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Abstract. Leading-edge rain erosion poses a significant challenge for the wind turbine industry due to its detrimental effects

on structural integrity and annual energy production. Developing effective mitigation strategies requires understanding the

precipitation conditions driving erosion. The influence of the rain droplet diameter on both the formation of erosion damage

and on erosion mitigation strategies has yet to be sufficiently understood. This study proposes an enhanced damage model based

on the impingement metric as used in the state-of-the-art, but improved by including important and so far neglected physical5

mechanisms such as the recently described droplet slowdown and deformation effect. Several drop-size-dependent effects are

identified within the damage model. Subsequently, their significance for leading-edge erosion is established by deliberately

including and excluding them for comparison. Thereafter, the influence of the drop-size effects on the viability of the erosion-

safe mode (ESM) is investigated. The outcome is that drop-size effects strongly impact the erosion process and should not be

neglected during modeling. Large droplets are considerably more damaging than small droplets, even when normalized for10

water volume. This directly influences the parameter space of erosion, such as the relevant droplet diameter range that should

be studied. The drop-size effects shift damage production to higher rain intensities. Roughly half of the erosion damage is

produced by only 10% of rain events. When drop-size effects are excluded, this value shifts to more than 20%. Regarding the

ESM, it is found that it can be utilized up to twice as efficiently when drop-size effects are adequately modeled. The findings

highlight the criticality of drop-size effects in rain erosion modeling for wind turbine blades, impacting lifetime predictions,15

ESM viability, and the parameter space of leading-edge erosion. This paper also provides a formal derivation of impingement

and describes a method for finding optimal ESM strategies.

1 Introduction

Leading-edge rain erosion is the process of material removal from wind turbine blades by impact with rain droplets. Erosion

leads to roughening of the blade’s leading edge. An eroded blade needs to be repaired frequently to avoid the progression of20

damage deep into the structural layers of the blade. The blade roughening disturbs the boundary layer and causes an earlier

transition from laminar to turbulent flow. This can lead to a reduction in annual energy production (AEP) in the range of up

to several percent (Papi et al., 2021; Campobasso et al., 2023; Castorrini et al., 2023; Barfknecht et al., 2022). Due to the

combination of maintenance costs and performance loss, leading-edge rain erosion constitutes a significant problem for wind

farm operators.25
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As a reaction, numerous mitigation strategies have been devised. Examples include protective tapes (Traser et al., 2019),

soft-shells (Mishnaevsky et al., 2021) and hard-shells (Mathew et al., 2022). The recently proposed erosion-safe mode (ESM)

represents an operational mitigation strategy against erosion (Bech et al., 2018; Picard and Canal Vila, 2019). In ESM operation,

the turbine’s rotational speed is lowered during precipitation events to avoid erosion damage. If carried out effectively, the ESM

has the potential to protect the turbine from erosion damage fully. However, limiting the turbine’s rotational speed leads to a30

reduction in AEP and, thus, a performance loss as well. Barfknecht et al. (2022) have shown that depending on the rain

frequency and the site mean wind-speed, the ESM can lead to AEP savings compared with a mildly eroded blade (or an

equipped blade protection system that creates similar losses, see the recent results of Bak et al. (2023)).

Understanding of the conditions that promote the development of erosion is fundamental to developing and applying any

mitigation strategy, whether in form of protective solutions or operational adjustments. The parameter space of erosion is vast:35

Turbines have varying tip-speeds, the wind conditions differ per site and so does the precipitation. Rain is heterogeneous. It

is composed of droplets of varying diameters. The statistical distribution of the rain droplets is described with a drop-size

distribution, with typical choices being the Best or Marshall-Palmer distributions. In practice, the drop-size distribution is site-

dependent (Pryor et al., 2022). To determine the erosivity of a particular rain event, the drop-size distribution and the erosion

damage as a function of the droplet diameter must be known.40

So far, there is still considerable uncertainty on how the diameter influences the erosivity of droplets. It is also unknown

whether the implementation and viability of the ESM might be affected by this lack of knowledge. Bech et al. (2022) performed

measurements in an erosion test rig. They found that, depending on the impact speed, either smaller or larger diameters are more

damaging. Verma et al. (2020) performed numerical simulations in which a water droplet impacts a composite target. They

found that the maximum coating stress increases with the droplet size. Amirzadeh et al. (2017) performed similar simulations45

with the difference that the impact target was solid. In contrast to Verma et al. (2020), they found that the maximum impact

pressure is invariant with the droplet diameter. In Barfknecht and von Terzi (2023), it was shown that droplets in the proximity

of wind turbine blades are expected to slow down. Their analysis suggests that large droplets are significantly more damaging

than small droplets.

This study aims at providing answers to the following research questions:50

1. How does the drop size influence the erosivity?

2. Is a thorough understanding of drop-size-related effects important for the design of the erosion-safe mode?

The paper is organized in two parts. Every part pertains to one research question. Attached to this paper is an extensive

appendix that develops and formalizes concepts that are used in this study but are not directly linked to the research questions.

The first part starts in Section 2.1 by developing an erosion damage model based on the impingement metric. Subsequently,55

in Section 2.2, the drop-size effects contained in the model are identified, and their relevance is quantified for each effect

individually. In Section 2.3, the drop-size effects are analyzed holistically and combined to find an answer to the first research

question. The second part, presented in Section 3, establishes the influence of drop-size effects on the implementation and

viability of the ESM. The conclusions of this paper are presented in Section 4. Appendix A gives a formal derivation of the
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impingement damage metric. In Appendix B, the operational regime of the ESM is defined together with a method to derive60

optimal ESM strategies. In Appendix C, the calculation of the AEP is explained.

In this study, the IEA 15MW reference turbine is used (Gaertner et al., 2020). Where applicable, results for the non-

dimensional blade span r/R = 0.9 are shown. The location was chosen based on the fact that leading-edge protection solutions

are generally applied on a length of 10 to 20 m when measured from the tip (Verma et al., 2021). The blade span of the

IEA 15MW is approximately 120 m. The turbine was assumed to be located at the coastal site De Kooy (Den Helder) in the65

Netherlands at coordinates (52.924, 4.780).

2 Drop-size-dependent effects

The methodology of this section consists of two main parts. First, this study’s damage model is derived. It is used to calculate

the lifetime of the the blade under various operating conditions. In the second part, the drop-size effects, that are contained

within the damage model, are identified and discussed.70

2.1 Derivation of the computational framework

2.1.1 Damage rule and metric

The damage model is built on the linear Palmgren-Miner damage rule. The damage metric that is used is impingement H . It

represents the water column that is caught be the wind turbine’s blade during operation. One obtains

D = Train

∞∫

0

∞∫

0

360◦∫

0◦

∞∫

0

∂tHI,Vwind,θ,ϕ

Hallowed
dϕdθdVwinddI, (1)75

where D is the damage accumulated in one year of operation. Hallowed is the impingement that can be collected by the blade

before damage can be observed on the blade’s coating. ∂tHI,Vwind,θ,ϕ is the rate impingement is collected at during operation.

∂t is a shorthand notation for the operator ∂ /∂t. A detailed derivation of impingement is given in Appendix A1. Train is the

duration of rain during a year. The equation integrates over four statistically distributed variables, the rain intensity I , the wind

speed Vwind, the blade’s rotational position θ and the rain droplet size ϕ. The lifetime in years is80

L =
1
D

. (2)

In this study the continuous integrals were discretized and integrated numerically using the trapezoidal rule. The discretization

was performed carefully so that the results are grid-converged with respect to the significant digits.
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2.1.2 Impingement until end of incubation

The impingement that can be collected by the blade until the end of the incubation period (allowed impingement) is modeled85

using a simple power law.

Hallowed =
α

V β
impact

, (3)

where α and β are two coefficients and Vimpact is the water droplet impact velocity with the blade. Here α is not an angle. Two

sets of parameters are considered.

Averaged law The averaged law is obtained by fitting an exponential curve through the measurements of Bech et al.90

(2022). It was first described in Barfknecht and von Terzi (2023). The data points and the resulting curve are shown in Fig. 1.

The purpose of the averaged model is to mimic the erosion performance of a typical wind turbine blade. The best-fit parameters

are

α = 3.4860× 1020, β = 9.5774. (4)

Drop-size-dependent law The drop-size-dependent law is directly taken from Bech et al. (2022). It accounts for drop-95

size-dependent performance differences in the coating by utilizing a heuristic softsign function. It reads

H100 =
a∆ϕ

1 + |∆ϕ| + b, (5)

with ∆ϕ = ϕ−ϕ0, ϕ0 = 2.3 mm, a =−17.1 and b = 21.7. Further,

β =
a∆ϕ

1 + |∆ϕ| + b, (6)

with a =−3.1, b = 8.9 and ϕ0 = 2.1 mm. ϕ needs to be substituted in millimeter! α is given by100

α = 100βH100. (7)

Like the averaged law, it is visualized in Fig. 1.
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Figure 1. Erosion test-rig results by Bech et al. (2022) that relate impact velocity to impingement; droplet diameters are 0.76 mm: , 1.90 mm:

, 2.38 mm: , 3.50 mm: ; averaged law by Barfknecht and von Terzi (2023): ; drop-size-dependent law for 0.76 mm: , 1.90 mm:

, 2.38 mm: , 3.50 mm: ; note that the figure is a log-log plot.

2.1.3 Calculation of the drop impact velocity

The key driver for the erosion damage is the impact velocity of the rain droplets. It is used in two places within the damage

model. First in Eq. 3, where it has a significant effect on the lifetime due to the size of the parameter β. Small variations in the105

calculated impact velocity will yield very different allowed impingements. Secondly, is it also used in the calculation of the

impingement that is collected by blade, as will be shown later in Eq. 23.

For the derivation of the impact velocity, the following assumptions are made:

– Rain droplets are perfectly advected with the wind and the wind turbine’s induction factors.

– There are no wind veer, shear, turbulence and gust effects.110

– The rotor plane is two-dimensional, i.e., there is no pre-cone and blade bending.

– There is no aeroelasticity.

– The leading edge from root to tip lies in a straight line.

– The tangent at the airfoil’s leading edge is perpendicular to its chord.
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– The droplet slowdown as described in Barfknecht and von Terzi (2023) can be modeled as a one-dimensional problem115

and the droplets follow a ballistic path. Other assumptions regarding the slowdown effect made in the same reference

apply as well.

The impact velocity is defined as

Vimpact = (V sec−V rain) ·nLE, (8)

where V sec is the velocity vector of the blade section. V rain is the velocity vector of the rain (droplets). nLE is the surface normal120

vector of the leading edge. Figure 2 visualizes all velocity components that are considered in this study. Here it is noteworthy

that Fig. 2a is very similar but not equal to the classical blade velocity diagram found in many wind energy textbooks.

Rotor plane

αϕ

φ

Vslowdown

nLE

t
LE

Vsec(1 + a′) +Vϕ cosθ

V
w

in
d(

1
−

a
)

(a) Rain droplet velocity components as seen by a blade section.

Vϕ

.
θ

θ

(b) Definition of the angular blade position θ and its influence on the surface normal component of the terminal droplet velocity.

Figure 2. Velocity components and angle definitions that constitute Vimpact.
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Using the the velocity diagrams of Fig. 2, one obtains

Vimpact = V res ·nLE + Vslowdown
−V res

|V res|
·nLE (9)

=




sinθVsec(1 + a′)

cosθVsec(1 + a′) +Vϕ

Vwind(1− a)




︸ ︷︷ ︸
V res

·




sinθ cosφ

cosθ cosφ

sinφ




︸ ︷︷ ︸
nLE

+Vslowdown
−V res

|V res|
·




sinθ cosφ

cosθ cosφ

sinφ


 (10)125

= Vsec(1 + a′)cosφ + Vϕ cosθ cosφ + Vwind(1− a)sinφ−Vslowdown cosαϕ (11)

The first two terms in Eq. 11 represent the surface normal component of the circumferential velocity. That is

Vcircumferential = Vsec(1 + a′) +Vϕ cosθ, (12)

with Vsec being the speed of the blade section. At the tip, Vsec = Vtip. a′ is the radial (tangential) induction factor. In contrast to

common inflow velocity diagrams for wind turbines, an extra term reading Vϕ cosθ can be found in Eq. 12. This term represents130

the velocity component due to the terminal velocity of the rain droplet Vϕ, as shown in Fig. 2b. It is calculated with the relation

from Best (1950b) and reads

Vϕ = 9.32e0.0405h
(
1− e−(0.565ϕ)1.147

)
. (13)

It is shown in Fig. 3. h is the height in kilometers and ϕ the droplet diameter in millimeters! The height is

h = hhub + r cosθ, (14)135

where hhub is the turbine’s hub height and r is the position along the blade span. At the tip, r becomes the blade length R, that

is r = R.

0 1 2 3 4 5 6
0

2

4

6

8

10

ϕ (mm)

V
ϕ

( m
s−

1
)

Figure 3. Terminal velocity for falling water droplets as a function of the droplet diameter.
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The third term of Eq. 11 represents the surface normal component of the inflow velocity. It reads

Vinflow = Vwind(1− a), (15)

where Vwind is the wind velocity and a is the axial induction factor. With the abovementioned assumptions in mind, Vwind is140

constant throughout the entire rotor plane and the droplets will be advected perfectly with this velocity.

The last term is the so-called slowdown velocity as described in Barfknecht and von Terzi (2023). The velocity field of the

airfoil interacts with the rain droplets and, when seen from the airfoil, slows them down. The slowdown velocity Vslowdown is

obtained by using the methodology from Barfknecht and von Terzi (2023). In short, two equations of motion are solved that

describe the one-dimensional approach of the rain droplets towards the blade:145

m
d2x

dt2
= Fdrag, (16)

3
16

m
d2a

dt2
= Fσ + Fp. (17)

where Eq. 16 represents the deceleration of the droplet and Eq. 17 describes the droplet’s deformation from a spheroid to an

oblate spheroid. The forces that are acting on the droplet are the drag force Fdrag, the surface tension Fσ and the pressure force

Fp. Fp drives deformation, while Fσ counteracts droplet deformation. Here, a is the semi-major axis of the oblate spheroid. m150

is the droplet mass and x is the droplet position along its path. The slowdown velocity is then calculated as

Vslowdown =
(

dx

dt

)

at impact
. (18)

It is further assumed that the droplet will follow a ballistic trajectory in the direction of V res when approaching the airfoil. In

theory, this is only true for infinitely large droplets. The background velocity Vair field is calculated according to the methodol-

ogy of Barfknecht and von Terzi (2023):155

Vair

|V res|
= 1− 1(

1− ∆x
Rc

)n , (19)

where ∆x is the distance between droplet and blade. At r/R = 0.9 the IEA 15MW turbine has an aerodynamic nose-radius

Rc = 0.064 m and an exponent n = 1.097 (Barfknecht and von Terzi, 2023). The angle φ is

φ = φpitch−φtwist, (20)

where φpitch is the pitch angle of the blade. The determination of the pitch angle and also the induction factors is described160

in further detail in Appendix C. φtwist is the local twist angle. At r/R = 0.9, φtwist =−2.1◦. Subsequently, cosαϕ can be

calculated using

cosαϕ =
V res

|V res|
·nLE = cos

(
arctan

Vinflow

Vcircumferential
−φ

)
. (21)

It is important to note here that αϕ, while similar, is not the angle of attack of the blade element, but should rather be considered

as the drop impact angle. Last but not least, it should also be mentioned that, depending on the application, it might be more165
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convenient to write Vimpact in its alternative form, that is

Vimpact = cosαϕ

(√
V 2

inflow + V 2
circumferential−Vslowdown

)
. (22)

2.1.4 Calculation of the accumulated impingement

The impingement rate is the last missing variable in Eq. 1 that needs to be defined. It is given by

∂tHI,Vwind,θ,ϕ =
Ifϕ,plane

Vϕ︸ ︷︷ ︸
1

Vimpact︸ ︷︷ ︸
2

fIfVwindfθ. (23)170

Note that its dimension is [LT−1]. The derivation of Eq. 23 is provided in Appendix A1. 1 represents the volume of water

per volume of air, and 2 represents the swept line (volume) of air per unit time. Additional clarification is provided in the

appendix. It is dependent on four statistically distributed variables that will be discussed in the following.

The rain collection time Train for one year of operation is given by

Train = Tyearprain, (24)175

where Tyear is the time in a year and prain is the probability of rain at the wind turbine site. For De Kooy in the Netherlands

prain = 6.7 % (KNMI, 2020).

The first distribution fϕ,plane should not be interpreted as a time fraction, but rather stems from the fact that, at every instant

in time, a wide range of droplet sizes impact on the blade. In particular, it describes the amount of water associated with every

droplet diameter that passes through an imaginary plane in the air. In this study fϕ,plane is derived using the Best drop-size180

distribution (Best, 1950a). Best gives a probability density function (pdf) that describes the water mass associated with every

droplet diameter in a volume of air. It reads

fϕ,air = 2.25
(

1
1.3I0.232

)2.25

ϕ2.25−1e
−

 ϕ0

1.3I0.232

2.25

. (25)

Best considers the rain intensity I to be in millimeters per hour and the droplet diameter ϕ is considered to be in millimeters.

To convert the distribution into fϕ,plane, the following equation is used185

fϕ,plane =
fϕ,airVϕ∫∞

0
fϕ,airVϕdϕ

. (26)

To find the rain intensity distribution fI , the hourly precipitation data of the automatic KNMI rain gauge station at De Kooy

are used. The data from the 10-year window ranging from 2011 to 2020 were used to find the coefficients of fI in the form of

a lognormal distribution. The formula for the lognormal distribution reads

fI =
1

Iσ
√

2π
e−

(lnI−µ)2

2σ2 . (27)190

9

https://doi.org/10.5194/wes-2024-33
Preprint. Discussion started: 27 March 2024
c© Author(s) 2024. CC BY 4.0 License.

reviewer
Nice and simple formulation

reviewer

reviewer
footnote, why do you not normalise?



The coefficients were found using Matlab’s lognfit function. µ is the mean and σ is the standard deviation. They read σ = 0.9693

and µ =−0.1987 or µ =−15.29, depending on whether I is considered to be in millimeters per hour or in meters per second.

The distribution of the wind was calculated using a Weibull distribution. It reads

fwind =
k

c

(
Vwind

c

)k−1

e−(Vwind/c)k

, (28)

where c is the scale parameter and k is the shape parameter. Both parameters were obtained at the De Kooy location using the195

Dutch Offshore Wind Atlas at the height of 150 m (DOWA, 2020). They read c = 10.5 m s−1 and k = 2.24. The mean wind

speed is Vmean = 9.2 m s−1.

Note that it is assumed that the wind speed and the rain intensity are not statistically correlated. In general, this assumption

is not true as, e.g., shown in Letson et al. (2020). In the 2011 to 2020 time frame, the De Kooy mean wind speed at 10 m height

above ground during rain was 6.80 m s−1, whereas during dry conditions, the mean wind speed was 5.32 m s−1 (KNMI, 2020).200

However, for the purpose of this study, this assumption is deemed to be acceptable. Results, for De Kooy, that use actual wind

and precipitation measurements as input for the ESM are presented in Barfknecht and von Terzi (2024).

The probability density function of the blade position fθ is given by the equation

fθ =
1

360◦
. (29)

In this form, the integration in Eq. 1 needs to be performed in degrees. Alternatively, fθ can also be formulated in terms205

of radians. During operation, the turbine spins continuously, hence every blade position is equally likely to occur. It is also

assumed that during a standstill, the parking position is random.

2.2 Discussion of the drop-size effects in the damage model

This section investigates which deductions can be made from the equations within the previously derived damage model.

Different drop-size-dependent effects are derived from the model and discussed. In particular, it is shown that, due to the210

drop-size-dependent effects, the damage model suggests that:

1. Large droplets are more damaging than small droplets.

2. Large droplets become more frequent as the rain intensity increases.

3. As a consequence of the above, for equal amounts of impingement, higher rain intensities are more damaging than lower

intensities.215

At the core of these deductions is that Vimpact is the key driver for erosion. The damage components of Eq. 1 are

∂tDI,Vwind,θ,ϕ =
∂tHI,Vwind,θ,ϕ

Hallowed
. (30)

Here it is important to realize that Vimpact is contained in both the numerator and denominator, see Eq. 3 and 23! Substituting

leads to

∂tDI,Vwind,θ,ϕ ∝ V β+1
impact. (31)220
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This equation shows that a faster droplet is much more damaging than a slower droplet. First, a high Vimpact leads to more

impingement. This effect is linear. Secondly, a high Vimpact leads to significantly less Hallowed due to the large magnitude of

β ≈ 10. This effect is very severe and highly non-linear.

2.2.1 Influence of the rotation and terminal velocity on the impact velocity

In Eq. 12, the surface normal component of the droplet terminal velocity is not constant over one blade rotation, but it is a225

function of cosθ. The consequence on Vcircumferential is shown in Fig. 4a. Vcircumferential is maximum at θ = 0◦, i.e., when the

blade-section speed and the droplet’s terminal velocity directly oppose each other. Correspondingly, Vcircumferential is minimum

at θ = 180◦. Since the droplet terminal velocity is a function of the droplet diameter, as shown in Figure 3, this effect becomes

more pronounced as the droplet diameter increases. It is noteworthy that the circumferential velocity averaged over one rotation

is constant. However, due to the highly non-linear character of Eq. 31, some impacts at a lower and some impacts at a higher230

impact speed will, in total, yield a higher damage. Figure 4b plots the non-dimensional damage (Vcircumferential/Vsec)β+1 over one

blade rotation. Here it is assumed that there are no induction factors, Vslowdown = 0 and Vwind = 0. At θ = 90◦ and θ = 270◦ the

surface normal component of the terminal velocity is zero. Hence, the normalized damage is unity since Vcircumferential = Vsec.

The maximum damage is found at θ = 0◦ and the minimum at θ = 180◦, coinciding with the locations of maximum and

minimum Vcircumferential. The non-dimensional average damage over one rotation as a function of droplet diameter is shown in235

Fig. 4c. It reads

D(ϕ) =

360∫

0

fθ

(
Vcircumferential

Vsec

)β+1

dθ. (32)

The damage is 1.013 for a droplet of 0.5 mm and 1.260 for a droplet of 4.0 mm, so the 4 mm droplet creates about 24.4 %

more damage. This shows that the effect is significant and needs to be accounted for.
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Figure 4. Circumferential velocity and non-dimensional damage against blade rotation for different droplet diameters; the induction factors

were neglected; β = 10.58; Vsec = 86.5 m s−1; without terminal velocity: ; droplets of 0.5 mm: , 1.0 mm: , 2.0 mm: ,

4.0 mm: ; averaged damage over one rotation with terminal velocity included: .

2.2.2 Influence of the rotation and terminal velocity on the impact angle240

αϕ varies along angular the blade position due to its dependence on Vcircumferential, see Eq. 21. During the upstroke of the blade,

the term Vϕ cosθ is positive and decreases the angle αϕ. During the downstroke, the sign becomes negative and αϕ increases.

The variation over one blade rotation is shown in Fig. 5a. One can decompose αϕ into

αϕ = α + α(θ)′. (33)
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The impact angle can, therefore, be considered as a combination of the classical angle of attack of the blade and an oscillating245

component that is dependent on the blade position θ. Since the terminal velocity is a function of the droplet diameter, this effect

becomes stronger as the droplet diameter increases.
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Figure 5. Impact angle and non-dimensional damage over one rotation of the blade for different droplet diameters; the induction factors were

neglected; β = 10.58, Vsec = 86.5 m s−1, Vwind = 9.2 m s−1, φtwist,r/R=0.9 =−2.10◦, φpitch,9.2 m s−1 = 0◦; without terminal velocity: ;

droplets of 0.5 mm: , 1.0 mm: , 2.0 mm: , 4.0 mm: ; averaged damage over one rotation with terminal velocity included:

.

Eq. 22 and 31 imply that

∂tDI,Vwind,θ,ϕ ∝ cos(αϕ)β+1. (34)
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This equation is shown in its non-dimensional form in Fig. 5b. As before, the damage forms one oscillation over one single250

rotation. On first glance, Fig. 5b appears to be similar to Fig. 4b. During the upstroke, the damage production is increased,

whereas during the downstroke of the blade, the damage is reduced. However, the magnitude of the effect is very small,

with the amplitude being only about 1.5 % for a droplet of 4 mm diameter. Calculating, similar to Eq. 32, the averaged non-

dimensional damage over one rotation yields Fig. 5c. The damage is ≈ 1 for a droplet of 0.5 mm and ≈ 0.999 for a droplet of

4.0 mm. Hence, a slight reduction in the damage can be observed due to α′ being asymmetrical with the blade rotation, i.e., for255

a droplet of 4 mm diameter α(0◦)′ =−0.54◦ and α(180◦)′ = 0.66◦. However, considering that the averaged damage is near

unity for all droplet diameters, one can conclude that this effect is not significant and can be neglected.

2.2.3 Drop-size-dependent damage law

The drop-size-dependent damage law of Bech et al. (2022) suggests that the performance of a wind turbine coating is dependent

on the droplet diameter. The law is given by Eq. 5, 6 and 7 and is plotted for four different droplet diameters in Fig. 1.260

The damage spread between small and large droplets closes with increasing impact speed. At about 116 m s−1 a crossover

point exists. At that point, droplets of 0.76 and 1.90 mm have the same Hallowed. Beyond that point, smaller droplets become

more damaging than larger droplets. As the impact speed increases, the spread starts to grow again. For diameters above

approximately 2 mm the crossover point is delayed to higher speeds, where the exact location is dependent on the particular

diameter.265
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Figure 6. Contour lines of ln(Hallowed) according to Eq. 5, 6 and 7 for different droplet diameters and impact velocities; contour levels are

spawned at ϕ→ 0 mm, for impact velocities in 5 m s−1 increments.

The drop-size dependency is shown in more detail in Fig. 6. The figure shows the natural logarithm of Hallowed for a com-

bination of relevant droplet sizes and impact speeds. The shape of the softsign function is clearly visible within the contour

plot. The allowed impingement drops sharply above diameters of about 1 mm and continues with a steep decline up to 3 mm,
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where it then starts to slowly become shallower again. The drop-size effect is significant. Following along a contour, a small

droplet ϕ→ 0 mm has the same allowed impingement at 85 m s−1 as a 4 mm droplet at about 65.6 m s−1. When considering270

a constant impact speed of 85 m s−1, a droplet of ϕ→ 0 mm diameter has an allowed impingement of 201 m, while a 4 mm

droplet will already lead to failure after 34 m impingement.

The drop-size dependency is governed by the behavior of α and β. α grows when the droplet diameter is decreased, hence

small droplets possess a higher lifetime at low impact speeds. The occurrence of crossover points is governed by β, as the

droplet diameter increases it becomes smaller. Hence, smaller droplets possess a higher sensitivity (slope) with respect to the275

impact velocity and so the curves of small and large droplets must intersect at some point. The first crossover point is found

at about 116 m s−1. It is located above the upper limit for droplet impact speeds found in current wind turbine applications.

Hence, for current turbines, the damage law suggests that small droplets are less damaging than their larger peers.

2.2.4 Droplet slowdown

Previous studies showed that rain droplets and wind turbine blades interact aerodynamically. The incoming rain droplets slow280

down and become significantly less erosive (Barfknecht and von Terzi, 2023; Prieto and Karlsson, 2021). The slowdown is

a consequence of the velocity differential between the velocity field of the blade and the rain droplet. Approaching droplets

undergo deformation and can break up as shown in Fig. 7. The deformation and breakup of the droplets heavily influence

the impact speed of the droplets. Droplets that impact with the leading edge can either travel on a ballistic or a streamline

trajectory. The latter assumes that the rain droplets follow the flow perfectly, something that should be true for ϕ→ 0 mm.285

Droplets with diameters of ϕ→∞ mm should follow a ballistic trajectory. As in Barfknecht and von Terzi (2023), this study

makes the conservative assumption that the droplets follow a ballistic trajectory. See also Fig. 2 and Eq. 11.

Rotor plane
α

Area of possible trajectories

Streamline trajectory, xs

Ballistic trajectory, xb I II III

III
II

I

Figure 7. Ballistic and streamline trajectory of a droplet approaching an airfoil operating under an angle of attack α; φ is set to zero in this

illustration; far away from the blade, at station (I), droplets have a shape resembling a spheroid; as the droplets approach the leading edge

they deform (II) and eventually break up into specific breakup patterns (III); the high-speed images are reproduced from Sor et al. (2019);

the illustration itself is taken from Barfknecht and von Terzi (2023).
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The velocity of rain droplets (observed from the airfoil) approaching the leading edge of an airfoil is shown in Fig. 8a. It can

be seen that the slowdown for droplets of 0.49 mm diameter approaching at 90 m s−1 is about 10 m s−1. The figure also shows

that most of the slowdown is taking place close to the leading edge. In this particular case, most of the slowdown is happening290

with a distance of less than 5 cm to the leading edge. The slowdown is affecting smaller droplets significantly more than larger

ones. Also |Vres|, see Eq. 10, has an influence on the slowdown. This is shown in Fig. 8b, which shows the non-dimensional

impact velocity as a function of the droplet diameter and |V res|.
The damage reduction due to the slowdown effect is visualized in Fig. 9. Due to the high sensitivity of the damage law, a

moderate slowdown of 5.5 m s−1 reduces the erosion damage already by half. The figure also shows the damage reduction that295

is associated with different droplet diameters. The slowdown effect suggests a damage reduction of about 20 % for a droplet of

4 mm. For a droplet of 0.5 mm a damage reduction of 84 % is predicted. Hence, the slowdown is highly drop-size-dependent

and overall leads to a significant reduction in the absolute erosion damage.
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(a) Relative velocity of 0.49 mm diameter droplets versus distance
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Figure 8. Relative velocity before impact and non-dimensional impact velocity for droplets approaching the leading edge of an airfoil; plot

is reproduced from Barfknecht and von Terzi (2023); |V res| of 50 m s−1: , 60 m s−1: , 70 m s−1: , 80 m s−1: , 90 m s−1:

.
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Figure 9. Non-dimensional damage due to the slowdown effect versus slowdown velocity and droplet diameter; β = 10.58, |V res|= 86.5 m

s−1, Rc = 0.064 m and n = 1.097.

2.3 Composition of the total erosion damage

With the described damage model and the identified drop-size effects, the total erosion damage can be calculated for the300

considered sample site and turbine. Subsequently, it can be decomposed into its components to quantify the influence of the

drop-size effects. The damage is decomposed with respect to the drop diameter, the angular position of the blade, the wind

speed and the rain intensity. Equation 1 can be modified into

D(ϕ) = Train

∞∫

0

∞∫

0

360∫

0

∂tDI,Vwind,θ,ϕdθdVwinddI. (35)

Then D(ϕ) is normalized into fD(ϕ) so that305

∞∫

0

fD(ϕ)dϕ = 1. (36)

Similarly, fD(I), fD(θ) and fD(Vwind) can be found. By normalizing D, effects on the absolute lifetime are excluded. This

makes the comparison easier when drop-size effects are included and excluded. fD(ϕ) represents a probability density function.

Similarly, FD(ϕ) =
∫ ϕ

0
fD(ϕ′)dϕ′ represents the cumulative distribution function (cdf). The decomposition of the damage in

its pdf and cdf is shown for all four independent variables in Fig. 10.310

Figure 10a shows the decomposition with respect to the droplet diameter. It is important to note here, that the figure shows

the damage that is associated with the total water volume comprised by all droplets of a particular diameter. It is not the damage

for a single droplet! The figure shows that when drop-size effects are excluded, droplets of around 1 mm contribute the most

towards the erosion damage. Half of the total erosion damage is created by droplets of 1.26 mm and below. 97.0 % of the entire
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damage is created by droplets up to a size of 3 mm. The inclusion of drop-size effects causes a shift towards larger droplet315

diameters. The droplet diameter contributing the most towards the erosion damage becomes then 1.67 mm. The probability

density function with drop-size effects has a plateau region. Therefore, a wider range of droplets become important for erosion.

Half of the erosion damage is created by droplets of 2.02 mm and below. Droplets up to 3 mm diameter create 84.4 % of

the erosion damage. Hence, droplets over 3 mm diameter become significant for erosion when drop-size effects are properly

accounted for.320
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Figure 10. Composition of the normalized erosion damage with respect to the four independent variables; IEA 15MW turbine located at De

Kooy; without drop-size effects: pdf: , cdf: ; with drop-size effects: pdf: , cdf: .
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Figure 10b shows how the drop-size effects influence the decomposition of the erosion damage with respect to the rain

intensity. Similar to Fig. 10a, the inclusion of the drop-size effects shifts damage production to higher rain intensities. Without

drop-size effects, 50 % of the total damage is produced by rain intensities of 1.82 mm hr−1 and below. With the inclusion of the

drop size, this value changes to 2.85 mm hr−1. The probability density functions show that the damage contribution is reduced

for precipitation events of approximately 2.2 mm hr−1 and below, whereas above 2.2 mm hr−1, the damage contribution is325

increased.

The decomposition of the damage with respect to the blade’s angular position is shown in Fig. 10c. Without any drop-size

effects, the damage production is constant for all blade positions and hence the damage accumulates linearly towards unity.

When drop-size effects are included, one can see that, during the upstroke ( −90◦ < θ < 90◦, see Fig. 2b), damage production

is higher than during the downstroke (90◦ < θ < 270◦). The difference is significant. At θ = 0◦ it is about three times higher330

than at θ = 180◦. Therefore, most erosion damage is created during the upstroke of the blade.

As shown in Fig. 10d, drop-size effects have a negligible on the decomposition with respect to the wind speed. With drop-size

effects, the variable load region contributes slightly more toward the erosion damage.

Previously, in Fig. 10a, the damage associated with all droplets of a particular size was shown. However, it is also possible

to compute the damage associated with a single droplet. One can calculate the damage per droplet normalized by water mass.335

This excludes differences in the erosion damage due to small and large droplets having different volumes. The water volume

can be added to obtain the absolute damage for a single water droplet.

The normalized damage for a droplet of a particular diameter is given by

D(ϕ)
H(ϕ)

=

∫∞
0

∫∞
0

∫ 360

0
∂tDI,Vwind,θ,ϕdθdVwinddI

∫∞
0

∫∞
0

∫ 360

0
∂tHI,Vwind,θ,ϕdθdVwinddI

. (37)

This is equal to the damage that is created per 1 m impingement of droplets of a particular size. Similarly, the damage account-340

ing for the difference in water volume, is given by

Volϕ
D(ϕ)
H(ϕ)

=
D(ϕ)

nϕ/dA
(38)

where the relation is used that H(ϕ) = nϕVolϕ/dA, where Volϕ is the volume of a droplet with diameter ϕ. nϕ is the number

of droplets of a particular diameter and dA is a surface element of the blade, see Appendix A1. Hence, Eq. 38 is the damage

created per droplet on a surface area dA.345
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Figure 11. Composition of the normalized erosion damage on a per normalized drop and per single drop basis; IEA 15MW turbine located

at De Kooy; without drop-size effects: ; with drop-size effects: .

The metrics of Eq. 37 and 38 are shown in Fig. 11. It is important to note that the numerical values of the curves with

and without drop-size effects cannot be directly compared. The reason for this is that the two damage models not necessarily

result in the same absolute lifetimes. This aspect is further discussed in Section 3 and, in particular, in Table 1. Hence, only the

behavior of the curves is of interest here.

In Fig. 11a the normalized damage by all drop sizes is constant when drop-size-dependent effects are neglected. With drop-350

size effects, it is visible that large droplets produce significantly more damage for the same amount of water. For example,

the damage produced, for equal amounts of water, by 4 mm droplets is about 14 times that of 1 mm droplets. In Fig. 11b, the

damage for a single droplet is given. Including the water volume significantly enhances the difference in damage production

between a small and a large droplet. Without drop-size effects a 4 mm drop is, as expected, 64 times more damaging than a

droplet of 1 mm diameter. If drop-size effects are included, this increases to 896 times.355

2.4 Synthesis

The analysis presented in this section revealed that the following relevant drop-size-dependent effects are contained within the

assumed damage model:

– Rotation of the blade: Larger droplets have a higher terminal velocity. This, averaged over one rotation, leads to more

damage due to the non-linear nature of the damage model.360

– The slowdown effect: Large droplets have less slowdown than small droplets. Hence, large droplets have a higher impact

speed.
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– Damage law: In the, for current wind turbines, relevant impact-speed range, large droplets have a lower allowed im-

pingement.

From these effects, it was concluded that, for the same impingement, large rain droplets must be more damaging than small365

droplets. The drop-size distribution of Eq. 26 is visualized in Fig. 12. It states that rain becomes comprised of larger and larger

droplets with increasing rain intensity. Hence, for the same amount of impingement, higher rain intensity events should create

more erosion damage.
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Figure 12. Best’s distribution over a plane as a function of droplet diameter in millimeter for different rain intensities; rain intensities 0.1 mm

hr−1: , 1 mm hr−1: , 10 mm hr−1: ; the figure is partly reproduced from Barfknecht and von Terzi (2023).

The erosion damage per meter impingement of a particular rain intensity is given in Fig. 13. The formula for the damage is

analogous to Eq. 37. As before, the absolute damage is not equal for both curves. When no drop-size effects are included, the370

erosiveness is constant across the rain intensities. It is noteworthy that the value of D(I)/H(I) = 0.624 · 10−3 m−1 is equal

to the one in Fig. 37. Hence, when no drop-size effects are included, the normalized damage is invariant with respect to the

droplet diameter and rain intensity. As predicted, when the drop-size effects are included, the erosiveness rapidly increases

with increasing rain intensity. This corroborates statement three in Section 2.2. These findings directly influence the operation

of the ESM. This aspect is discussed in the next section.375
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Figure 13. Normalized erosion damage of one meter impingement for different rain intensities; IEA 15MW turbine located at De Kooy;

without drop-size effects: ; with drop-size effects: .

3 Influence of drop-size-dependent effects on ESM operation

Drop-size effects cause a shift of erosion damage production to higher rain-intensities. As a consequence, the viability of the

ESM is affected. As Eq. 27 shows, high rain-intensity events are rare. With this in mind, it might be possible to avoid a sizeable

portion of the erosion damage, at minimum AEP loss, by operating in the ESM only during these rare but highly damaging

events. Such an ESM variant would then increase its economic viability. In this section, first, the significance of the drop-size380

effects on the general ESM operation is established. Then, the influence of the drop-size effects on two optimal ESM designs

is investigated. Some of the concepts used in this section, such as the operating regime of the ESM, an optimal ESM strategy

as well as the detailed derivations of the considered ESM variants are discussed in the Appendix B2.

Fig. 14 is created to understand which rain events are causing damage. The data on the x-axis are defined as

(1−FI(I)) · 100% =


1−

I∫

0

fI(I ′)dI ′


 · 100%. (39)385

The graph should be interpreted in the following way:

– x-axis: Stopping the turbine during the highest X % rain events

– y-axis: will save Y % of damage.

For example, fully stopping the turbine during the ≈ 21 % highest rain intensity events will avoid 50 % of the total erosion

damage. In the following, fully stopping the turbine during precipitation will be referred to as STOP-ESM or, in short, S-ESM.390

22

https://doi.org/10.5194/wes-2024-33
Preprint. Discussion started: 27 March 2024
c© Author(s) 2024. CC BY 4.0 License.

reviewer
It is fine to give details of the ESM implementation but some details should be given. How was the turbine modeled, its control etc. This is very important in this context.



10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Favorable

direction

(1−FI(I)) · 100% (%)

(1
−

F
D

(I
))
·1

00
%

(%
)

Figure 14. Non-dimensional damage that can be avoided by stopping the turbine (S-ESM) against the X % of heaviest rain events without

drop-size effects; dotted line for reference for equal contribution.

The figure shows that the damage follows a concave curve. For better visualization, a 1:1 line is also given. From an ESM

perspective, it would be advantageous if the curve was pulled in the direction of the arrow, i.e. make it more concave. Most

damage would then be created during a few heavy rain events during the year.

A series of computations were performed to study the influence of the drop-size effects on the curve from Fig. 14. The results

are summarized in Table 1. Three distinct points on the curve were chosen to represent the curve in a convenient and condensed395

format. They are the 50, 80, and 90 % damage avoidance points. These correspond to a lifetime extension (LX = LESM/Lno ESM,

L is the incubation time) of factors 2, 5, and 10. The table shows the corresponding values of Eq. 39 for these three reference

points. The first row in the table sets a benchmark with all drop-size-dependent effects deactivated. The four settings that were

investigated are:

1. Rotation — On: Vcircumferential is calculated according to Eq. 12; Off: Blade is fixed at θ = 90◦ thus Vcircumferential = Vsec(1+400

a′); notice, Angle is set to Off ; see next point and Table 1!

2. Angle — On: cosαϕ is calculated with Eq. 12 in Eq. 21; Off: cosαϕ is calculated with Vcircumferential = Vsec(1 + a′) and,

hence, cosαϕ = cosα, where α is the angle of attack.

3. Damage law — On: Drop-size-dependent damage law of Eq. 5, 6 and 7; Off: Averaged damage law of Eq. 4.

4. Slowdown — On: Vslowdown is calculated; Off: Vslowdown = 0.405

Without any drop-size effects, the damage model predicts that turning off (S-ESM) the turbine during the 21.04 % heaviest

rain events will avoid 50 % of the total erosion damage. Activating the Rotation setting decreases this value slightly to 20.42 %.

The influence on the absolute lifetime is stronger. Here, the normalized lifetime L is decreased from 1.00 to 0.92. As previously

predicted in Section 2.2.2, Angle has no measurable influence on the results. A much more significant impact on the results
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can be observed from the drop-size-dependent damage law and the slowdown effect. The Damage law and Slowdown settings410

reduce the 50 % point to 15.61 % and 16.60 %, respectively. When combined, the 50 % point is shifted to 10.42 %. An even

larger shift can be observed for the 80 % point, where the percentages change from 51.86 to 34.51 %. The All-off and All-on

cases are plotted in Fig. 15. Compared to the All-off curve, the All-on curve has shifted significantly to the upper left corner of

the figure. When looking at the LX, one can see that, at 50 % (x-axis), the lifetime increases from approximately a factor 5 to

a factor 9, almost doubling.415

It can be concluded that including drop-size effects within the damage model strongly influences the absolute lifetime.

Additionally, the damage production is significantly shifted to higher rain-intensities. To illustrate this point further, assume a

turbine were to follow an ESM strategy of stopping during precipitation events with the aim of reducing the erosion damage

by 50 %. If the ESM design was based on a damage model without drop-size effects, then it would stop during approximately

21 % of all precipitation events. However, with drop-size-dependent effects adequately taken into account, it was actually420

only required to stop during the 10.42 % highest rain intensity events. As a consequence, the ESM would overshoot on its

intended LX at the cost of increased AEP losses. Therefore, an ESM needs to be based on an accurate prediction from an

erosion damage model. Otherwise, it is not possible to objectively determine which conditions are erosive. If the damage

model neglects drop-size effects, then the ESM strategy will be sub-optimal.

Table 1. Summary showing the influence of the drop-size-dependent effects on the lifetime and time a turbine needs to stop (S-ESM) during

precipitation to realize a particular LX. Normalized lifetime is defined as L = L/LAll-off; results for the De Kooy site.

LX = 2 LX = 5 LX = 10 L (-) Rotation Angle Damage law Slowdown

21.04 % 51.86 % 68.96 % 1.00 off off off off

20.42 % 51.06 % 68.25 % 0.92 on off off off

20.42 % 51.06 % 68.25 % 0.92 on on off off

15.61 % 45.14 % 63.23 % 1.13 off off on off

16.60 % 44.80 % 62.14 % 2.36 off off off on

10.42 % 34.51 % 52.26 % 2.08 on on on on

In practice, however, using the S-ESM is a terrible strategy. The resulting Pareto front (for an explanation see Fig. B1 in425

Appendix B1) is vastly inferior to other ESM strategies. This is shown in Fig. 16. The figure shows the LX that can be achieved

for a particular AEP loss. All curves are normalized with the nominal erosion lifetime in absence of any ESM. Therefore,

all curves start at 0 % AEP loss and at LX = 1. For the influence of the drop-size effects on practical ESM operation, the

VI-ESM was chosen. Additionally, also the V-ESM was considered with the aim of acting as a baseline. For an explanation

and derivation of the V-ESM and VI-ESM strategies see Appendix B2. In short, the former regulates the tip-speed based on the430

wind speed (Vwind), whereas the latter additionally considers the rain intensity (I). By considering these two ESM strategies

and including and excluding drop-size effects four additional Pareto curves are created.
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Figure 15. Curves showing the damage avoidance and lifetime extension against the X % of heaviest rain events; this is equivalent to

operating in a S-ESM; all on: , all off: .
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Figure 16. Pareto curves of lifetime extension as a function of the AEP loss; without drop-size effects, S-ESM: , V-ESM: , VI-

ESM: ; with drop-size effects, S-ESM: , V-ESM: , VI-ESM: ; for more information on how to interpret this figure the

reader should consult Fig. B1 and B5 and their corresponding explanation in the text; IEA 15MW turbine located at De Kooy.

A comparison of the V-ESM and VI-ESM modes shows that the latter performs considerably better as it offers significantly

more lifetime extension for the same AEP loss or, conversely, less AEP loss for the same LX. The spread, i.e. the horizontal

distance, between the V-ESM and VI-ESM curves is severely impacted by the inclusion of drop-size effects. The ESM strategies435

with drop-size effects show a much wider spread than when the drop-size effects are excluded.
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To be able to better compare the influence of the drop-size effects on the shape of the Pareto front, a rescaling was performed.

For that purpose the V-ESM Pareto front without drop-size effects was rescaled in such a way that it became equal to the V-

ESM Pareto front with drop-size effects. The found scaling values were then applied to the Pareto front of the VI-ESM without

drop-size effects. For clarification, the rescaling of the VI-ESM was performed with440

LXVI-ESM, rescaled, all-off = LXVI-ESM, all-off
LXV-ESM, all-on

LXV-ESM, all-off
. (40)

The result is shown in Figure 16b. It can be seen that both V-ESM curves become identical. The horizontal distance between

the VI-ESM with drop-size effects and the V-ESM is about twice than that of the VI-ESM without drop-size effects. At 1 %

AEP loss, the V-ESM has an LX of about 7, while the VI-ESM without drop-size effects has a lifetime extension of 13.1.

However, when drop-size effects are properly modeled, the figure reveals that the VI-ESM can actually achieve an LX of up to445

12.5! Therefore, failing to properly account for drop-size effects will make the VI-ESM look significantly worse, potentially

indicating that a ESM might not be feasible, while in reality it may well be.

Fig. 17 shows the influence of the drop-size effects on the ESM control surfaces g(Vwind, I), for reference see Eq. B5.

The resulting control surface for a target AEP loss of 1 % was chosen. Only a slice through the surface at Vwind = 15 m

s−1 is shown. As expected, the curve of the ESM without drop-size effects has a higher tip-speed at higher rain-intensities450

(≈ 1− 5 mm hr−1). The reason for this is that, without drop-size effects in the damage model, the amount of erosion these

intensities cause is underpredicted. Contrary, the curve of the ESM with drop-size effects reduces the tip-speed in this region

up to the minimum tip-speed. As compensation, it retains the maximum tip-speed a bit longer at lower rain-intensities.
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Figure 17. Slice of the tip-speed surface of the VI-ESM mode at 1 % AEP loss as a function of rain intensity; the figure shows a slice

analogous to Fig. B4c that intersects the tip-speed control surface at Vwind = 15 m s−1; without drop-size effects: , with drop-size

effects: ; minimum tip-speed Vtip, min: , maximum tip-speed Vtip, max: .
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4 Conclusions

In this study, an erosion damage model for wind turbines was developed that is based on the impingement metric. Several drop-455

size-dependent effects were shown to be included within the proposed model. The importance of these effects was demonstrated

and the sensitivity of the damage model for ESM design to these was characterized. Two main research questions were defined

and answered in this study:

1) How does the drop size influence the erosivity?

– Four drop-size effects were identified inside the developed damage model. The two dominant effects are the drop-size-460

dependent damage law from Bech et al. (2022) and the slowdown effect from Barfknecht and von Terzi (2023). It was

found that, normalized for water volume, large droplets are significantly more damaging than small droplets. It was also

found that the exclusion of drop-size effects leads to a severe underestimation in the projected erosion lifetime.

– The higher erosivity of large droplets can be attributed to their higher impact-velocity. Additionally, the damage model

from Bech et al. (2022) suggests that, in the relevant impact-velocity range, the allowed impingement reduces with an465

increase in droplet diameter.

– The parameter space of leading-edge erosion is affected by drop-size effects. Without such effects, 50 % of damage is

created by droplets below 1.26 mm diameter, whereas, with drop-size effects, this value is shifted to 2.02 mm. These

effects need to be taken into account when determining the relevant parameters for theoretical and experimental studies

in erosion research.470

2) Is a thorough understanding of drop-size-related effects important for the design of the erosion-safe mode?

– Drop-size effects push the damage production to higher rain-intensities. It was found that, without drop-size effects,

50 % of the erosion damage is caused by ca. 21 % of the rain events. However, with drop-size effects, this value was

roughly halved (10.4 %).

– The VI-ESM strategy is highly sensitive to drop-size effects. For the considered turbine and sample site, it was found475

that the damage model indicated, for 1 % AEP loss, an LX of 9.4 without drop-size effects. However, with the proper

modeling of the droplet behavior, it was shown that the actual LX is 13.1.

To conclude, it is indeed very important for the design of the ESM to use a damage model that includes drop-size effects

properly. Failing in this respect will make the ESM appear less performant than it actually is, or it will lead to a suboptimal

strategy that will suffer from overshoots in the targeted LX at a cost of significantly higher AEP loss than intended.480

Several other findings and conclusions were made as a byproduct of this research. These are included in the appendix. It was

shown that for impingement, the damage scales according to ∝ V β+1
impact. Additionally, the operational regime of the ESM was

defined and a method to find an optimal ESM strategy was proposed. In particular, it can be concluded that

– The VI-ESM is substantially more powerful than the V-ESM. Even without properly modeling drop-size effects, the

VI-ESM can provide significantly more life extension for the same AEP loss.485
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– The drop-size distribution fϕ,plane is crucial. The drop-size effects are only relevant because large droplets become more

frequent at higher rain intensities. For using the ESM in the field, the drop-size distribution must reflect the actual

conditions at the considered wind turbine site.

– The VI-ESM η-contours are not dependent on the rain intensity and wind speed probability density functions.

Code and data availability. The code and data can be provided on request by contacting N. Barfknecht.490
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Appendix A: The impingement collected by a wind turbine blade

This appendix provides a formal derivation for the impingement collected by a blade. Impingement is the damage metric495

used in this study’s damage model. Previous studies have not shown such a derivation, leaving potential ambiguity in how

impingement should be computed (López et al., 2023; Visbech et al., 2023). Additional clarification has become necessary

due to the introduction of the slowdown effect in leading-edge erosion (Barfknecht and von Terzi, 2023). The first part gives a

general derivation of impingement and discusses several solution approaches. The second part proves the essential result that

Vcollection = Vimpact.500

A1 Derivation of the impingement equation and evaluation approaches

Impingement is the amount of water that is collected by the blade. The concept can be viewed in a more tangible way by

considering a bucket mounted to the leading edge of a wind turbine blade. The water inside the bucket, after a certain oper-

ational time, is the impingement. Two different impingement metrics can be defined H(3) and H(1). The former represents

the intercepted water volume and the later the intercepted water column H(1). In particular H(1) = H(3)/dA, where dA is an505

(infinitesimal) surface element of the blade. We therefore find for the dimensions [H(1)] = L and [H(3)] = L3.

The general form of impingement for a blade sweeping a flow domain of air that contains rain is

H(3) =

T∫

0

∂H(3)

∂t
dt, (A1)

where t is the time and ∂H(3)/∂t is the volume of water collected per unit time. From Fig. A1a one can see that

∂H(3)

∂t
= WVcollectiondA, (A2)510

where Vcollection is the speed at which the flow domain is swept by the blade. dA is an (infinitesimal) surface element on the

leading edge and W is the volume of water (rain) contained per volume of air. W can also be named the water volume fraction.

Per definition,

W =
dVolwater

dVolair
. (A3)
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(a) Flow domain of air with rain (blue dots); it is oriented at an

arbitrary blade angle θ and is swept by a wind turbine blade section

dA; the swept volume during dt is indicated in light grey.

dA

dzVϕ

Iϕ

(b) Control volume for the derivation of W ; rain enters at the top of

the control volume; it subsequently falls through the volume until it

reaches the lower boundary.

Figure A1. Representation of the flow domain and control volume used for deriving H(3).

To find W we consider Fig. A1b. The volume of air is given by515

dVolair = dAdz = dxdydz. (A4)

The volume of water contained inside the control volume can be calculated by first considering the control volume to be empty.

Water is entering the volume via its top face. The time is recorded when the water reaches the lower boundary. At that time,

the fluxes from the top and bottom face cancel out. Hence,

dVolwater = IdAdtfall through. (A5)520

I is the rain intensity, or interpreted differently, it is the normalized surface flux of water (volume) in the dimensions [LT−1].

dtfall through is the fall-through time of the rain. From Fig. A1b,

dtϕ,fall through =
dz

Vϕ
. (A6)

Vϕ is the terminal velocity of the rain. However, as shown in Fig. 3, the terminal velocity is a function of the droplet diameter

and thus not universal. Hence, W is dependent on ϕ. We need to find Wϕ, the water volume fraction as a function of the droplet525

diameter. For that, we consider the rain intensity of every droplet diameter, which is

Iϕ = fϕ,planeI. (A7)

fϕ,plane is the distribution of water (mass) through a plane as a function of the drop diameter, see Eq. 26. Note that
∫∞
0

fϕ,planedϕ =

1. By combining Eq. A3, A4, A5, A6 and A7, we obtain

Wϕ =
fϕ,planeI

Vϕ
. (A8)530
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Inserting into Eq. A2 yields

∂H
(3)
ϕ

∂t
= WϕVcollectiondA =

fϕ,planeI

Vϕ
VcollectiondA. (A9)

Later it will be shown that Vcollection is also a function of the droplet diameter! By integrating over the droplet diameter, we

obtain

∂tH
(3) = dA

∞∫

0

fϕ,planeI

Vϕ
Vcollectiondϕ, (A10)535

or

∂tH
(1) =

∞∫

0

fϕ,planeI

Vϕ
Vcollectiondϕ. (A11)

For conciseness, we define ∂H/∂t = ∂tH . Finally, H(1) and analogously H(3) can be obtained by

H(1) =

T∫

0

∂tH
(1)dt, (A12)

where T is the time that rain is collected. The full version of Eq. A11 is obtained by substituting Vcollection = Vimpact. This540

equality is proven in the next section. For the definition of Vimpact see Eq. 11. The equation becomes

∂tH
(1)(I,Vwind,θ) =

∞∫

0

fϕ,planeI

Vϕ

(
Vsec(1 + a′)cosφ + Vϕ cosθ cosφ (A13)

+ Vwind(1− a)sinφ−Vslowdown cosαϕ

)
dϕ,

where in parenthesis the independent variables are given that change during turbine operation. From this equation, simplified

versions can be derived. Noting that Vsec is significantly larger than all other summands and cosφ≈ 1, one obtains545

∂tH
(1) ≈ Vsec

∞∫

0

fϕ,planeI

Vϕ
dϕ = Vsec

∞∫

0

Wϕdϕ = WVsec. (A14)

For Vwind = 0, Vsec = 0, Vslowdown = 0, φ = 0◦ and a blade position of θ = 0◦, Eq. A13 reduces to

∂tH
(1) = I

∞∫

0

fϕ,planedϕ = I, (A15)

which is simply the rate of rain falling through an imaginary plane, or expressed differently, the rate of rain caught by a rain

gauge located on the ground under ideal conditions.550

Equation A12 requires the continuous time integration over ∂tH
(1). However, it is too difficult or potentially even impossible

to calculate this definite integral. A solution approach is to discretize this equation by

H(1) =
N∑

i=1

(
∂tH

(1)(I(ti),Vwind(ti),θ(ti))
)

i
∆Ti, (A16)
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where ∆Ti is a fixed time-interval. However, for studies that do not use discrete input data (like this one), it is more convenient

to express the time integral probabilistically using probability density functions. According to the law of large numbers the555

mean converges to the expected value, i.e.,

1
T

T∫

0

y(x(t))dt =

xU∫

xL

y(x)fxdx, (A17)

where y is a function. x(t) is variable depending on t, for example, the rain intensity. fx is the pdf of x so that
∫ xU

xL
fxdx = 1.

Subscripts U and L indicate the upper and lower bounds of integration. With this, one can rewrite Eq. A12 as

H(1) =

T∫

0

∂tH
(1)(x1(t), ...,xn(t))dt (A18)560

= T

x1U∫

x1L

...

xNU∫

xNL

∂tH
(1)(x1, ...,xn)fx1 ...fxN

dx1...dxN

= T

x1U∫

x1L

...

xNU∫

xNL

∂tH
(1)
x1,..,xN

(x1, ...,xn)dx1...dxN .

Note that ∂tH
(1)(x1(t), ...,xn(t)) ̸= ∂tH

(1)(x1, ...,xn). Additionally, the definition

∂tH
(1)
x (x) = ∂tH

(1)(x)fx (A19)

is used. In this study four integrals over the variables I,Vwind,θ,ϕ need to be evaluated. However, the integral over ϕ is not565

directly visible in Eq. A18 but is somewhat hidden in Eq. A13. Additionally, both equations have a similar form, since they

both integrate over at least one pdf. To improve readability, we define, similar to Eq. A9,

∂tH
(1)
ϕ (ϕ) = ∂tH

(1)(ϕ)fϕ,plane, (A20)

with

∂tH
(1)(ϕ) =

I

Vϕ
Vcollection. (A21)570

Notice that ∂tH
(1) ̸= ∂tH

(1)(ϕ)! By transferring Eq. A12 into the probabilistic form, one obtains the equation for impingement

used in this study. It reads

H(1) = T

∞∫

0

∞∫

0

360◦∫

0◦

∞∫

0

∂tHI,Vwind,θ,ϕ(I,Vwind,θ,ϕ)dϕdθdVwinddI (A22)

= T

∞∫

0

∞∫

0

360◦∫

0◦

∞∫

0

∂tH(I,Vwind,θ,ϕ)fIfVwindfθfϕ,planedϕdθdVwinddI. (A23)
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Substituting Eq. A21 and 11 leads to575

H(1) = T

∞∫

0

∞∫

0

360◦∫

0◦

∞∫

0

I

Vϕ

(
Vsec(1 + a′)cosφ + Vϕ cosθ cosφ (A24)

+ Vwind(1− a)sinφ−Vslowdown cosαϕ

)
fIfVwindfθfϕ,planedϕdθdVwinddI. (A25)

This equation is similar to the Palmgren-Miner damage rule from Eq. 1. In the main body of this study, the superscript is

omitted. For all practical purposes, the integrals, once again, need to be evaluated numerically, for example, with a simple

trapezoidal rule.580

When it is required to compute the impingement directly from time-dependent meteorological data, it might be more con-

venient to formulate H(1) in a hybrid continuous-discrete form. The rain intensity I and the wind speed Vwind are usually

readily available as discrete meteorological data sets. Hence, I and Vwind are considered to be discrete and constant over one

time-interval ∆Ti. However, for θ and for ϕ usually no time-dependent data sets are available. For example, it is unlikely that

discrete measurements are taken multiple times during one blade rotation. Hence, they should be considered continuous and585

instead described by their respective probability density function. As a result, one obtains

H(1) =
N∑

i=1




360◦∫

0◦

∞∫

0

∂tH
(1)
θ,ϕ(I(ti),Vwind(ti),θ,ϕ)dϕdθ




i

∆Ti. (A26)

A2 Proof that Vcollection = Vimpact

In this section, it is proven that

Vcollection = Vimpact. (A27)590

Proving this equality implies that impingement-based erosion damage scales according to Eq. 31. Eisenberg et al. (2018) have

previously shown that Eq. 31 also holds true for the Springer model. Since impingement and the water-hammer-pressure-

based Springer model are currently the most popular damage metrics, this proof adds some generality to the understanding of

leading-edge erosion. Further, it is important to determine Vcollection accurately. Any error in Vcollection linearly propagates into

the accumulated impingement.595

Figure A2 shows a control volume of air containing rain. It is aligned with the blade’s leading edge in such a way that

nLE = u where dU = udA. For this problem, one can write the continuity equation as

∂m

∂t
= dQ +

∫∫

S

F · dS, (A28)

where m is the mass of water inside the control volume, dQ is a sink term, F is the flux across the control volume’s boundaries

and S is the surface of the control volume. The three terms can be interpreted as follows: ∂m/∂t is the net rate of change of the600

mass inside the control volume, or interpreted differently; it is the mass intercepted by the blade. dQ is the rate of intercepted
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Figure A2. A control volume of air with rain oriented at an arbitrary blade angle θ is swept by a wind turbine blade section dA; the swept

volume during dt is indicated in light grey.

mass due to the sweeping motion of the blade and
∫∫

S
F · dS is the rate of intercepted mass due to the velocity of the rain

field. By assuming incompressibility and thus dividing by the density of water ρ, the equation becomes

∂H(3)

∂t
= ∂tH

(3) =
1
ρ
dQ +

1
ρ

∫∫

S

F · dS. (A29)

The surface integral over the boundary S is evaluated by integrating over all four sides separately, that is605
∫∫

S

F · dS =
∫∫

R

F R · dR−
∫∫

L

F L · dL +
∫∫

U

F U · dU −
∫∫

D

F D · dD. (A30)

It is assumed that, for the length scale of the control volume, the rain field is constant; thus F R = F L = F D = const. The

fluxes of the left and right face must, therefore, be equal in magnitude and opposite in sign, hence,

0 =
∫∫

R

F R · dR−
∫∫

L

F L · dL. (A31)

Additionally, one of the control volume’s boundaries is aligned and coincidental with the blade’s surface, so that d =−nLE.610

The boundary D can be considered as a surface element of the blade’s leading edge. It follows that D is impermeable and thus
∫∫

D

F D · dD = 0. (A32)

The surface integral becomes
∫∫

S

F · dS =
∫∫

U

F U · dU . (A33)
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Substituting into the continuity equation yields615

∂tH
(3) =

1
ρ
dQ +

1
ρ

∫∫

U

F U · dU . (A34)

The sink term due to the sweeping motion of the blade is written as

dQ = ρ



∞∫

0

Wϕdϕ


V sec ·nLEdA = ρ



∞∫

0

Wϕdϕ


Vsec cosφdA. (A35)

Only the surface normal component of V sec must be used since a tangential movement of the leading edge in the direction

tLE does not affect the mass balance within the control volume. The surface flux F represents the rate of water mass entering620

through the boundary. It is given by

F U = ρ

∞∫

0

WϕV raindϕ. (A36)

dU = dAu = dAnLE and assuming that F U is constant across the boundary patch dA gives for the continuity equation

∂tH
(3) =



∞∫

0

Wϕdϕ


Vsec cosφdA +

∞∫

0

Wϕ (V rain ·nLE)dϕdA. (A37)

The last thing that remains to be found is the surface normal component of the water mass’ velocity V rain ·nLE. Here, it is625

assumed that the rain droplets are perfectly advected with the radial and axial induction factor, the wind speed, the terminal

velocity and behave according to the slowdown effect. To determine V rain ·nLE one can use Fig. 2 which yields

V rain ·nLE =




sinθVseca
′

cosθVseca
′+ Vϕ

Vwind(1− a)


 ·




sinθ cosφ

cosθ cosφ

sinφ


 + Vslowdown

−V res

|V res|
·




sinθ cosφ

cosθ cosφ

sinφ


 (A38)

= Vseca
′ cosφ + Vϕ cosθ cosφ + Vwind(1− a)sinφ−Vslowdown cosαϕ. (A39)

Inserting into Eq. A37 gives630

∂tH
(3) =



∞∫

0

Wϕdϕ


Vsec cosφdA (A40)

+

∞∫

0

Wϕ (Vseca
′ cosφ + Vϕ cosθ cosφ + Vwind(1− a)sinφ−Vslowdown cosαϕ)dϕdA. (A41)

After rearranging and comparing with Eq. 11, one obtains

∂tH
(3) = dA

∞∫

0

WϕVimpactdϕ. (A42)

Comparing Eq. A42 with Eq. A8 and A10 shows that Vcollection = Vimpact.635
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Appendix B: Definition of the ESM operational regime and method of finding an optimal ESM strategy

This appendix aims to develop some of the concepts pertaining to the ESM used in Section 3. In Appendix B1, the operational

regime of the ESM is defined. Appendix B2 provides a semi-analytical approach for finding an optimal ESM strategy.

B1 Operational regime of the ESM

For a practical ESM design, it is not desirable to fully stop the turbine (S-ESM) as the erosion damage savings come at a large640

AEP penalty. This was shown in Fig. 16a. With the high value of β in mind, a small reduction in the tip-speed can already

greatly increase the erosion lifetime of the blade, while maintaining a decent amount of power production. Hence, a practical

ESM strategy will attempt to mitigate erosion by only slightly but sufficiently reducing the tip-speed of a turbine. To this end,

it is useful to first understand the operational regime of the ESM before a good strategy can be chosen.

The concept of the ESM can be visualized in an {AEP loss, lifetime extension (LX)} diagram. By reducing the tip-speed645

during precipitation events, a turbine operating in an ESM trades AEP for an extension in its lifetime, i.e., the AEP decreases

while the erosion lifetime increases. The regime in which this trade takes place is visualized in Fig. B1. In this figure, the points

A, B, C and D and their connecting curves form an operational regime. The turbine operates only within this regime. Point A

represents a turbine during normal operation. This means no ESM is utilized during precipitation events. Hence, the turbine

experiences no AEP loss (a potential performance loss due to erosion is not considered here) and, as a result, the normalized650

lifetime is unity. The turbine operates at Point B when it spins at its minimum rotational-speed (5 rpm for the IEA 15MW

reference turbine) during all precipitation events. It is important to note that point B implies that there is a perfect knowledge

of the incoming precipitation. Additionally, the turbine must also be able to react infinitely fast to changing precipitation

conditions. The region is closed by two highly undesirable operating points. Point C represents the operation at the minimum

turbine-speed at all times, including dry (no rain) conditions. As with point B, point C offers the highest LX. However, this655

comes at the cost of very high AEP losses because the turbine’s speed is permanently reduced, effectively de-rating the turbine.

The turbine operates at point D when the wind turbine’s speed is reduced to its minimum during dry events only, but keeps

its nominal speed during precipitation events. Here, no increase in lifetime is achieved. However, a large reduction in AEP is

realized, albeit somewhat lower than for point C.

Points A, B, C and D can also be interpreted with respect to the quality of the weather forecast. Point B is realized with a660

perfect forecast. Point C represents a forecast that indicates precipitation at all times. Point D represents a perfectly inverted

forecast. Hence, a forecast that indicates no rain when it actually rains and indicates rain when it is actually dry. Point A can

be interpreted as a turbine that is controlled by a weather forecast that never indicates precipitation.

It is straightforward to see that the best ESM is realized when operating on the curve from point A to B, called AB. It

represents the Pareto front of an ESM strategy under the assumption of perfect rain-knowledge and instantaneous turbine-665

control. The front represents the highest possible lifetime extension for a minimum of AEP loss. In practice, neither perfect

knowledge of precipitation nor instantaneous turbine-control can be achieved. Any practical ESM implementation aims to

operate as closely as possible to the Pareto front under the practical limitations. The ESM becomes more viable, i.e., more
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lifetime for a lower AEP loss, if a new Pareto front can be found that is shifted in the direction of the arrow in Fig. B1. The

concept is similar to Fig. 14 and similar conclusions hold.670

0
1

LXmax

A

B C

D

A Nominal operation, no ESM

B Minimum turbine speed during rain

C Always minimum turbine speed

D Minimum turbine speed only during dry events

AB Pareto front of ESM strategy

Optimization direction of Pareto front

AEP loss (%)

L
X

(-
)

Figure B1. Operational regime of the ESM spanned by the AEP loss and the lifetime extension.

B2 Method for designing an optimal ESM control strategy

This section describes a semi-analytical approach that can be used to find ESM control strategies that lead to optimal Pareto

fronts (see Fig. B1). The ESM strategies that have been presented in the literature were, up to now, heuristic (Barfknecht et al.,

2022; Bech et al., 2018). Finding the optimal strategy has not yet been described in the literature. Additionally, by using the

optimal strategy for investigating the drop-size effects, ambiguity in the results concerning the goodness of the Pareto front675

is eliminated. The approach presented here is straightforward to implement and computationally light, requiring only a few

seconds of wall-clock time to compute.

An ESM strategy is a function determining how the turbine operates under precipitation conditions with the aim to maximize

lifetime, i.e., to minimize the rain erosion damage, and to minimize AEP loss. Understanding that every ESM strategy leads to

a unique Pareto front is important. Hence, some strategies are more optimal than others. At the core is a function that relates680

the turbine’s tip-speed to environmental variables. For example,

g(Vwind, I, ...) = {gmin(Vwind)≤ Vtip ≤ gnormal(Vwind) for all (Vwind, I, ...)} , (B1)

where gmin(Vwind) = Vtip, min is the minimum tip-speed and gnormal(Vwind) is the normal piecewise-linear control function of the

turbine. Both are shown in Fig. B2 and span an operational regime colored in grey. An ESM strategy is a curve in this regime.

Theoretically, a turbine could spin over the entire wind speed range at the maximum tip-speed that mitigates sufficiently rain685

erosion effects. However, it will be shown in the following that this is not desirable.
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Figure B2. Operational tip-speed regime of the IEA 15MW turbine as a function of the instantaneous wind speed; gmin(Vwind): ,

gnormal(Vwind): , ESM based on limit (C-ESM): , ESM based on a parabolic equation: .

Two straightforward ESM strategies can be derived called the C-ESM and S-ESM. The C-ESM defines a constant upper

threshold C to the tip-speed and applies this threshold to the normal control curve when precipitation occurs. That is

C-ESM =





gnormal(Vwind) if I = 0,

min(gnormal(Vwind),C) if I > 0.
(B2)

The S(TOP)-ESM reduces the tip-speed of the turbine to zero when the rain intensity exceeds a particular threshold Ith. That690

is

S-ESM =





gnormal(Vwind) if I ≤ Ith,

0 if I > Ith.
(B3)

These methods are heuristic and, in general, do not represent an optimal ESM strategy. Optimal is defined as the curve that

provides the maximum lifetime extension for the minimum AEP loss. For example, the C-ESM is an optimal strategy only

when either C = Vtip, min or C = Vtip, max.695

The V-ESM, which only considers the wind speed, is the first strategy that creates an entire optimal Pareto front. It is defined

as

V-ESM =





gnormal(Vwind) if I = 0,

gopt(Vwind) if I > 0,
(B4)
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where gopt is the curve that leads to an optimal strategy. The VI-ESM represents a more advanced strategy that also includes

the rain intensity I as another environmental input. The VI-ESM is defined as700

VI-ESM =





gopt(Vwind,0) = gnormal(Vwind) if I = 0,

gopt(Vwind, I) if I > 0.
(B5)

That is, when I = 0, the strategy follows the normal tip-speed control curve. If other environmental conditions were to signifi-

cantly promote erosion, like ambient temperature, UV radiation, etc., then more advanced strategies could be considered.

The question is how to find the optimal curve gopt within the operational regime. One could heuristically guess a function

leading to a strategy such as the C-ESM, which is shown as the curve in Fig. B2. Alternatively, one could consider any705

other arbitrary function, such as the parabolic curve . Subsequently, the coefficients of these functions could be optimized.

However, no guessed function is guaranteed to lead to the optimal solution. It is possible to use high-order polynomials. For a

sufficiently high order, these could approximate the optimal function closely. However, optimizing for many coefficients is a

non-trivial task, especially when g is of high order and a function of many environmental variables.

Here, it is argued that an ESM strategy is optimal inside the region spanned by gmin(Vwind) and gnormal(Vwind) when710

gopt = {g(Vwind, I, ...) subject to minimize(|η(g(Vwind, I, ...))−K|) for all (Vwind, I, ...)} , (B6)

where

η(g(Vwind, I, ...)) =
∂P
∂Vtip

∂(∂tD)
∂Vtip

=
∂P

∂(∂tD)
. (B7)

P (g(Vwind, I, ...)), abbreviated as P , is the (instantaneous) turbine power and ∂tD(g(Vwind, I, ...)), abbreviated as ∂tD, is the

damage production rate. The choice of the variable K determines an operational tuple of {AEP loss, LX} on the Pareto front.715

By considering all possible values of K, the entire Pareto front is obtained. It is important to note that this method is only

optimal with perfect knowledge of the precipitation and assumes that the turbine can react instantaneously to changes in the

independent environmental variables.

The method can also be described as follows: Choose a constant K and then determine the tip-speeds for all independent

environmental variables (Vwind, I , ...) so that η = K. Since the turbine has a lower and an upper speed limit given by gmin(Vwind)720

and gnormal(Vwind), respectively, it is not always possible to satisfy η = K. For these cases, the tip-speed with the corresponding

η closest to K should be chosen.

To understand why Eq. B7 leads to the optimal ESM strategy, one should consider Fig. B3c. The figure shows η in the space

spanned by Vwind and Vtip. As per Fig. B1, the operation at the minimum tip-speed during rain represents an optimal strategy

(see Point B). However, while providing the highest possible LX, this operational point also comes with a large AEP penalty.725

In practice, another operational point on the Pareto front is likely to be more desirable. To achieve this, the tip-speed must

increase, however, this also increases the erosion damage production. The aim must be to add the highest growth in power for

the smallest growth in damage. This is achieved when starting from the minimum tip-speed and then increasing the tip-speed
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for the independent variables (Vwind, I , ...) that have the highest ∂P/∂(∂tD). Since the same value of η might be found for

a variety of independent values, contours of η exist. These are shown as black lines in Fig. B3c. The contours represent all730

operational points that have the same value of η. Therefore, to find an optimal ESM strategy that satisfies a tuple constraint,

one needs to, starting from the minimum tip-speed, continuously advance across the η-levels in the direction of increasing

tip-speeds. This process is stopped when the value of K is found, which satisfies the tuple constraint. A contour line thus

represents an optimal ESM control curve gopt(Vwind, I, ...). The Pareto front is formed when the tuples are recorded for every

valid value of K.735

The approach of Eq. B6 is valid because the values of η in the region bound by the gmin and gnormal, are strictly monotonically

decreasing with respect to an increasing tip-speed for a particular set of (Vwind, I , ...). There are no local minima/maxima or

saddle points in the bound region. In the variable load region, gnormal passes through the points of maximum power generation.

Above this curve, the power production decreases, even though the tip-speed is increased. Hence, above gnormal in the variable

load region, the power decreases and η becomes negative. Thus, the turbine produces less power but more damage. This is740

an operational regime that is clearly undesirable. The discussed properties are true for the IEA 15MW turbine and turbines

of similar design. Other turbines might behave differently, and in this case, the approach might require modification. It is

also noteworthy that this approach only considers damage and AEP loss. The potential influence of repair strategies and their

associated costs are not considered. Last but not least, it should be noted that the pitch angle of the blade is precomputed and

set according to the method described in Appendix C. The pitch angle is determined so that power production is optimized745

while at the same time the maximum generator torque is respected. However, since the pitch angle influences P and ∂tD, it is

also possible to consider it as a free variable that can be optimized. This route has not been explored any further in this work.

In a practical implementation, the values of η can be precomputed on a large grid that is spanned by (Vwind, I , ...) and Vtip.

Hence, for the V-ESM, η is an array of rank two, while for the VI-ESM, η becomes an array of rank three. The discretization

of Vtip can far exceed the physical limits of the turbine. Subsequently, the appropriate contour line of η = K can be extracted750

that yields a temporary control curve g′opt(Vwind, I, ...). Subsequently, this curve can be clamped with

gopt(Vwind, I, ...) = clamp(g′opt(Vwind, I, ...),gmin(Vwind),gnormal(Vwind)), (B8)

where

clamp(x,xmin,xmax) = min(max(x,xmin),xmax) (B9)

is the clamping operator. The optimization of one value (K) is required to satisfy a particular tuple. Solving this optimization755

problem is trivial, e.g., by simply calculating all tuples for all K. The computational cost of the proposed approach is minimal

and similar to the C-ESM. The derivatives of ∂P/∂Vtip and ∂(∂tD)/∂Vtip can be computed by using a simple finite difference

scheme. The magnitude of η might not always be convenient since P ≫ ∂tD. The power production is in the order of MW,

hence P ≈ 106 to P ≈ 107, while the order of the total damage accumulated per year is D ≈ 10−2 to D ≈ 100. Consequently,

assuming the latter, the damage production rate in s−1 becomes ∂tD ≈ 10−8. Hence, for the constituents of η, there exists760

a considerable difference in magnitudes. Therefore, performing a rescaling operation can be advantageous. It is important to
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(a) P (MW) (b) ln(∂tD) (s−1)

(c) ln(η)

Figure B3. Turbine power, erosion damage production and η as a function of Vwind and Vtip according to Eq. B7; η was rescaled to a range

from zero to one; the natural logarithm was applied to the values of (b) and (c) for improved visualization; the magenta piece-wise linear

curves indicate the minimum and maximum allowed speed of the turbine, see also Fig. B2; all drop-size effects are activated; IEA 15MW

turbine located at De Kooy.

note that rescaling does not influence the resulting control curve of gopt but is merely a question of convenience in the actual

implementation.

The damage rate calculation is dependent on the considered mode. For the V-ESM, the damage rate reads

∂tDV-ESM(gopt(Vwind)) =

∞∫

0

360◦∫

0◦

∞∫

0

∂tDI,θ,ϕdϕdθdI. (B10)765
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For the VI-ESM the damage rate becomes

∂tDVI-ESM(gopt(Vwind, I)) =

360◦∫

0◦

∞∫

0

∂tDθ,ϕdϕdθ. (B11)

When comparing Eq. B10 and B11 with Eq. 1, one can see that for every independent variable that drives the ESM, the

respective integral must be removed. Therefore, the V-ESM depends on fI ,fθ and fϕ,plane. Whereas the VI-ESM depends

on fθ and fϕ,plane. Conversely, this shows that the distribution of wind at a particular site does not influence the V-ESM and770

VI-ESM η-contours. Expanding on this, the VI-ESM η-contours are also independent of the distribution of the rain intensity

encountered at the site! Both ESM strategies depend on the drop-size distribution fϕ,plane. In practice, fϕ,plane varies per site

Pryor et al. (2022). Hence, one can conclude that for an optimal ESM strategy, the site-specific drop-size distribution should

be taken into account.
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(a) gopt for an arbitrary value of K in Eq. B7.

(b) Slice through the volumetric data of η in the Vwind-Vtip-plane; the

black lines show the iso-contours of η.

(c) Slice through the volumetric data of η in the I-Vtip-plane; the

black lines show the iso-contours of η.

Figure B4. The resultant control curve for a particular K according to Eq. B6 as well as slices through the volumetric data of η as a function

of Vwind and I; in the slices the magenta-colored curves represent the surface of Fig. B4a; the natural logarithm was applied to η for improved

visualization; all drop-size effects are activated; IEA 15MW turbine located at De Kooy.
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The behavior of the power and damage is shown in Fig. B3a and B3b. Below rated power, the iso-contour lines of the damage775

production are almost flat. In the rated power region, the iso-contour lines start falling due to the interplay of the increasing

wind speed and pitch angle. The iso-contour lines of P are flat in the rated power region as a consequence of the fact that the

turbine is torque limited in this region and an increase in the power can only come from an increase in the rotational speed

(see Eq. C1). In the variable load region, the power iso-contour lines are almost vertical, and hence the power changes rapidly.

For the numerical calculation of the derivatives, it is important to use a sufficiently fine grid in this region. Additionally, any780

interpolation scheme must have a sufficiently high continuity to avoid erroneous discontinuities in the contour plot of η. The

resulting ηV-ESM is visualized in Fig. B3c for the operational space. It can be seen that η decreases with increasing tip-speed.

Close to the minimum tip-speed, η predicts that an increase in tip-speed will yield a considerable increase in power for only a

moderate increase in damage production. However, as the tip-speed increases, due to the high value of β, η reduces rapidly;

this is a consequence of the order of the damage and power terms. The damage scales with the tip-speed according to β + 1785

while the power scales with order one. Therefore, in comparison, a change in the wind speed only marginally affects power

production but greatly affects erosion damage production.

The extension of the V-ESM to the VI-ESM is straightforward. Instead of Eq. B10, Eq. B11 must be used. Figure B4a shows

a resulting ESM strategy based on an arbitrary value of K. For I = 0, i.e., no rain, the ESM strategy retains the original control

curve of the turbine. As the rain intensity increases, the curve starts to fall in the direction of increasing rain intensities. The790

fall is similar to a parabolic curve. In the direction of Vwind, the VI-ESM strategy is similar to the V-ESM strategy. Two slices

through the volumetric data of η are given in Fig. B4. The first slice, given in Fig. B4b, shows η in the Vwind-Vtip-plane. This

slice is very similar to Fig. B3c. Hence, the prior observations pertain to it. In Fig. B4c the slice in the I-Vtip-plane is given. It is

visible how the iso-contours fall as the rain intensity increases. This aligns with earlier observations that higher rain intensities

produce much more damage than lower rain intensities.795
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Figure B5. Resulting Pareto fronts for the V-ESM and VI-ESM using the optimal approach from Eq. B6; all drop-size effects are

activated; IEA 15MW turbine located at De Kooy.
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Figure B5 shows the resulting optimal Pareto fronts of the V and VI-ESM. As with any ESM strategy, the start and end

points of both modes are equal (see Points A and B in Fig. B1). In between these points, the VI-ESM can achieve a significantly

higher lifetime extension than the V-ESM and can, therefore, be considered superior. For example, at 1 % AEP loss, the V-ESM

provides a lifetime extension of about seven, whereas the VI-ESM offers an extension of about 13. The increase in performance

comes with a shift in shape. The V-ESM produces a convex curve, whereas the graph of the VI-ESM is first convex and then800

becomes concave towards the maximum lifetime extension. This change in shape is associated with a shift of the Pareto front

up and to the left, thus in the favorable direction as indicated in Fig. B1.

Heuristic reference ESM strategies are considered to support the claim of Eq. B6. The V-ESM and VI-ESM are tested

against the heuristic C-ESM used in Barfknecht et al. (2022). Additionally, two other strategies are considered. The first is

a more sophisticated rule where the control curve comprises two piecewise linear line segments. For that ∆V = Vwind−V15805

is defined, where V15 = 6.98 m s−1 is the wind speed at the end of IEA 15MW’s minimum rotor speed control region, see

Gaertner et al. (2020). The equation reads

LV-ESM =





gnormal(Vwind) if I = 0,

clamp
(
min(C2∆V + 1,C1),1, gnormal(Vwind)

gmin(Vwind)

)
gmin(Vwind) if I > 0.

(B12)

The second is an extension that adds a dependency on I . This creates a rule consisting of three piecewise linear planes. It uses

the definition ∆I = I −C4. The equation reads810

LVLI-ESM = clamp
(

min(C3∆I + C2∆V + 1,C1),1,
gnormal(Vwind)
gmin(Vwind)

)
gmin(Vwind). (B13)

For both equations, the parameters C1, ...,C4 are required. LV stands for linear with respect to Vwind. The acronym LI stands

for linear with respect to I . Matlab’s fmincon function was used to find the parameters by defining a particular target AEP

loss and then finding the coefficients that lead to the highest lifetime extension. This resulted in Fig. B6, which compares

the performance of the V-ESM and VI-ESM to the heuristic C-ESM, LV-ESM and LVLI-ESM methods. The figure plots the815

difference in lifetime extension ∆LX = LXoptimal−LXheuristic against the corresponding AEP loss.

As shown in Fig. B6a, the C-ESM offers up to 0.8 less LX in comparison to the V-ESM. The LV-ESM performs significantly

better, performing almost as well as the V-ESM in some parts. The good performance of the LV-ESM can be explained by its

form of two piece-wise linear segments. These allow for a close approximation of η’s ideal contour lines as shown in Fig. B3c.

Fig. B6b shows that the maximum deficit in LX is about 0.8 for the LVLI-ESM. The contours of η in the direction of the rain820

intensity have the shape of a falling parabolic curve, see for example Fig. B4c. The linear approximation of the LVLI-ESM

seems to deliver good performance in this region. To conclude, it is shown that the considered heuristic methods can, in some

regions, approach the performance of the optimum ESM, but cannot exceed its performance.

While heuristic methods can provide a reasonably good approximation of the ideal solution, differences still exist. A

∆LX = 0.8 is still significant considering it is merely the result of an offline optimization problem. A further argument for825

the optimum ESM stems from the following anecdotal evidence: For the authors of this paper, the implementation of the opti-

mum ESM was quite straightforward. However, the optimization of the parameters of the LV-ESM and LVLI-ESM proved to
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be challenging. As stated, the optimization was performed with Matlab’s fmincon function. Careful considerations had to be

paid to the chosen settings. Often, the results would not converge to the optimum set of parameters. Overall, the optimization of

the (less-performing) heuristic curves consumed significantly more time from the researchers and required more computational830

resources.
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(a) V-ESM as baseline
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(b) VI-ESM as baseline

Figure B6. Difference in lifetime extension between the optimal and heuristic ESM strategies; C-ESM: , LV-ESM and LVLI-ESM

; IEA 15MW turbine located at De Kooy.

Appendix C: Calculation of the AEP and pitch angle

The method to compute the turbine’s power is important for the ESM and, as will be shown, also the damage calculation. It is,

therefore, described here in more detail. At the core of the formula for the power P is

P = Qω, (C1)835

where Q and ω are the rotors’ torque and rotational speed, respectively. There exists a maximum generator torque Qmax that

cannot be exceeded. Therefore, at all times, the following condition must hold:

Q≤Qmax. (C2)

For maximum power, Q should be maximized at all times without exceeding Qmax. The torque coefficient is found with the

following formula:840

CQ(λ) =





M(λ) if M(λ) <
(
CQmax = Qmax

qAR

)
,

(CQ(λ,φpitch) = CQmax) if M(λ)≥ CQmax ,
(C3)
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where M(λ) = max(CQ(λ,φpitch)) and λ is the tip-speed ratio. q is the dynamic pressure of the wind, A is the rotor disk area

and R is the rotor radius. φpitch is found by either determining where CQ is maximum or by determining where CQ = CQmax .

The resulting pitch is used in the calculation of the damage, see Eq. 11 and 20. From the tip-speed ratio, the pitch angle, and

the position along the blade, the corresponding local induction factors can be found. This study assumes that the wind shear845

exponent is zero. Hence, the Vwind is constant over the rotor disk. If the wind shear exponent is included, it leads to local

changes in the tip-speed ratio and will make the local induction factors a function of the blade angular position.

CCBlade, in conjunction with IEA 15MW’s yaml ontology file, was used to find the torque coefficient as a function of the

tip-speed ratio and the blade pitch angle Ning (2014). The induction factors are also given in the output of CCBlade. The torque

coefficient and pitch angle are plotted in Fig. C1. The torque coefficient is decreased when the turbine enters the rated power850

region. This is done by adjusting the pitch angle so that the maximum generator torque is not exceeded. The figure shows that

pitch angles of over 30◦ are encountered. Angles of this magnitude impact the damage significantly, see Eq. 20, 21 and 34.

Therefore, the pitch angle needs to be properly accounted for.

The resulting AEP can be calculated using

AEP =

∞∫

0

∞∫

0

PfIfwinddVwinddI. (C4)855

For normal turbine control, or an ESM that is solely controlled based on the wind speed, the integral (and corresponding

probability density function) over the rain intensity can be omitted.

(a) Torque coefficient, CQ (-) (b) Pitch angle, φpitch (◦)

Figure C1. Contour plots of the torque coefficient and pitch angle as a function of wind speed and tip-speed; the magenta curves enclose the

operational regime of the turbine; IEA 15MW turbine.
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