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Abstract. A non-investigated feature of the atmospheric turbulent wind, named periods of constant wind speed, is introduced

and investigated. We hypothesize that such periods of constant wind speed are related to characteristic wind field structures

(e.g., ramps or jets), which when interacting with a wind turbine may induce particular dynamical responses. Therefore, this

study focuses on the characterization of the constant wind speed periods in terms of their lengths, probability of occurrence,

and extreme events. Atmospheric off-shore wind data are analyzed. Our findings reveal that the statistics of long constant wind5

speed periods are an intrinsic feature of the atmospheric boundary layer and show the challenging power law behaviour of

extreme events, which depends on the local conditions and the precise definition of wind speed thresholds. A comparison to

wind time series generated with standard synthetic wind models and to time series from ideal stationary turbulence suggests that

these structures are not characteristics of small-scale turbulence but seem to be consequences of larger-scale structures of the

atmospheric boundary layer, and thus are a typical multi-scale effect. Given the conclusive results, we show that the Continuous10

Time Random Walk model, as a non-standard wind model, can be adapted to generate the statistics of those periods of constant

wind speed measured from the atmospheric turbulent wind.

1 Introduction

The estimation of the loads experienced by a wind turbine (WT) is fundamental for decision-making processes during the

design phase of the various components of the machine, as well as for control strategies during its operation. Such estimation15

is performed through numerical modelling of the interaction between the WT and the incoming wind. Therefore, an accurate

description of the wind within the atmospheric boundary layer (ABL) is essential for correctly calculating the loads acting on

the WT. The International Electrotechnical Commission (IEC) (IEC, 2019) has defined the widely-used standard parameters

and models for the characterization of the atmospheric wind. These standard wind field models extensively consider the spectral

properties and coherence of the velocity components of the wind. Nevertheless, the standard models are designed to mimic20

the atmospheric wind in a computationally efficient way. As a result, some features of the flow in the ABL are neglected.

During the past decades, new challenges in the design process of wind turbines have emerged (Veers et al., 2019). On the one

hand, trends in the design of modern WTs account for bigger rotor areas and less rigid structures (i.e. blades) to capture more

energy from the available wind resources. On the other hand, the weight and material requirements of each component are
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being pushed to minimal levels. As a result, new WTs are becoming, in general, larger and less rigid. Therefore, some of the25

characteristics of the atmospheric wind that have been neglected in the IEC standard wind models might become relevant for

extra loads not previously considered. Together with the WT manufacturer involved in our research, we concluded that one of

these disregarded features is the periods of constant wind speed in atmospheric flows. Such periods are defined as the intervals

of time over which the magnitude of the wind speed remains almost constant within a certain range, defined by a threshold

value. Such events are important for the functionality of a WT and can lead to beneficial, less noisy working conditions, but30

also to undesirable increasing dynamics, especially if weakly undamped vibrations are present under such operating conditions.

As discussed below, such events are also of general interest for turbulent flows.

The concept of persistence is closely related to our definition of periods of constant wind speed. Persistence characterizes

how long a system remains in a particular state before switching to another one. As a general concept, this feature has been

investigated in various research fields (Salcedo-Sanz et al., 2022; Grebenkov et al., 2020), such as in economy (Fletcher and35

Forbes, 2002; Caporale et al., 2022; Nikitopoulos et al., 2022), biology (Arachchige et al., 2021), epidemiology (Kane and T.,

2010), and meteorology (Salcedo-Sanz et al., 2021; Lee et al., 2021; Voyant and Notton, 2018). One prominent concept that

uses persistence is the so-called zero-crossing method. For a random process x(t) with zero-mean, a zero-crossing corresponds

to the waiting time between two successive crossings of its zero. Particularly in turbulence, statistical properties of zero-

crossings have been used to characterize quantities like the Taylor micro-scale (Narayanan et al., 1977; Sreenivasan et al.,40

1983; Kailasnath and Sreenivasan, 1993; Poggi and Katul, 2010) or the integral length scale (Mora and Obligado, 2020;

Mazellier and Vassilicos, 2008). Analysis of zero-crossings in atmospheric turbulent data inside canopies, focused on thermal

stratification, has been reported (Cava and Katul, 2009; Cava et al., 2012). The scheme of zero-crossings does not investigate

the structure of the signal between the crossing, such as possible periods of reduced turbulent amplitudes, in which we are

interested. In fact, we introduce a new approach for measuring the events of our study. Nevertheless, the method and statistics45

of such persistent zero-crossing events are relevant to the discussion. On special interest are self-similar, critical, or fractal

features of turbulence that propose a power law behavior for the probability distribution of the time intervals with duration

T , which can be formulated as p(T )∝ T−α (in particular for the limit of large T ). Such power law statistics may lead to the

demanding phenomenon of divergence of mean value or variance, depending on the value of α, and can be taken as proof for

scale invariance and extreme events.50

From the wind energy perspective, the persistence of the wind is related to the stability and availability of wind resources.

These two are essential parameters for the assessment of the power potential, specific details of the design of the WTs, and

their control strategies. In this context, correct statistical descriptions of the times over which the magnitude of the wind speed

remains at certain conditions are required. Different methods for describing such waiting times have been introduced (Koçak,

2008; Leahy and McKeogh, 2013; Patlakas et al., 2017). However, the available studies using such techniques are mainly55

focused on characterizing the so-called low-wind-speed events over which very low or no energy is produced. Therefore, the

low-wind-speed periods are normally defined for wind speed values below the cut-in thresholds of the WTs. Results on the

statistics of low-wind-speed periods have been reported for local data (Ohlendorf and Schill, 2020; Kruyt et al., 2017; Leahy
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and McKeogh, 2013; Patlakas et al., 2017; Sinden, 2007). In common, these studies investigated modeled time series based on

extrapolated or reanalyzed local records (Brune et al., 2021).60

We characterize the statistics of periods of constant wind speed (with a low level of turbulent fluctuations) from wind measure-

ments in the ABL. In a preliminary investigation (Moreno et al., 2022), the method for the assessment of such events from wind

speed time series was presented. First results on the characterization of the periods in terms of their duration and probability

distributions were also reported. Special attention within the characterization was given to the tails of the distributions, which

describe extremely long periods. Such strong periods are expected to have a stronger influence on a WT. Interestingly, we found65

that the probability distribution for very long periods shows a power-law decay p(T )∝ T−α. Furthermore, a comparison with

wind data generated by an IEC standard model (IEC, 2019) revealed that the model underestimates the frequency of occurrence

of the extremely long periods measured in the ABL. Along with the mentioned findings, some points remained inconclusive in

our initial investigation. These points concern whether these periods are induced by specific orographic perturbations, whether

they are laminar or low turbulent structures, and whether they are intrinsic features of a turbulent flow or rather result from70

large scale interactions within the ABL. As an extension of the work presented in (Moreno et al., 2022), in this study we aim to

address such open questions. Firstly, by characterizing the periods of constant wind speed from a different measurement site;

and secondly, by comparing the results with experimental ideal turbulent data. Furthermore, a stochastic model is presented as

a surrogate wind model to incorporate the statistics of long periods of constant wind speed from turbulence in the ABL.

The paper is structured as follows: Sec. 2 retakes the method for measuring the periods and describes the atmospheric wind75

data to be analyzed. In Sec. 3, the results of the statistical characterization of the periods from the atmospheric data are shown.

In Sec. 4, we compare the results from ABL data to those from two different data sets (i.e. standard and experimental ideal

turbulence). In Sec. 5, we present our conclusions and potential future work.

2 Methodology and Data

2.1 Definition of a period of constant wind speed Tc80

A period of constant wind speed Tc is defined as the time over which the magnitude of the wind speed u(t) exhibits low-

amplitude fluctuations enclosed within certain thresholds (Moreno et al., 2022). A period Tc is depicted in Fig. 1. Over the

length of Tc, the wind speed remains inside the constant speed interval, ut∗ ± ε, where ut∗ is a reference speed value and ε is

the maximum acceptable magnitude of the fluctuations around ut∗ . In the figure, the horizontal red bars illustrate the thresholds

which delineate the constant speed interval. It should be noted that these periods are not laminar, but periods with a smaller85

amplitude of turbulence; see also Sec. 3.
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Figure 1. Schematic representation of a period of constant wind speed Tc measured from an exemplary wind speed time series u(t). The

constant speed interval ut∗ ± ε specifies the limits for the accepted level of turbulence within Tc.

In the following, the method for measuring the length of a period Tc at a given time step t∗ is described. Here we present a

more rigorous formulation of the method, compared to the one provided in (Moreno et al., 2022). Essentially, the goal is to

count the number N of consecutive time steps, including t∗, for which their wind velocity u(t) is contained inside the constant

speed interval. For that, the reference speed ut∗ = u(t∗) and the corresponding constant speed interval ut∗±ε is defined. Next,90

the velocities at the time steps t∗+ i for i = (1,2,3...,∞) are evaluated and counted. The counter Ñ+ for the evaluation of

u(t∗+ i) is then defined as,

Ñ =





Ñ + 1 if (ut∗ − ε)≤ u(t∗+ i)≤ (ut∗ + ε)

Ñ ;end otherwise.
(1)

Note that only consecutive points are counted in Ñ . The count is concluded once the value of u(t∗+ i) exceeds either the

bottom or the top limits of the constant speed interval. So far, only points in the forward direction from t∗ are evaluated. The95

same algorithm is subsequently applied to counting the number of points Ñ− in the backward direction from t∗. In this case,

values of i = (−1,−2,−3...,−∞) are considered for evaluating u(t∗+ i) in Eq. (1). Finally, the total number of consecutive

points N measured at t∗ results from the sum of Ñ+ and Ñ−, independently measured in the forward and backward directions.

The length of the period Tc at t∗ is then obtained by multiplying the total N by the size of the time step δt.

The method for Tc is performed for every time step in the time series u(t). In the case of overlapping periods, only the100

longest-measured period is recorded. By doing so, a recounting of events is avoided.

In (Moreno et al., 2022), the threshold ε for fixing the constant speed interval ut∗ ± ε was randomly selected (e.g. 0.2 - 0.4

m/s). Now, in order to introduce a systematic approach, ε is defined to be proportional to the standard deviation of the wind

speed σu. Given a wind speed time series u(t), the standard deviation σu measures the size of the fluctuations around the mean

value ū. Then, ε is calculated as,105

ε = A ·σu (2)
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where the value of A, typically A < 1, can be chosen depending on the particular application. In the case of a WT, A might be

related to the thresholds for the control system to operate within different turbulent regimes. In practice, such thresholds in the

operating protocols are commonly defined as a function of the turbulence intensity TI = σu/ū.

2.2 Atmospheric wind data110

In (Moreno et al., 2022) data from two different onshore sites were investigated. The onshore wind is strongly influenced

by orographic conditions. Therefore, it remained unclear to what extent the the periods Tc were originated by such external

conditions. To address this issue, we selected offshore data to be analyzed in this study. We expect such data to provide a better

representation of undisturbed, or less disturbed conditions within the ABL compared to onshore data.

Data from the research platform FINO1 (FINO) are investigated. The platform is located in the North Sea and the Baltic115

Sea. Records of the wind speed were taken by vertically aligned cup anemometers mounted at different heights. The data

correspond to a continuous period of approximately five days (4x105s), measured in January 2006 with a sampling frequency

of 1Hz. Measurements at heights H=[30, 40, 50, 60, 70, 80, 90]m above the mean sea level (MSL) are considered. Fig. 2 shows

the mean ū and standard deviation σu calculated over individual 10-minute periods. The complete data set of measurements

corresponds to 666 10-minute periods. Exemplary, only the data at H=90m are shown.120

(a) (b)

Figure 2. Wind velocity statistics of FINO data at H=90m over 10-minute intervals (a) Mean wind speed ū. (b) Standard deviation σu. Each

dot in the plots corresponds to a single 10-min period. The dots are chronologically ordered.

Table 1 summarizes the results for all the heights. There, ⟨ū⟩ and ⟨σu⟩ correspond to the average of the ū and σu over the 666

10-minute intervals at each H . Mean values ⟨ū⟩ vary from 9.7 to 10.0m/s, and the standard deviations ⟨σu⟩ are edged between

0.65 and 0.76m/s.
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H[m] 30 40 50 60 70 80 90

⟨ū⟩ [m/s] 9.8 9.7 9.8 9.9 10.0 9.9 9.8

⟨σu⟩ [m/s] 0.74 0.76 0.72 0.71 0.69 0.67 0.65
Table 1. Mean ⟨ū⟩ and standard deviation ⟨σu⟩ of the FINO wind data at the heights H . Angular brackets ⟨·⟩ indicate the mean over the 666

subsets of 10 minutes in length.

3 Statistics of Tc for atmospheric turbulent data

3.1 Power spectra of u(t) during periods Tc125

The question of whether the wind speed u(t) over the periods Tc is strictly laminar, or rather turbulent with a low degree of

turbulence, was outside the scope of our previous work (Moreno et al., 2022). The turbulent nature of u(t) is now verified

by the power spectra, shown in Fig. 3. A decay of the form E(f)∝ f−5/3 is obtained for all H . Accordingly, the wind data

embedded along the periods Tc are not laminar flow sections but periods of turbulence with smaller amplitudes.

Figure 3. Power spectra E(f) of wind speed u(t) during the measured periods Tc at different heights H . The black solid line shows a decay

f ∝ f−5/3. The spectra are calculated for each period Tc and then averaged over all periods.

3.2 Mean, standard deviation and maximum value of Tc130

The statistics of the periods Tc are firstly discussed in terms of the mean duration Tc, standard deviation σTc
and maximum

value Tc,max. A factor A=0.3 is exemplary chosen for defining the threshold ε = A·⟨σu⟩ for the constant speed interval ut∗±ε.

With the definitions above, periods with less than 2 % turbulence are selected. The results on the statistics of Tc at different

heights H are summarized in Table 2. The values of ε are also provided.

6

https://doi.org/10.5194/wes-2024-32
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



H [m] 30 40 50 60 70 80 90

ε[m/s] 0.22 0.23 0.22 0.21 0.21 0.20 0.20

Tc [s] 5.71 5.43 6.14 6.33 6.28 6.47 5.30

σTc [s] 5.62 5.32 6.31 6.54 6.44 6.65 4.75

Tc,max [s] 104 145 132 158 123 120 91

Table 2. Tc, σTc , and Tc,max for different heights H . The values of ε is calculated by considering the value of the standard deviation ⟨σu⟩
at the corresponding H (see Table 1).

Special attention has to be devoted to the meaning of the statistical moments Tc and σTc calculated from the data. In certain135

cases, as those presented in (Moreno et al., 2022), the probability distribution p(Tc) may lead to not converging moments, i.e.,

mean and variance. Further details are discussed next and in Appendix A and Appendix B.

3.3 Probability density function of Tc

Next in the statistical characterization of Tc, the probability density functions (PDF) p(Tc) are discussed. Fig. 4 shows p(Tc)

for the corresponding data shown in Table 2 for different H . As mentioned before, we focus our attention on characterizing140

very long periods Tc as potential sources of special responses of the WTs. Therefore we concentrate on the tails of p(Tc).

For comparability, the values of Tc are normalized by the longest measured period at each H; more precisely, we use a

representative value T̃c,max of at least five of the longest periods to become statistically more robust.

The normalized PDFs p(Tc) in Fig. 4 are presented in a log-log scale. In such a representation, a straight line reveals a power-

law behavior of the form p(Tc)∝ T−α
c with α as the characteristic exponent. In the figure, such power laws are depicted by145

solid lines with the same color used for the dots at each H . The corresponding estimated exponents α are given in the legends

of the figure. In general, for α≥ 3, all the moments of the power-law distribution p(Tc) are defined (see Eq. (B1)). Since this

is the case for all values of α in Fig. 4, the moments Tc and σTc converge for all H . In this way, the results presented in Table 2

provide meaningful information about the characteristics of the periods Tc, regardless of the length of the data. Moreover, since

the results for the measurements at all H are enclosed within±8% of the estimated power-law fitting∝ T−α
c , then we conclude150

that α, or the decay p(Tc)∝ T−α
c is height independent. In addition, the power-law decay is proved to hold for different widths

of the constant speed interval. They will be discussed in Sec. 3.4.

The power-law distributions p(Tc) for the offshore data shown in Fig. 4 agree with the obtained for the two onshore sites

investigated in (Moreno et al., 2022). Then, the structures Tc are not attributed to a specific terrain or orographic condition.

However, as the actual statistics of Tc (i.e. Tc, σTc
, Tc,max, α) vary significantly between data sets, they should be exclusively155

considered for each location.
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Figure 4. Normalized probability density functions p(Tc/T̃c,max) for FINO data at different heights H . The dots illustrate the results from

the FINO data. The solid lines show the power-law decay fitting ∝ T−α
c . The value T̃c,max for each height is defined as the bin center

containing at least five of the largest measured periods after a binning process.

3.4 Validity of the power-law ∝ T −α
c

To validate the universality of the power-law behavior, we investigate the effect of the threshold ε by varying the factor A,

as ε = A ·σu. Table 3 summarizes the results of Tc, σTc
, and Tc,max for A=[0.2, 0.3, 0.4, 0.5]. Fig. 5 shows the respective

normalized PDFs p(Tc) in an analog representation as shown previously in Fig. 4.160

A [-] 0.2 0.3 0.4 0.5(∗)

ε[m/s] 0.13 0.20 0.26 0.32

Tc [s] 3.64 5.30 6.55 12.57

σTc [s] 2.33 4.75 6.80 17.52

Tc,max [s] 45 91 145 392
Table 3. Tc, σTc , and Tc,max for different values of the factor A. FINO data measured at H=90m, with ⟨σu⟩=0.65m/s are analyzed. The

result of σTc for A=0.5(∗) is particularly discussed.

Firstly, Fig. 5 shows a clear power-law decay∝ T−α
c for all values of A. Secondly, we now focus on the case A=0.5, for which

results are marked by (∗) in Table 3. As shown in Fig. 5, for this case, a characteristic exponent 2≤ α≤ 3 is obtained. Thus,

the second moment of p(Tc)∝ T−α
c diverges or is not defined (see Eq. (B1)). In other words, the estimation of the mean of Tc
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leads to Tc±∞. As a consequence, the estimated value of σTc
for A=0.5 in Table 3 depends on the length of the time series

u(t). This is a prominent feature of distributions with power law tails for which arbitrarily large (with no upper bound) events165

are expected.

This feature of unbounded periods Tc is also indicated in Table 3. For A < 0.5 we see a nearly linear increase of Tc,max by

about 45s for A+0.1. But for the increase of A from 0.4 to 0.5, the length of Tc,max increases more than 200s. For longer time

series this value would increase further.

Figure 5. Normalized probability density functions p(Tc/T̃c,max) for FINO data for different values of A. The power-law fittings ∝ T−α
c

are depicted by the solid lines. Measurements at H=90m, with ⟨σu⟩=0.65m/s are considered. The value T̃c,max for each value of A is defined

as the bin center containing at least five of the largest measured periods after a binning process.

4 Comparison to synthetic wind and pure turbulent data170

4.1 Standard-IEC Kaimal and experimental pure turbulence

Another of the open questions in (Moreno et al., 2022) was whether the constant speed periods Tc are typical features of

turbulent flow. Therefore, we now investigate the statistics of the periods Tc from experimental ideal turbulent data, namely

‘Lab’. This data set was measured by Renner et al. (Renner et al., 2001) in the central region of a free jet, which is approximately

stationary, homogeneous, and isotropic. For completeness, we also investigate IEC-standard wind data, labelled as ‘Kaimal’.175

This synthetic data set was generated by the NREL Turbsim package (Jonkman, 2016). Details about the parameters and

characteristics of the two additional data sets, ‘Lab’ and ‘Kaimal’, are given in Appendix E.

The wind data u(t) from FINO and Kaimal can be compared quite easily as they have comparable characteristics in terms of

mean wind speed, standard deviation, sampling frequency, integral length scale, and length of the data. However, fundamental
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differences arise when comparing with the pure turbulent Lab data. To work out the intrinsic features of these different data we180

used the following three different approaches.

Fig. 6 shows the resulting normalized PDFs p(Tc) for the three wind data sets: (a) FINO, (b) Kaimal, and (c) Lab. The

normalization is done by T̃c,max analogous as in Fig. 4 and Fig. 5. The results in Fig. 6 clearly show different PDFs for the

three data sets. The most prominent power-law ∝ T−α
c is found for the FINO data. Compared to Kaimal and Lab, FINO data

exhibit a slope characterized by smaller values of the characteristic exponent (αFINO = 3.66, αKaimal = 4.21, αLab = 4.36).185

As a result, only the FINO data show a tendency to non-convergence of their lower moments, leading to undefined mean or

variance, as well as difficulties in the prediction of extremely large events Tc.

(a) (b) (c)

Figure 6. Normalized probability density functions p(Tc/T̃c,max) for (a)FINO, (b)Kaimal and (c)Lab data sets. The value T̃c,max for each

data set is defined after a binning process as the center of a bin containing at least five of the largest measured periods. The constant speed

interval is defined with factor A=0.3. Measurements at H=90m are considered for FINO with ⟨σu⟩=0.65m/s. The corresponding σu for

Kaimal and Lab data sets are 0.58 m/s and 0.38 m/s, respectively.

As a second way to compare the data, we normalize Tc with respect to the total length of the time series L. By doing so, we

get information on the absolute duration of periods Tc within the duration of the sample. Results are shown in Fig. 7 (a).

As the results may be affected by the convergence of the data, as a longer data set might introduce different statistics of Tc,190

we chose a third approach. The integral length scale Lint is a measure of the longest correlations, thus we use corresponding

PDFs p(Tc) normalized by Lint, shown in Fig. 7(b).
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(a) (b)

Figure 7. Normalized probability density functions for FINO, Kaimal and Lab data sets. (a) Normalized p(Tc/L). The value of L is the same

for FINO and Kaimal L=4x105s, and for Lab data L=1062s. (b) Normalized p(Tc/Lint). The values of Lint are 10s and 0.029s for Kaimal

and Lab, respectively. The value of Lint for FINO is considered to be 10s as a representative value of the atmospheric data.

Comparing the PDFs in Fig. 7, the probability of lower values of Tc/Lx in (a) and (b) for Lab data (blue) is explained by a

much higher sampling of the data. The tails of the distributions with the two normalizations, L and Lint, show that for the FINO

data not only the lengths of periods Tc are larger but also the extremely large events are orders of magnitude more frequent,195

compared to Kaimal and Lab (Tc ≈ 2Lint are more than 100 times more frequent for the FINO data than for the other data

sets.)

Interestingly, in Fig. 7(b) we note that the three data sets exhibit periods Tc which surpass of the size of Lint, or Tc/Lint>1.

Such structures are large scale structures or may be considered as superstructures (Pandey et al., 2018; Krug et al., 2020).

However, for Kaimal and Lab the largest events occur at Tc ≈ 2Lint, while events of length up to ≈ 5Lint are observed for200

FINO data.

Furthermore, we calculate the standard deviation of the periods σTc in units of integral lengths Lint. The resulting values are

σTc,Lab = 0.12Lint, σTc,Kaimal = 0.15Lint, and σTc,FINO = 0.47Lint. The estimated values of σTc show in another way that

FINO data have the tendency of remarkable longer periods, compared to Kaimal and Lab.

4.2 CTRW wind model205

We have shown conclusive results on the distributions p(Tc) in the ABL and their underestimation by a standard wind model.

Finally, we show how the observed features of the FINO data can be included in a numeric wind field model. As a surrogate for

the standard Kaimal model, we investigate non-standard wind velocity time series generated by the Continuous Time Random

Walk (CTRW) model (Kleinhans, 2008; Ehrich, 2022; Schwarz et al., 2019; Mücke et al., 2011). The CTRW model generates
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either Gaussian ‘CTRW-G’ (-G as an abbreviation of Gaussian) or non-Gaussian (-NG as for non-Gaussian wind velocity time210

series. For the ‘CTRW-G’, the statistics of u(t) are entirely Gaussian. On the contrary, the statistics of u(t) for the ‘CTRW-NG’

deviate from Gaussianity towards distributions with so-called heavy tails or higher probabilities of extreme events.

The CTRW model uses a skewed Levy-distributed stochastic process, parameterized by the characteristic exponent αL, as

outlined in more detail in Appendix D and Appendix E. The stochastic process defines a time transformation from the intrinsic

scale of the model s to the physical time t. Such time-scaling transformation allows the generation of non-Gaussian time series215

u(t). The characteristic exponent αL, with 0 < αL ≤ 1, specifies the asymptotic behaviour of the skewed Levy distribution.

For αL=1 the resulting process u(t) is entirely Gaussian. Values of αL → 0 generate processes with more pronounced non-

Gaussian characteristics. In this case, non-Gaussianity is related to extremely long waiting times between two successive time

steps s. A very long waiting time in u(s) would then be translated into a period over which the process u(t) remains constant.

Fig. 8 shows an excerpt of u(t) for a Gaussian CTRW-G and a non-Gaussian CTRW-NG realizations. Respectively, values of220

αL=1 and αL=0.9 are considered. Along the interval between t=875s and t=895s, a period of almost constant wind speed is

observed for the CTRW-NG. For better visualization, a zoomed version of the time series is presented in the sub-figure in the

right-bottom corner. Such a structure of the wind, indicated by the horizontal blue line, agrees with our definition of Tc. The

observed small fluctuations within the period result from the interpolation process between the intrinsic and the physical times

s→ t (Ehrich, 2022).225

Figure 8. 750-s excerpt of the wind speed time series u(t) for CTRW-G and CTRW-NG. A visible period of almost constant wind speed Tc

is visible between 875-895s for the CTRW-NG.

The fundamentals of the CTRW model as well as further details on the method for achieving such non-Gaussian features are

given in Appendix D. The parameters for generating the time series are provided in Appendix E.

Fig. 9(a) presents the PDFs p(Tc) for the CTRW realizations, and the FINO data. For FINO, measurements at H=90m are

considered. The constant speed interval is fixed with a factor A=0.3. The individual distributions are vertically shifted for

better visualization. The dotted lines show the corresponding Gaussian distribution with the mean and standard deviation of the230

corresponding p(Tc). The grey-shadowed area illustrates the range of the decays of p(Tc) or slopes α, enclosed by CTRW-G
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(□) with αL=1, and CTRW-NG (△) with αL=0.9. The distribution of the CTRW-NG realization shows an overestimation,

compared to the FINO data, of the deviation from Gaussianity towards a higher probability of very long-duration periods Tc.

This deviation is visible from Tc ≈ 0.25/Tc,max. On the contrary, the decay of the CTRW-G is much more pronounced and the

divergence from the Gaussian distribution is visible only for events higher than 0.7Tc,max. A third realization, ’CTRW-NG∗’,235

of the CTRW model is compared. This non-Gaussian time series is generated with αL=0.99. The resulting p(Tc) distribution

for CTRW-NG*(◦) shows a better agreement with the FINO data. Both distributions, FINO and CTRW-NG*, lie inside the

grey shadowed area depicting the slopes enclosed between the Gaussian CTRW-G and extremely non-Gaussian CTRW-NG.

Fig. 9(b) shows the resulting exponents α from the decay p(Tc)∝ T−α
c , against the characteristic exponent αL from the Levy

distribution of the CTRW model. The dotted horizontal line depicts the value of α for FINO. We conclude, that by tuning the240

αL parameter of the CTRW model, non-Gaussian realizations of u(t) can reproduce the statistics of p(Tc) from the atmospheric

turbulent wind.

(a) (b)

Figure 9. (a) Normalized probability density functions p(Tc/Tc,max) for the CTRW-G, CTRW-NG, CTRW-NG*, and the FINO data. The

individual distributions are shifted vertically for better visualization. Dotted lines depict Gaussian distributions. The grey area depicts the

range of the slopes covered between CTRW-G and CTRW-NG. Measurements at H=90m are considered for FINO with ⟨σu⟩=0.65m/s. (b)

Power law exponents α from p(Tc)∝ T−α
c as function of the characteristic exponent αL from the Levy distribution driving the CTRW

model.
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5 Conclusions and Outlook

The method introduced in (Moreno et al., 2022) was used to measure the constant wind speed periods Tc (periods with turbu-

lence of a reduced amplitude) from offshore wind data within the ABL. In agreement with (Moreno et al., 2022), we showed245

that the probability distributions p(Tc) for offshore data also exhibit a power-law decay for very long events. Given that off-

shore conditions maintain a more unperturbed ABL, we demonstrated that the periods Tc are intrinsic features of the ABL and

are not due to specific external agents (i.e. mountains, obstacles). However, significant differences in the values of the critical

exponent α presented in (Moreno et al., 2022) suggest that the lengths of Tc are indeed influenced by interactions with the sur-

roundings. Therefore, the estimated statistics of Tc must be considered locally for the specific location of interest. Moreover,250

from the comparison between different measurement locations of the FINO data, α seems to be quite independent of the height

but changes significantly with the threshold ε. Lower values of α are obtained for larger ε. In other words, less pronounced

decays of the distribution correspond to wider ranges for considering the wind speed as constant. We found examples of Tc

significantly larger than 100s, which correspond to spatially extended structures over sizes larger than 1km, using Taylor’s hy-

pothesis of frozen turbulence. Such large structures in a turbulent wind may be related to the so-called superstructures, which255

are of current interest (Pandey et al., 2018; Krug et al., 2020; Käufer et al., 2023).

We proved the turbulent nature of the wind speed u(t) during the periods Tc. However, the statistics of Tc are significantly

different when comparing different turbulent data. Results from experimental pure (ideal) turbulent data suggest that the nature

of the periods Tc is attributed to special structures developing in the wind inside the ABL. It is still an open question whether

they are caused by special effects of the small-scale turbulence (i.e., different from homogeneous isotropic turbulence) or260

whether they are indeed consequences of larger-scale interactions of the atmospheric boundary layer, like effects of the spectral

gap (Larsén et al., 2016).

We had already shown in (Moreno et al., 2022), that the occurrence of very long Tc events in the ABL is underestimated by

the Gaussian assumptions within the standard IEC wind model. Therefore the need for an improved model is justified. The

Continuous Time Random Walk (CTRW) model with its newly defined time mapping (see Appendix D) is particularly suitable265

for the incorporation of the periods Tc measured from the atmospheric turbulent wind. This surrogate model represents an

improvement in wind modelling towards more realistic atmospheric wind fields. Consequently, responses of the WT interacting

with such disregarded structures on the wind might be better predicted, and critical loads due to these events might be avoided.

From an engineering perspective, constant wind speed periods Tc might be undesirable for the operation of WTs if phenomena

such as resonance or critical loading are induced. Still, they also might be profitable if conditions such as constant power270

production are achieved. In fact, first calculations of the loads induced by periods Tc were investigated by BEM simulations of

the 5MW NREL wind turbine (Jonkman et al., 2009). The results suggest that depending on the operational conditions of the

WT, certain loads are damped over the period Tc. However, few load sensors, such as the side-to-side bending moment at the

base of the tower, are amplified. Therefore, the here presented detailed statistical description of Tc can be useful for control

practices. A control system may be adapted to the ε value, as a threshold value when the control dynamics sets in. Our results275
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indicate that such a threshold value would lead to fundamentally different Tc statistics, having predictable longest periods or

not. On the other hand, some specific aeroelastic events on the WT might be ignored during load simulations for design and

control procedures due to inaccurate modelling of such periods within the standard wind models. In special cases, wind field

models with improved or extended capabilities to reproduce this feature observed on the atmospheric turbulent wind might

become necessary for accurate simulation of the loads and dynamics of the WTs.280

A very long period Tc might have an increased impact on a WT depending on its spatial location in the plane of the rotor. The

effect of such an event happening in the outer region of the rotor plane might be higher compared to the case when it reaches

the turbine at the region near the hub. Within the former scenario, larger moments might be induced on the main shaft or at the

root of the blades. Indeed, from the same above-mentioned simulations on the 5MW turbine, the effect on the amplification

of the side-to-side moment of the tower increased when considering periods Tc affecting exclusively one quadrant of the rotor285

plane. Accordingly, in terms of the characterization of such constant wind speeds, future work has to be devoted to evaluating

the structures in the spatial domain. Spatial correlations of the periods Tc might be highly relevant for the dynamics of the

WT. Afterwards, the complete statistical parametrization of periods of constant wind speeds, in both time and spatial domains,

should be assessed and improved for the synthetic wind field models such as the existing CTRW model (Kleinhans, 2008), the

recently introduced Time-mapped Mann model (Yassin et al., 2023) which can generate long waiting times of u(t) as in the290

CTRW model, or the Superstatistical model (Friedrich et al., 2021) that follows the K62 model of turbulence.

Code availability. The algorithm described through Sec. 2.1 for measuring the periods Tc was coded in MATLAB for the analysis of wind

speed data. The code can be made available upon request.

Data availability. The FINO and Lab measurements, as well as the generated Kaimal and CTRW time series can be obtained upon request.

Appendix A: Power-law distributions from empirical data295

A general quantity x with a probability distribution p(x) follows a so-called power-law if,

p(x) = C x−α (A1)

with α as the characteristic exponent and a constant C = ec. The estimation of the exponent α from empirical data has been

extensively discussed in the analysis of the distributions of a very wide range of applications (Newman, 2005; Clauset et al.,

2009). Since Eq. (A1) is equivalent to lnp(x) =−α lnx + c, the most simple approach for the calculation of α comes from300

a linear regression on the log-log plot of the histogram of x. However, this procedure introduces significant errors due to the

binning of the data and the resulting distributions. Such distributions are usually dominated by a few bins at lower values of
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x with very high values of p(x), and several bins at the higher range of x with very low probabilities p(x) (Newman, 2005;

Dorval, 2008).

Instead of such a linear regression, a logarithmic binning process of the data is recommended. Within this approach, the305

histogram of x is constructed for k number of bins with variable width. More specifically, the bin edges B are proportional to

successive powers of a constant a. Then,

B = (b1, b2, ..., bk+1) = xc,min(a0,a1, ...,ak) (A2)

where b1 > 0, k > 1 and xmin is the minimum value of x for considering the power-law behaviour. Thus, the ith bin encloses

the interval [bi, bi+1) and the larger edge of the kth is assumed to be +∞.310

The value of the lower bound xmin affects the estimation of the exponent α in p(x)∝ x−α. For binned data, bmin is defined as

the minimum bin taken into consideration for the calculation of α. We follow the algorithm proposed by (Virkar and Clauset,

2014) for choosing bmin from binned empirical data. This method is based on a Kolmogorov-Smirnov (KS) statistic test

(Massey, 1951) for minimizing the distance between the distributions of the fitted model P (b|α,bmin) and the empirical model

S(b) above bmin. Then, the optimized value of b∗min minimizes315

D = maxb≥bmin
|S(b)−P (b|α,bmin)|. (A3)

Further details about the method for calculating bmin and α are provided in C.

A distribution with a power-law behaviour is known as critical and may lead to divergent moments. For a quantity x with p(x)∝
x−α, the mean value of p(x) becomes infinite for α≤ 2. Furthermore, if α≤ 3, p(x) has no finite variance (Newman, 2005).

In such a case, x can take values of x̄±∞ (See Appendix B). Many phenomena, varying from biological to economical, are320

characterized by critical distributions. A few examples of such variables are the frequency of use of words, the income among

individuals, and the magnitude of earthquakes (Newman, 2005; Marquet et al., 2005; Powers, 1998). The latter represents a

challenge to the forecasting of seismic events.

Appendix B: Statistical moments of power-laws

A power-law distribution of a continuous variable x is defined in Eq. (A1), where α > 1 is the power-law exponent and C is325

a normalization constant. A minimum value xmin is defined as the lowest limit at which the power-law holds. Then, the kth

moment of a power-law distribution can be calculated.

The k-th moment of the distribution p(x) is given by,

⟨xk⟩=

∞∫

0

xkp(x)dx =

xmin∫

0

xkp(x)dx

︸ ︷︷ ︸
:=A

+

∞∫

xmin

xkp(x)dx = A +
C

k + 1−α

[
x−α+k+1

]∞
xmin

. (B1)
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Then, power-laws with α≤ 2 have an infinite mean (k=1). Distributions with α≤ 3 have no meaningful variance (k=1).330

Extensively, the general kth moment exists only if k < α− 1.

Appendix C: Estimation of bmin

Here we provide the steps we follow for estimating the minimum bin bmin above which the power-law p(Tc)∝ T−α
c is valid.

The method was proposed by Virkar and Clauset (2014).

For each possible bmin ∈ (b1, b2, ..., bk/2),335

1. Calculate the cumulative binned empirical distribution S(b) for bins b≥ bmin.

2. Estimate the characteristic exponent α̃ considering b≥ bmin.

3. Calculate the cumulative density function (CDF) for P (b|α̃, bmin) of the binned power-law.

4. Calculate the Kolmogorov-Smirnov(KS) test statistic D defined in Eq. (A3).

5. Select the optimal value b∗min as the value of bmin with the minimum test statistic D.340

The bins b are defined according to Eq. (A2). For the estimation of α̃ in (ii), a least-squares linear regression method is

considered.

Appendix D: CTRW model for the generation of wind fields

More detailed descriptions of the model are provided in (Kleinhans, 2008; Yassin et al., 2023; Mücke et al., 2011; Schwarz

et al., 2019). Time series of the wind speed u
(κ)
i (t) at each point i of a defined grid are based on two coupled Ornstein-345

Uhlenbeck (OU) stochastic processes uκ
r (s) and uκ

i (s). Both processes are first generated in an intrinsic scale s. The super

index κ accounts for the three directions of the wind κ = [(x),(y),(z)]. In our case, we generate wind speed time series only

in the longitudinal direction u(x), so that κ = (x). The two processes are defined as,

du
(κ)
r (s)
ds

=−γr(u(κ)
r (s)−u

(κ)
0 ) +

√
DrΓ(κ)

r (s) (D1)

and,350

du
(κ)
i (s)
ds

=−γ(u(κ)
i (s)−u(κ)

r (s)) +
√

D
(κ)
i Γ(κ)(s) (D2)

where γ and γr are damping constants, D and Dr are diffusion constants; and Γ(s) and Γr(s) are Gaussian-distributed white

noise. Next, the resulting Gaussian velocity signals u
(κ)
i (s) are mapped to the physical time scale t by means of an additional

stochastic process as,

dt(s)
ds

= τc̃,αL
(s). (D3)355
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where τc̃,αL
(s) is a Lévy-distributed process with characteristic exponent αL and a cutoff value c̃. In the case of αL=1,

the intrinsic scales s is equivalent to the physical time t so that u
(κ)
i (s)=u

(κ)
i (t). The time mapping process described in

Eq. (D3) allows the key feature of the model which accounts for the intermittent behaviour of the wind speed time series. The

intermittency is introduced by the Lévy-distributed sizes of the waiting times for the transformation from s to t.

In Sec. 4 we investigated two CTRW data sets: CTRW-G and CTRW-NG. The CTRW-G time series were generated with360

characteristic exponent αL=1 so that the waiting times of the intrinsic scale s are constant and the statistics of u(t) are Gaussian.

For the CTRW-NG time series in Fig. 8 and Fig. 9(a), we assumed αL=0.9. By doing so, we introduce non-Gaussian features

on the probability distributions.

Appendix E: Parameters used for generation of synthetic wind fields

– Kaimal: The data set contains 4 x 105 data points with a frequency of 1Hz. The mean wind speed is 10m/s and the365

standard deviation is 0.58m/s. The integral length scale is set to 10m. The parameters are chosen to be comparable to

FINO data (see Sec. 2.2).

– CTRW: Both realizations, ‘CTRW-G’ and ‘CTRW-NG’, have 4 x 105 data points with a frequency of 1Hz. The mean

wind speed and standard deviation are 9.5m/s and 1.1m/s for both cases. Extended parameters for the model are

ωc=1.8Hz; αL=[0.9 1], c̃ = 350 and . Details on the definition of the parameters are given in Appendix D and (Ehrich,370

2022). The values of the parameters are chosen to generate data comparable to FINO measurements (see Sec. 2.2).

– Lab: The velocity in the direction of the flow was measured by a hot-wire anemometer. The data set consists of 8.48 x

106 points with a sampling frequency of 8kHz. The measured integral length scale is reported as 0.067m (Fuchs et al.,

2022). Details of the experiment are found in (Renner et al., 2001).
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