora, 2002) to remove any data anomalies and a 2-axis coordinate rotation 

is performed (Wilczak et al., 2001), which ensures 〈𝑤〉 = 〈𝑣〉 = 0 and 〈𝑢𝑠〉 = U, where U is the mean wind speed, 𝑢𝑠 is the 550 

streamwise component and 〈∙〉 is a 30-minute temporal average.  To estimate the fluxes, the average of each variable is 

estimated over a 30-minute (non-overlapping) window and no detrending of the data is performed to estimate the velocity 

fluctuations. The stress tensor is then computed using 30-minute measurements of velocity fluctuations and assumed to be 

statistically stationary over the averaging window. Momentum flux estimates from sonic anemometer data were calculated 

using the eddy-covariance method (Stull, 1988). 555 

A.2 Momentum flux profiles from Doppler lidars 

A brief description of the method to estimate momentum flux profiles from lidars is given below (Eberhard et al., 

1989; Mann et al., 2010). The radial velocity (𝑣𝑟) equation of a Doppler lidar is given by: 

 

𝑣𝑟(𝑅, 𝜃) = 𝑢(𝑅) sin 𝜑 cos 𝜃 + 𝑣(𝑅) sin 𝜑 sin 𝜃 + 𝑤(𝑅) cos 𝜑, (A.1) 560 

 

where, 𝑅 is the range, 𝜑 is the half-opening angle of the conical scan (30º), 𝜃 is the azimuthal direction of the lidar beam (0 

degrees is North), and (u, v, w) are the wind components at each range-gate center. The variance of 𝑣𝑟 is given by 

 

𝜎2[𝑣𝑟(𝑅, 𝜃)] =  𝜎𝑢
2 sin2 𝜑 cos2 𝜃 + 𝜎𝑣

2 sin2 𝜑 sin2 𝜃 + 𝜎𝑤
2 cos2 𝜑 +  2〈𝑢′𝑣′〉 sin2 𝜑 cos 𝜃 sin 𝜃 +565 

 2〈𝑢′𝑤′〉 cos 𝜑 sin 𝜑 cos 𝜃 + 2〈𝑣′𝑤′〉 cos 𝜑 sin 𝜑 sin 𝜃,   (A.2) 

 

where (𝑢′, 𝑣′, 𝑤′) are the velocity fluctuations. One can estimate the streamwise momentum flux components (〈𝑢′𝑤′〉) by 

calculating the radial velocity variance in the upwind and downwind directions over 30-minutes (Eberhard et al., 1989; Mann 

et al., 2010), which is then given by 570 
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〈𝑢′𝑤′〉 =  
𝜎2[𝑣𝑟 𝑑𝑜𝑤𝑛]− 𝜎2[𝑣𝑟 𝑢𝑝]

2 sin 2𝜑
,  (A.3) 

 

where, 𝜎2[𝑣𝑟 𝑑𝑜𝑤𝑛] and 𝜎2[𝑣𝑟 𝑢𝑝] are the radial velocity variances from the nearest downwind and upwind azimuth angles 

relative to the mean wind direction, respectively. The nearest up and down radial velocities from the azimuth angles are picked 575 

for each 30-minute sample and given range-gate wind direction estimate. It can be noted from Eq. A.3 that in a positively 

sheared turbulent flow, 𝜎2(𝑣𝑟 𝑢𝑝) >  𝜎2(𝑣𝑟 𝑑𝑜𝑤𝑛), i.e., the upwind variances, are typically larger than downwind variances. 

The effect of measurement volume is not considered in this analysis and has been shown to have a minimal impact on the 

streamwise momentum flux measurements for Doppler lidars (Mann et al., 2010). 

For evaluating the accuracy of the algorithm, continuous Velocity Azimuth Display (VAD) scans at the same elevation 580 

and azimuth angles are required to calculate the variance of the radial velocity along each beam. From October 8, 2020, to 

January 14, 2021, continuous eight-point Planned Position Indicator (PPI) scans (Δaz = 45o
 and el = 60o) were conducted at 

the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility to support an ongoing field 

campaign. The mean wind direction (𝜙) at each height is calculated using the approach of Newsom et al. (2017), wherein a 

chi-square distribution is fit to estimate the horizontal wind vector. Each beam was averaged for 6 seconds to provide a robust 585 

estimate of radial velocity and study the effect of noise from individual radial velocity measurements (Frehlich et al., 2001). 

This averaging could underestimate the variance observed by the lidar.  During this study, each 360-degree wind profile was 

completed in ~1 minute. This provided the ability to calculate variance of radial velocity along each beam and the momentum 

flux profile using Eq. A.3.  Along-wind momentum flux (〈𝑢′𝑤′〉) estimates from the sonic anemometer at 60 m and lidar at 75 

m from southerly wind directions are shown in the Figure A1a. 590 
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Figure A1: 30-minute averaged along-wind momentum flux (〈𝒖′𝒘′〉) measurements from lidar at 75 m and sonic at 60 m AGL from 

October 8, 2020, to January 14, 2021, at ARM SGP central facility, for a) southerly wind directions under all atmospheric conditions 

and b) southerly wind directions under very stable atmospheric conditions (10 m < L < 150 m). A linear fit between the measurements 595 

(y = mx + c), coefficient of determination (R2), and number of samples (N) are also shown.  The X-axis scaling for (a) and (v) are 

different. 

 

Doppler lidar 〈𝑢′𝑤′〉 measurements are observed to correlate reasonably well to sonic anemometer 〈𝑢′𝑤′〉 

measurements, with slope of 0.85 and a coefficient of determination of ~78%. During stable atmospheric conditions, given the 600 

degree of stratification within the lidar probe volume, the lidar could be measuring very different atmospheric conditions 

compared to a sonic anemometer. Figure A1b shows measurements from southerly wind directions and very stable atmospheric 

conditions (10 m < L < 150 m). The coefficient of determination is observed to reduce during stable conditions to ~63%, 

although the wind speeds are observed to correlate well under all conditions. The transfer of momentum is lowest in stable 

atmospheric conditions and therefore smaller momentum flux estimates are observed. From a purely statistical standpoint, the 605 

smaller magnitude of the fluxes also contributes to reducing the coefficient of determination, since under these conditions the 

contribution of instrumental and statistical noise to the physical variability of relatively larger.  The scatter between lidar and 

sonic measurements are primarily due to (a) 15 m vertical and ~250 m horizontal separations between sonic anemometer and 

lidar measurements, (b) low temporal sampling of the lidar measurements, and (c) spatial averaging of the lidar pulse (range-

gate = 30 m). These effects amplify during stable atmospheric conditions and result in larger scatter between measurements. 610 

Previous observations of momentum flux from profiling Doppler lidars have shown a similar accuracy when compared to 

sonic anemometers at various heights above ground level (Mann et al., 2010).  Overall, the performance of the algorithm is 

expected to be adequate for the analysis being conducted in this article. 
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sonic anemometer data DOI is 10.21947/1899850, finally, ceilometer data at site A1 DOI is 10.21947/2221789. 
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