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Abstract. Distributed wind projects, which are connected at the distribution level of an electricity system or in off-grid 

applications to serve specific or local energy needs, often rely solely on wind resource models to establish wind speed and 

energy generation expectations. Historically, anemometer loan programs have provided an affordable avenue for more 10 

accurate onsite wind resource assessment, and the lowering cost of lidar systems have shown similar advantages for more 

recent assessments. While a full twelve months of onsite wind measurement is the standard for correcting model-based long-

term wind speed estimates for utility-scale wind farms, the time and capital investment involved in gathering onsite 

measurements must be reconciled with the energy needs and funding opportunities that drive expedient deployment of 

distributed wind projects. Much literature exists to quantify the performance of correcting long-term wind speed estimates 15 

with one or more years of observational data, but few studies explore the impacts of correcting with months-long 

observational periods. This study aims to answer the question of how low can you go in terms of the observational time 

period needed to make impactful improvements to model-based long-term wind speed estimates. 

     Three algorithms, multivariable linear regression, adaptive regression splines, and regression trees, are evaluated for their 

skill at correcting long-term wind resource estimates from the European Centre for Medium-Range Weather Forecasts 20 

Reanalysis version 5 (ERA5) using months-long periods of observational data from 66 locations across the United States. On 

average, correction with even one month of observations provides significant improvement over the baseline ERA5 wind 

speed estimates and produces median bias magnitudes within 0.21 m s-1 of the median bias magnitudes achieved using the 

standard twelve months of data for correction. However, in cases when the shortest observational periods (one to two 

months) used for correction are misrepresentative of the longer-term trends in the wind resource, the resultant long-term 25 

wind speed errors are worse than those produced using ERA5 without correction. Summer months, which are characterized 

by weaker relative wind speeds and standard deviations for most of the evaluation sites, tend to produce the worst results for 

long-term correction using months-long observations. The three tested algorithms perform similarly for long-term wind 

speed bias; however, regression trees perform notably worse than multivariable linear regression and adaptive regression 

splines in terms of mean absolute error and correlation when using six months or less of observational data for correction. 30 
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1 Introduction 

In the utility-scale wind energy industry, short-term (less than five years) wind measurements are widely used for correcting 

the long-term (decades-long) wind resource at a site of wind development interest in an expedient manner. Wind farm 

project planners install onsite wind measurement instruments (e.g., meteorological towers, lidars, sodars) to gather data, but 

cannot wait decades to establish long-term wind resource characterization based on such measurements alone (Lackner et al., 35 

2008). Instead, wind analysts commonly simulate the long-term wind resource by correlating the short-term onsite wind 

measurements with long-term reference data, such as atmospheric reanalyses, high-resolution mesoscale models, or other 

nearby measurements using a measure-correlate-predict (MCP) approach. 

     Distributed wind projects, particularly those involving small wind turbines, are more subject to challenging financial, 

spatial, and time constraints than utility-scale wind. Onsite wind measurements are often not feasible or economically viable 40 

investments, leading to many distributed wind projects that relied solely on wind resource models to establish generation 

estimates, which are helpful but not entirely accurate. Between 2000 and 2011, the U.S. Department of Energy (DOE)’s 

Wind Powering America initiative sponsored an Anemometer Loan Program to provide a more affordable avenue for onsite 

wind resource assessment, which resulted in the installation of 128 anemometers across the U.S. and a template for around 

20 state administered anemometer loan programs (Jimenez, 2013). More recently, researchers from Aurora College have 45 

begun deploying mobile lidar systems in northern Canada to study the viability of wind energy in communities that are 

reliant on diesel, which is expensive and difficult to transport to remote locations (Seto, 2022). In the U.S., communities that 

receive DOE technical assistance to transform their energy systems, such as through the Energy Transitions Initiative 

Partnership Project (DOE, 2023), continue to weigh the costs and benefits of onsite wind measurement. In addition to 

concerns regarding capital investment, communities must often reconcile the time investment involved for gathering onsite 50 

measurements with the energy needs and funding opportunities driving expedient deployment of wind turbines. 

     The vast majority of wind resource assessment literature supports collecting at least one year of onsite measurements to 

represent a full seasonal wind cycle, including the analyses of Dinler (2013), Mifsud et al. (2018), Zakaria et al. (2018), Tang 

et al. (2019), and Chen et al. (2022). Miguel et al. (2019) found that uncertainty in long-term wind resource estimates 

reduced by 18%, 29%, 35%, and 40% when one, two, three, and four years of wind measurements, respectively, were added 55 

to the monitoring campaign. Additionally, private companies that specialize in providing resource assessment for wind 

projects also tend to require at least one year of onsite measurements to characterize the wind. For example, ArcVera 

performs high-resolution modelling (200 m) using WRF with boundary conditions from reanalyses including ERA5. They 

bias correct their model results using at least one meteorological tower with at least one full year of observational data to 

achieve mean absolute deviations within 0.2 m s-1, including within areas of complex terrain (ArcVera, 2023). In their 60 

discussion of wind resource assessment, wind measurement company NRG Systems (2023) states that measurements of 

meteorological parameters are typically taken over the course of several years at a potential wind farm site using a 

combination of meteorological towers and lidars. 
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     A small number of studies, however, explore adjusting long-term predictions using observational data with less than one 

year of temporal coverage. Taylor et al. (2004 as reported via Carta et al., 2013), Weekes and Tomlin (2014), and Basse et 65 

al. (2021) reported that wind speed errors were within 4%, 4.8%, and 4%, respectively, using three months of onsite 

measurements. The performance of long-term predictions using less than one year of on-site measurements varied according 

to the season(s) during which the onsite measurements were taken. For their experiment in the United Kingdom, Weekes and 

Tomlin (2014) found that the smallest errors occurred when using measurements taken in early spring or fall. Basse et al. 

(2021) performed MCP tests in Germany using linear regression and variance ratio algorithms and found that using variance 70 

ratio produced overestimates when using summer measurements and underestimations when using winter measurements, 

with the opposite trend noted for linear regression.  

     The present study expands previous analyses of long-term wind resource performance based on months-long observations 

to diverse locations across the United States, with a focus on measurement heights relevant to distributed wind installations 

(20 m – 100 m). We explore multiple MCP algorithm options and highlight the best performers for generating accurate long-75 

term wind speed estimates for a variety of error metrics relevant to the wind energy industry. Section 2 describes the wind 

measurements employed as 1) the months-long training input for MCP-based long-term wind estimates and 2) the long-term 

datasets to validate the MCP results. The reference dataset, ERA5, is also discussed in Section 2, along with three MCP 

algorithms selected for evaluation and the error metrics employed to test their performance. Section 3 provides the 

performance analysis of MCP-based long-term wind resource estimation with less than one year of onsite measurements 80 

with a focus on establishing the minimum number of months needed for certain levels of accuracy. Additionally, Section 3 

relates the performance results to a variety of influences, including geographical location, the time of year that measurements 

were gathered, and interannual variability in the wind resource. Section 4 summarizes the performance analysis and relates 

the wind speed error metrics to impacts on wind energy generation expectations. 

2 Data discussion and methodology 85 

The MCP model for long-term wind resource assessment begins with establishing a short-term relationship between 

observational wind data measured at a target site and concurrent data at a nearby reference site. The reference data can be 

observations or model data and typically includes wind variables (speed and direction) and potentially additional relevant 

meteorological (temperature, pressure) or temporal (hour of day, month of year) variables. The resultant short-term 

relationship is subsequently applied to long-term data from the reference site to predict the long-term wind resource at the 90 

target site (Rogers et al., 2005). 

2.1 Wind observations 

The 66 wind speed observational datasets in this analysis are sourced from U.S. Department of Energy national laboratories, 

facilities, and projects, the National Data Buoy Center, the Bonneville Power Administration, and the Forest Ecosystem 
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Monitoring Cooperative. One observational dataset was collected using a lidar and the remaining measurements were 95 

gathered from anemometers on meteorological towers. Most of the observational collection is publicly available (57 sites), 

while a small number of datasets are subject to non-disclosure agreements (9 sites) as outlined in the data availability 

statement. 

 

Figure 1. Locations of wind measurements assessed for establishing long-term performance based on months-long observations used in 100 
this study. 

     The measurement sites utilised in this work span 28 states and are diverse in terrain complexity and land cover (Figure 1). 

The measurement heights are similarly diverse, from 20 m to 100 m (Figure 2a), representing a wide range of the distributed 

wind hub heights that are reported in the United States (PNNL, 2024). Many of the lowest observations, between 20 m and 

30 m, source from the National Data Buoy Center and are located along coastlines. The highest observations are in Long 105 

Island, New York (85 m) and the San Francisco Bay Area, California (100 m). 

     To establish reliable datasets for MCP training and validation, the wind speed observations were quality-controlled by 

removing instances or periods of atypical or unphysical reported wind speeds (less than 0 m s-1, greater than 50 m s-1, or 

https://doi.org/10.5194/wes-2024-37
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



5 
 

nonvarying periods of time greater than four hours) that might indicate instrument error due to an outage or weather impacts 

such as icing. The temporal coverage of the wind speed observations at the measurement sites ranged from 3.5 – 23 years, 110 

with an average of 11 years (Figure 2b). 

 

Figure 2. (a) Measurement heights and (b) long-term measurement availability for the sites evaluated for long-term performance based on 
months-long observations. 

2.2 Reanalysis model for long-term correction 115 

ERA5 is a popular global reanalysis model (Hersbach et al., 2020) utilised for wind energy resource assessments in a variety 

of ways, including as a standalone product, as input boundary conditions to higher-resolution model runs, and as a reference 

dataset for MCP with local observations (Olauson, 2018; Soares et al., 2020; Hayes et al., 2021; de Assis Tavares et al., 

2022). ERA5 is developed by the European Centre for Medium-Range Weather Forecasts and provides meteorological data 

from 1950-present at 1-hour temporal resolution with a horizontal grid spacing of 0.25° (Hersbach et al., 2020). At many 120 

locations where validation has been performed, ERA5 tends to produce high Pearson correlation coefficients (Eq. 1) and 

negative biases (indicating underestimation) (Eq. 2) between the simulated (usim) and observed (uobs) wind speeds. Ramon et 

al. (2019) utilised 77 meteorological towers around the globe with measurement heights ranging from 10 m to 122 m and 

found median ERA5 seasonal wind speed biases between 0 and -1 m s-1, though ERA5 had the best correlation with 

observations among five reanalyses. Across 62 sites in the continental US, Sheridan et al. (2022) found that ERA5 125 

underestimated the observed wind speeds by an average of 0.5 m s-1 but had higher correlations (average of 0.77) than two 

alternate reanalyses and wind models. At locations across Europe, Murcia et al. (2022) determined that ERA5 slightly 

underestimated the observed wind speeds (average bias = -0.06 m s-1) and provided a high degree of correlation (average of 
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0.92). This study aims to reduce the ERA5-based wind speed bias using months-long onsite observations while not 

degrading other metrics of error, including correlation and mean absolute error (MAE).  130 

     The Pearson correlation coefficient explains the degree to which the simulated and observed wind speeds are linearly 

related, with values close to one indicating a high degree of correlation (Eq. 1). The wind speed bias, i.e., the average 

difference between the simulated (usim) and observed (uobs) wind speeds over a time series of length N, informs on whether a 

simulation tends to overestimate (positive bias), underestimate (negative bias), or accurately represent (zero bias) the 

observed wind resource (Eq. 2). This work also considers the bias magnitude (the absolute value of bias (Eq. 2)) when 135 

comparing multiple sites, as combinations of positive and negative biases can obscure the degree of error. The MAE is the 

absolute difference between the simulated and observed wind speeds on a timestamp-by-timestamp basis, providing insight 

on the magnitude of error in a simulation (Eq. 3).  

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑ (𝑢𝑠𝑖𝑚,𝑖 − 𝑢𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )(𝑢𝑜𝑏𝑠,𝑖 − 𝑢𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑢𝑠𝑖𝑚,𝑖 − 𝑢𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1
√∑ (𝑢𝑜𝑏𝑠,𝑖 − 𝑢𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1

 
(1) 

𝑏𝑖𝑎𝑠 =  
1

𝑁
∑(𝑢𝑠𝑖𝑚,𝑖 −  𝑢𝑜𝑏𝑠,𝑖)

𝑁

𝑖=1

 

(2) 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑢𝑠𝑖𝑚,𝑖 −  𝑢𝑜𝑏𝑠,𝑖|

𝑁

𝑖=1

 

(3) 

  

      

     To set a baseline of ERA5 performance for the suite of observations utilised in this work, we adjust the ERA5 wind 140 

speeds to each measurement height z (Figure 2a) using the power law (Eq. 4) with the shear exponent α calculated at each 

timestamp using the ERA5 wind speeds at 10 m and 100 m (Eq. 5). Horizontally, we adjust the ERA5 wind speeds to the 

observational location using inverse distance-weighted interpolation. 

 

𝑢𝑒𝑟𝑎5_𝑧 =  𝑢𝑒𝑟𝑎5_100𝑚 (
𝑧

100 m
)

𝛼

 
(4) 

𝛼 =  
ln(𝑢𝑒𝑟𝑎5_100𝑚 𝑢𝑒𝑟𝑎5_10𝑚⁄ )

ln(100 m 10 m⁄ )
 

(5) 

 145 

     In all regions except for the Southeast, the ERA5 wind speeds tend to be lower than the observed wind speeds (Figure 

3a). The underestimation is most pronounced in Alaska (median bias = -1.61 m s-1), the Pacific Northwest (-1.18 m s-1), and 

the Southern Plains (-1.74 m s-1). The same three regions have the highest MAEs (median MAEs = 2.39 m s-1, 1.86 m s-1, 

and 2.09 m s-1, respectively) (Figure 3b). The median correlations exceed 0.75 for all regions except Alaska (0.69) and the 
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West (0.67), where the coarse ERA5 is challenged by mountainous and coastal terrain (Figure 3c). Across all sites, the 150 

median statistics are: bias = -0.50 m s-1, bias magnitude = 0.67 m s-1, MAE = 1.66 m s-1, and correlation = 0.78.  

 

Figure 3. Long-term ERA5 wind speed (a) bias (b) MAE, and (c) correlation across 66 measurement sites in the United States, grouped by 
region. AK = Alaska, PNW = Pacific Northwest, W = West, MW = Midwest, SP = Southern Plains, NE = Northeast, and SE = Southeast. 

2.3 MCP methodologies 155 

One of the advantages of utilising MCP for long-term wind resource estimation is the variety of algorithm choices, which 

range from simplistic linear regression to machine learning techniques that can be applied to link the short-term and long-

term wind speeds. This analysis evaluates three algorithms for their skill at creating long-term wind resource estimates based 

on varying temporal lengths of observational data: (1) multiple linear regression (MLR), (2) adaptive regression splines 

(ARS), and (3) regression trees (RT). These algorithms were selected because they are broadly available and represent 160 

diversity in complexity and approach. Multiple linear regression estimates the linear relationship between a target variable 

(onsite wind measurements in this analysis) and more than one reference variable (sourced from ERA5 in this analysis). 

Adaptive regression splines involve the construction of piecewise-cubic regression models based on the short-term target and 

reference datasets (Jekabsons, 2016). Regression trees recursively partition and evaluate the concurrent short-term target and 

reference datasets into unique segments, which are subsequently used to predict long-term target behaviour. 165 

     To narrow down an effective training approach, different combinations of reference variables are explored for their 

impact on long-term wind resource assessment error metrics. The analysis of Phillips et al. (2022) identified reanalysis wind 

speed, reanalysis wind direction, and time of day as the most important variables for wind speed bias correction using a 

variety of techniques including multivariable linear regressions and regression trees. Therefore, we explore progressively 

increasing variable combinations of ERA5 wind speeds at the provided output heights of 10 m and 100 m (uera5_10m and 170 

uera5_100m), power law-based wind speed estimates at the measurement height z (uera5_z) (Eq. 4) using the shear exponent α 

based on the ERA5 wind speeds at 10 m and 100 m (Eq. 5), ERA5 wind directions at 10 m and 100 m (δera5_10m and 

δera5_100m), and the hour of the day.  

     As an initial test of the performance of the algorithms and reference variable combinations, we develop ensembles of 

MCP-based long-term wind speed estimates at each measurement site using consecutive 12-month training periods when at 175 
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least 75% of the observations each month (i.e., at least three weeks) are available after applying the quality control checks 

discussed in Section 2.1. For example, if a site has a 10-year long-term period ranging from January 2008 to December 2017, 

an ensemble of MCP-based 10-year wind speed estimates will be established based on training periods of January 2008 – 

December 2008, February 2008 – January 2009, … December 2016 – November 2017, January 2017 – December 2017 as 

long as each month in the training period meets the data recovery and quality threshold of 75%. All 66 observations utilised 180 

in this work have average and median monthly data recovery and quality rates exceeding the 75% threshold. The MCP-based 

long-term wind speed estimates cover the same temporal period that is available at each site (3.5-23 years) (Figure 2b). For 

each of the 66 sites, we compute the ensemble average error metrics (bias magnitude, MAE, and correlation), with the 

averages and medians across all the sites presented in Table 1. 

 185 

Table 1. Long-term MCP-based wind speed error metrics averaged (median) across 66 sites using different combinations of algorithms 
and training variables. Values in bold indicate the optimal combination of training variables for each error metric and algorithm. 

Error Metric Algorithm Training Variables 

  uera5_10m, uera5_100m uera5_10m, uera5_100m 

uera5_z 

uera5_10m, uera5_100m 

uera5_z 

δera5_10m, δera5_100m 

uera5_10m, uera5_100m 

uera5_z 

δera5_10m, δera5_100m 

hour of day 

Bias Magnitude  

(m s-1) 

MLR 0.09 (0.08) 0.09 (0.08) 0.09 (0.07) 0.09 (0.07) 

ARS 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.07) 

RT 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.06) 

MAE  

(m s-1) 

MLR 1.51 (1.53) 1.43 (1.43) 1.41 (1.43) 1.41 (1.41) 

ARS 1.50 (1.52) 1.41 (1.42) 1.32 (1.31) 1.31 (1.29) 

RT 1.60 (1.61) 1.54 (1.55) 1.42(1.37) 1.40 (1.35) 

Correlation MLR 0.75 (0.75) 0.78 (0.80) 0.79 (0.80) 0.79 (0.80) 

ARS 0.75 (0.75) 0.78 (0.80) 0.81 (0.83) 0.82 (0.83) 

RT 0.71 (0.72) 0.74 (0.76) 0.78 (0.80) 0.79 (0.81) 

 

     All MCP combinations of algorithms and training variables provide substantially improved long-term bias magnitudes 

compared to the ERA5 (i.e., uera5_z) average (median) bias magnitude of 1.01 m s-1 (0.67 m s-1) (Table 1). With 12 months of 190 

training time, the MCP average and median bias magnitudes vary by at most 0.02 m s-1 according to algorithm and training 

variables. More variability is seen according to the various combinations of MCP algorithms and training variables for MAE. 

All combinations improve on the ERA5 average (median) MAE of 1.82 m s-1 (1.65 m s-1), with the incorporation of all 

training variables producing the lowest MAE values (Table 1). Using just uera5_10m and uera5_100m as training variables, all 

three MCP algorithms produce worse correlations than the ERA5 average (median) correlation of 0.76 (0.77). Adding the 195 
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ERA5 wind speed adjusted to the measurement height, uera5_z, to the training variables produces the largest relative 

improvement to the MCP correlations (average and median correlations increase by 0.03 – 0.05) but utilising all training 

variables generates the highest overall correlations (Table 1). Given the optimal MAE and correlation results found when 

training for 12 months with MCP using the complete variable set of ERA5 wind speeds, ERA5 wind directions, and hour of 

the day, these variables are selected for evaluating long-term MCP wind speed estimates using months-long training periods. 200 

Using 12 months of observations, ARS is the best performing algorithm for all error metrics and the following sections 

explore whether that status holds when using months-long training periods. 

     The months-long analysis follows the same ensemble formula as the 12-month exercise, just with shorter consecutive 

training periods. For example, for the site that has a 10-year long-term period ranging from January 2008 to December 2017, 

the ensemble based on one month of observations would consist of MCP-based 10-year wind speed estimates using training 205 

periods of January 2008, February 2008, … November 2017, December 2017, provided each month in the training period 

meets the data recovery and quality threshold of 75%. The ensemble based on two months of observations would consist of 

MCP-based 10-year wind speed estimates using training periods of January 2008 – February 2008, February 2008 – March 

2008, … October 2017 – November 2017, November 2017 – December 2017 as long as both months in each training period 

meet the data recovery and quality threshold of 75%. If every month in the 2008 observations for a site had ≥75% data 210 

recovery and quality except March, long-term MCP-based wind speed estimates based on January 2008 – February 2008 and 

April 2008 – May 2008 would be included in the ensemble, but not February 2008 – March 2008 or March 2008 – April 

2008. 

3 Results 

3.1 Long-term wind estimation performance according to length of training period 215 

On average, even one month of observations combined with any of the three assessed MCP algorithms provides substantial 

improvement over using ERA5 wind speeds alone for long-term wind speed estimation. Figure 4a displays the ensemble 

average bias magnitude at each site using increasing numbers of training months. The median bias magnitudes across all 

sites using one month of training are 0.28 m s-1 (MLR), 0.27 m s-1 (ARS), and 0.29 m s-1 (RT), as compared with 0.67 m s-1 

using ERA5. The median bias magnitudes drop to ranges between 0.17 m s-1 (RT) and 0.19 m s-1 (MLR) using three months 220 

of training and 0.12 m s-1
 (RT) and 0.14 m s-1 (MLR) using six months of training. For all training durations of at least two 

months, RT is on average the best performing MCP algorithm for reducing bias magnitude. 

     Considering the sign of the bias, we recall that ERA5 tends to underestimate the observed wind speeds with a median bias 

of -0.50 m s-1 across the sites. On average, incorporating months-long observations into the long-term estimations moves the 

bias substantially closer to zero. Applying just one month of observations results in median biases between -0.06 m s-1 (RT) 225 

and -0.01 m s-1 (ARS). The median biases using any MCP algorithm remain slightly negative with increasing training period 

lengths until the ARS biases switch to slightly positive after five months of training data and the MLR and RT bias switch to 
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slightly positive after seven months of training data. For all training period lengths of four months or greater, the median 

MCP-based biases are within ±0.01 m s-1, regardless of algorithm. 

     The MCP algorithms diverge in their performance for long-term wind speed MAE and correlation, especially when using 230 

four or fewer training months. On average, using one month of training improves the long-term MAE results when applying 

MLR (median MAE = 1.51 m s-1) or ARS (median MAE = 1.47 m s-1) relative to using ERA5 wind speeds (median MAE = 

1.66 m s-1) (Figure 4b). However, using one month of training with RT produces a median MAE across the sites of 1.85 m s-

1, showing worse performance than simply using the ERA5 wind speeds to establish long-term estimates. For MAE, RT 

begins improving over ERA5 when the training period length reaches four months. For all training durations, ARS is on 235 

average the best performing MCP algorithm for reducing MAE. 

     Similar to the MAE results, using RT with a limited number of training months does not improve correlation relative to 

ERA5 and the other MCP algorithms. Using one month of training, MLR provides higher correlations (median = 0.79) than 

ERA5 (median = 0.78) and ARS produces similar correlations (median = 0.78), while the RT correlations are quite a bit 

worse (median = 0.68) (Figure 4c). Only when the training period is at least seven months do the median RT correlations 240 

surpass ERA5. An interesting correlation comparison is noted for the National Renewable Energy Laboratory’s National 

Wind Technology Center, located in an extremely windy corridor of the complex terrain along Colorado’s Front Range. All 

of the lowest correlation outliers in Figure 4c are from this site and, while MLR and ARS match or improve upon the ERA5 

correlation for the National Wind Technology Center (0.47) using any training period length, RT never achieves the ERA5 

correlation even with a full twelve months of training. For all training durations of at least two months, ARS is on average 245 

the best performing MCP algorithm for correlation. 
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Figure 4. Average long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites comparing observations with ERA5 and MCP 
techniques using varying training period lengths. 

     Given that a twelve-month training period is most commonly employed for long-term wind speed estimation using MCP, 250 

it is beneficial to consider MCP performance using less than one year of observations relative to the twelve-month standard. 

Using a one-month training period, the median long-term bias magnitudes for 66 sites are within 0.21 m s-1 of the median 

long-term bias magnitudes determined using twelve months regardless of MCP algorithm (Figure 5a). However, at one 

coastal Alaskan site the difference in bias magnitude when using one versus twelve months of observations can exceed 1 m 

s-1. Training with three months of observations places the median bias magnitudes within 0.12 m s-1 of the median bias 255 

magnitudes established when using twelve months, with outlier differences within 0.8 m s-1. Using six-month training 

periods results in median bias magnitudes within 0.07 m s-1 of the twelve-month median bias magnitudes, with outlier 

differences within 0.5 m s-1.  
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     Great disparity is noted among the MCP algorithms when comparing their MAE and correlation performance using 

months-long training periods versus training periods of one-year duration (Figure 5b,c). The median MAEs using one month 260 

of observations are 0.08 m s-1 (MLR), 0.18 m s-1 (ARS), and 0.46 m s-1 (RT) different from their respective median MAEs 

when utilising twelve months of observations. The RT MAEs using less than one year of observations remain noticeably 

different from the RT MAEs using twelve months of observations, in contrast to MLR and ARS whose months-long MAEs 

converge on the year-long MAEs more rapidly. For example, using a six-month training period, the median MLR and ARS 

MAEs are within 0.02 m s-1 of their twelve-month median MAEs, while the six-month median RT MAE is 0.15 m s-1 265 

different from the median RT twelve-month MAE. For correlation, the differences between the median months-long results 

and those using a full twelve months are within 0.01 regardless of training duration when using MLR. Using one month of 

training versus twelve months produces median correlation differences of 0.05 for ARS and 0.13 for RT. With six-month 

training periods, ARS produces a median correlation less than 0.01 different than using twelve months, while the six-month 

median RT correlation is 0.04 different from using twelve months. 270 
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Figure 5. Difference in average long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites between MCP training periods of 
one to eleven months and MCP training periods of twelve months. 

     The results in Figure 4 and Figure 5 explain the degree of error expected on average when using MCP with observations 

less than one year in duration, highlighting similar performance across the MCP algorithms for long-term wind speed bias 275 

magnitude, but less successful performance when using RT with months-long observations for MAE and correlation. 

However, since wind measurement timelines tend to be more dependent on funding availability, project deadlines, and fair-

weather deployment windows than on identifying the most representative period for long-term wind representation, it is 

imperative to consider the worst-case scenario errors (Figure 6). In this scenario, we identify the worst-performing ensemble 

member for each error metric (largest bias magnitude, largest MAE, smallest correlation) and each algorithm (MLR, ARS, 280 

RT) according to length of training period for each of the 66 sites. 
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     In the worst-case scenario, using a single month for MCP training will produce long-term errors significantly worse than 

simply using ERA5 to produce long-term wind speed estimates (Figure 6). Despite its performance success on average 

(Figure 4), ARS produces the largest bias magnitudes (median = 1.31 m s-1) and the smallest correlations (median = 0.23) in 

the worst-case scenario. MLR performs the best using a one-month training period in the worst-case scenario (median bias 285 

magnitude = 1.06 m s-1, median MAE = 1.93 m s-1, median correlation = 0.63).  

     A training period of four months provides improvement in bias magnitude over simply using ERA5 (median = 0.67 m s-1) 

for long-term wind resource estimation, even in the worst-case scenario, regardless of MCP algorithm choice (medians = 

0.54 m s-1 – 0.58 m s-1) (Figure 6). MLR and ARS show improvement in MAE over ERA5 (median = 1.66 m s-1) at training 

durations of four months as well (medians = 1.60 m s-1, 1.59 m s-1, respectively), however the RT MAEs do not show 290 

improvement over ERA5 until a training duration of six months (median = 1.65 m s-1) is established in the worst-case 

scenario. For correlation, MLR exceeds ERA5 (median = 0.78) at five months, ARS at six months, and RT at eleven months 

(medians = 0.79). Though RT provides the most beneficial bias magnitudes and ARS the most beneficial MAEs and 

correlations on average when using MCP with months-long observations (Figure 4), MLR is the least risky approach given 

the possibility of measurement during unfavourable wind conditions for MCP. 295 
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Figure 6. Worst case long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites comparing observations with ERA5 and 
MCP techniques using varying training period lengths. Outliers not displayed: (a) 9.64 m s-1 bias magnitude for one training month with 

ARS, (b) 10.46 m s-1 MAE for one training month with ARS. 

     To help us understand what those unfavourable conditions are that might lead to a worst-case scenario, we investigate the 300 

characteristics of the wind speed observations during the worst-case scenario periods relative to the average characteristics of 

the wind speed observations across all training periods with the same duration (Figure 7). It is interesting to note that the 

dates of the training time periods with the worst-case scenarios are variable according to MCP algorithm and error metric, 

particularly for the shortest duration training periods. We find that both the mean and standard deviation of the observed 

wind speeds during the worst-case scenario month or consecutive months tend to be lower than the mean and standard 305 

deviation of the observed wind speeds across all periods with the same durations, particularly when using ARS and RT 

(Figure 7). In other words, low wind speed time periods with correspondingly low variations in the wind speeds tend to 

provide the biggest challenges for long-term MCP accuracy. For example, the median observed wind speed mean (standard 
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deviation) across the 66 sites for all one-month duration periods is 5.80 m s-1 (3.12 m s-1), while the one-month worst-case 

scenario for ARS based on bias magnitude corresponds to an observed wind speed mean (standard deviation) of 4.42 m s-1 310 

(2.25 m s-1) (Figure 7a,b). Increasing numbers of training months correspond with higher mean wind speeds and standard 

deviations during the worst-case periods, along with convergence of the worst-case scenario mean wind speeds and standard 

deviations to mean wind speeds and standard deviations across all training periods of the same durations. 

 

Figure 7. (a), (c), (e) Mean wind speed and (b), (d), (f) wind speed standard deviation across 66 sites for MLR, ARS, and RT worst-case 315 
scenarios for (a), (b) bias magnitude, (c), (d) MAE, and (e), (f) correlation, and across all training periods for each site of the same 
durations. Only the results using one, three, six, and twelve months of training are presented for the sake of brevity. Increasing numbers of 
training months correspond with convergence of the worst-case scenario mean wind speeds and standard deviations to mean wind speeds 
and standard deviations across all training periods of the same duration. 

3.2 Regional long-term wind estimation performance 320 

On average, using one month of observations produces regional median bias magnitudes within 0.35 m s-1 using any of the 

three MCP algorithms, except for the two Alaskan sites (Figure 8a-g). The Alaskan median bias magnitudes are substantially 

higher (0.97 m s-1 using MLR, 0.88 m s-1 using ARS, and 0.93 m s-1 using RT), but still significantly lower than the ERA5 

median bias magnitude for these two sites (1.61 m s-1) (Figure 3a). The most impressive reduction in bias magnitude occurs 

for the Southern Plains, where the ERA5 produces a median bias magnitude of 1.74 m s-1 (Figure 3a) that decreases to 0.25 325 

m s-1 (MLR), 0.26 m s-1 (ARS), and 0.28 m s-1 (RT) with the addition of just one month of observations (Figure 8e). Using 

three and six months of observations, all median regional bias magnitudes are within 0.26 m s-1 and 0.17 m s-1, respectively, 

except for Alaska where the median bias magnitudes range from 0.64 m s-1 (ARS, RT) to 0.78 m s-1 (MLR) using three 
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months and 0.36 m s-1 (RT) to 0.50 m s-1 (MLR) using six months of observations. Using twelve months of observations, all 

regional bias magnitudes are within 0.15 m s-1, including Alaska (Figure 8a-g). 330 

     The overall trend of RT showing the worst performance on average for MAE (Figure 4b) holds for each regional 

designation as well (Figure 8h-u). On average, ARS with one month of observations improves on the median ERA5 MAEs 

in all seven regions, while MLR with one month of observations improves on the median ERA5 MAEs in all regions except 

Alaska. Only in the Southern Plains does RT with one month of observations improve on the median ERA5 MAE.  

     On average, using RT with one month of observations degrades the ERA5 median correlations in all regions. Considering 335 

all sites, MLR tends to improve on the ERA5 correlations using one month of observations, while ARS performs similarly to 

ERA5 (Figure 4c). However, when exploring correlation on a regional scale, MLR and ARS tend to improve on ERA5 

correlations using one month of observations in the Pacific NW, Northeast, and Southeast, while disimproving ERA5 

correlations in Alaska, the West, Midwest, and Southern Plains. 

 340 

Figure 8. Long-term bias magnitude (left), MAE (centre), and correlation (right) according to region for varying training period lengths. 
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3.3 Seasonal relationships between observations and long-term wind estimation performance 

When considering using less than one year of wind speed measurements to correct long-term wind speed estimates, it is 

important to select the most optimal time of year to gather such measurements (and to understand what times of year to 

avoid). For each of the 66 sites, Figure 9 and Figure 10 share the best and worst single months, on average, for optimizing 345 

error metrics when applying MCP to ERA5. The best months for optimizing bias using all three MCP algorithms are quite 

variable across non-summer (June, July, August) months, while spring (March, April, May) and fall (September, October, 

November) tend to produce the best MAE and correlation results, as shown by the larger circles (Figure 9). Specifically, 

using MLR, ARS, and RT, respectively, spring (fall) months produce the lowest MAEs at 24 (22), 26 (27), and 8 (45) of the 

66 sites and the highest correlations at 26 (22), 29 (20), and 15 (33) of the 66 sites. Summer months, particularly July and 350 

August, tend to produce the worst biases, MAEs, and correlations (Figure 10) and should be avoided if opting to create 

MCP-based wind speed estimates using a single season of observations. 

 

Figure 9. Best average single months for optimizing (a), (b), (c) bias, (d), (e), (f) MAE, and (g), (h), (i) correlation when creating MCP-
based long-term wind speed estimates using (a), (d), (g) MLR, (b), (e), (h), ARS, and (c), (f), (i) RT according to US region. Larger circles 355 
indicate the best month for more sites in a given region. 
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Figure 10. Worst average single months for optimizing (a), (b), (c) bias, (d), (e), (f) MAE, and (g), (h), (i) correlation when creating MCP-
based long-term wind speed estimates using (a), (d), (g) MLR, (b), (e), (h), ARS, and (c), (f), (i) RT according to US region. Larger circles 
indicate a bad month for more sites. 360 

3.4 Long-term wind estimation performance according to length of observations 

Local wind speed trends evolve over decades due to climate evolution and land cover alterations. As this analysis involves a 

wide range of definitions of long-term period based on observational availability (3.5 – 23 years) (Figure 2b), it is valuable 

to assess the months-long MCP-based wind speed errors according to the length of the long-term period. Both on average 

and in the worst-case scenarios using six months of training, bias magnitudes and MAEs tend to increase with increasing 365 

length of long-term period (Figure 11a-d) as any six-month period becomes decreasingly representative of the long-term 

period. On average, median bias magnitudes range from 0.10 m s-1 to 0.11 m s-1 across the 8 sites with long-term periods of 

3.5 – 5 years, 0.13 m s-1 across the 24 sites with long-term periods of 5 – 10 years, 0.10 m s-1 to 0.13 m s-1 across the 14 sites 

with long-term periods of 10-15 years, 0.12 m s-1 to 0.15 m s-1 across the 12 sites with long-term periods of 15-20 years, and 

0.20 m s-1 to 0.25 m s-1 across the 8 sites with long-term periods exceeding 20 years. The performance in bias magnitude 370 

varies more significantly for the worst-case scenarios, with medians of 0.28 m s-1 for sites with long-term periods of 3.5 – 5 

years and 0.69 m s-1 to 0.82 m s-1 for sites with long-term periods exceeding 20 years (Figure 11b). 

     MAEs from MCP wind speed estimated using six months of observations similarly increase with increasing length of 

long-term period. Median MAEs range on average from 1.16 m s-1 to 1.34 m s-1 for long-term periods of 3.5 – 5 years up to 

1.53 m s-1 to 1.73 m s-1 for long-term periods exceeding 20 years (Figure 11c). For the worst-case scenarios, median MAEs 375 
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range from 1.23 m s-1 to 1.42 m s-1 for long-term periods of 3.5 – 5 years up to 1.78 m s-1 to 1.95 m s-1 for long-term periods 

exceeding 20 years (Figure 11d). In contrast to the trends for bias magnitude and MAE, the average and worst-case 

correlations exhibit no such trend of degradation of performance with increasing long-term period length (Figure 11e,f). 

Rather, long-term periods of 3.5 – 5 years and exceeding 20 years yield the highest correlations, while long-term periods of 

15 – 20 years produce the lowest correlations. Trends in MCP-based correlation are more influenced by region (Figure 8o-u) 380 

than the length of long-term period being represented. 

 

 

Figure 11. (a), (c), (e) Average and (b), (d), (f) worst-case scenario (a), (b) bias magnitude, (c), (d) MAE, and (e), (f) correlation based on 
six months of training according to length of long-term period. 385 

4 Discussion 

On average, utilising months-long observations to correct reanalysis-based long-term wind speed estimates provides 

significant improvement in accuracy of predicted winds (Figure 4). However, substantial risks to accuracy occur when the 

months-long observational period is misrepresentative of longer-term wind speed trends (Figure 6). To evaluate the impacts 

of long-term correction using months-long observations on distributed wind energy production, we convert the long-term 390 

observed and simulated wind speeds to energy estimates using the National Renewable Energy Laboratory’s 100-kW 

distributed wind reference power curve (NREL, 2019). Since variable lengths of long-term periods are utilised in this study, 
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we opt to consider energy production in terms of the capacity factor, i.e., the energy estimate divided by the product of the 

total number of hours in the long-term period and the turbine rated capacity (100 kW in this example). The observed wind 

speeds in this analysis produce gross (i.e., no loss considered) capacity factors ranging 3% (inland Louisiana) to 66% (Texas 395 

panhandle), with an average (median) of 34% (36%). 

     Across the 66 observational sites, simply using ERA5 to produce long-term energy estimates results in capacity factor 

errors (|capacity factor based on simulations – capacity factor based on observed wind speeds|) up to 43 percentage points, 

with a median of 7 percentage points. On average, just one month of observations reduces the capacity factor error range to 

within 14 percentage points and the median capacity factor error to 3 percentage points (Figure 12a). The largest ERA5-400 

based outlier (43 percentage points) is for one of the Bonneville Power Administration meteorological towers in Oregon, and 

MCP correction using one month of onsite observations reduces the capacity factor error at this site to 4-8 percentage points 

on average, depending on the algorithm. Using three, six, and twelve months of training further reduces the capacity factor 

errors to within 11 (median ≤ 3), 7 (median ≤ 2), and 5 (median ≤ 2) percentage points, respectively. As for the wind speed 

bias magnitudes (Figure 4a), RT is the best algorithm on average for reducing capacity factor error when using the 100-kW 405 

reference power curve. 

     Like the wind speed evaluation, the potential for reduction of wind energy estimate error using months-long onsite 

observations comes with risk. With a one-month training period in the worst-case scenario, the ERA5 capacity factor error 

range (within 43 percentage points) reduces to within 35 percentage points, but the median capacity factor errors increase 

from 7 to 12-13 percentage points (Figure 12b). Using three, six, and twelve months of training reduces the worst-case 410 

capacity factor errors to within 23 (median ≤ 9), 17 (median ≤ 6), and 9 (median ≤ 3) percentage points, respectively. 
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Figure 12. (a) Average and (b) worst-case scenario capacity factor error (|ERA5/MCP capacity factor – capacity factor based on observed 
wind speeds|) according to number of training months. 

     It is important to consider the performance of wind estimation methodologies from a variety of statistical standpoints, 415 

since behind-the-meter customers may care most about whether their long-term production meets their initial expectations 

(bias) and front-of-the-meter customers may be also concerned with distribution network integration with other energy 

technologies (bias, correlation). While the three MCP algorithms assessed in this study perform similarly in terms of bias 

magnitude (Figure 4a), for the shortest training period lengths (one to three months) RT performs significantly worse on 

average for MAE and correlation than MLR and ARS (Figure 4b,c). 420 

     Given ERA5’s popularity in the wind energy community, along with its known challenges for wind speed bias and 

relative success in terms of wind speed correlation, this study provides a useful framework for evaluating the performance of 

MCP-based corrections to long-term wind speed estimates using months-long observations. However, the exercise would 

https://doi.org/10.5194/wes-2024-37
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



23 
 

benefit in the future from expansion to include additional long-term models that provide wind resource information at 

different horizontal and vertical spatial resolutions, such as the new WIND Toolkit Long-Term Ensemble Dataset (Draxl et 425 

al., 2024). Additionally, the lessons learned in this work are being explored to quantify the geographic extent of their 

potential application, with aims to support broader wind speed bias correction in distributed wind tools and to reduce the 

amount of onsite measurement sites needed to correct sites with similar wind profile characteristics. 

     Based on this analysis, we identify the following key recommendations for wind energy developers creating long-term 

wind resource estimates under the constraint of less than one year of onsite measurements which may occur for any number 430 

of reasons, including instrument outages or timing of funding opportunities: 

• While even one month of onsite wind speed measurements improves long-term wind speed estimates on average, 

incorporating at least four months of onsite measurements is a better option to mitigate the errors that could occur if 

some of the wind speeds in the measurement period are misrepresentative of the longer-term trends. 

• Summer months, particularly July and August, should be avoided if opting to create MCP-based wind speed 435 

estimates using a single season of measurements in the U.S., as these months tend to be the least representative of 

long-term wind speed means and standard deviations. 

• Since potential wind customers may care about long-term wind resource accuracy from multiple viewpoints, it is 

important to note that of the three MCP algorithms explored, RT produces the lowest bias magnitudes and ARS the 

lowest MAEs and correlations. However, MLR is the least risky algorithm given the possibility of measurement 440 

during unfavourable wind conditions for MCP. 

The results of this work highlight the benefits of anemometer or lidar loan programs to assist future distributed wind energy 

customers with more accurate long-term wind resource estimates while maximizing the number of customers that can be 

served by reducing the measurement time needed. 

Code and data availability 445 

Many of the wind speed measurement datasets that support this study are publicly available. Measurements from U.S. DOE-

sponsored laboratories, studies, and programs can be found at ANL (2022), ARM (2021), B2SHARE (2020), BNL (2020), 

LBNL (2020), NREL (2022). Measurements in the Pacific Northwest from the Bonneville Power Administration can be 

found at BPA (2022). Coastal measurements from the National Data Buoy Center are sourced from NDBC (2024). 

Measurements from the University of Vermont’s Forest Ecosystem Monitoring Cooperative were formerly available at 450 

FEMC (2020). The remaining measurements are proprietary, subject to non-disclosure agreements, and have restricted 

access at DOE (2024).  

     The ERA5 reanalysis data is obtained from ECMWF (2024). The 100-kW reference distributed wind power curve utilised 

in this work is provided at NREL (2019). Data processing scripts are written in Matlab and are available from the author 

upon request. 455 
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