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Abstract. The Norwegian government aims to install offshore wind power with a total capacity of 30 gigawatts by 2040, and

the Norwegian Water Resources and Energy Directorate has suggested twenty candidate regions. We show that the potential

for reducing overall power production variance across these regions is high using modern portfolio theory and the hourly and

spatially rich reanalysis NORA3 Wind Power data set (NORA3-WP). The geographical diversification effect is demonstrated

under various relevant scenarios, including a sequential build-out scenario with a fully connected Norwegian power grid as-5

sumption. By considering 20 alternative regions selected using a recently developed suitability score, we further illustrate that

the diversification effect is robust to location changes.

1 Introduction

Policymakers, environmental organizations, industry, and researchers portray offshore wind power as a vital energy source

to meet the increasing demand for clean, renewable energy as the world transitions from fossil fuels. Norway has a large10

and largely unexploited potential for offshore wind power production (Bosch et al., 2018). The Norwegian Government has

presented an ambitious development plan, called "30by40", of continuously opening offshore areas for large-scale wind power

deployment, sufficient for 30 gigawatts (GW) installed capacity by 2040 (Norwegian Government, 2022). Theoretically, having

only one wind farm with 30 GW of installed capacity would occupy 9400 km2, corresponding to a square with sides of 97 km

(Solbrekke, 2022). However, distributing wind farms across a larger geographic area could stabilize the instantaneous power15

production (Solbrekke et al., 2020; St.Martin et al., 2015). If there is little wind in one area, this can be compensated by windy

conditions somewhere else. This effect is analogous to diversification in financial portfolio selection problems using modern

portfolio theory (Markowitz, 1952). Thus, we consider the distribution of wind farms as an optimization problem, where we

aim to maximize power production while minimizing its variance. In the context of opening several areas for offshore wind

power deployment, where the instantaneous wind resources are more or less dependent, it is crucial to first determine the20

location of potential wind farms. We then apply modern portfolio theory to determine the relative sizes of the wind farms to

obtain the best tradeoff between power output and stability. Our objective is to find the portfolio that minimizes the variance

given a specific expected power output. We advance the current literature by introducing a new set of cardinality constraints

and a novel sequential build-out routine. Modern portfolio theory has a long history in financial portfolio selection, where the
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weights represent how large a portion of the total investment one should invest in different stocks, bonds, or funds. In a wind25

farm portfolio, the weights correspond to the proportion of the total number of wind turbines potentially installed at each wind

farm location.

The Norwegian (exclusive) economic zone (NEZ) is extensive, and not all areas are suitable for installing turbines. In most

areas, the sea depth is too large for anchoring wind turbines to the sea floor at an acceptable cost. Some areas are known to be

spawning grounds for fish, while other areas may be too close to other offshore installations, such as oil and gas platforms. In30

this paper, we only consider locations that are suitable for the installation of offshore wind turbines. We achieve this by using

two different approaches when selecting suitable candidate sites. Our first set of candidate locations was suggested by The

Norwegian Water Resources and Energy Directorate (NVE). NVE suggests 20 areas in the NEZ for further consideration in a

subsequent impact assessment. Our second set of candidate locations is based on the study by Solbrekke and Sorteberg (2023),

who use multicriteria decision analysis to point out suitable and robust offshore areas for wind power deployment.35

Markowitz’s modern portfolio theory has been applied to wind power production several times in the literature. Drake and

Hubacek (2007) study the geographic diversification effect of wind farm portfolios in the United Kingdom by comparing a

portfolio of 2.7GW in one location to one where the same energy is distributed over four locations. They find a reduction of

36% in the standard deviation of instantaneous wind power production. Roques et al. (2010) consider total wind production

data from five European countries (Spain, France, Germany, Denmark, and Austria) and apply modern portfolio theory to40

minimize variance, in a theoretical unconstrained portfolio as well as a portfolio in which national wind resource potential

and transmission constraints are taken into account. Rombauts et al. (2011) build on the work of Roques et al. (2010), but

instead of using aggregated data by country, they apply portfolio theory on simulated data from different locations within each

country. They also model cross-country transmission constraints more explicitly. With case studies from the United States,

Degeilh and Singh (2011) propose a general planning method to minimize the variance of aggregated wind power output by45

optimally distributing turbines over a preselected number of potential sites, Novacheck and Johnson (2017) study the potential

for diversification of wind power variability in the Midwest, and Costa-Silva et al. (2017) use modern portfolio theory with four

re-balancing strategies on 11 hypothetical offshore wind farms off the East Coast. Hjelmeland and Nøland (2023) analyse the

correlation structure between potential Norwegian offshore wind resources and existing resources in neighbouring countries

concerning potential price effects. More recently, Tejeda et al. (2018) employed the ERA-Interim wind resource reanalysis data50

to minimize the variability of aggregated wind farm production over a 0.25×0.25 degrees grid of onshore Europe (EU-28) and

a selection of offshore grid cells.

In this study, we use the high-resolution wind power reanalysis NORA3-WP (see section 2.1), which is a dynamic downscal-

ing of the state-of-the-art reanalysis ERA5 (Hersbach et al., 2020). Comparing NORA3-WP to the dataset used by Tejeda et al.

(2018), NORA3-WP has a higher temporal resolution (hourly versus 6-hourly) and a more extended history (24 years versus 1055

years). Furthermore, the analysis by Tejeda et al. (2018) includes most of the European continent, while we focus exclusively

on sites in the NEZ suitable for offshore wind power installations. Instead of placing wind power by grid cell (Tejeda et al.,

2018), we find the optimal number of turbines on a wind farm unit represented by the wind resources from one grid cell in

NORA3-WP. Our study, therefore, builds naturally on recent developments in the identification of suitable locations for wind
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power generation (Solbrekke and Sorteberg, 2023) and methodology for distributing resources between them (Tejeda et al.,60

2018). We develop the procedure for wind power distribution further by incorporating the Norwegian government’s sequential

development plan, "30by40", and introducing a maximum number of wind farms constraint (see Section 3).

The structure of this paper is as follows. We present the NORA3-WP data in Section 2.1. We then present the NVE candidate

locations and the Solbrekke and Sorteberg (2023) counterpart. In Section 3, we present Markowitz’s portfolio theory with

particular adaptations specific to the wind power problem. We set up five cases with varying constraints and build-out strategies.65

The optimal portfolios are presented and discussed in Section 4. We then give some concluding remarks in Section 5.

2 Data

2.1 NORA3-WP

The backbone of this study is the new wind resource and wind power data set NORA3-WP constructed by Solbrekke and

Sorteberg (2022). It is based on the 3-km Norwegian reanalysis data (NORA3), which is the most recent high-resolution70

data archive from the Norwegian Meteorological Institute (Haakenstad et al., 2021), generated by a dynamical downscaling

of ERA5 (Hersbach et al., 2020). Solbrekke et al. (2021) and Haakenstad et al. (2021) carry out a validation of NORA3

against observations, together with a comparison of NORA3 to the host dataset ERA5. These studies conclude that NORA3 is

consistently closer to the observed wind speed compared to ERA5, especially over land, where the topography is complex and

for high wind speeds. Cheynet et al. (2022) compares NORA3 to the New European Wind Atlas. Both datasets are found to75

provide reliable estimates of the mean wind speed, but NORA3 shows slightly better performance for the mean wind speed in

terms of root-mean-square error, bias, earth mover’s distance and Pearson correlation coefficient (Cheynet et al., 2022).

NORA3-WP covers the North Sea, the Norwegian Sea, the Baltic Sea and parts of the Barents Sea in a 3km×3km horizontal

grid. NORA3-WP contains climatological data on a monthly time scale from 1996 to 2019, providing seven wind resources

and 18 wind power-related variables for three selected turbines with different power ratings, turbine diameters and hub heights.80

The underlying hourly wind speed and wind power data are also available on the same spatial scale. For more details on the

data, see Solbrekke and Sorteberg (2022).

In this study, we use the hourly wind power data, calculated using the 15MW reference turbine from the International Energy

Agency, IEA-15MW (Gaertner et al., 2020), which is the largest among the three turbines covered by NORA3-WP. IEA-15MW

has a rated power of 15MW, a hub height of 150 meters and a rotor diameter of 240 meters. If the wind speed is below 3.0 m/s85

or above 25 m/s the power production is zero due to internal friction and sheltering purposes, respectively. If the wind speed is

between 3.0 m/s and 10.59 m/s, the power production is proportional to the wind speed cubed. Lastly, if the wind speed lies

between 10.59 m/s and 25 m/s, the turbine produces its rated power.

Using the IEA-15MW turbine in our analysis implies that installing 30GW of offshore wind power corresponds to building

2 000 turbines. From the NORA3-WP data, we extract hourly time series from the grid cells closest to the centre of the NVE90

regions described in the next section, and the actual grid cells from the Solbrekke and Sorteberg (2023) selected locations in

the following section. We calculate the mean capacity factor, i.e. the average production as a percentage of rated power, and the
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covariance matrix describing the linear dependence between the different locations. This mean vector and covariance matrix is

then used in the portfolio optimization described in Section 3. Since the capacity factor is a relative measure in [0,1], we report

it as a percentage. Note that the standard deviation of a capacity factor is then measured in percentage points (pp).95

2.2 Norwegian Water Resources and Energy Directorate (2023) candidate locations

The Norwegian Water Resources and Energy Directorate (NVE) led a group with members from different state agencies (Nor-

wegian Directorates for Petroleum, Fisheries, Environment and the Coastal Administration and Defence Estates Agency) with

a mandate from the Norwegian Ministry of Petroleum and Energy to identify suitable locations for offshore wind farms that

have few conflicting interests (Norwegian Water Resources and Energy Directorate, 2023). The group of directorates identified100

20 regions suitable for wind power (see shaded areas in Figure 1D). In September 2023, the Norwegian government instructed

NVE to start an impact assessment on three of these 20 areas: Vestavind B, Vestavind F and Sørvest F (Norwegian Government,

2023). Parts of Sørvest F and Vestavind F have earlier been considered for wind power production under the names Sørlige

Nordsjø 2 (SN2) and Utsira Nord (UN), respectively. SN2 and UN were identified in an earlier report by NVE (Norwegian

Water Resources and Energy Directorate, 2012), and it has been decided to allocate areas for 1500MW at each location to start105

with. We will, therefore, make sure these are in both candidate sets and use the names SN2 and UN for the corresponding areas

in both sets. The suggested regions from 2012 were also used in the analysis by Hjelmeland and Nøland (2023). The NVE used

a tool called "Marine Resources Tools", or MaRS, for selecting the newest areas (The Crown Estate, 2019). This is essentially

a suitability analysis that excludes certain areas due to input from the interest group members.

The total area covered by the 20 regions suggested by NVE is 54 867 km2. Norwegian Water Resources and Energy Di-

rectorate (2023) uses different capacity densities (3.5, 5 and 7.5 MW/km2) and different area utilization rates (33%, 67% and

100%). We choose the lowest capacity density and a 100% utilization rate for our study1. Using these parameters, we can

calculate the maximum number of turbines per region by

Potentially installed capacity = Area · 3.5 MW/km2 · 100%, Maximum NoT =

⌊
Potentially installed capacity

15 MW

⌋
,

where ⌊·⌋ means rounding down to the nearest integer, and NoT is the number of turbines. The area and resulting potential110

capacity and maximum number of turbines per region are given in Table 1. The coordinates in the table are the average of the

corners of the regions. Using these parameters (3.5MW/km2 and 100% utilization rate), the potential capacity of these regions

is 192 GW or 12 802 turbines. If we instead had used the most optimistic parameters in the report (7.5MW/km2 and 100%

utilization rate), the numbers would be 412GW and around 27 400 turbines. In the table, we have also included a maximum

portfolio weight given a total of 2000 turbines, which is used as a constraint in the portfolio optimization presented in Section115

3.

We have also included the average and standard deviation of the hourly capacity factor, estimated from the NORA3-WP

data at the closest grid cell to the given coordinates in Table 1. The averages range from 54.6% to 65.6%, and the standard

deviations range from 39.2 to 42.4 pp. The expected capacity factor for any portfolio based on these locations will fall in
1Using 5MW/km2 and 67% utilization would result in 3.35MW/km2 compared to 3.5MW/km2.
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Longi- Lati- CF Potential Max

tude tude- Mean SD Area installed Max portfolio

ID Location (◦E) (◦N) (%) (pp) (km2) capacity (MW) NoT weight

N

1 Nordavind A 32 71.1 57% 40.3 4275 14962 998 49.9%

2 Nordavind B 27.9 71.8 57.7% 40.3 2239 7836 522 26.1%

3 Nordavind C 20.1 71.7 56.5% 40.7 1054 3689 246 12.3%

4 Nordavind D 18.7 71.4 56.3% 40.8 3642 12747 850 42.5%

NW

5 Nordvest A 9.5 66.2 57.6% 40.9 11307 39575 2638 131.9%

6 Nordvest B 7.4 64.8 56.3% 41.2 3437 12030 802 40.1%

7 Nordvest C 6.8 63.8 54.6% 41.8 5582 19537 1302 65.1%

W

8 Vestavind A 3.7 62 61.3% 41.2 1884 6594 440 22%

9 Vestavind B 3.8 61.1 59.3% 41.8 2985 10448 696 34.8%

10 Vestavind C 3.7 60.4 58.6% 41.8 1040 3640 243 12.1%

11 Vestavind D 4.4 60.3 55.8% 42.4 724 2534 169 8.4%

12 Vestavind E 3.9 59.1 61.6% 40.9 1475 5162 344 17.2%

13 Vestavind F 4.5 59.2 59.8% 41.3 1989 6962 464 23.2%

SW

14 Sørvest A 3.5 57.9 64.1% 39.9 1456 5096 340 17%

15 Sørvest B 3.4 57.4 64.1% 39.8 2179 7626 508 25.4%

16 Sørvest C 3.9 57 64.4% 39.6 1766 6181 412 20.6%

17 Sørvest D 3.9 56.5 63.9% 39.6 1215 4252 284 14.2%

18 Sørvest E 4.7 57.5 65.5% 39.5 1016 3556 237 11.9%

19 Sørvest F 4.9 56.9 65.4% 39.2 2702 9457 630 31.5%

SE 20 Sønnavind A 7.6 57.5 65.6% 39.7 2900 10150 677 33.8%
Table 1. NVE selected locations with coordinates and area. The potential installed capacity is calculated using a capacity density of

3.5MW/km2 and 100% area utilization rate. The maximum number of turbines (NoT) is based on 15MW/turbine, and CF is the capac-

ity factor. Note that the standard deviation (SD) is measured in percentage points (pp).

this range of means. We show below that the diversification effect reduces the standard deviation of the total hourly power120

production considerably.

We refer to these candidate locations as NVE locations.

2.3 Candidate locations based on Solbrekke and Sorteberg (2023)

Solbrekke and Sorteberg (2023) constructed wind power suitability scores (WPSS) for potential wind farm locations for the

entire Norwegian Economic Zone (NEZ), taking into account many relevant factors like wind resources, techno-economic as-125

pects, social acceptance, environmental considerations and met-ocean constraints such as wind and wave conditions. Solbrekke

and Sorteberg (2023) exclude some grid cells due to, e.g. oil platforms or other obstacles, but areas are not excluded solely
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due to input from one interest group. Since the user must specify the importance of the different criteria, the WPSS is not

an objective measure. To cope with the subjective criteria weights, Solbrekke and Sorteberg (2023) carried out a sensitivity

analysis where the criteria importance were tuned according to distinct preferences of three actors: the investor, the environ-130

mentalist, and the fisherman. The result from Solbrekke and Sorteberg (2023) gives information about which NORA3-WP grid

cells are most suited for wind power in NEZ, and the sensitivity analysis reveals which of these are robust to changes in criteria

importance.

To avoid some candidates very close to shore, we add a requirement that the offshore location should be at least 15km from

the nearest land mass and select locations with WPSS above a certain percentile, p, from the baseline scenario and the three135

actors of Solbrekke and Sorteberg (2023). To be deemed a suitable location, all three actors and the baseline suitability score

must agree that the location is among the top 100p% of candidates, p ∈ (0,1). Thus, all candidate locations are grid points with

the highest and most robust suitability scores.

Our goal is not to place each wind turbine precisely but, more generally, to place the wind farms. We allow one grid cell

(3×3km) to represent one wind farm and its surrounding area. Therefore, we do not want to include grid points too close to140

each other. If two points are within r km from each other, we select the one with the highest baseline WPSS. The algorithm for

doing this is described below, in Algorithm 1. Two choices affect the number of candidate locations: The minimum distance

between candidates r and the percentile of WPSS p.

Algorithm 1 Algorithm of selecting candidate locations

Let S denote the set containing candidate locations. A priori, these are all located 15km from shore and among the top 100p% in terms of

baseline WPSS and the WPSS of the three actors. Let r denote the minimum distance between candidate locations.

1. Loop over the locations, and for each location s, calculate the distance to the other locations. If Rs = {s∗ ∈ S\{s} : ∥s−s∗∥ ≤ r} ̸=

∅, select among Rs ∪{s} the one with the highest WPSS and store it in S∗ ⊂ S.

2. Remove duplicates from S∗ and let S = S∗.

3. Repeat steps 1-2 until Rs = ∅ for all s ∈ S.

We use the top 25% (i.e. p = 0.25) in the Algorithm 1, and the minimum distance between each potential wind farm is

set to r = 40 km. This is based on the somewhat rough calculation that a wind farm of around 200 turbines will require a145

square of 15× 15km2, and we require at least 10 km between the farms to minimize the interactions between the wind farms.

This seems reasonable compared to the minimum distances to the nearest wind farms for existing and planned offshore wind

parks (see Figure 3 of Finserås et al. (2024)). The two offshore areas opened for wind farm development in Norwegian waters,

UN and SN2, have a planned operational limit of 5km between adjacent wind farms (Norwegian Water Resources and Energy

Directorate, 2018). However, the appropriate separation distance between wind farms will greatly vary due to, e.g., atmospheric150

stability and wind direction.

The Algorithm 1 is an ad hoc selection procedure to reduce the number of grid points to consider. It does not find a unique

and optimal solution to how the Norwegian offshore portfolio should look. This is not a major concern here since the points are
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Figure 1. A) All locations in NEZ are coloured by wind power baseline suitability score (WPSS). B) Locations that are Top 25% WPSS

in all suitability perspectives coloured according to baseline. C) The 19 locations selected after running Algorithm 1. D) The 19 locations

chosen as potential wind farm sites with Utsira Nord added, numbered from 1 to 20 in red numbers with white circles around and the 20

NVE-suggested areas numbered from 1 to 20 as shaded areas with black ID numbers (see Table 1). Colours are only used to distinguish the

regions.

only seen as representatives for that area. Running the algorithm with p= 0.25 and r = 40 km, we end up with 25 locations.

For comparison reasons, it is beneficial that the two candidate sets have the same number of locations. Therefore, we increase155

the minimum distance between wind farms (r) from 40 km by 1km at a time until 20 locations are selected, including both SN2

and UN.

In Figure 1A, we show all the locations in NEZ considered as potential by Solbrekke and Sorteberg (2023) and being 15

km for shore (total: 71 021 points). In B, we have kept only locations with suitability scores above the 75th percentile in all
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suitability scores (baseline, investor, fisherman and environmentalist), leaving 6419 suitable locations. Then we run Algorithm160

1 with r = 47 km and end up with the 19 potential locations in C. For visibility purposes in the figure, we have increased

the size of each grid cell by a factor of 10. Among these are SN2 (NVE region Sørvest F) represented, but UN (NVE region

Vestavind F) is not. Since the Norwegian Government has decided to allocate areas for wind farms in these two regions, we

add UN as a candidate location. This is represented by a grid cell inside NVE region Vestavind F at the centre of the approved

region identified by Norwegian Water Resources and Energy Directorate (2012). This point is more than 40 km away from any165

other location. It has a baseline suitability score of 14.85% and investor score of 11.2%, but fisherman and environmentalist

of respectively 46% and 60.9% which violates the top 25% assumption (see Table 2). Thus, the 20 locations are shown in

Figure 1D, numbered from 1 to 20 following the Norwegian coast from the Barents Sea to Skagerak, where location 14 is

in UN and location 16 is in SN2. We will refer to this set of candidate locations as S&S. There is some overlap between

the candidate sets (Figure 1D). Some S&S locations lie within a corresponding NVE region (S&S10-Vestavind A, S&S11-170

Vestavind B, S&S18-Sønnavind A) or just outside (S&S1-Nordavind A, S&S4-Nordavind B, S&S7-Nordvest A).

In Table 2, we have presented the coordinates of the selected candidate locations with the mean and standard deviation of

the capacity factor based on the NORA3-WP grid cell. The suitability scores are calculated on the same grid as NORA3-WP,

so the coordinates are exact (although rounded off). We have also included the wind power suitability scores as what upper

percentile the location has within each actor score. Some of the scores of location 14 (UN) are highlighted as they violate the175

top 25% score assumption for the fisherman and environmentalist. The mean capacity factor ranges from 52.3% to 66.8%,

while the standard deviations range from 39.1 to 41.7 pp. These locations thus have a wider range of mean capacity factors and

a narrower standard deviation range compared to the NVE regions. S&S location 18 has the highest mean capacity factor of

66.8% and the second lowest standard deviation of 39.2 pp, making it probably the best location among all the candidates. It

resides within the NVE region Sønnavind A, which also has the highest mean capacity factor of the NVE regions (Table 1).180

We divide the two candidate location sets into five regional groups, corresponding to the Norwegian naming of the NVE

regions: North (N), North-West (NW), West (W), South-West (SW) and South-East (SE). Which locations belong to which

group can be seen from the first columns of tables 1-2. The northern groups are similar across NVE and S&S, but the NVE

regions are more spread out, while the S&S is closer to shore (except S&S2). We have the same number of locations and

roughly the same geographical spread in the North-West. The largest difference is that the S&S locations are much closer to185

shore, especially S&S9. The opposite is true for the west coast, where S&S12-13 and 15 are further out at sea than the NVE

regions. The other S&S locations overlap with NVE regions for this group. The most striking aspect in the South-West group

is that there are twice as many NVE regions as there are S&S regions. The NVE regions are also farther to the south and

west. S&S18 lies inside Sønnavind A, but we count S&S18 as South-West, while Sønnavind A is the only NVE member in the

South-East. Farther east, we also find S&S19-20 in this group, closer to the Danish-Swedish-Norwegian border intersection190

in the Skagerak Sea. The two candidate sets both have some similarities and some interesting distinctions. This grouping is

applicable when interpreting the correlation structure of the two location sets (see section 3.2).

The NVE regions have a finite area, which we use for setting constraints on the maximum number of turbines. The S&S

areas do not have this. To ensure a fair comparison, we do not allow S&S locations with more than 500 turbines. The median
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Longi- Lati- Mean SD Wind power suitability scores

tude tude CF CF (upper percentile within each actor score)

ID (◦E) (◦N) (%) (%-pts) Baseline Investor Fisherman Environmentalist

N

1 32.4 70.6 56.9% 40.4 9.9% 12.8% 18.6% 14.5%

2 31.1 71.9 57.6% 40.3 7.0% 15.9% 2.1% 5.8%

3 29.7 71.4 57.1% 40.3 7.4% 11.5% 17.1% 11.0%

4 27 71.6 57.7% 40.3 3.9% 8.0% 1.8% 5.6%

5 24.5 71.6 55.7% 40.7 9.8% 14.2% 24.2% 23.5%

6 22.9 71.5 55.2% 40.8 7.9% 14.6% 6.2% 14.7%

NW

7 10.7 66 56.7% 41.0 10.8% 19.2% 6.9% 16.4%

8 9.4 64.7 54.8% 41.1 9.7% 18.9% 9.4% 24.6%

9 9.2 64.1 52.3% 41.0 <0.1% <0.1% 1.7% 9.9%

W

10 3.8 62 61.2% 41.2 5.8% 10.9% 2.1% 6.0%

11 3.5 60.8 59.4% 41.7 6.7% 11.4% 3.5% 8.4%

12 2.5 60.3 61.4% 41.1 8.2% 12.5% 16.7% 9.5%

13 2.1 59.9 62.3% 40.8 5.6% 10.9% 1.6% 4.9%

14 4.5 59.3 59.4% 41.4 14.9% 11.2% 45.9% 60.9%

15 1.9 59.2 62.9% 40.5 6.8% 12.8% 1.7% 4.9%

SW

16 5.3 56.9 65.7% 39.1 0.3% 1.5% <0.1% 0.1%

17 5.7 57.7 66.4% 39.4 0.1% 0.3% <0.1% <0.1%

18 6.7 57.4 66.8% 39.2 0.1% 0.3% <0.1% <0.1%

SE
19 9.3 58 60.0% 40.9 2.4% 2.0% 1.9% 3.5%

20 9.8 58.5 56.3% 41.3 3.9% 3.2% 6.9% 13.2%

Table 2. ID, location, mean and standard deviation of capacity factor (CF) for the S&S selected candidate locations. The latter four columns

are the wind power suitability scores of the different actors presented by which percentile of the score in NEZ by Solbrekke and Sorteberg

(2023). Except for location 10, all are below 25% by assumption, with distance to shore above 15km.

maximum number of turbines for the NVE regions is 486, so we have rounded this off to 500. This constraint corresponds to195

an area of 2143 km2 using the same assumptions of 100% utilization and 3.5MW/km2, comparable in size to Sørvest B or

Nordavind B.

Now that we have our two sets of candidate locations, NVE- and S&S locations, we present a methodology for allocating

turbines to the different wind farm locations.

3 Modern portfolio theory200

There are some fundamental differences between a wind farm portfolio and a portfolio of financial assets:
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1. One cannot borrow turbines (which corresponds to shorting assets in finance), meaning the portfolio weights have to be

non-negative.

2. Selling or re-balancing the portfolio as time passes is not feasible. One can, in practice, only build more wind parks by

investing more.205

3. In financial investment theory, a higher risk should give a higher potential return, which is not necessarily valid for wind

power production.

4. There is no equivalent to a risk-free interest rate for a portfolio of wind farms.

We argue, however, that the well-known diversification effect that we get when spreading financial investments across a large

portfolio of assets is highly relevant when selecting sites for wind power production as well. In finance, we look for assets that210

have low, or even negative, correlation to lessen the impact of negative movements in the markets on the overall portfolio. If the

value of one investment goes down, this will not be systematically associated with failure in other investments simultaneously.

The corresponding phenomenon for wind farms is if wind conditions at one wind farm location are systematically associated

with conditions at other locations. As one increases the distance between wind farms up to a point, the systematic association

decreases, and the diversification effect increases (Solbrekke et al., 2020; St.Martin et al., 2015).215

The classical approach for allocating wind farms seen in previous studies is modern, or mean-variance, portfolio theory

(Markowitz, 1952). The goal is, for a given target capacity factor, TCF, to compose the portfolio that exhibits the minimum

variance. Let Xti ∈ [0,1] denote the stochastic variable for capacity factor from location i at time t and Xt = (Xt1, . . . ,Xtm)′,

where m is the number of locations, t= 1, . . . ,n and ′ is the transpose operator. Let µ= (µ1, . . . ,µm)′ = EX′
t denote the time

invariant expected value vector. Further, let Σ=Cov(Xt) denote the covariance matrix. Let w = (w1, . . . ,wm)′ denote the

vector of non-negative portfolio weights, i.e. the proportion of the total number of wind turbines installed at each location.

These must be non-negative because you cannot build a negative number of wind turbines. The portfolio capacity factor at time

t, Yt, can then be expressed as

Yt =

m∑
i=1

wiXti =w′Xt.

The expected (time-invariant) capacity factor and the corresponding variance of the wind farm portfolio are respectively given

by

EYt =

m∑
i=1

wiµi =w′µ and Var(Yt) =w′Σw.

We want to find a portfolio that minimizes the portfolio variance for a given level of expected capacity factor; TCF. We re-

quire the weights, w, to sum to one, i.e. w′1= 1, where 1= (1, . . . ,1)′ is a vector of length m. Then, we can formulate the

optimization problem as

Minimize: w′Σw,

Subject to: w′µ= TCF w′1= 1, and wi ≥ 0, i= 1, . . . ,m.
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This is the simplest case with the bare minimum of constraints and corresponds to what Markowitz (1952) also used.220

The formulation above does not exclude solutions where, for instance, only one wind turbine is placed far out in the Barents

Sea or some turbines at every location. Small, spread-out wind farms are not a realistic solution since one must invest a lot in

the infrastructure associated with each farm. Therefore, we rather prefer to cluster together many turbines at a few locations,

which can be achieved by adding a constraint on the maximum number of nonzero weights, i.e. locations with more than

zero turbines, called a position limit constraint. Another relevant constraint is the so-called box constraint, meaning setting a225

lower and upper limit on each location’s weights and thus restricting the number of turbines allowed at said location. The box

constraint avoids too large or too small wind farms. We derive maximum constraints based on the limited areas of the NVE

regions (Table 1) and use a maximum of 500 turbines per location for the S&S locations. Tejeda et al. (2018) also use a box

constraint with minimum 0 and maximum 250MW per grid cell (≈ 550 km2).

For the position limit constraint, let 1(w > 0) denote the indicator function, which equals 1 if w > 0 and 0 otherwise and230

let h denote the maximum number of nonzero turbine locations. For the box constraint, let wi ∈ [ℓ,u] for i= 1, . . . ,m, where

0≤ ℓ≤ u≤ 1. We write wi ∈ [ℓ,u]∪{0} to allow for zero weights if combined with a position limit constraint.

The problem then becomes

Minimize: w′Σw, (Objective)

Subject to: w′µ= TCF, (Expectation constraint)235

w′1= 1, (Sum-to-one constraint)

wi ∈ [ℓ,u]∪{0}, i= 1, . . . ,m, (Box constraint)

and
m∑
i=1

1(wi > 0)≤ h. (Position limit constraint)

We consider five different scenarios with different combinations of constraints below. The most optimal solution would be the

one with the fewest constraints, but it may be unrealistic due to the reasons listed earlier in this section.240

We estimate the expected value vector µ and the covariance matrix Σ by the empirical mean and covariance of the hourly

observations, i.e.

µ̂=
1

n

n∑
t=1

Xt, Σ̂=
1

n− 1

n∑
t=1

(Xt − µ̂)(Xt − µ̂)′.

The target capacity factor, TCF, should be within the range of µ̂. Otherwise, a solution will not exist. If TCF =maxi µ̂i all

turbines must be placed on the location with the highest mean capacity factor.

We implement the position limit constraint by optimizing all combinations of h locations separately and selecting the mini-

mum variance portfolio. We compare this approach to a step-wise approach by adding the location that improves the portfolio

performance the most in each step, referred to as a sequential build-out. In the sequential build-out, we start building on the two245

locations the Norwegian government already have decided on (1500 MW at each) and then consider adding one other location

(looping over all the other candidates) or building more turbines at the existing locations. We use the lower box constraint to

keep the already-built turbines in the next iteration.
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The number of turbines at a location is an integer number. In the portfolio optimization, we estimate weights as the proportion

of 2000 turbines (30 GW). We get the number of turbines at a location by multiplying 2000 turbines with their portfolio weight250

and rounding off to the nearest integer. Even though the sum of the weights is one, this rounding off may lead the total number

of turbines to not equate 2000. We compensate for this by removing one turbine from the necessary number of locations in

the estimated portfolios with too many turbines until the total is 2000 and correspondingly adding one turbine to the necessary

number of locations with too few. The identified locations where this adjustment is applied are those with the number of

turbines closest to being rounded down or up, respectively.255

We use the R package quadprog (Turlach et al., 2019), which contains functions for solving quadratic programming prob-

lems, to optimize the portfolios under different constraint scenarios. For reproducibility purposes, the R code is made available

at https://github.com/holleland/OffshoreWindPortfolios (see data availability statement for further details).

3.1 Choice of temporal scale

The decision maker’s choice of the temporal scale at which the portfolio variance is minimized is essential. We have chosen260

to use hourly time scale, which is the highest temporal resolution in NORA3-WP and the most relevant scale for balancing

the electricity grid. Aggregating to a coarser temporal resolution and finding the optimal portfolios corresponds to a higher

focus on minimizing seasonal variation in the portfolio throughout the year. In what follows, we focus exclusively on using

the hourly capacity factor in our analysis. We have also included a sensitivity analysis for some of our results to this choice of

scale in Appendix A, including the effect various time scales have on the correlation structure (see Figure A1).265

3.2 Correlation structure

From the NORA3-WP dataset, we estimate a mean vector µ̂ and an empirical covariance matrix Σ̂ for the NVE regions and the

corresponding S&S locations. The covariance structure is important for the diversification effect. To simplify, say we have a

portfolio of two assets, X and Y, such that the portfolio value is wX+(1−w)Y , with weight w ∈ (0,1). The portfolio variance

is then

w2σ2
X +(1−w)2σ2

Y +2w(1−w)ρσxσy,

where ρ ∈ [−1,1] is the correlation between X and Y, σX and σY are the standard deviations of X and Y, respectively. All else

fixed, reducing the correlation ρ will thus reduce the portfolio variance. Having wind power locations with a low correlation

with other locations (perhaps even negative) is important for achieving diversification effects and a lower portfolio standard

deviation.270

We have presented the correlation matrices for NVE- and S&S locations as correlation heat maps in Figure 2. Since the

standard deviations are all in the same range (around 40pp, see tables 1 and 2), we use correlations instead of covariances as

the scale is easy to interpret. The red dashed lines split the correlation matrices into blocks corresponding to the five location

groups N, NW, W, SW and SE, described above. We have a substantial block structure following this grouping in the matrices,

where the correlations are high within each block but low between them. The locations farthest to the north (Nordavind A-D,275
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S&S1-6) are almost uncorrelated with the remaining locations. The clear block off the northwest coast (Nordvest A-C and

S&S7-9) also stands out as having a low correlation with the other blocks.

Further south, more locations are more closely packed, leading to a higher correlation between the blocks. The between-

blocks correlations might be slightly higher for the southern NVE regions than the S&S locations, but these regions are also

more evenly spread. In contrast, the S&S locations are more clustered in three more distinct groups (see map in Figure 1D).280

For the NVE regions, Sønnavind A stands out as a location with low correlation with others, and similarly for the two S&S

locations in Skagerak (S&S19-20).

3.3 Portfolio cases

We set up five sets of constraints under which we find the optimal portfolio. For scenarios below, with exactly five locations,

our greedy algorithm for the position limit constraint loops over all combinations of 5 locations. For cases B and C, there285

are
(
18
3

)
= 816 and

(
20
5

)
= 15504 such combinations, respectively, using the binomial coefficient notation. The cases are as

follows:

Case A No constraints on the number of locations (benchmark portfolio).

Case B Exactly 5 locations, where Sørlige Nordsjø 2 (SN2) and Utsira Nord (UN) are included.

Case C Exactly 5 locations, not necessarily including SN2 and UN.290

Figure 2. Correlation matrices for the hourly capacity factor at the 20 NVE regions and S&S locations. The red dashed lines split the locations

according to the grouping of tables 1-2.
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Case D Having built 1500 MW at SN2 and 1500 MW at UN. Where to build 1500 MW next? ("as we go" / sequential build out)

until reaching 30 GW total. At each step, we either build where we already have farms or add one more location.

Case E Only building on the first 5 sequentially selected locations from Case D.

The resulting portfolios will depend on the value used for the target capacity factor, TCF. For comparison purposes, TCF

should be within the range of values for both the NVE regions and S&S locations. We therefore run the portfolio optimization295

for three values of TCF being 58%, 60% and 62%. For case A, we also solve the problem with a high resolution of TCF between

56% and 65%. These are high capacity factors compared to onshore wind farm portfolios, e.g. Tejeda et al. (2018) use 23%

capacity factor for their mainly onshore setting.

Case A will not necessarily give a realistic portfolio of wind farms as it has no restrictions on the number of locations. The

optimal solution may involve many locations, some very small. However, it should give the portfolio with the lowest standard300

deviation and, as such, it is a meaningful benchmark for the other portfolios. For cases B, C, and E, we are restricted to only

building on five locations, which will not result in very small wind farms. An interesting comparison is between Case B and E

as both require building on SN2 and UN and three other locations. They may result in the exact same portfolios. For the NVE

regions, we do not allow for more turbines than the maximum number of turbines given in Table 1, and correspondingly, not

more than 500 turbines for S&S locations. Note that for case E, we initially build five wind farms as in Case D, corresponding305

to 7.5 GW installed capacity, and then distribute the remaining 22.5 GW on these five locations.

The sequential build-out in cases D and E starts with a portfolio of 1500 MW (100 turbines) at NVE regions Sørvest F and

Vestavind F and, correspondingly, S&S locations 16 and 14. These are the locations where the Norwegian Government has

decided to start building the first offshore wind farms, i.e. SN2 and UN. The initial portfolio of 1500 MW at each location will

not fulfil the TCF requirement, as the capacity factor will be 62.6%. We then, for all combinations of the existing wind farms310

and one new candidate location, find the optimal portfolios, using a box constraint to ensure that at least 1500 MW is kept on

SN2 and UN. We also consider not adding new locations but merely building more on existing ones. Having found the optimal

portfolios for each candidate location, we choose the one that minimizes the portfolio standard deviation and fulfils the target

capacity factor constraint. We then update the box constraint with the weights of the best portfolio, and we start a new iteration,

considering adding another location or building more on the existing ones in the same manner. In each iteration, we build 1500315

MW (100 turbines) and repeat the process until 30GW installed capacity or 2000 turbines have been placed. All the portfolios

following the initial one must fulfil the TCF requirement. Since SN2 and UN have such a high mean capacity factor, we do not

run cases D and E for TCF = 58%. Having initially installed 1500 MW at SN2 and UN, and then deciding where to place the

next 1500 MW to achieve 58% capacity factor, the only choice would be to place all 1500 MW at a location with a capacity

factor around 49%. The minimum capacity factor for the NVE- and S&S locations, respectively, is 54.6% and 52.3%. Hence,320

there exists no solution for the first iteration of the sequential algorithm when the target capacity factor is 58%.
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3.4 Underlying assumptions

For the analysis that follows, we make some simplifying assumptions that we want to make explicit. We refrain from imposing

the current limitations on the Norwegian transmission grid to the optimization problem presented in this paper because they

will likely change over the decades to come. Instead, we assume a "copper-plate Norway", where the power grid is fully325

connected so that power production in the Barents Sea can have beneficial diversifying effects on the total power production in

the event of no wind in the North Sea, for instance. Some offshore wind farms may not even produce energy for the Norwegian

energy system but exclusively export energy to other European countries. The copper-plate assumption simplifies the problem

but is not essential to the methodological approach that we propose. One alternative could be to assume no, or a very limited,

transmission between the North and the South of Norway, which is more realistic today. This would then split the problem into330

two separate parts, on which we can apply the same analytical strategy separately, where the government distributes the total

amount of installed power, 30 GW, say, between the two regions.

We do not explicitly take into account any energy system losses, such as electrical resistance losses, converter losses, main-

tenance losses, wake losses and auxiliary power consumption. Electrical resistance losses depend on the length of the cable.

For the S&S-locations, distance to shore is penalized in calculating the wind power suitability score. Hence, this is part of335

the decision of selecting candidates. It is, however, not part of the placing of turbines. Wake losses are also important and

would affect the total production from a wind farm, especially the larger ones (Barthelmie et al., 2009; Ghaisas et al., 2017).

Quantifying wake losses would involve making assumptions about how the turbines are placed within a wind farm, but we

focus on a more macro level. Our analysis, however, concerns the distribution of turbines across wind farms. Technology and

innovation advancements in wind turbine and installation strategies may also reduce the effect of wake losses as we approach340

2030 and beyond.

The wind power generated from the offshore fleet will enter an existing power market and become a portion of the higher-

level electric power portfolio. One could imagine optimizing the allocation of wind power for this portfolio considering the

current power sources. Hydroelectric power is the dominating energy source for producing electricity in Norway today (88.2%

in 2022, Statistics Norway (2023)). While hydropower can usually be controlled by opening or closing the flow of water,345

wind power is a non-dispatchable energy source. It must be utilized instantly unless stored (e.g., charging batteries, producing

hydrogen or pumped hydro storage). Therefore, it is appropriate that Norwegian hydropower will adapt to wind power rather

than vice versa. Although combining wind and hydroelectric power is an interesting case study, we focus exclusively on the

wind power portfolio.

Investment- and maintenance costs will be primary drivers of offshore spatial planning. Costs will undoubtedly vary across350

different sites. For the S&S locations, factors that affect costs are implicitly regarded through the suitability score of each

region. The suitability scores consider cost-increasing factors such as ocean depth and distance to shore, which are especially

important for the investor actor’s suitability score (Solbrekke and Sorteberg, 2023). After selecting the candidate locations,

we only optimize the portfolios based on wind power resources and do not consider costs. A key parameter for a cost-benefit

analysis is the price of electricity, which is difficult to forecast far into the future. Historical prices are irrelevant since 30 GW355
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of wind power will nearly double the Norwegian electricity production (not considering changes in supply from other sources).

A further analysis considering prices and costs may be a way to take this further, but it is outside the scope of this paper.

4 Results

In Figure 3 we have plotted the optimal portfolios, with portfolio standard deviation on the x-axis and portfolio capacity factor

on the y-axis, where the colour distinguishes the two sets of locations we consider. In addition to the cases, we have included360

single-location portfolios as coloured dots, i.e. portfolios with all turbines placed at one location, even if this would violate

the size constraints. These dots are simply the hourly mean and standard deviation of the capacity factor at each location. The

curves are for case A with values of the capacity factor target between 56 and 65%. Since case A has the mildest restrictions,

the curves represent the minimum standard deviation possible for this range of target values. These curves are called the

efficient frontiers in modern portfolio theory. We note that the size of the diversification effect is large. Distributing wind365

turbines across multiple sites cuts the portfolio standard deviation nearly in two, from approximately 40% to approximately

20%, compared with collecting all turbines in a single location. The minimum standard deviation portfolios based on NVE

and S&S have standard deviations of 20.5 pp and expected capacity factors of 59.5% and 58.9%, respectively. Vestavind F

has a mean capacity factor of 59.8%, which is quite close to 59.5% of the NVE minimum standard deviation portfolio and a

Figure 3. Portfolios summarized by portfolio capacity factor and standard deviation in percentage points (pp) for NVE and S&S locations.

The dots are one location portfolios, while the letters represent the different case portfolios for capacity factor targets 58%, 60% and 62%.

The curved lines are efficient frontiers for case A, i.e. optimal portfolios for a finer sequence of capacity factors from 56 to 65%. The blue

arrow indicates a 50.4% reduction in portfolio standard deviation from placing all turbines at Vestavind F to the minimum standard deviation

portfolio of the NVE locations for Case A with TCF = 59.8%.

16



corresponding standard deviation of 41.3pp. Compared to the 36% reduction found by Drake and Hubacek (2007), we find a370

SD Min Max CF

TCF Case (pp) NoWF Turb. Turb. 5% 95%

NVE

58%

A 21.0 12 20 333 22% 91.4%

B 22.5 5 300 479 19.6% 95.5%

C 22.1 5 283 468 20.5% 94.6%

60%

A 20.5 15 25 333 24.3% 91.9%

B 22.8 5 158 495 20.3% 98.5%

C 21.7 5 309 526 22.3% 95.2%

D 20.6 14 11 321 24.2% 91.9%

E 23.4 5 279 522 19.3% 100%

62%

A 22.6 11 43 510 22.2% 94.8%

B 24.1 5 183 523 19.7% 100%

C 23.1 5 276 525 21.2% 98%

D 22.9 11 63 527 21.7% 95%

E 24.1 5 183 523 19.7% 100%

S&S

58%

A 20.7 17 4 311 22.7% 91.1%

B 22.6 5 268 471 18.6% 95.3%

C 22.1 5 348 434 20.7% 94.3%

60%

A 20.7 15 14 246 24% 92.2%

B 23.1 5 179 500 19.6% 99%

C 22.0 5 316 500 21.8% 95.7%

D 20.8 13 50 222 23.8% 92.5%

E 23.4 5 191 500 19.1% 99.9%

62%

A 22.6 11 59 451 21.9% 95.4%

B 24.6 5 218 500 18.2% 100%

C 23.5 5 265 500 20.6% 100%

D 22.9 12 43 495 21.3% 95.6%

E 24.6 5 262 500 18.3% 100%
Table 3. Summary of the different wind farm portfolios for the two sets of potential locations, cases, expected capacity factor (CF) and the

standard deviation (SD) of the portfolio given in percentage points (pp). The number of wind farms (NoWF) with turbines, and the smallest

(Min Turb.) and largest (Max Turb.) wind farm. The CF 5% and 95% columns are the 5- and 95-percentiles of the portfolio capacity factor,

respectively.
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potential geographical diversification effect of 50.4% from placing all power at Vestavind F to the minimum standard deviation

portfolio of the NVE locations at TCF = 59.8%, indicated by the blue arrow in Figure 3.

For financial investments, intuition says a higher risk should give a higher potential return. In our case of wind power

production, however, we see that the highest power-producing locations also have the lowest standard deviations. The efficient

frontier curves in Figure 3 illustrate this point on a portfolio level. As the target capacity factor decreases, the standard deviation375

decreases to a point (around TCF=59% ), where it turns. Decreasing the target capacity factors beyond this point will increase the

portfolio standard deviation. Therefore, the portfolios for case A at 58% have a higher standard deviation than the corresponding

at 60% and should never be chosen. The same effect is present in case C going from 58 to 60%. The diversification effect

on the portfolio standard deviation is strong, so the best portfolios must include some relatively high- and low-producing

locations. However, to achieve a 58% capacity factor, the portfolio must consist of more low mean locations with higher380

standard deviation. The reason for this U-turn is the lack of a risk-free asset among the candidate locations. There is no

equivalent to placing capital in the bank, so to speak, at a risk-free interest rate in wind power production, which is necessary

for a monotonically increasing efficient frontier.

Case A has fewer constraints than any other scenario and should give the portfolio with the lowest standard deviation for

the same capacity factor target. We can see from Table 3, presenting summary statistics for the different portfolio cases, and385

Figure 3 that this is the case. Without any constraints on the number of locations, case A tends to have many wind farms,

ranging from 11 to 17 across all capacity factor targets and location sets. The Table B1 shows the actual number of turbines

per wind farm location, and the turbines for case A are spread out across NEZ, although less for the 62% target capacity factor

cases. It is relevant to compare case A to the sequential build-out case D, as both have no restrictions on the number of wind

farms. The number of wind farms for these cases is similar. However, we have small wind farms ranging from 4 to 63 turbines.390

Restricting the optimization problem to 5 locations (cases B, C and E) seems to avoid this issue because they result in the

minimum number of 158 turbines at one location. We impose restrictions on the maximum number of turbines for the different

locations. The largest NVE farm is 527, while, for S&S cases, the 500-turbine upper limit is met in six of the thirteen scenarios.

For cases B, C, and E, we build five wind farms, and in cases B and E, UN and SN2 are required to be included. In

terms of standard deviation, the ascending order of these cases should always be C-B-E. This is because case C has the least395

requirements. It does not need to include UN or SN2. Case B has to include UN and SN2, but we can build as few turbines

as we want there. For case E, we must have at least 1500 MW (100 turbines) installed capacity on both UN and SN2, as

this is the initial portfolio. From Table 3 and Figure 3, we see that the ascending order holds, but for capacity factor 62%,

cases B and E have the same standard deviation up to the accuracy of the table. Looking at the exact distribution of the 2000

turbines, presented in appendix Table B1, we see that the portfolios are exactly the same for the NVE locations but with minor400

differences for the S&S locations.

For the sequential build-out in case D, we have plotted the decreasing portfolio standard deviation as a function of the

sequentially increasing installed capacity in Figure 4. We have included the case A standard deviation for the respective setups

as dashed horizontal lines, representing the lower threshold of what is possible to achieve. The numbers correspond to the

number of wind farms included in the portfolio at the given iteration. The diversification effect is apparent. As expected, the405
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portfolio standard deviation decreases rapidly as the number of locations increases, converging towards an asymptote. Building

around 5-7 wind farms achieves a high diversifying effect on the standard deviation. In fact, with only 3 locations for the NVE

case with a target capacity factor of 60%, the reduction in standard deviation compared to placing all turbines at Vestavind F is

roughly the same as what Drake and Hubacek (2007) found (37.8%). This estimate is conservative as the target capacity factor

is lower at Vestavind F compared to the 60% target. A supplementary animation for case D at 60% target capacity factor for410

the NVE regions, showing the turbine distribution on a map for each iteration, is available at the GitHub repository associated

with the article (see the data availability statement). Remember that the initial portfolios with only two locations (UN and SN2)

are not optimized, i.e. the weights are not estimated but fixed to 0.5 and 0.5. Therefore, the initial portfolio does not fulfil the

target capacity factor constraint. For the 62% cases, we see that after having installed 16.5GW on 11 locations and 18GW on

12 locations, we do not include new NVE- and S&S locations, respectively. It is better to extend the existing ones. At 60%,415

the corresponding numbers are 27GW at 14 and 22.5GW at 13 locations. We can also see from the figure that the portfolio

standard deviation is approaching the case A value with a negligible difference, and for 60% NVE, it reaches it exactly. Note

that case E does not have the same standard deviation as the five wind farms point in Figure 4, because at that point in the

build-out, UN and SN2 have minimum 20% of the installed turbines each, while, for case E at 30 GW, they are only required

to have 5%.420

We see in Figure 3 that the diversification effect of 50.4% would have been nearly the same if we compared against the

S&S case A efficient frontier. Having the same number of locations and similar box constraints for the wind farm locations, we

Figure 4. Standard deviation (pp) as a function of installed capacity (GW) for sequential build-out in case D, coloured by target capacity

factor and panels by candidate location set. The numbers give the number of wind farms at each iteration. The dashed lines are the standard

deviations for the corresponding case A portfolios.
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can also compare the portfolios between the two sets of locations. From Figure 3 and Table 3 the NVE portfolios outperform

the S&S portfolios case by case in terms of variance for the most relevant capacity factors 60% and 62%, but the differences

are slight. The minimum standard deviation on the efficient frontiers is the same, but the NVE has a higher capacity factor at425

that point on the curve. For capacity factors below this minimum standard deviation portfolio, the S&S locations have lower

standard deviations for case A and almost the same for cases B-C. The only notable case in terms of robustness is case B as

it has a lower standard deviation at 58% than at 60%. Above 62%, the efficient frontier of S&S lies above NVE with a large

difference at 65%. This is because, at 65%, we approach the maximum capacity factor of the NVE regions (65.6%). At the

same point, S&S still has three locations well above 65% and thus has a higher potential for diversification.430

We have included a sensitivity analysis to the choice of temporal scale for the NVE locations under case A at a target

capacity factor of 60%. The temporal scales considered are hourly, daily, weekly and monthly. The number of turbines per

NVE candidate location has been aggregated to the five NVE regions (from North-West to South-East), resulting in Table A1.

Aggregating to lower temporal scales increases the dependence between different sites, implying that we need a longer distance

between wind farms to obtain diversification effects. Since we keep the candidate locations fixed, the turbines are spread over435

fewer locations at lower temporal scales. For more details, see Appendix A.

As the Norwegian Government has decided to start building wind farms at SN2 and then UN, they are currently on a

sequential build-out strategy. It is interesting to compare this to a global optimization scenario where the perspective is how

the offshore wind power portfolio looks when all is said and done, i.e. when all the offshore areas for the 30GW wind power

are settled. We have already seen that the standard deviation of the sequential case D approaches that of A, but the distribution440

of the turbines is also essential. Comparing case A to case D in Table B1, they seem very similar in terms of where to build the

wind farms. In most cases, where a different location is selected, it is a neighbouring location.

We note that UN is not included in case A for portfolios with a capacity factor above 58% (Table B1). At 62%, cases A

and D have selected the same locations except for UN (Vestavind F / S&S14). Interestingly, in the iterations of the sequential

build-out, we never build any turbines at UN except for the 100 we started with (Tables B2-B3 in appendix). In fact, in all the445

cases where UN is not required (A and C), we do not build any turbines there if TCF > 58%, suggesting that UN is likely not a

highly suitable location when only concerned with minimizing the standard deviation and under our other assumptions. On the

other hand, SN2 is included in all S&S A cases and NVE cases except the 58% capacity factor. From Table B1, we can also

see that SN2 is included in all cases when TCF = 62%.

For the other locations, Sønnavind A/S&S18 and Vestavind A/S&S10 stand out as locations selected in most cases. These450

location pairs are almost the same in both sets. Sønnavind A/S&S18 have the highest capacity factor and among the lowest

standard deviations, making it an attractive location. Vestavind A/S&S10 is likely included due to its diversification effect.

Among the S&S locations, S&S10 is far from the central cluster off the West Coast and the furthest away from UN for cases

where this is mandatory. The latter also holds for the NVE region. Based on the correlation matrices and with a maximum of

five wind farms, choosing one location from each of the five regional groups seemed natural to obtain the most considerable455

diversification effect. For cases B, C, and E, such a clear pattern is not seen. We always place one or two wind farms in the

North- and Western groups. If two wind farms, they are always the ones that are farthest away from each other (Nordavind A
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and D, Vestavind A and F, S&S1 and S&S6, S&S10 and S&S14). In the South, Sørvest F/S&S16, Sønnavind A/S&S18, or

both are included. There is a tendency to follow the correlation matrix blocks (see Figure 2) for the 60% case C, where we get

two farms in the North, one in the North-West, one in the West and one in the South. At 62%, for the same case, turbines are460

placed at the two farms in the South probably to achieve the capacity factor requirement.

One interesting point is that for the 60% capacity factor case D, the first selected location S&S8 and Nordvest C, all and

almost all of the 100 new turbines placed in that iteration are put at the new site (see Tables B2-B3), respectively. Choosing

these locations and placing virtually all new turbines there pulls the capacity factor from 62.6% to 60%. We do not build any

more turbines at S&S8; for Nordvest C, only three turbines follow the initial 98. This observation indicates that these selected465

locations in the first iteration are sub-optimal for minimizing the variance, as the procedure has to assign turbines to them to

meet the expectation constraint. For comparison reasons, we keep the strict expectation constraint, but one could imagine a

different approach; e.g. a gradual decrease from the initial 62.6% capacity factor to the target.

5 Concluding remarks

We have shown how to adapt modern portfolio theory to the challenge of allocating offshore wind turbines across a range of470

suitable wind farm regions. The constrained optimization due to the limited area makes the resulting portfolios more sensible.

Limiting the number of wind farms has not been done in a wind farm portfolio context, likely because most earlier studies

have not focused on offshore wind. When not using a maximum number of wind farms, our results indicate that the Norwegian

Government’s apparent strategy of sequentially opening new offshore regions for wind power deployment may lead to a sub-

optimal final solution to the allocation problem but seemingly very close or even equal to the global solution. However, a475

step-by-step build-out may, after all, be a good idea, as it likely provides better intermediate portfolios on the way towards 30

GW installed capacity.

The NEZ has considerable potential for obtaining a diversified offshore wind power portfolio. Among our candidate loca-

tions, we found a clear block structure in the wind power correlation matrices (Figure 2). Spreading the wind farms across

these blocks dramatically reduces the total variation. The maximum potential diversification effect we found was 50.4% for480

a capacity factor of 59.8%. From the sequential build-out case, we found that the diversification effect was also large after

including only a few locations (5-7).

Deciding where to place wind farms and how to construct an investment portfolio are two different problems. We have

highlighted some of these fundamental differences and how these can be taken into account or can be seen in the results of

a modern portfolio analysis. The U-turning efficient frontier could also occur for financial investment portfolios, but in such485

applications, a risk-free interest rate is usually included in the pool of assets. A consequence of the U-turn is a unique minimum

standard deviation portfolio that is not an extremeity in the expected output variable.

The twenty areas that Norwegian Water Resources and Energy Directorate (2023) have identified seem reasonable from our

perspective. Using the wind power suitability scores of Solbrekke and Sorteberg (2023) to identify 19 locations and adding

Utsira Nord resulted in a similar pool of candidate locations, with some distinctions. The performance of the resulting portfolios490
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for the two candidate location sets was satisfactory. The NVE portfolios did slightly better for low variance portfolios and S&S

slightly better for high capacity factor portfolios in the case with the fewest restrictions. In any case, the differences are minor

and indicate that our results are robust against the selection of candidate locations.

We do not expect the Norwegian Government to decide where to place each turbine in NEZ solely based on this work. Given

the points already discussed, this paper merely contributes to the discussion regarding the spatial planning of offshore wind495

farms in NEZ. Getting reliable cost estimates for building and maintaining offshore wind farms at different locations should

be part of such a decision. It could also be that the parameters we have optimized the portfolios under do not correspond with

the risk aversion of the decision-makers. Accepting a more volatile wind farm portfolio with lower infrastructure investments

seems like a reasonable compromise.
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Appendix A: Sensitivity to temporal resolution

In this section, we have performed a sensitivity analysis of the choice of hourly temporal scale. One could argue that other time510

scales are more relevant, and the turbine distribution will depend on the choice of scale. We have aggregated the NORA3-WP

hourly capacity factor data at the different NVE locations to daily, weekly and monthly averages, and calculated the empirical

covariance matrices on the various scales. The mean capacity factor per location (µ̂) will not change due to this scaling. The

corresponding correlation matrices are presented in Figure A1. We then solve the turbine distribution problem using MPT for

NVE case A with target capacity factor TCF = 60% and sum the total number of turbines per NVE region. The number of515

turbines per region is presented in Table A1.
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Clearly, the distribution of turbines depends on which time scale a decision maker is interested in minimising the variance.

Aggregating from an hourly scale will increase the correlation of wind power production between sites (c.f. Figure A1) and

require larger distances between wind farms to obtain diversification effects. This results in concentrating the 2000 turbines

on fewer locations, which can be seen in the final column of Table A1. Hourly and daily will be qualitatively very similar, but520

the diversification potential is significantly reduced for the Norwegian offshore wind power portfolio at weekly and monthly

scales.

Table A1. Number of turbines per NVE region from Case A for the NVE locations at different temporal resolutions.

Region North North-West West South-West South-East Number of Wind Parks

Hourly 723 347 333 303 294 15

Daily 756 312 400 234 298 12

Weekly 905 146 586 57 306 10

Monthly 1026 113 654 0 207 7
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Figure A1. Correlation matrices for capacity factor for the NVE locations at different time scales; hourly, daily, weekly and monthly.

Appendix B: Supplementary tables

In this appendix, we have included tables with further details about the allocation of turbines for the different cases and

candidate locations.525
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Table B1. Number of turbines per location for the portfolio cases (A-E) and target capacities (58, 60, 62%), with NVE locations at the top

and S&S below. The far right column contains the maximum turbine constraints per location.

TCF 58% 60% 62% Max

Case A B C A B C D E A B C D E Turb.

N

Nordavind A 333 479 468 269 477 416 266 150 319 135 998

Nordavind B 125 146 146 522 174 523 176 523 523

Nordavind C 118 100 100 67 63 246

Nordavind D 266 461 457 208 463 381 205 102 276 89 850

NW

Nordvest A 204 204 309 202 148 128 2639

Nordvest B 20 41 35 802

Nordvest C 296 451 443 102 101 486 1303

W

Vestavind A 194 407 368 208 328 440 410 310 440 440

Vestavind B 56 37 11 697

Vestavind C 243

Vestavind D 169 169

Vestavind E 63 345

Vestavind F 74 300 349 158 100 279 183 100 183 465

SE

Sørvest A 25 12 43 340

Sørvest B 509

Sørvest C 413

Sørvest D 159 218 160 138 132 284

Sørvest E 32 170 152 238

Sørvest F 309 28 495 133 304 170 361 470 188 361 631

SW Sønnavind A 180 283 333 526 321 409 510 493 525 527 493 677

N

1 229 424 399 191 436 386 180 109 99 500

2 171 171 146 161 459 159 500

3 4 500 500

4 68 129 500 165 176 500 500

5 34 500

6 311 429 434 246 404 352 213 79 61 500

NW

7 176 194 316 179 153 265 136 500

8 8 72 100 401 500

9 221 408 416 25 500

W

10 143 232 481 446 222 408 291 500 405 280 500 500

11 45 348 500

12 500

13 14 500

14 81 268 179 100 191 218 100 262 500

15 105 155 128 193 160 500

SE

16 91 471 137 500 167 500 177 297 371 167 280 500

17 43 112 50 162 124 500

18 87 403 204 500 221 451 485 500 495 458 500

SW
19 65 157 165 59 43 500

20 186 22 500

25



Table B2. Number of turbines for each iteration of the sequential build-out in case D for the different targets (60, 62%) and candidate location

set NVE.

Set – Installed Location IDs

TCF Power (GW) 13 19 7 2 20 4 5 8 1 17 3 6 9 14

NVE/60%

3 100 100

4.5 100 102 98

6 100 133 98 70

7.5 100 133 101 135 31

9 100 133 101 135 71 60

10.5 100 133 101 135 104 76 52

12 100 133 101 135 113 102 61 55

13.5 100 133 101 135 142 102 61 66 60

15 100 133 101 135 154 114 77 81 85 19

16.5 100 133 101 135 171 114 91 95 102 34 23

18 100 133 101 135 187 118 107 110 122 49 39

19.5 100 133 101 135 203 129 122 124 142 64 47

21 100 133 101 135 219 141 138 138 161 78 56

22.5 100 133 101 135 236 152 152 152 181 93 64 2

24 100 133 101 135 253 162 162 165 199 109 72 9

25.5 100 133 101 135 270 173 172 178 218 124 80 15 1

27 100 133 101 135 287 183 182 188 236 136 88 22 4 4

28.5 100 133 101 139 304 194 192 198 252 148 95 28 8 8

30 100 133 101 146 321 205 202 208 266 160 100 35 11 12

13 19 2 20 8 5 4 1 17 18 3

NVE/62%

3 100 100

4.5 100 142 58

6 100 142 103 55

7.5 100 142 112 78 69

9 100 142 112 131 73 42

10.5 100 142 112 183 91 42 30

12 100 153 112 220 113 42 38 23

13.5 100 153 112 244 128 46 48 35 33

15 100 153 112 267 144 54 59 49 37 25

16.5 100 153 112 294 161 60 59 59 48 40 14

18 100 153 112 321 178 68 59 72 59 55 25

19.5 100 153 116 347 194 76 59 82 70 70 34

21 100 153 124 373 211 83 59 90 81 84 42

22.5 100 153 133 399 227 91 63 97 92 99 46

24 100 157 142 425 244 98 68 105 101 111 50

25.5 100 165 150 450 260 105 73 112 109 122 53

27 100 173 159 476 277 113 79 120 116 132 56

28.5 100 180 168 501 294 120 84 127 124 142 60

30 100 188 176 527 310 128 89 135 132 152 63
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Table B3. Number of turbines for each iteration of the sequential build-out in case D for the different targets (60, 62%) and candidate location

set S&S.

Set – Installed Location IDs

TCF Power (GW) 13 19 7 2 20 4 5 8 1 17 3 6 9 14

14 16 8 4 10 1 19 18 6 7 2 15 17

S&S/60%

3 100 100

4.5 100 100 100

6 100 129 100 71

7.5 100 132 100 109 59

9 100 160 100 109 74 57

10.5 100 167 100 109 87 74 64

12 100 167 100 129 93 113 74 24

13.5 100 167 100 129 100 113 74 62 55

15 100 167 100 129 112 113 74 92 71 42

16.5 100 167 100 129 128 113 75 114 79 56 39

18 100 167 100 129 128 113 83 117 94 69 53 47

19.5 100 167 100 129 136 113 94 135 110 84 71 61

21 100 167 100 129 148 118 104 153 125 98 86 72

22.5 100 167 100 129 160 128 114 168 140 112 96 82 5

24 100 167 100 129 173 138 124 178 155 125 106 91 14

25.5 100 167 100 129 185 149 134 189 169 139 116 100 23

27 100 167 100 129 197 159 144 200 184 152 126 109 32

28.5 100 167 100 129 209 170 155 211 198 166 136 118 41

30 100 167 100 129 222 180 165 221 213 179 146 128 50

14 16 4 18 10 7 2 15 1 6 19 17

S&S/62%

3 100 100

4.5 100 140 60

6 100 140 113 47

7.5 100 140 117 65 78

9 100 140 117 115 83 45

10.5 100 140 117 158 96 45 44

12 100 140 117 185 106 53 68 32

13.5 100 140 117 223 119 57 68 44 32

15 100 140 117 262 134 63 68 58 44 14

16.5 100 140 117 296 149 68 79 70 49 19 13

18 100 140 117 302 163 75 91 77 55 26 18 36

19.5 100 140 118 328 178 83 102 88 61 33 21 49

21 100 140 126 353 193 90 111 99 66 37 24 62

22.5 100 140 135 378 207 98 119 110 72 41 27 74

24 100 140 143 402 222 106 127 120 77 45 31 87

25.5 100 140 151 427 237 113 135 131 82 49 34 100

27 100 149 160 450 251 121 143 141 88 53 37 108

28.5 100 158 168 473 266 129 151 150 93 57 40 116

30 100 166 176 495 280 136 159 160 99 61 43 124
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