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Abstract. We perform a statistical analysis of the occurrence of periods of constant wind speed in atmospheric turbulence. We

hypothesize that such periods of constant wind speed are related to characteristic wind field structures (e.g., ramps or jets),

which, when interacting with a wind turbine, may induce particular dynamical responses. Therefore, this study focuses on

characterizing the constant wind speed periods in terms of their lengths, probability of occurrence, and extremes. Atmospheric

off-shore wind data are analyzed. Our findings reveal that the statistics of long constant wind speed periods are an intrinsic5

feature of the atmospheric boundary layer. We strictly confirm that the probability distribution of such periods of constant wind

speeds follows a Pareto-like distribution admitting power law behavior for periods exceeding the large eddy turnover time. The

power law characteristics depend on the local conditions and the precise definition of wind speed thresholds. A comparison to

wind time series generated with standard synthetic wind models and to time series from ideal stationary turbulence suggests

that these structures are not characteristics of small-scale turbulence but seem to be consequences of larger-scale structures of10

the atmospheric boundary layer and thus are a typical multi-scale effect
:::::::::
multiscale. Given the conclusive results, we show that

the Continuous Time Random Walk model, as a non-standard wind model, can be adapted to generate the statistics of those

periods of constant wind speed measured from the atmospheric turbulent wind.

1 Introduction

The estimation of the loads experienced by a wind turbine (WT) is fundamental for decision-making processes during the15

design phase of the various components of the machine, as well as for control strategies during its operation. Such estimation

is performed through numerical modelling of the interaction between the WT and the incoming wind. Therefore, an accurate

description of the wind within the atmospheric boundary layer (ABL) is essential for correctly calculating the loads acting on

the WT. The International Electrotechnical Commission (IEC) has defined both the widely-used standard parameters for the

characterization of the atmospheric wind and the models for generating synthetic wind fields used for numerical estimation of20

loads on the WT (IEC, 2019). These IEC standards extensively consider the spectral properties and coherence of the velocity

components of the wind. Nevertheless, such guidelines are designed to mimic the atmospheric wind computationally efficiently.

As a result, for the characterization as well as for the wind fields some flow features in the ABL are neglected or simplified

::
in

:::
the

:::::::::::::
characterization

::
of

:::::::::::
atmospheric

::::::::
measured

::::
data,

::
as

::::
well

:::
as

::
in

:::
the

:::::::::
generation

::
of

:::
the

:::::::::
numerical

::::
wind

:::::
fields. Furthermore,
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during the past decades, new challenges in the design process of wind turbines
::::
WTs have emerged (Veers et al., 2019). On the25

one hand, trends in the design of modern WTs account for bigger rotor areas and less rigid structures (i.e. blades) to capture

more energy from the available wind resources. On the other hand, the weight and material requirements of each component

are being pushed to minimal levels. As a result, new WTs are becoming, in general, larger and less rigid. Therefore, some of

the characteristics of the wind within the ABL that need to be
::
are

:::
not addressed in the IEC standard wind models might become

relevant for extra loads previously neglected within the design of smaller and stiffer WTs.30

Based on cooperative research with a WT manufacturer, we concluded
::::::::::
hypothesized that one of these features, disregarded by

the IEC guidelines, is the periods of constant wind speed (CWS) in atmospheric flows. Such periods are defined as the intervals

of time over which the magnitude of the wind speed remains almost constant within a certain range, limited by a threshold

value. In the following, we first contextualize the periods of CWS within the general characterization of turbulent features.

Afterwards, we discuss in which way such CWS structures may be relevant for a WT.35

Concerning the CWS periods as a general feature of wind it should be mentioned that there are relevant and well-investigated

turbulent quantities closely associated with our definition of CWS periods. The persistence phenomenon is straightforwardly

recalled. Persistence characterizes how long the flow remains in a particular state before switching to another one. Persistence

times can be inversely correlated with extreme wind speeds or gusts. In this context, the exceedance statistics proposed by

Rice’s theorem Rice (1944) have been applied for describing gusts as excursions at which certain thresholds of wind speed are40

exceeded (Kristensen et al., 1991; Young and Kristensen, 1992; Manshour et al., 2016). Another interpretation of persistence

within turbulent flows is the so-called zero-crossing analysis. In this case, for a zero-mean signal, the waiting times between

two successive crossings of its zero level are evaluated. Statistical properties of zero-crossings have been used to characterize

intrinsic turbulent quantities such as the Taylor micro-scale (Narayanan et al., 1977; Sreenivasan et al., 1983; Kailasnath and

Sreenivasan, 1993; Poggi and Katul, 2010) or the integral length scale (Mora and Obligado, 2020; Mazellier and Vassilicos,45

2008). Analyses of zero-crossings of velocity and temperature fluctuations in atmospheric turbulent data have been discussed

(Cava and Katul, 2009; Cava et al., 2012; Chamecki, 2013; Chowdhuri et al., 2020). To summarize, the above-mentioned

investigations showed that the statistical characteristics of the persistence for experimental and atmospheric data exhibit a

power law behavior up to a certain threshold, followed by log-normal or exponential cutoffs.

It is worth noting that even though the inter-arrival times of both, excursions and zero-crossings, refer to structures between50

particular turbulent states, they do not correspond to the periods of reduced turbulent amplitudes, in which we are interested.

Further details of the differences between CWS periods and inter-arrival times between excursions and zero-crossings are

shown in Appendix A. Nevertheless, the method and statistics of such persistent events are relevant to the discussion. Of

special interest are self-similar, critical, or fractal features of turbulence that propose a power law behavior for the probability

distribution of the time intervals with duration T , which can be formulated as p(T )∝ T−α (in particular for the limit of large55

T ). A characteristic feature of a power law distribution is the absence of an intrinsic scale, i.e., the probability of observing a

realization larger than ξT is ξ−α+1 times the probability of observing a realization larger than T ; independently of the value of

T . The far-tail regime of many distributions occurring in complex systems is assumed to exhibit power law behavior (Laherrere
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and Sornette, 1998). In the context of wind energy, for instance, a Pareto distribution has been tested
::
as

::
an

::::::::::::
extrapolation

::::::
method

::
to

::::::::
estimate

:::::::
extreme

:::::
loads

::
onto extrapolate the response of a multi-megawatt wind turbine generator

:::
with

::::::::
1-month60

:::::
return

:::::
period (Dimitrov, 2016).

Next, we discuss the potential relevance of an accurate description of the CWS periods for WT applications which is directly

linked with the increasing size and flexibility of the WTs. In the simplest case, such periods of CWS should imply relatively

quiescent operating conditions for a WT when the CWS structure occurs homogeneously in the rotor area. A more entangled

case might occur when resonant or near-resonant dynamics appear for specific periods of CWS, over which the resonance can65

be strongly excited. In particular, for the larger WTs, the CWS periods may be restricted to a sub-area of the rotor plane. In

this case, resonant dynamics exhibiting 3P oscillations may be amplified. Within this context, recent studies are devoted to

interfaces between turbulent and non-turbulent states in atmospheric wind measured at typical WT heights (Neuhaus et al.,

2024). Meanwhile, numerical and experimental investigations on the laminar-turbulent transition mechanisms on rotating wind

turbine blades have shown changes in the transition characteristics over a single revolution, which affect the aerodynamic70

response of the WT (Lobo et al., 2023; Özçakmak et al., 2020).

As a last possible application for WTs, we want to mention that the statistical features of CWS
::::::
periods may become of interest

for probabilistic design methods. Although the methods proposed by the IEC for estimating WT loads are mostly deterministic

(IEC, 2019), in recent years, probabilistic design methods have been introduced as surrogates for the design and load assess-

ment of WTs (Abhinav et al., 2024; Kelma, 2024). Such probabilistic approaches account for more reliable estimations by75

considering the explicit calculation of the uncertainties from the operational conditions, aerodynamic models, materials, etc

(Sørensen and Toft, 2010). Characteristics of the wind are then defined as stochastic variables within the probabilistic model

parametrization. Accordingly, broader and more accurate statistical descriptions of the intrinsic features of the wind inside the

ABL account for a reduction in the uncertainty of the estimated loads and responses of the WTs.

In this paper we focus on the periods of CWS as general features of turbulence, the discussion of possible impacts on a WT80

will be done only as side remarks. In particular, we characterize the statistics of periods of CWS (with a low level of turbulent

fluctuations) from wind measurements in the ABL. In a preliminary investigation, the method for the assessment of such events

from wind speed time series was presented and first results on the characterization of the periods of CWS in terms of their

duration and probability distributions were also reported (Moreno et al., 2022). Special attention within the characterization

was given to the tails of the distributions, which describe extremely long periods. Interestingly, we found that the probability85

distribution for very long periods shows a power law decay p(T )∝ T−α. Furthermore, a comparison with wind data generated

by an IEC standard model revealed that the model underestimates the frequency of occurrence of the extremely long CWS

periods measured in the ABL. In this study, we aim to address whether the CWS periods are induced by specific orographic

perturbations, whether they are laminar or low turbulent structures, and whether they are intrinsic features of a turbulent flow

or, respectively, rather result from large-scale interactions within the ABL. To characterize the CWS periods we use data from90

offshore wind, as we expect to have less special orographic effects, compared to onshore data, and thus get more general

insights of the CWS structure. This is also the motivation to compare the results with ideal turbulent data from a free jet
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experiment. Furthermore, a stochastic wind field model for WT simulations is presented as a surrogate approach to incorporate

the statistics of long CWS periods from turbulence in the ABL.

The paper is structured as follows: Sec. 2 retakes the method for measuring the periods and describes the atmospheric wind95

data to be analyzed. In Sec. 3, the results of the statistical characterization of the periods from the atmospheric data are shown.

In Sec. 4, we compare the results from ABL data to those from two different data sets, i.e., IEC standard wind model and

experimental ideal turbulence. In Sec. 5, we present our conclusions and potential future work.

2 Methodology and Data

2.1 Definition of a period of CWS100

Following Moreno et al. (2022), a CWS period (Tc) is defined as the time over which the magnitude of the wind speed u(t)

exhibits low-amplitude fluctuations enclosed within certain thresholds. A period Tc is depicted in Fig. 1. Over the length of Tc,

the wind speed remains inside the constant speed range
::::::
(CSR).

:::
The

:::::
CSR

:
is
:::::::
defined

::
as, ut∗±ε, where ut∗ is the reference speed

value at t= t∗ and ε is the maximum acceptable magnitude of the fluctuations around ut∗ . In
:::
Fig.

::
1the figure, the horizontal

red bars illustrate the thresholds that delineate the constant speed interval
::::
CSR. It should be noted that

::
the

:::::
CWSthese periods105

are not strictly laminar but periods with a smaller amplitude of turbulence; see also
::
the

:::::::
spectral

:::::::
analysis

::
in Sec. 3.

Figure 1. Schematic representation of a CWS period (Tc) measured from an exemplary wind speed time series u(t). The constant speed

interval
::::
range

:::::
(CSR), ut∗±ε specifies the limits for the accepted level of turbulence within a period Tc.

::
The

::::
CSR

::
is depicted by the horizontal

red bars.

In the following, the method for measuring the length of a period Tc at a given time step t∗ is described in detail. The goal

is to count the number N of consecutive time steps, including t∗, for which their wind velocity u(t) is contained inside the

constant speed range
:::
CSR. For that, the reference speed ut∗ = u(t∗) and the corresponding constant speed interval

::::
CSR ut∗ ±ε

are defined. Next, the velocities at the time step t∗+ i for i= (1,2,3...,∞) are evaluated and counted. The counter Ñ+ for the110

evaluation of ut∗+1 = u(t∗ + i) is then defined as
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Ñ+ =

Ñ+ =+1 if (ut∗ − ε)≤ ut∗+1 ≤ (ut∗ + ε)

Ñ+ =;end otherwise.
(1)

Note that only consecutive points are counted in Ñ+. The count is concluded once the value of u(t∗ + i) exceeds either the

bottom or the top limits of the constant speed interval
::::
CSR. So far, only points in the forward direction (+) from t∗ are evaluated.

The same algorithm is subsequently applied to counting the number of points Ñ− in the backward direction from t∗. In this115

case, values of i= (−1,−2,−3...,−∞) are considered for evaluating ut∗+1 in Eq. (1). Finally, the total number of consecutive

points N measured at t∗ results from the sum of Ñ+ and Ñ−, which are independently counted in their corresponding direction.

The length of the period Tc at t∗ is then obtained by multiplying the total N by the size of the time step δt. A period Tc is

estimated for every time step in the time series u(t). In the case of overlapping periods, only the longest-measured period is

recorded. By doing so, a recounting of events is avoided.120

In Moreno et al. (2022), the threshold ε for fixing the constant speed interval
:::::
CSR, ut∗±ε, was randomly selected (e.g. 0.2 - 0.4

m/s), and the method described in Eq. (1) was applied over the actual measurements u(t). However, limitations on the method

appear when analyzing large data sets with very different mean wind speed ū and standard deviation σu calculated over shorter

time windows (i.e. 10 minutes) with respect to the length of the sample. To introduce a systematic approach, in this paper the

threshold ε is defined to be proportional to the standard deviation of the wind speed σu. Then, ε for fixing ut∗ ±ε is calculated125

as,

ε=A ·σu ε=A σu
:::::::

(2)

where A is a factor, typically A< 1. The value of A can be chosen depending on the particular application. In the case of a

WT, A might be related to the thresholds for the control system to operate within different turbulent regimes. In practice, such

thresholds in the operating protocols are commonly defined as a function of the turbulence intensity TI = σu/ū. In Eq. (2)130

and through this document, we refer to ū and σu as the mean and standard deviation values, calculated over 10-minute periods

unless a distinction is clearly stated.

2.2 Atmospheric wind data

Data from the offshore research platform FINO1 (FINO) are investigated. We expect offshore wind to provide a better repre-

sentation of undisturbed, or less disturbed conditions within the ABL compared to onshore data. Therefore, the possible effects135

of onshore orographic conditions on the CWS structures are diminished.

The FINO1 platform is located in the North Sea. Records of the wind speed u(t) were taken by vertically aligned cup anemome-

ters mounted at different heights H . The data correspond to measurements from January to December 2007 with a sampling

frequency of 1Hz. Measurements at heights H = [ 30, 50, 70, 90 ]m above the mean sea level are considered. Wind speed
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records have been limited to those
:::::::::
10-minute

::::::
periods

::::
with

::̄
u between 3 and 25 m/s due to their relevance for WT operation.140

Values of u(t) outside this range have been neglected. Moreover, to avoid disturbances from the met mast, data for wind direc-

tions between 275 and 350° are not considered. As an overview of the complete data set, Fig. 2 shows the mean ū and standard

deviation σu calculated over individual 10-minute periods at H = 90m.

(a) (b)

Figure 2. Wind velocity statistics of atmospheric FINO data at H = 90m. (a) Mean wind speed ū. (b) Standard deviation σu. Each dot in

the plots corresponds to a calculated value over a single 10-minute period. The dots are chronologically ordered.

Complementary, Table ?? summarizes the mean and standard deviation of u(t) for all heights H . In the table and through

the rest of the document, the angular brackets ⟨·⟩ denote averaging over all the available 10-min periods. Then, ⟨ū⟩ and ⟨σu⟩145

correspond to the average of ū and σu at each H over all the 10-minute intervals. Accordingly, for H=90m, the values of ⟨ū⟩
and ⟨σu⟩ are the averages of the dots in Fig. 2(a) and (b) respectively.

3 Statistics of Tc for atmospheric turbulent data

3.1 Mean, standard deviation and maximum value of Tc

As a starting point on the statistical characterization of the measured periods Tc , we discuss their mean duration (Tc), standard150

deviation (σTc
) and maximum value (Tc,max). We define Tc,max as a representative value from a set of the longest measured

periods rather than the absolute and unique longest event. More details follow in Sec. 3.2. We compare the mentioned statistics

of Tc at different heights H . A factor A= 0.3 is exemplary chosen for defining the threshold ε=A σu for the constant speed

interval
::::
CSR, ut∗ ± ε. The results are summarized in Table 1.

As a remark, special attention has to be devoted to the meaning of the statistical moments Tc and σTc calculated from the155

data. In certain cases, as those presented in Moreno et al. (2022), the probability distribution p(Tc) may lead to non-converging

moments, e.g., mean and variance. Further details are discussed in Appendices B and C.
::::
From

:::
the

:::::
values

::
in

:::::
Table

::
1,

::::::::::
comparable
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H [m] 30 50 70 90

Tc [s] 3.6 3.6 3.7 3.6

σTc [s] 3.0 3.2 3.3 3.3

Tc,max [s] 106 147 151 123

Table 1. Mean (Tc), standard deviation (σTc ), and maximum length (Tc,max) of the calculated periods Tc at different heights H . A factor

A= 0.3 is assumed for the estimation of Tc.

::::::
Tc ≈ 4s

::::
and

::::::::
σTc

≈ 3s
:::
are

:::::::
obtained

:::
for

:::
the

::::
four

::::::
heights

:::
H .

:::::
More

:::::::::::
interestingly

:::
are

:::
the

::::::
longest

::::::::
measured

:::::
CWS

:::::::
periods

::::::
Tc,max

:
at
:::::
each

:::::
height

:::
H .

::::::
Periods

::::
with

:::::::
lengths

::
up

::
to

::::::::::
Tc ≈ 40σTc::::::

which
:::::::::
correspond

::
to

:::::
more

::::
than

::::
100s

:::
are

:::::::::
measured.

3.2 Probability density function of Tc160

Next, in the statistical characterization of the CWS periods, the probability density functions (PDFs) p(Tc) are discussed. Fig. 3

shows p(Tc) for the data in Table 1 for different heights H . As mentioned before, we focus our attention on characterizing

very long periods Tc. Therefore we concentrate on the tails of p(Tc). For comparability, the values of Tc are normalized by the

longest measured period at each H; more precisely, we use a representative value Tc,max of at least ten of the longest periods

to become statistically more robust. The obtained values for Tc,max are those summarized in Table 1.165

The normalized PDFs p(Tc) in Fig. 3 are presented in a log-log scale. In such a representation, a straight line reveals a power

law behavior of the form p(Tc)∝ T−α
c with α as the characteristic exponent. In Fig. 3, fitting power laws over the tails of

the distributions are depicted by solid lines with the same color used for the dots at each H .
:::
This

::::::::
indicates

:::
that

:::
the

:::::
PDFs

:::
of

::::
CWS

:::::::
periods

:::::
p(Tc):::::

follow
::
a
:::::::::
Pareto-like

::::::::::
distribution

::
for

:::::
large

::
Tc (Laherrere and Sornette, 1998). We emphasize that the power

laws extend over more than one decade. The corresponding exponents α are calculated following the procedure proposed by170

Clauset et al. (2009) and described in Appendix D. The values of α are given in the legends of the figure. The variation of the

exponent α for all H is enclosed within ±6%. then we conclude.
:::
This

::::::
shows that the decay p(Tc)∝ T−α

c does not depend on

the height. Moreover, since α≥ 3 for all H , the second-order statistical moments of Tc converge and the results presented in

Table 1 provide meaningful information about the characteristics of the periods Tc (see Appendices B and C).

The power law behavior observed in the distributions p(Tc) for the offshore data shown in Fig. 3 agree with the obtained for175

the two onshore sites investigated by Moreno et al. (2022). This indicates that the CWS structures Tc are not due to the specific

orographic conditions, but rather represent general characteristics of the ABL. However, as the actual values of the statistics

of CWS periods (i.e. Tc, σTc
, Tc,max, α) vary significantly between data sets, they should be exclusively considered for each

location.
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Figure 3. Normalized probability density functions p(Tc/Tc,max) for FINO data at different heights H . The dots illustrate the results from

the FINO data. The solid lines show the power law decay fitting ∝ T−α
c . The value Tc,max for each height is defined as the bin centre

containing at least ten of the largest measured periods after a binning process. The individual distributions are vertically shifted for better

visualization.

3.3 Validity of the power law p(Tc) ∝ T−α
c180

To validate the universality of the power law distribution p(Tc)∝ T−α
c , we investigate the effect of

::
the

:::::
width

::
of
:::

the constant

speed interval
::::
CSR,

::::::
ut∗ ± ε. Different values of the factor A, as ε=A σu are evaluated. The results of Tc , σTc , Tc,max , and α

for values of A= [0.2, 0.3, 0.5, 0.8] are summarized in Table 2. Respectively, Fig. 4 shows the normalized PDFs p(Tc) in an

analogue representation as shown previously in Fig. 3.

A [-] 0.2 0.3 0.5 0.8

Tc [s] 3.0 3.6 5.3 9.4

σTc [s] 2.2 3.3 6.2 13.4

Tc,max [s] 89 123 294 463

α [s] 4.1 4.0 3.7 3.6
Table 2. Mean (Tc), standard deviation (σTc ), maximum length (Tc,max), and exponent α of the calculated periods Tc for different values

of the factor A. FINO measurements at H = 90m are analyzed.

:::
The

::::
tails

::
of

:::
the

:::::
PDFs

::
in Fig. 4 shows a clear power law decay ∝ T−α

c for all values of A. We conclude that the PDFs of CWS185

periods p(Tc) follow a Pareto-like distribution for large Tc (Laherrere and Sornette, 1998)
::::
This

:::::::
confirms

:::
our

:::::::::
hypothesis

:::
on

:::
the

8



:::::::::
Pareto-like

::::::::::
distributions

::
of
::::::
p(Tc) ::

for
:::::

large
:::
Tc ::::::

already
::::::::
observed

::
in

::::
Fig.

:
3. Interesting to note, is that the exponent α decreases

with increasing factor A.

Figure 4. Normalized probability density functions p(Tc/Tc,max) for FINO data for different values of A. The power law fittings ∝ T−α
c

are depicted by the solid lines. Measurements at H = 90m are considered. The value Tc,max for each value of A is defined as the bin center

containing at least ten of the largest measured periods after a binning process.
:::
The

:::::::
individual

::::::::::
distributions

:::
are

:::::::
vertically

:::::
shifted

:::
for

:::::
better

::::::::::
visualization.

3.4 Power spectra of u(t) during periods Tc

Further in the characterization of the CWS periods, the spectral features of the wind speed u(t) during the CWS periods Tc190

address the question of whether the wind speed is strictly laminar, or rather turbulent with a low degree of turbulence. The

turbulent nature of u(t) filtered for periods Tc > 10s is now verified by the power spectra, shown in Fig. 5.
:::
The

::::::
spectra

::::
E(f)

::
is

::::::::
calculated

::::
from

:::
the

::::::::
extracted

::::
time

:::::
series

::
of

::::
u(t)

::::::
during

:::::
CWS

::::::
periods

:::::
larger

::::
than

::::
10s.

::
A

::::
time

:::::::
window

::
of

:::::::
roughly

:::
five

::::
days

::::
was

:::::::::
considered

:::
for

::::::::
extracting

:::
the

:::::::
definite

::::
time

:::::
series

::::
u(t)

::::::
during

::::::::
Tc > 10s. It is based on a selected time window of roughly five

days. A decay of the form E(f) ∝ f−5/3 is obtained for all heights H . Accordingly, the wind data embedded along the periods195

Tc are not laminar flow sections but periods of turbulence with smaller amplitudes.
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Figure 5. Power spectra E(f) of wind speed u(t) during the measured periods Tc at different heights H . The grey solid line shows a decay

E(f) ∝ f−5/3. The spectra are calculated for each period Tc and then averaged over all periods. within a selected time window of five days.

:
A
::::
time

::::::
window

::
of

::::::
roughly

:::
five

::::
days

:::
was

::::::::
considered

:::
for

::::::::
extracting

::
the

::::::
definite

::::
time

::::
series

::::
u(t)

:::::
during

::::::::
Tc > 10s.

4 Comparison to pure turbulent and synthetic wind data

4.1 Experimental pure turbulence and Standard-IEC Kaimal

In order to investigate whether the CWS periods are typical features of turbulent flow or are special features of the ABL, we

investigate the statistics of the CWS periods Tc from experimental ideal turbulent data, as well as from numerical data. The200

experimental data, ‘Lab’, was measured by Renner et al. (2001) in the central region of a free jet, which is approximately

stationary, homogeneous, and isotropic. The numerical data, ‘Kaimal’, corresponds to IEC-standard wind data based on the

well-known Kaimal model (Kaimal et al., 1972) and generated by the NREL Turbsim package (Jonkman, 2016). Details about

the parameters and characteristics of the two additional data sets, ‘Lab’ and ‘Kaimal’, are given in Appendix E.

The analysis of the CWS periods from FINO and Kaimal could be easily compared as the wind data sets u(t) have comparable205

IEC-standard characteristics in terms of mean wind speed, standard deviation, sampling frequency, and integral length scale.

However, such a match of parameters to atmospheric data is not possible with the experimental Lab data. To work out the

intrinsic features of the periods of CWS from these different data, we used two different approaches for normalizing the

calculated Tc.

Firstly, the normalization is done by Tc,max analogous as in Fig. 3 and Fig. 4. The resulting normalized PDFs p(Tc) for the210

three wind data sets: FINO, Kaimal, and Lab are shown in Fig. 6. For its interpretation of it is important to remark that the

number of data points, given by the sampling rate and measured time, determines the lowest probability that can be resolved
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within the PDF. Accordingly, the minimum value of p(Tc) for Kaimal data in Fig. 6 is explained by fewer data in the sample.

Oppositely, the high probability p(Tc) of shorter periods for Lab data is explained by a much higher sampling of the data.

Clear different PDFs are observed for the three data sets in Fig. 6. The most prominent power law p(Tc)∝ T−α
c is found for215

the FINO data with a smaller exponent α or more heavy-tailed probabilities. For the Kaimal and Lab data a power law can be

put into question. We show nevertheless power laws as a reference for comparison between the three data sets. Interestingly,

the range of periods Tc for which the power law holds for the FINO data extends over a decade, at least from Tc = 0.1Tc,max

to Tc = Tc,max. In contrast, the power law range for Kaimal and Lab spreads only from Tc = 0.3Tc,max to Tc = Tc,max.

Figure 6. Normalized probability density functions p(Tc/Tc,max) for FINO, Kaimal and Lab data sets. The power law fittings ∝ T−α
c are

depicted by the solid lines. The value Tc,max for each data set is defined after a binning process as the center of a bin containing at least ten

of the largest measured periods. Measurements at H = 90m are considered for FINO. The constant speed interval
::::::::

threshold
:::::::
ε=A σu:::

for

::
the

::::
CSR is calculated with A= 0.3. The values of σu for Kaimal and Lab are 0.58 m/s and 0.38 m/s, respectively. In this particular case, as

both data sets are expected to be steady, the standard deviation σu is calculated over the length of the time series.

The normalization by Tc,max shown in Fig. 6 does not provide any information regarding the magnitude of the CWS periods220

Tc. Therefore, a comparison of absolute values Tc between the three data sets remains inconclusive. Accordingly, we chose

a second approach for normalizing the CWS periods so that their lengths are related to the intrinsic lengths of the flow. The

integral length scale Lint is a measure of the longest correlations. For ideal turbulence, structures that are significantly larger

than Lint are not to be expected. For meteorological wind data, the problem arises that at lower frequencies no white noise

(i.e. zero correlation) is present so that larger structures than Lint are expected, see (Sim et al., 2023; Larsén et al., 2016).225

Thus we use corresponding
:::
now

:::::::::
normalize

:::
the

::::::
periods

:::
Tc PDFs p(Tc) normalized by the so-called large eddy turnover time
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Tint = Lint/ū (Monin and Yaglom, 2007), where ū is calculated over the length of the time series for Kaimal and Lab data.

The result
:::
ing

:::::
PDFs

:::::
p(Tc) ::::

after
:::
the

::::::
second

:::::::::::
normalization

::::::::
approach are shown in Fig. 7.

Figure 7. Normalized p(Tc/Tint) probability density functions for FINO, Kaimal and Lab data sets. The values of Tint are, respectively,

10s and 0.029s for Kaimal and Lab(Fuchs et al., 2022). For FINO, Tint is considered to be 10s as a representative value of the atmospheric

data. The power law fittings ∝ T−α
c are depicted by the solid lines. The dotted lines show the power law fittings extended over a range of Tc

larger than the range used for calculating the fitting parameters.

Taking this into account, Fig. 7 shows that the FINO data have significantly longer CWS periods Tc. It is observed in Fig. 7that

the maximal event of the data from the Kaimal model, Tc ≈ 2Tint, is around 100 times more frequent for the FINO data230

than for the other two data sets. Assuming the extended power law tails for Kaimal and Lab depicted by the dotted lines, and

better visualized in the zoomed plot, a period Tc ≈ 10Tint would be around 104 times less probable in the Kaimal model

and Lab data compared to the measured FINO data. From the 1-year FINO data, we measured 15 events Tc ≈ 10Tint (with

p(Tc) = 5.7x10−6). Roughly, it means an observation Tc ≈ 10Tint every 24 days. Under the Kaimal assumptions, this event

will appear once every 24x104 days or 657 years.235

Furthermore, we calculate the standard deviation of the periods σTc
in units of integral lengths Lint. The resulting values are

σTc,Lab = 0.12Lint, σTc,Kaimal = 0.15Lint, and σTc,FINO = 0.31Lint. The estimated values of σTc
show in another way

that FINO data tend to remarkably longer periods, compared to Kaimal and Lab.
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4.2 CTRW wind model

We have shown conclusive results on the distributions of CWS periods p(Tc) in the ABL and their underestimation by a
::
the

::::
IEC240

:::::::
standard

::::::
Kaimal wind model. Finally

:::::::::::
Consequently, we

:::::
finally show how the observed features of the atmospheric turbulent

data can be included in a numeric wind field model. As a surrogate for the IEC standard Kaimal model, we investigate non-

standard wind velocity time series generated by the Continuous Time Random Walk (CTRW) model (Kleinhans, 2008; Ehrich,

2022; Schwarz et al., 2019; Mücke et al., 2011). The CTRW model generates either Gaussian ‘CTRW-G’ (-G as an abbreviation

of Gaussian) or non-Gaussian (-NG as for non-Gaussian wind velocity time series. For the ‘CTRW-G’, the statistics of u(t) are245

entirely Gaussian. On the contrary, the statistics of u(t) for the ‘CTRW-NG’ deviate from Gaussianity towards distributions

with so-called heavy tails or higher probabilities of extreme events.

The CTRW model uses a skewed Lévy-distributed stochastic process, parameterized by the characteristic exponent αL., as

outlined in more detail in Appendices F and E . The stochastic process defines a time transformation from the intrinsic scale

of the model s to the physical time t. Such time-scaling transformation allows the generation of non-Gaussian time series250

u(t). The characteristic exponent αL, with 0 < αL ≤ 1, specifies the asymptotic behaviour of the skewed Lévy distribution.

For αL=1 the resulting process u(t) is entirely Gaussian. Values of αL → 0 generate processes with more pronounced non-

Gaussian characteristics. In this case, non-Gaussianity is related to extremely long waiting times between two successive time

steps s. A very long waiting time in u(s) would then be translated into a period over which the process u(t) remains constant.

Fig. 8 shows an excerpt of u(t) for a Gaussian CTRW-G and a non-Gaussian CTRW-NG realizations. Respectively, values of255

αL = 1 and αL = 0.9 are considered. Along the interval between t= 875s and t= 895s, a period of almost constant wind

speed is observed for the CTRW-NG. For better visualization, a zoomed version of the time series is presented in the sub-figure

in the right-bottom corner. Such a structure of the wind, indicated by the horizontal blue line, agrees with our definition of

a CWS period Tc. The observed small fluctuations within the CWS period result from the interpolation process between the

intrinsic and the physical times s→ t (Ehrich, 2022).260

Figure 8. Excerpt of the wind speed time series u(t) for CTRW-G and CTRW-NG. A visible
::::
CWS period Tc is visible between 875 and 895s

for the CTRW-NG.
:::
The

:::::::
exponent

:::
for

::
the

::::
Lévy

:::::::::
distribution

::
of

:::
the

::::::::
CTRW-NG

::
is
:::::::
αL = 0.9.
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The fundamentals of the CTRW model as well as further details on the method for achieving such non-Gaussian features are

given in Appendix F. The parameters for generating the time series are provided in Appendix E.

Fig. 9(a) shows the PDFs p(Tc) for the CTRW realizations, and the FINO data. The individual distributions are vertically

shifted for better visualization. The dotted lines show the Gaussian distributions with the mean and standard deviation of the

corresponding p(Tc). The grey-shadowed area illustrates the range of the decays of p(Tc) or slopes α, enclosed by CTRW-G265

(△) with αL = 1, and CTRW-NG (□) with αL = 0.9. The distribution of the CTRW-NG realization shows an overestimation,

compared to the FINO data, of the deviation from Gaussianity towards a higher probability of very long-duration periods Tc.

This deviation is visible from Tc ≈ 0.3 Tc,max. On the contrary, the decay of the CTRW-G is much more pronounced and the

divergence from the Gaussian distribution is visible only for events
:::::::::::::
Tc > 0.6 Tc,max higher than 0.6Tc,max. A third realization,

‘CTRW-NG∗’ ( ) with αL = 0.995 is included. The resulting p(Tc) distribution for CTRW-NG* shows a better agreement270

with the FINO data. Both distributions, FINO and CTRW-NG*, lie inside the grey shadowed area depicting the slopes enclosed

between the Gaussian CTRW-G and extremely non-Gaussian CTRW-NG.

Fig. 9(b) shows the resulting exponents α from the decay p(Tc)∝ T−α
c , against the exponent αL from the Lévy distribution

of the CTRW model. The dotted horizontal line depicts the value of α for FINO in Fig. 9(a). We conclude, that
::
As

:::::::::
observed,

by tuning the αL parameter of the CTRW model, non-Gaussian realizations of u(t) can reproduce the statistics of p(Tc) from275

turbulent wind in the ABL.
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(a) (b)

Figure 9. (a) Normalized probability density functions p(Tc/Tc,max) for the CTRW-G, CTRW-NG, CTRW-NG*, and the FINO data. The

grey area depicts the range of the slopes covered between CTRW-G and CTRW-NG. Measurements at H = 90m are considered for FINO.

The individual distributions are shifted vertically for better visualization. Dotted lines depict Gaussian distributions. (b) Power law exponents

α from p(Tc)∝ T−α
c as a function of the characteristic exponent αL from the Lévy distribution of the CTRW model. The horizontal red line

depicts the value of α for FINO data shown in (a).

5 Conclusions and Outlook

We present measurements of the CWS periods (Tc) (periods with turbulence of a reduced amplitude) from offshore wind data

within the ABL. It is shown that the probability distributions p(Tc) for offshore data exhibit a power law decay p(Tc)∝ T−α
c

for very long events (i.e. hundreds of seconds). This agrees with Moreno et al. (2022), where preliminary results from onshore280

cases were reported. However, significant differences in the values of the exponent α between offshore and onshore conditions

suggest that the lengths of Tc are indeed influenced by interactions with the surroundings. Therefore, the estimated statistics of

Tc must be considered locally for the specific location of interest. Given that offshore conditions maintain a more unperturbed

ABL compared to onshore, we demonstrated that the periods Tc are intrinsic features of the ABL rather than resulting structures

originated by specific external factors (i.e. mountains, obstacles). Moreover, the exponent α seems to be quite independent of285

the height but changes significantly with the threshold ε. Less pronounced decays of p(Tc) are obtained with wider thresholds

for considering the wind speed as constant. We found examples of Tc significantly larger than 100s, which correspond to
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spatially extended structures over sizes larger than 1km, using Taylor’s hypothesis of frozen turbulence. Such large structures

in a turbulent wind may be related to the so-called and currently very discussed “turbulent superstructures" (Pandey et al.,

2018; Krug et al., 2020; Käufer et al., 2023).290

Based on the spectral properties, we proved the turbulent nature of the wind speed u(t) during the CWS periods Tc. This relates

our results to the case of the turbulent-turbulent interfaces (Kankanwadi and Buxton, 2022). However, the statistics of Tc are

significantly different when comparing different turbulent data. Results from experimental homogeneous isotropic turbulence

data suggest that the nature of the periods Tc is attributed to special structures developing in the wind inside the ABL. It is

still an open question whether they are caused by special effects of the small-scale turbulence (such as turbulence with or295

without shear) or whether they are indeed consequences of larger-scale interactions of the atmospheric boundary layer, such as

phenomena related to the spectral gap (Larsén et al., 2016).

The frequency of very long events Tc in the ABL is significantly underestimated by the Gaussian assumptions in the IEC

model. Therefore, the need for an improved wind model is justified. The Continuous Time Random Walk (CTRW) model with

its characteristic time mapping (see Appendix F) is particularly suitable for the incorporation of the periods Tc measured from300

the atmospheric turbulent wind. This surrogate wind model represents an improvement towards more realistic atmospheric

wind fields for numerical simulations. Consequently, responses of the WT interacting with such disregarded structures on the

wind might be better predicted.

From an engineering perspective, very long CWS periods might be undesirable for the operation of WTs if phenomena such as

resonance or critical loading are induced. On the other hand, they also might be beneficial if conditions such as constant power305

production are achieved. Further research is needed on the detailed effects of CWS periods on loads by investigating specific

WT models.

A very long CWS period might have an increased impact on a WT depending on its spatial location in the plane of the rotor. The

effect of such an event happening in the outer region of the rotor plane might be higher compared to the case when it reaches

the turbine at the region near the hub. Accordingly, preliminary investigations (detailed in Appendix G) suggest that the periods310

of CWS show a tendency to be localized at different measurement heights, and therefore, may become of particular interest

for turbines with larger diameters. Future work has to be devoted to assessing the relevance of the empirically observed power

law behavior of periods of CWS on turbine loading. For that, the complete statistical parametrization of periods of CWS, in

both time and spatial domains, should be assessed and improved for the synthetic wind field models such as the here proposed

CTRW model (Kleinhans, 2008), the recently introduced Time-mapped Mann model (Yassin et al., 2023) which can generate315

long waiting times of u(t) as in the CTRW model, or the Superstatistical model (Friedrich et al., 2021, 2022) that follows the

K62 model of turbulence.
::::::
Another

:::::::::
interesting

::::::
aspect

:::
for

:::::
future

:::::
work

::::::
would

::
be

:::
the

::::::::
statistical

:::::::
analysis

:::
of

:::::
CWS

::::::
periods

:::::
from

::::::::::::::
weather-modelled

::::
data

::::
(e.g.

::::::::
ECMVF,

:::::
WRF

:::::::
models).

::::
The

:::::
results

::::::
would

:::::
reveal

:::::::
whether

::::
such

::::::::::
larger-scale

::::::
models

:::
can

:::::::::
reproduce

::
the

:::::
CWS

:::::::::
structures

::::
from

:::
the

::::::::::
atmosphere.
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Code availability. The code of the algorithm described through Sec. 2.1 for measuring the CWS periods from wind speed data can be320

provided upon request.

Data availability. The FINO and Lab measurements, as well as the generated Kaimal and CTRW time series can be obtained upon request.

Appendix A: CWS periods vs persistence events

In the Introduction (Sec. 1) we referred to the inter-arrival times of excursions and zero-crossings as two general turbulent

characteristics within the context of persistence phenomena. Those inter-arrival times might wrongly be assumed as intrinsi-325

cally related to our periods of CWS. As shown in Fig. G1, fundamental differences arise when comparing the three events

within a turbulent signal. In the upper part of Fig. G1 a zero-mean and normalized-by-standard-deviation signal (u(t)− ū)/σu

is plotted. The thresholds ±U are fixed for considering the excursions of the signal. The blue area depicts the range contained

inside these thresholds. The individual times when excursions occur are depicted by blue crosses. Similarly, the times when the

signal crosses the zero line are the zero-crossings and they are depicted by red crosses. The grey rectangles depict the measured330

CWS periods Tc > 10s inside grey rectangles. We assume ε= 0.3 for measuring Tc.

At the bottom part of Fig. G1 the length of the inter-arrival times between the events (excursions and zero-crossings) are

plotted. Blue lines depict the times between successive excursions at U (those at -U are not considered). Red lines show the

times between zero crossings, and black lines show the duration of Tc (equivalent to the grey areas marked on the signal). The

inter-arrival times for the excursions and zero-crossings in the plot are filtered to be longer than 10s, as are the periods Tc.335

Figure A1. Illustration of excursions, zero-crossings and CWS periods (Tc). On top, a normalized signal (u(t)− ū)/σu. The blue crosses

depict the excursions, considering ±U as thresholds. The red crosses correspond to the zero-crossings. The grey rectangles mark periods of

CWS Tc > 10s. The blue and red lines in the bottom plot depict the resulting inter-arrival times for the excursion measured at +U , and the

zero-crossings, respectively. For comparison, the periods Tc > 10s are replotted as black lines.
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As observed, there is no direct correlation between the occurrence or the length of the CWS periods and the inter-arrival times;

neither between excursions nor between zero-crossings. A CWS period might enclose several inter-arrival times, as well as

several CWS structures might be embedded inside an interval between consecutive zero-crossings or excursions.

Appendix B: Power law distributions

A general quantity x with a probability distribution p(x) follows a so-called power law if340

p(x) = Cx−α (B1)

for x≥ xmin with the characteristic exponent α and a constant C = ec. The minimum value xmin holds for the lowest limit

of the power law. The exponent α > 1, otherwise
∫∞
0

xkp(x) does not converge. The estimation of α from empirical data has

been extensively discussed in the analysis of the distributions of a very wide range of applications (Newman, 2005; Clauset

et al., 2009). Since Eq. (B1) is equivalent to lnp(x) =−α lnx+ c, the most simple approach for the calculation of α comes345

from a linear regression on the log-log plot of the histogram of x. However, this procedure introduces significant errors due to

the binning of the data and the resulting distributions. Such distributions are usually dominated by a few bins at lower values

of x with very high values of p(x), and several bins at the higher range of x with very low probabilities p(x) (Newman, 2005;

Dorval, 2008). Instead of such a linear regression, a logarithmic binning process of the data is recommended. Within this

approach, the histogram of x is constructed for k number of bins with variable width. More specifically, the bin edges B are350

proportional to successive powers of a constant a. Then,

B = (b1, b2, ..., bk+1) = xc,min(a
0,a1, ...,ak) (B2)

where b1 > 0, k > 1 and xmin is the minimum value of x for considering the power law behaviour. Thus, the ith bin encloses

the interval [bi, bi+1) and the larger edge of the kth is assumed to be +∞.

The value of the lower bound xmin affects the estimation of the exponent α in p(x)∝ x−α. Analogously, for binned data,355

bmin is defined as the minimum bin taken into consideration for the calculation of α. We follow the algorithm proposed by

Clauset et al. (2009), and Virkar and Clauset (2014) for choosing bmin from binned empirical data. This method is based on

a Kolmogorov-Smirnov (KS) statistic test (Massey, 1951) for minimizing the distance between the distributions of the fitted

model P (b|α,bmin) and the empirical model S(b) above bmin. Then, the optimized value of b∗min minimizes

D = maxb≥bmin
|S(b)−P (b|α,bmin)|. (B3)360

Further details about the method for calculating bmin and α are provided in Appendix D.

Appendix C: Statistical moments of power laws

A power law distribution of a continuous variable x is defined in Eq. (B1), where α > 1 is the power law exponent, C is a

normalization constant, and xmin is the minimum value at which the power law holds. Then, the kth statistical moment of a
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power law distribution p(x) = Cx−α is given by,365

⟨xk⟩=
∞∫
0

xkp(x)dx=

xmin∫
0

xkp(x)dx

︸ ︷︷ ︸
:=Ã

+

∞∫
xmin

xkp(x)dx= Ã+
C

k+1−α

[
x−α+k+1

]∞
xmin

. (C1)

Then, a quantity x with p(x)∝ x−α may have divergent moments. Extensively, its general kth moment exists only if k < α−1.

The mean value of p(x), or ⟨x1⟩ , becomes infinite for α≤ 2. Furthermore, if α≤ 3, p(x) has no finite variance, ⟨x2⟩. In such a

case, x can take values of x̄±∞. Many phenomena, varying from biological to economical, are characterized by such so-called

critical distributions. A few examples are the frequency of use of words, the income among individuals, and the magnitude of370

earthquakes (Newman, 2005; Marquet et al., 2005; Powers, 1998).

Appendix D: Estimation of bmin

Here we describe the method for estimating the minimum bin bmin, introduced in Appendix B, above which the power law

p(Tc)∝ T−α
c is valid. The method was proposed by Virkar and Clauset (2014).

For each possible bmin ∈ (b1, b2, ..., bk/2),375

1. Calculate the cumulative binned empirical distribution S(b) for bins b≥ bmin.

2. Estimate the characteristic exponent α̃ considering b≥ bmin.

3. Calculate the cumulative density function (CDF) for P (b|α̃, bmin) of the binned power law.

4. Calculate the Kolmogorov-Smirnov(KS) test statistic D defined in Eq. (B3).

5. Select the optimal value b∗min as the value of bmin with the minimum test statistic D.380

The bins b are defined according to Eq. (B2). For the estimation of α̃ in step (2.), a least-squares linear regression method is

considered.

Appendix E: Further details of experimental and synthetic wind data

– Kaimal: The data set contains 4x105 data points with a frequency of 1Hz. The mean wind speed is 10m/s and the

standard deviation is 0.58m/s. The integral length scale is set to 10m. The parameters are chosen to be comparable to385

the averaged values of FINO data (see Sec. 2.2).

– CTRW: Both realizations, ‘CTRW-G’ and ‘CTRW-NG’, have 4x105 data points with a frequency of 1Hz. The mean wind

speed and standard deviation are 9.5m/s and 1.1m/s for both cases. Extended parameters for the model are ωc = 1.8Hz;

αL = [0.9, 1], and c̃= 350 and. Details on the definition of the parameters are given in Appendix F and by Ehrich (2022).

The values of the parameters are chosen to generate data comparable to FINO measurements (see Sec. 2.2).390
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– Lab: The velocity in the direction of the flow was measured by a hot-wire anemometer. The data set consists of 8.48x106

points with a sampling frequency of 8kHz. The measured integral length scale is reported as 0.067m (Fuchs et al., 2022).

Details of the experiment are found in Renner et al. (2001).

Appendix F: CTRW model for the generation of wind fields

More detailed descriptions of the model are provided by Kleinhans (2008); Yassin et al. (2023); Mücke et al. (2011); Schwarz395

et al. (2019). Time series of the wind speed u
(κ)
i (t) at each point i of a defined grid are based on two coupled Ornstein-

Uhlenbeck (OU) stochastic processes uκ
r (s) and uκ

i (s). Both processes are first generated in an intrinsic scale s. The super

index κ accounts for the three directions of the wind κ= [(x),(y),(z)]. In our case, we generate wind speed time series only

in the longitudinal direction u(x), so that κ= (x). The two processes are defined as,

du(κ)
r (s)

ds
=−γr(u

(κ)
r (s)−u

(κ)
0 )+

√
DrΓ

(κ)
r (s) (F1)400

and,

du(κ)
i (s)

ds
=−γ(u

(κ)
i (s)−u(κ)

r (s))+

√
D

(κ)
i Γ(κ)(s) (F2)

where γ and γr are damping constants, D and Dr are diffusion constants; and Γ(s) and Γr(s) are Gaussian-distributed white

noise. Next, the resulting Gaussian velocity signals u(κ)
i (s) are mapped to the physical time scale t by means of an additional

stochastic process as,405

dt(s)
ds

= τc̃,αL
(s). (F3)

where τc̃,αL
(s) is a Lévy-distributed process with characteristic exponent αL and a cutoff value c̃. In the case of αL = 1,

the intrinsic scales s is equivalent to the physical time t so that u(κ)
i (s)=u(κ)

i (t). The time mapping process described in

Eq. (F3) allows the key feature of the model which accounts for the intermittent behaviour of the wind speed time series. The

intermittency is introduced by the Lévy-distributed sizes of the waiting times for the transformation from s to t.410

In Sec. 4 we investigated two CTRW data sets: CTRW-G and CTRW-NG. For the CTRW-G time series shown in Fig. 8 and

Fig. 9(a) the
:::::
Lévy exponent αL :

is
:::::
equal

::
to

::
1 so that the waiting times of the intrinsic scale s are constant and the statistics of

u(t) are Gaussian. For the CTRW-NG time series, we assumed αL = 0.9. By doing so, we introduce non-Gaussian features on

the probability distributions. Further values of the parameters for generating the fields are given in Appendix E.

Appendix G: Spatial coherence of Tc415

The spatial coherence of the CWS periods has been preliminary investigated. Fig. G1 shows the results of evaluating the

simultaneity of events Tc > Tmin, occurring at different heights of the FINO data, and conditioned on
:
a
::::::::
reference

::::::
height H̃ .

Exemplary, Fig. G1 shows the case when considering the reference height H̃ = 90m,
:::
and

::::::::::
Tmin = 30s.

::::::
Then, for each event
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Tc > 30s at 90m, the occurrence of simultaneous events Tc at the remaining heights H is evaluated. A black line is drawn

when an event Tc is measured at the corresponding H .420

Figure G1. Events Tc > Tmin at different heights, conditioned on H̃ = 90m. First, the reference height H̃ is defined. Next, for each i event

Tc,i > Tmin at H = H̃ , the occurrence of Tc at the remaining heights H = [70, 50, 30]m is evaluated. Black lines depict the occurrence of

an event. The Tc at all heights H are conditioned so that Tc > Tmin. For the example in this figure, Tmin = 30s and H̃ = 90m.

The results show that most of the events are not coherent over the four heights H and confirm the appearance of localized

structures. In fact, for the example shown, 37% of the events at 90m are happening simultaneously at 70m. This number

decreases to 11% when comparing the CWS periods between 90m and 30m. The same evaluation for coherent events has been

performed for different values of Tmin and reference heights H̃ .
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