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Abstract. Wake steering represents a viable solution to mitigate the wake effect within a wind farm. New research that consider

the effect of the control strategy within the layout optimization are emerging, adopting a co-design approach. This study

estimates the potential of this technique within the layout optimization for a wide range of realistic conditions. To capture

the benefits of such method, a genetic algorithm tailored to the layout optimization problem has been developed in this work,

hence appointed as layout-optimization genetic algorithm (LO-GA). The crossover phase is designed to recognise recognize5

and exploit the differences and the similarities between parent layouts whereas the randomness of the mutation is limited to

improve the exploration of the design space. New relations have been introduced to calculate the geometric yaw angles based

on the reciprocal positions between the turbines. For a base case of 16 turbines located at Hollandse Kust Noord site, a gain

in the annual energy production (AEP) between 0.3% and 0.4% is obtained when the co-design approach is adopted. This

increases up to 0.6% for larger farms, saturating after 25 turbines. The However, the benefit of the co-design decreases if10

the power density of the wind farm is lower than 15Wm−2 in case of low power densities or if the wind resource is highly

unidirectional. On the other hand, in case wake steering is not applied during the operation of the farm, a decrease in the AEP

up to 0.6% is registered for a layout optimized with the co-design method. To prevent the risk related to future decisions on the

control strategy, a multi-objective co-design approach is proposed. This is based on the simultaneous optimization of the layout

for a scenario in which wake steering is applied versus a case where wake steering is not adopted during the operation of the15

farm. We have concluded that the solutions obtained with this method ensure an AEP gain higher than 0.3% for a 16-turbines

farm while limiting the loss below 0.1% in case wake steering is not applied.

However, these AEP gains are affected by the size of the wind direction bins adopted in the simulations, enhancing the

necessity of taking into account the wind direction errors and the yaw actuation constraints for a realistic evaluation of the

co-design approach.20

1 Introduction

The mitigation of the wake interaction between wind turbines represents one of the major challenges within the design and the

operation of wind farms (Meyers et al., 2022). Higher power generation and load reduction can be achieved by minimizing the

wake effect, increasing the revenues associated to the electricity production while extending the lifetime of the farm (Cassamo,
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2022). The rapid development of offshore wind energy has urged the necessity of constraining a large number of turbines in25

limited areas, increasing the impact of these effects (Pettersen et al., 2023). Therefore, innovative solutions are required to

address the wake interactions in order to extract the topmost value from a wind farm.

The minimization of the wake losses is generally addressed by selecting appropriately the positions of the turbines within

the available surface (Mosetti et al., 1994). This design phase is usually referred to as wind farm layout optimization problem

(WFLOP) and aims to maximize one or multiple objectives while satisfying various types of constraints, e.g. geographical re-30

strictions or minimum spacing (Feng and Shen, 2015). Different implementations of WFLOP can be distinguished depending

on how the positions of the turbines are related to the optimization variables. Specifically, they can be parameterized through

a limited number of variables by introducing regular layouts, where periodic patterns are repeated throughout the farm. Other-

wise, the positions of the turbines can be identified by discrete or continuous coordinates, depending on the requirements on the

resolution of the design space. Therefore, WFLOP can assume different natures, whose choice often depends on the trade-off35

between the required accuracy and the computational cost, usually determined by the size of the farm and the level of fidelity

of the models adopted to calculate the wake interactions. Depending on the purpose of the study, different objectives can be

considered for the WFLOP. However, current methods mainly focus on the maximization of the annual energy production

(AEP) or the minimization of the levelized cost of energy (LCOE) (Tao et al., 2020).

Wind farm control represents another viable solution to mitigate the wake effects during the operation of the plant, based40

on the performance optimization of the entire farm considered as a one entity instead of a summation of individual optimized

turbines (van Wingerden et al., 2020). Relying on various concepts, different wind farm control techniques have been devel-

oped in the recent years (Meyers et al., 2022). Among these approaches, wake steering has been demonstrated to improve

significantly the power production of a wind farm, deviating the wakes from the downstream turbines by actuating yaw control

(Doekemeijer et al., 2021).45

The design phase of a wind farm is often not influenced by the wind farm control technique, which are only considered during

the operation of the plant (Stanley et al., 2023). However, different studies have proved that taking into account the wind farm

control strategy already during the design stage could lead to significant improvements in the performance, especially within

the WFLOP. This is usually referred to as the co-design approach, in contrast to the traditional sequential method in which

design and operation phases constitute two separate blocks that are optimized individually (Fleming et al., 2016).50

The co-design approach is included in the WFLOP by adapting the control variables during the computation of the objective

function, e.g. the axial induction factor for static induction control or yaw angles for wake steering (Stanley et al., 2023).

Aiming to optimize the wind farm layout considering its entire lifetime, the optimal control variables have to be determined for

each possible case experienced by the farm, i.e. different combinations of wind speeds and directions. However, this leads to

an optimization problem characterized by an extremely high number of variables, requiring expensive computational resources55

in terms of core numbers and/or simulation time (Fleming et al., 2016).

Various solutions have been introduced to tackle the "curse of dimensionality" while capturing the benefits of the co-design

approach. Fleming et al. (2016) and Yin et al. (2023a) have decoupled the optimization problem, i.e. the control variables are

optimized on an initial layout and then these values are assumed within the WFLOP. A nested approach has been proposed
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by Pedersen and Larsen (2020), who have iterated for each step the calculation of the optimal coordinates followed by the60

optimization of the control variables. Another nested method has been adopted by Chen et al. (2022), decomposing the WFLOP

for different wind scenarios and constraining the same turbines’ positions through a coordination problem. Another possible

strategy consists in the use of regular layouts to reduce the number of variables related to the WFLOP without affecting those

related to the control optimization (Hou et al., 2017). This approach can be followed by a position refinement, as implemented

by Tang et al. (2022). Alternatively, the number of variables can be diminished by limiting the simulations to one representative65

wind speed value for each wind direction (Gebraad et al., 2017; Song et al., 2023). Machine learning surrogate models are also

implemented to fasten the computation of the objective function or to improve the exploration of the highly-dimensional design

space (Song et al., 2023; Yin et al., 2023b).

Recently, a novel approach has been introduced by Stanley et al. (2023) where analytical relations are used to obtain the

optimal control variables within the AEP calculation, avoiding an expensive nested optimization. Specifically, this study focuses70

on the wake steering technique and the yaw angle of each turbine is determined for each flow case based on the position of

the downstream turbines, hence this approach is referred to as geometric yaw. This approximation of the optimal yaw angles

has also been implemented in the open-source software FLORIS (National Renewable Energy Laboratory, 2024). In the study

of Stanley et al. (2023), this method enables the integration of the wake steering within the WFLOP, increasing the AEP up to

0.8% with respect to the traditional sequential approach. However, this value refers to a rather specific farm consisting of 1675

wind turbines simulated in a site characterized by a Gaussian hill spatially varying inflow. Moreover, high power density and

low minimum distance spacing between turbines have been adopted. As mentioned by Stanley et al. (2023), these conditions

boost the benefits of the co-design approach, coming close to the maximum improvement achievable with the proposed method.

On the other hand, the geometric yaw relation introduced by Stanley et al. (2023) is based on a limited number of variables,

enabling a straightforward interpretation and implementation. Therefore, there is a significant margin of improvement that80

could enhance the advantage of the co-design approach for wake steering. These considerations demonstrate the necessity to

understand the real potential of the geometric yaw method within the WFLOP for more realistic conditions.

A crucial aspect of the WFLOP is the choice of the optimization algorithm to extract the optimal positions of the tur-

bines. The literature lacks a full agreement on the most appropriate optimization algorithm and both gradient-based (GB) and

gradient-free (GF) techniques are adopted to solve the WFLOP (Thomas et al., 2023). The non-convexity of WFLOP chal-85

lenges conventional GB methods in reaching the global optimum, requiring multiple runs from a variety of starting conditions

(Guirguis et al., 2016). An attempt to reduce the multi-modality of the problem has been made by Thomas et al. (2022), who

introduced a technique named wake expansion continuation, based on the gradual reduction of the wake diameter during each

iteration. Moreover, GB methods cannot guarantee high performance on black-box objective functions, which would require

the computationally expensive finite differences for the calculation of the gradient (Martins and Ning, 2022). On the other90

hand, GF approaches such as genetic algorithm (GA) and particle swarm optimization (PSO) are usually favourable favor-

able in case of a design space characterized by many local optima. However, these methods could lead to a higher number

of function calls than GB and tend not to scale effectively with high number of variables (Rios and Sahinidis, 2013). Sparse

nonlinear optimizer (SNOPT) (Gill et al., 2005) is often adopted for WFLOP and it has been used by Stanley et al. (2023) to
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Figure 1. WFLOP using PyGad GA: comparison between the use of a random initial population and a population generated from a regular

layout. The solid lines represent the median AEP increase with respect to the regular layout, whereas the areas refer to the range between the

25th and 75th percentiles, being the results of multiple simulations of the same case.

test the co-design approach using the geometric yaw relation. However, the study from Thomas et al. (2023) has compared95

eight promising optimization algorithms, including SNOPT, and has concluded that the best performance are achieved by a

discrete exploration-based optimization (DEBO) method, which combines a greedy initialization and discrete refinement of

the solution, developed specifically for the WFLOP.

The popularity of GA to solve the WFLOP is due to its ability to explore the design space with a high degree of solutions’

variety. However, as the number of turbines increases, the capability of convergence is seriously affected. This is demonstrated100

in Fig. 1, which shows the results of a basic implementation of the GA using the open-source python library PyGad (Gad, 2023).

In this figure, the case where a regular layout is used to create an initial population is compared to a random initialization of

the optimization variables. It can be observed that in the former case the GA is not able to further improve the initial layout

whereas in the latter the GA cannot converge to a solution better than a regular layout. This behaviour behavior is related to the

excessive randomness that characterizes the exploration of the design space. Therefore, this study aims to exploit the ability of105

the GA to explore a non-convex design space while improving its convergence ability by capturing the physical meaning of the

optimization variables. This is achieved by developing novel method named layout-optimization genetic algorithm (LO-GA),

where the selection, crossover and mutation phases are designed specifically for the WFLOP.

The contribution of this work is fourfold:

– New geometric yaw relations are formulated to improve the capability of approximating the optimal yaw angles.110

– The effectiveness of the co-design approach is tested for different power densities, farm sizes and site types, to understand

the potential of this method in realistic conditions.
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– The impact of not applying wake steering for a layout optimized using the co-design method is quantified and a multi-

objective co-design approach is investigated.

– A tailored genetic algorithm for the WFLOP is developed, referred to as LO-GA.115

The remainder of the paper is structured as follows. In sections 2-5 the methodology adopted in this work is explained,

describing the LO-GA and the geometric yaw relations developed in this study, as well as introducing the case studies that

have been selected. Then, section 6 includes the results that quantify the potential of the co-design approach. These results are

then discussed in section 7 whereas section 8 draws the conclusions and includes the recommendations for future work.

2 Co-design within wind farm layout optimization120

This section explains how the wind farm layout optimization can be solved adopting a co-design approach. First, the WFLOP is

defined specifying objectives and constraints considered in this study. Second, the methodology adopted to apply and evaluate

the co-design concept within the WFLOP is described.

2.1 Wind farm layout optimization problem

WFLOP consists in optimizing the position of the turbines within a pre-defined area. In this study, the objective of the WFLOP125

is the maximization of the AEP, calculated as shown in Eq. 1 by summing the power (Pθ,u) generated by the farm for every

wind direction (θ) and speed (u) multiplied by the correspondent probability of occurrence (ρθ,u). This is referred as the

objective or fitness function. The optimization variables are identified by the Cartesian coordinates of the turbines (x,y), hence

the total number of variables is equal to 2nwt, with nwt indicating the total number of turbines. The turbines’ positions are

restricted to a rectangular area, as expressed in Eq. 2. Moreover, a spacing constraint is considered to guarantee a minimum130

distance (dmin) between the turbines, formulated in Eq. 3.

max
x,y

AEP (x,y) = max
x,y

8760hyr−1 ·
Nθ∑
θ=0

Nu∑
u=0

ρθ,u ·Pθ,u(x,y) (1)

xi ∈ [xmin,xmax] , yi ∈ [ymin,ymax] ∀i, j ∈ nwt (2)

√
(xi −xj)

2
+(yi − yj)

2 ≥ dmin ∀i, j ∈ nwt s.t. i ̸= j (3)

The AEP of the wind farm is computed using PyWake (Pedersen et al., 2023), an open-source tool developed by the Technical135

University of Denmark (DTU) which simulates the wake interaction between the turbines of a wind farm. The Bastankhah

Gaussian Deficit (Bastankhah and Porté-Agel, 2014) model is selected in this study to calculate the wake deficit whereas the

wake deflection is calculated according to Jiménez et al. (2010).
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Table 1. Hyperparameters of LO-GA

Hyperparameter name Symbol

Number of generations ngen

Size of the population npop

Number of parent solutions to keep nkeep

Percentage of selection ps

Percentage of mutation pm

Step of mutation sm

Distance limit dlim

2.2 Co-design approach

Within the WFLOP, the co-design approach consists in considering the control strategy of the wind farm while computing the140

objective function. In this case, the wind farm control strategy is limited to the wake steering whereas the objective consists

in the AEP calculation. Yaw angles are therefore specified for each wind speed and direction bin while computing the AEP

through the PyWake function.

In this study, the improvement obtained through the co-design approach is determined as follows. First, the wind farm

layout optimization is performed for both cases, namely neglecting and considering wake steering through the geometric145

yaw relations, obtaining two different layouts. The same starting layout is adopted to avoid the influence of different initial

conditions. Second, an accurate yaw optimization is computed for both layouts, determining the optimal angles for each wind

speed and direction. Specifically, the serial-refine yaw optimization method is adopted in this study for this phase (Fleming

et al., 2022). Then, the AEP is calculated for both layouts considering the optimal yaw angles obtained in this last step. These

AEP values are finally compared, expecting the wind farm layout obtained through the co-design approach to outperform the150

layout resulted from the traditional method.

3 Layout optimization genetic algorithm (LO-GA)

A genetic algorithm named LO-GA tailored to the WFLOP is developed in this work, where new methods are introduced

specifically for this optimization problem. These are explained in the next sections following the main blocks that constitute

the classic implementation of a GA, namely initialization of the population, selection, crossover and mutation. Table 1 includes155

all the hyperparameters required by the algorithm, which will be described in the next sections in detail along with their

tuning phase. Specifically, some of these hyperparameters allow different values depending on the generation number, enabling

dynamic selection and dynamic mutation (Hassanat et al., 2019). An overview of LO-GA is included in Fig. 2, where the main

blocks, i.e. selection, crossover and mutation, are highlighted.
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Figure 2. Layout optimization genetic algorithm (LO-GA)

3.1 Initial population160

The starting point of a GA consists in providing an initial population of solutions that enables the algorithm to converge towards

an optimal solution. Therefore, the initial population has to be sufficiently close to the optimal solution while preserving
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the randomness required to further improve such starting solution. Specifically, an initial population with a low degree of

randomness would achieve only limited improvements whereas an excessive degree of randomness would require an unfeasible

number of the generations for the algorithm to converge. In this study, a regular layout (xreg,yreg) is generated based on the165

number of turbines (nwt), where these occupy the positions of a squared grid. Such layout is duplicated nwt times in order

to form the population matrices (Xreg,Yreg). These matrices will be the base unit for the LO-GA iterations, where different

solutions are contained along the first dimension (axis 0) whereas the coordinates of each solution are present in the second

dimension (axis 1). To include the randomness within the initial population a mutation step is applied, obtaining the parent

population matrices (Xpar,Ypar). The mutation phase is described in detail in section 3.4, where it is mentioned that it requires170

the fitness value of the solutions, i.e. the AEP in this study. Specifically, the fitness value of each individual turbine is needed.

Such calculation is enabled by the PyWake method for AEP calculation and it is performed for Xreg,Yreg. These values are

stored in the fitness matrix (Freg), which has the same structure of Xreg,Yreg. Lastly, the fitness values are computed for the

parent population matrices (Xpar,Ypar) and stored in the parent fitness matrix (Fpar). In conclusion, Xpar,Ypar and Fpar

represent the starting point for the LO-GA iterations described in the following sections.175

3.2 Selection

The selection phase developed in the LO-GA is divided into two different steps. First, a pre-selection is applied, where the

(1− ps) ·npop solutions characterized by the lowest fitness are discarded. The fitness of the solutions is expressed through

the fitness parent vector (fpar), obtained by the sum of the AEP of all the turbines for each layout in the population. After

this pre-selection phase, the tournament technique is adopted to extract the best solutions while ensuring a sufficient degree of180

randomness (Miller and Goldberg, 1995). Therefore, the outputs of this phase are new parent population matrices (Xpar,Ypar)

with the selected solution, along with their correspondent fitness parent matrix (Fpar).

3.3 Crossover

The purpose of the crossover phase is to generate children solutions from the parent population, aiming to capture and combine

the optimal characteristics of each parent. This represents the main difference with respect to the traditional genetic algorithms185

where the crossover is determined by the random combination of the parent solutions. On the other hand, the crossover phase

integrated in the LO-GA relies on the fitness value of every individual turbine to prevent an excessive randomness during

the design space exploration. The first step consists in dividing the parent population into two different parent matrices, i.e.

obtaining Xpar,1,Ypar,1 and Xpar,2,Ypar,2 starting from Xpar,Ypar. Meanwhile, the values of the parent fitness matrices

Fpar,1,Fpar,2 are inherited from Fpar since the parent solutions have not been modified yet. Then, each solution contained in190

Xpar,1,Ypar,1 is coupled with a solution of Xpar,2,Ypar,2 and the actual crossover phase starts. This is applied to each couple

of solutions and is divided into two different steps, namely the turbine association and the linear/random crossover, where for

every couple of parent solutions two different children solutions are generated. First, the turbine association aims to understand

the similarities of the two coupled layouts, labelling each turbine as paired or outliers. In case a turbine from the first layout is

positioned within a distance lower than dlim from a turbine of the second layout, these two turbines are labelled as paired. The195
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condition that a turbine of the first layout can be paired with a maximum of one turbine of the second layout, and vice versa,

is enforced. Otherwise, the turbines are labelled as outliers. An example of this process of turbine association is depicted in

Fig. 3.

The second step consists in applying two novel techniques developed specifically for this optimization problem: ‘linear

crossover’ between paired turbines and ‘random crossover’ between the outliers. The former technique aims to combine the200

positions of the two paired turbines, identified by (xp,1,yp,1) and (xp,2,yp,2), in order to generate two different children

turbines, identified by (xc,1,yc,1) and (xc,2,yc,2), contained in the first and in the second children layouts and positioned along

the line that connects the parent turbines. Specifically, (xc,1,yc,1) is placed within the parent turbines whereas (xc,2,yc,2) on

the side of the parent turbine characterized by the highest fitness value. Indicating with f1 and f2 the fitness values of the two

paired parent turbines extracted from Fpar,1,Fpar,2, the coordinates of the children turbines are calculated as shown in Eq. 4-6.205

Therefore, the children turbines move closer to the parent turbine characterized by the higher fitness. This process is shown

through an example in Fig. 3. Lastly, to complete the children population, a random crossover is applied between the outlier

turbines. This means that the remaining turbines for each children layouts are selected randomly among the outlier turbines of

the parent coupled layouts.


xc,1 =

f1
f1 + f2

·xp,1 +
f2

f1 + f2
·xp,2

yc,1 =
f1

f1 + f2
· yp,1 +

f2
f1 + f2

· yp,2
(4)210


xc,2 = xp,1 +(xp,1 −xp,2) ·

f1
f1 + f2

yc,2 = yp,1 +(yp,1 − yp,2) ·
f1

f1 + f2

if f1 ≥ f2 (5)


xc,2 = xp,2 +(xp,2 −xp,1) ·

f2
f1 + f2

yc,2 = yp,2 +(yp,2 − yp,1) ·
f2

f1 + f2

if f2 > f1 (6)

3.4 Mutation

After the crossover phase the children solutions are compacted into the children population matrices Xchild,Ychild, which will

be mutated to foster the diversity and the randomness of the solutions. Specifically, adaptive mutation is applied in this study215

while keeping the physical meaning of the design variables, i.e. spatial coordinates (Marsili Libelli and Alba, 2000). However,

to apply an adaptive mutation the fitness values of the children solutions have to be calculated hence the fitness children matrix

(Fchild) is computed. Specifically, the concept of adaptive mutation is applied within each individual turbine of the children

layouts through assigning a different probability of mutation to every turbine. Therefore, for every solution, the turbines are
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Figure 3. The figure on the left shows an example of the turbine association phase. The figure on right depicts the linear crossover technique

for a limited number of turbines, highlighted by the yellow area. This example does not represent an optimized layout used in this study but

it has the only purpose of clarifying the process adopted to apply these techniques.

sorted based on their fitness,and a value increasing linearly from 0 (best turbine) to max[nwt · pm,1] (worst turbine) is assigned220

to every turbine. Based on this probability of mutation, a boolean matrix (Mx,y) is created to determine which of the turbines of

Xchild,Ychild will mutate. Simultaneously, the matrices containing the step of mutation (Sm) and direction of mutation (Θm)

are created by generating random values within [0,sm] and [0◦,360◦], respectively. These values differ for each turbine in the

children population matrices. Then, Eq. 7 is applied to perform the mutation of the children population. The presence of Mx,y

ensures that only a limited number of turbines will mutate irrespective of the values of Sm and Θm. This type of mutation225

limits the degree of randomness but ensures that the new mutated solutions will not differ significantly from the optimal layout,

obtaining a faster convergence. An example of this mutation process is depicted in Fig. 4.

Xchild =Xchild +Mx,y ·Sm · cos(Θm)

Ychild =Ychild +Mx,y ·Sm · sin(Θm)
(7)

The last step of the LO-GA is to compute the fitness calculation of the children population after mutation, obtaining a new

fitness matrix ( Fchild), which will be the input for the next generation along with Xchild,Ychild.230

3.5 Hyperparameters tuning

To ensure an effective usage of the GA described in the previous paragraphs, the hyperparameters mentioned in Table 1 have to

be properly tuned. The tuning phase presented in this study focuses only on the values of ps, pm, sm and dlim, whereas nkeep is

assumed equal to 3 for each simulation. On the other hand, ngen and npop are chosen depending on the specific analysis since

a saturation behaviour is expected instead of finding optimal values.235

The concept of dynamic mutation and selection is tested, which consists in changing the hyperparameters depending on the

generation number (Hassanat et al., 2019). In this case, the purpose is to foster the mutation in the earliest generations to maxi-
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Figure 4. Example of mutation. This example does not represent an optimized layout used in this study but it has the only purpose of

clarifying the process adopted to apply this technique.

Table 2. Optimal values for the hyperparameters of GA. Two numbers are specified, referring to the first and the last generation, respectively.

These values are adopted in the simulations performed in this study.

Hyperparameter Optimal values

ps 0.7→ 0.7

pm 0.4→ 0.05

sm 3D → 0.2D

dlim 2D

mize the randomness and adopting a less aggressive mutation in the last generations, where only few refinements are intended.

Specifically, the maximum and the minimum values are specified for each parameter to tune and a linear increase/decrease is

adopted to obtain the values for each generation. Therefore, different combinations of hyperparameters are tested in order to240

find the optimal values for this analysis. The WFLOP described in the base case in section 5.2 is adopted at this stage.

The results of this tuning phase are depicted in Fig. 5, where the violin plots of different cases specified on the x-axis are

shown. To limit the computational resources of this phase, when a hyperparameter is tested, the other others are kept constant

and equal to a pre-defined values. The reason why violin plots are included instead of individual values is related to the random

nature of the LO-GA, which requires a statistical interpretation of the results. The values present in the violin plot refer to245

the percentage difference in the AEP with respect to the average value of all the simulations performed in this hyperparameter

tuning analysis. The optimal values are summarized in Table 2 and are adopted in the other simulations performed in this study.

It can be observed that the dynamic mutation is favourable favorable for the performance of the LO-GA whereas a constant

value of percentage of selection for all the generations is more effective.
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Figure 5. Violin plots of the hyperparameter tuning. 10 simulations of the same case are performed to create each plot. Unless explicitly

mentioned in the x-axis of each plot, the following hyperparameters are adopted: ps = 0.3→ 0.9, pm = 0.3→ 0.1, sm = 2D → 0.5D,

dlim = 2D. The remaining hyperparameters are set as follows: npop = 100, ngen = 100, nkeep = 3.

3.6 Multi-objective LO-GA250

A multi-objective version of the LO-GA described in the previous sections has been developed in this work to enable a wider

evaluation of the co-design approach. Such implementation requires some modifications to be applied to a multi-objective

optimization problem and it is based on the concepts of non-domination rank and crowding distance (Deb et al., 2002). As de-

scribed in the previous sections, the fitness evaluation of every individual turbine is required for the crossover and the mutation

phases. Specifically, these values are used to apply the linear crossover technique e to determine the probability of mutation,255

whose require the turbines to be ranked based on their fitness value. However, in case of a multi-objective optimization prob-

lem, the ranking of the turbines is not univocal. Therefore, to avoid the ambiguity introduced by the multiple objectives, the

fitness of the turbines is determined by the norm-1 between the normalized fitness values of the different objectives. This allows

to preserve the structure of the crossover and mutation phases described in sections 3.3 and 3.4.

4 Geometric yaw relations260

This section describes the novel geometric yaw relations developed in this study and adopted for the co-design simulations.

First, the dependence on the main variables is discussed and new relations are introduced, comparing these approaches to

the work of Stanley et al. (2023). Second, various effects that impact the optimal yaw angle of a turbine are examined and

approximated through a new expression that ensures a higher accuracy in optimal yaw predictions.
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4.1 Dependence on geometric variables265

Stanley et al. (2023) have introduced a geometric yaw relation to approximate the optimal yaw anlge angle of a turbine based

on the streamwise (dx) and the cross-stream (dy) distance to its nearest downstream waked turbine. This relation is linear with

respect to dx whereas the influence of dy is only limited to the sign of the geometric yaw value, as shown in Eq. 8 (Stanley

et al., 2023).

γgeom = sign(dy) · 30 ·
[
1− 1

25

dx

D

]
(8)270

However, it can be detected from the study of Stanley et al. (2023) that a decreasing trend is present between the absolute

value of dy and the optimal yaw angles. Therefore, two novel relations are introduced to capture this behaviour, included in

Eq. 9 and 10, respectively. The first relation extends the linear behaviour on dx present in Eq. 8 also to dy and is characterized

by three coefficients (γmax,mx,my) that have to be properly tuned. This relation is appointed as linear approach in this

study. On the other hand, Eq. 10 is based on exponential relations in order to guarantee higher flexibility in the shape of the275

curves, ensured by two more coefficients to tune. Therefore, this novel expression is referred as exponential approach and is

characterized by five coefficients (γmax,px,py, qx, qy).

γgeom = sign(dy) ·max

[
γmax −mx

dx

D
−my

|dy|
D

,0

]
(9)

γgeom = sign(dy) · γmax ·
px +1

px +exp
(

1
qx

dx
D

) · py +1

py +exp
(

1
qy

|dy|
D

) (10)

These approaches described in Eq. 9 and 10 focus only on the position of the nearest downstream waked turbine for the280

calculation of the geometric yaw, whose identification is performed as described by Stanley et al. (2023). However, it is

preceded by a filtering phase based on the effective wind speed value assuming that wake steering is not applied. Specifically,

the effective wind speed (wseff ) is computed for each wind turbine of the farm using the appropriate PyWake function. Then,

the turbines characterized by wseff >wsrated are filtered out from the identification of the nearest waked turbine. This stage

is introduced to avoid that a loss in power in the upstream turbine when an increase in the wind speed experienced by the285

downstream turbine does not affect its power generation, i.e. it is operating above rated region. This step is referred as the wind

speed filtering phase and slightly increases the computational time of the process. However, a gain in accuracy of the geometric

yaw approximation is expected.

4.2 Implementing corrections to the geometric yaw

The purpose of this section is to apply different corrections to the geometric yaw relation, aiming to improve the approximation290

of the optimal yaw angle. The novelty of this method is based on considering multiple waked turbines instead of limiting the
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relation to the nearest turbine. This new approach is referred as exponential corrected relation since it is based on the Eq. 10.

The corrective/filtering steps applied in this approach are summarized in the following list and explained in detail in the next

paragraphs.

1. Wind speed filtering295

2. Initial optimal yaw approximation

3. Optimal yaw correction

4. Effective wind speed correction

The wind speed filtering phase consists in the calculation of the effective wind speed assuming no wind farm control strategy.

However, in this case not only the turbines characterized by wseff >wsrated are filtered out from the identification of the300

waked turbines, but also those presenting wseff <wscut−in − δcut−in. In this study, δcut−in = 2 m/s δcut−in = 2 ms−1 is

assumed. The reasoning behind this additional correction is to avoid the penalization of the upstream turbine caused by the

yaw misalignment if the gain in wind speed for the downstream turbine is not sufficient to achieve a value higher than wscut−in.

After the wind speed filtering, an initial approximation of the optimal yaw angle (γinitial) is calculated based on Eq. 10.

Unlike the previous approaches focused only on the nearest waked turbine, the geometric yaw is calculated considering every305

downstream waked turbine individually, identified through the variables dx and dy. Among these multiple geometric yaw

values, the γinitial is given by highest of these values. Even though in many cases this value is determined by the nearest

downstream waked turbine, there are some situations when such turbine does not coincide with the one that influences the

most the optimal yaw of the upstream turbine. This is explained through an example depicted in Fig. 6. In this illustration,

three turbines are considered, and the optimal yaw angle of the first turbine is studied in relation to the position of the third310

turbine. These optimal yaw angles depicted in the figure on the right are calculated through the serial-refine method, hence

they represent the target for the geometric yaw relation. The dashed line represents the optimal yaw angle of the first turbine in

case only the second turbine is present, i.e. the nearest turbine. It can be observed that for high values of dy, the third turbine

does not influence the optimal yaw angle of the first turbine. However, in case of a better alignment with the first turbine, i.e.

dy ≈ 0, the third turbine has an impact on the value even though it is not the nearest turbine. In summary, this initial yaw315

approximation identifies the downstream waked turbine that has the highest impact on the optimal yaw angle and calculates

the geometric yaw based on the dx and dy of this turbine.

The initial yaw approximation is then corrected considering the influence of the other downstream waked turbines. The

aim of this correction is to avoid that the wake of the upstream turbine is steered towards other downstream turbines after

the initial yaw approximation. Suppose that the most impactful downstream turbine on the optimal yaw angle of the upstream320

turbine is characterized by sign(dy)> 0. The initial yaw approximation causes a steering of the wake towards the region

such that sign(dy)< 0. Therefore, only the turbines characterized by a sign(dy) opposite to the sign(dy) of the turbine that

has determined the initial yaw approximation are relevant for this correction. Similarly to the previous case, an example is

introduced to clarify the need of this correction, illustrated in Fig. 7. It can be observed that the third turbine has no influence
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Figure 6. Example introduced to explain the reasoning behind the initial optimal yaw approximation. The influence on the optimal yaw angle

of the upstream turbine is studied depending on the positions of two downstream turbines. The optimal yaw angle of turbine 1 is studied

in relation to the position the turbine 3. The left plot illustrates the different positions considered in this example, The right plot shows

the optimal yaw angle of the turbine 1 for two cases: neglecting the presence of turbine 3 (dashed line) and considering different positions

(identified by dy) of turbine 3 (solid line).

on the optimal yaw angle of the first turbine in case of dy ≪ 0. However, as the dy of the third turbine increases, the optimal325

yaw angle decreases to avoid that the wake is steered toward this turbine. However, if dy ≈ 0 it becomes more convenient to

increase the magnitude of the yaw of the first turbine in order to steer the wake away from both turbines.

This situation is tackled as follows. First, the wake deflection caused by γinitial is calculated using the approach of Jiménez

et al. (2010). Therefore, the local change in wind direction experienced by the downstream waked turbine is calculated through

Eq. 11 (Jiménez et al., 2010). CT and k refer to the thrust coefficient and the wake expansion coefficient, respectively. The330

former is extracted from the turbine data, depending on the free-stream wind speed, whereas the latter is assumed equal to 0.1.

δwd =−CT

2

sin(γinitial) · cos2(γinitial)
1+ k · dx

D

(11)

The values of dx and dy of the turbine of interest, i.e. such that sign(dy) is opposite to the value from which γinitial is

calculated, are then modified through a rotation of δwd. Therefore, new values dxδwd
and dyδwd

are obtained, describing the

position of the relevant downstream waked turbines based on the direction of the deflected wake. Subsequently, the method used335

to calculate γinitial is repeated using dxδwd
and dyδwd

as input for the exponential relation of Eq. 10. Therefore, a new geometric

yaw value for the upstream turbine is obtained, appointed as geometric yaw correction (γcorr) and used to improve the initial

approximation as described in Eq. 12. The coefficient αcorr is properly tuned to weight this yaw correction accordingly.
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Figure 7. Example introduced to explain the reasoning behind the optimal yaw correction. The influence on the optimal yaw angle of the

upstream turbine is studied depending on the positions of two downstream turbines. The optimal yaw angle of turbine 1 is studied in relation

to the position the turbine 3. The left plot illustrates the different positions considered in this example, The right plot shows the optimal yaw

angle of the turbine 1 for two cases: neglecting the presence of turbine 3 (dashed line) and considering different positions (identified by dy)

of turbine 3 (solid line).

γgeom = γinitial +αcorr · γcorr (12)

Lastly, a wind speed correction factor (fws) is multiplied to the geometric yaw to penalize high values of γgeom in case the340

deviation of the effective wind speed from the free-stream value is limited. The motivation to include such correction in the

geometric yaw is related to cubic dependence of the generated power with respect to the incident wind speed. fws is calculated

as described in Eq. 13, where the coefficient αws is part of the tuning process.

fws = 1−αws · exp(wseff −ws) (13)

Table 3 summarizes the geometric yaw relations analysed in this study along with their coefficients, which are properly345

tuned as described in the next section.

4.3 Tuning of the coefficients

The tuning of the coefficients of the relations introduced in the previous paragraphs aims to guarantee a precise approximation

of the optimal yaw angles. The method adopted for this tuning phase assumes that the optimal values of the coefficients are
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Table 3. Geometric yaw relations analysed in this study.

Name Relation Coefficients

Stanley relation γgeom = sign(dy) · 30 ·
[
1− 1

25
dx
D

]
-

Linear relation γgeom = sign(dy) ·max
[
γmax −mx

dx
D

−my
|dy|
D

]
γgeom = sign(dy) ·max

[
γmax −mx

dx
D

−my
|dy|
D

,0
]

γmax, mx, my

Exponential relation γgeom = sign(dy) · γmax · px+1

px+exp
(

1
qx

dx
D

) · py+1

py+exp

(
1
qy

|dy|
D

) γmax, px, py, qx, qy

Exponential corrected relation γgeom = fws · (γinitial +αcorr · γcorr) γmax, px, py, qx, qy, αcorr, αws

those that lead to the maximization of the AEP when the geometric yaw relations are applied. Specifically, the tuning of the350

coefficients can be divided into two different steps. First, different wind farm layouts are generated to evaluate the geometric

yaw relations. Second, an optimization problem is solved to extract the values of the coefficients that maximize the AEP for

the given layouts.

Since in the second step the AEP is calculated for all the layouts at each evaluation of the objective function, the total number

of layouts has to be limited to avoid excessive computational requirements. On the other hand, these layouts have to be chosen355

in order to prevent that the geometric yaw relations are effective only for few specific cases. Therefore, 20 different layouts are

generated through few generations of the LO-GA. Specifically, population size and number of generations are set equal to 100

and 10, respectively, whereas the number of turbines and the power density are selected randomly in the ranges 16− 72 and

10− 20Wm−2.

After the generation of these layouts, the optimization problem to tune the coefficients of geometric yaw relations is struc-360

tured as follows. The objective function consists in the average percentage increase in the AEP among the 20 different layouts

when applying the geometric yaw relation with respect to the case without wake steering. The optimization variables are the

coefficients of the geometric yaw relations, which are bounded in ranges determined by the experience based on preliminary

simulations. This optimization problem is solved using a basic GA implementation in PyGad (npop = 50, ngen = 30). The

results of this tuning phase, i.e. the optimal coefficients, are included in Table 4 and adopted during the simulations performed365

in this study.

Among the various coefficients present in the geometric yaw relations and included in Table 4, γmax has a clear physical

interpretation since it represents the maximum absolute value for the yaw angles of the turbines. In this study, γmax has

been tuned targeting the maximization of the AEP without applying any restriction. However, the tuning of γmax could be

constrained to take into account actuation limits or requirements on the structural loading, since it has been demonstrated that370

wake steering can have a negative impact on some load channels (Shaler et al., 2022).

5 Case study

This section defines the case study adopted in this work to evaluate the co-design approach for the WFLOP. First, the wind

scenario and the turbines adopted in the simulations are defined. Second, the base-case selected to evaluate the different
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Table 4. Tuned coefficients of the geometric yaw relations.

Stanley relation Linear relation Exponential relation Exponential corrected relation

- - γmax 19.788◦ γmax 20.928◦ γmax 20.771◦

mx 0.424 px 8.146 py 5.069

my 12.019 py 6.320 py 7.474

qx 5.381 qx 6.519

qy 0.346 qy 0.393

αcorr 0.473

αws 0.091
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Figure 8. Wind rose of Hollandse Kust Noord site.

geometric yaw relations is introduced. Lastly, the modifications introduced to the base-case to perform a sensitivity analysis375

are explained.

5.1 Site and turbines

The wind conditions adopted for the simulations in this study refer to the Hollandse Kust Noord (HKN) site in the Netherlands

(Netherlands Enterprise Agency, 2019). The wind rose is computed assuming a uniform Weibull distribution from the scale

and shape factor of 12 sectors, as shown in Fig. 8. The turbine type chosen for the simulation is the reference DTU 10MW,380

available in PyWake.

5.2 Base case

The aim of this base-case is to evaluate the potential of the co-design approach in comparison with the study of Stanley et al.

(2023), assuming HKN site conditions. Therefore, a 16-turbine wind farm is adopted, characterized by a power density of

20Wm−2 and a squared available area. 36 and 23 bins are used during the simulations for the wind direction and the wind385
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Table 5. Base-case

Wind rose HKN

Turbine DTU 10 MW

Wind speed bins 23

Wind direction bins 36

Minimum distance constraint 2D

Power density 20Wm−2

speed, respectively. Lastly, the minimum distance constraint (dmin) is set equal to 2D. These information are summarized in

Table 5.

5.3 Sensitivity analysis

Due to the limited size and the large power density of the farm studied in the base-case, a sensitivity analysis is performed

to understand the potential of the co-design approach for a wider range of conditions. Specifically, different power density390

values are tested to match conditions similar to current wind farm development projects. This is achieved by keeping the

same number of turbines included in the base-case while extending the available area. On the other hand, larger size of wind

farms are simulated to investigate the benefits of this method for future large plants. Therefore, new simulations are performed

increasing both the number of turbines and the available area, while keeping the power density equal to 20Wm−2. Lastly,

the impact of the site is analyzed in terms of distribution of the wind probability among the different wind sectors. For this395

purpose, average scale and shape factors of HKN site are assumed while the probability of occurrence of each wind direction

is modified. Specifically, this is modelled as a Gaussian distribution and different values for the standard deviation are used.

Adopting this method, various conditions are obtained ranging from unidirectional wind roses to omnidirectional cases. These

are depicted in Fig. 9, where the HKN site is included as well. In general, the same conditions of the base case are adopted in

the sensitivity analysis, unless explicitly specified.400

6 Results

This section illustrates the results of the simulations performed in this analysis to evaluate the potential of the co-design

approach for WFLOP. First, the LO-GA is evaluated in comparison to a general GA implementation. Second, the geometric yaw

relations introduced in this work are assessed through a preliminary test and the results obtained in the base-case simulations

are shown. Then, the influence of the power density, the number of turbines and the site type is studied through a sensitivity405

analysis. Lastly, the results concerning a multi-objective implementation of the co-design approach are shown and the impact

of the wind direction discretizatiotn is investigated.
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Figure 9. Probability of occurrence of different wind directions for the cases studied in the sensitivity analysis. HKN values are included and

indicated with the dashed line.
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Figure 10. Comparison between LO-GA and PyGad GA to solve the WFLOP. The solid lines represent the median AEP increase with respect

to the regular layout, whereas the areas refer to the range between the 25th and 75th percentiles, being the results of multiple simulations of

the same case.

6.1 Evaluation of the genetic algorithm

The LO-GA is compared to the basic implementation of the GA in PyGad, introduced in Fig. 1. The results are depicted in

Fig. 10, where it can be observed that the LO-GA outperforms the PyGad implementation, being able to improve the regular410

layout from which the population is initialized.

20



20 30 40 50 60
Number of turbines

1.0

1.2

1.4

1.6

1.8

2.0

AE
P 

im
pr

ov
em

en
t [

%
]

Linear relation
Exponential relation
Exponential corrected relation
Serial-refine yaw optimization

Figure 11. Preliminary test to evaluate the geometric yaw relations. The solid lines represent the median values whereas the area refer to the

range between the 25th and 75th percentiles, being the results of multiple simulations of the same case.

6.2 Preliminary test on geometric yaw relations

To evaluate the effectiveness of the geometric yaw relations summarized in Table 3, a preliminary analysis is performed and the

results are depicted in Fig. 11. Specifically, for different farm sizes, the percentage difference in the AEP is calculated between

the case when the geometric yaw angles are applied and the case when wake steering is not considered. This is compared415

also with the AEP value obtained from the yaw angles computed through the serial-refine method (Fleming et al., 2022),

considered the optimal yaw angles in this study. For each size of the farm, this calculation is performed on 10 different layouts

optimized using the LO-GA (npop = 100, ngen = 200), assuming a power density of 20Wm−2. It can be observed that the

linear and the exponential relation guarantee approximately the same increase in the AEP whereas higher values are obtained

for the exponential corrected relation. This indicates that the corrections included in this approach improve the optimal yaw420

estimation. The results concerning the Stanley relation are not included in the figure since significantly lower values of AEP

increase are produced.

6.3 Base-case

The results obtained for the base-case are included in Fig. 12, where the procedure explained in section 2.2 is followed, namely

comparing optimized layouts resulted from including or neglecting the geometric yaw angles within the objective function of425

the WFLOP. In both cases, the optimal yaw angles are then applied to calculate the actual AEP associated to the layout. Due
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Figure 12. AEP improvement obtained with co-design approach for WFLOP using different geometric yaw relations. The distributions of

multiple iterations for each case are included, highlighting the median value.

to the random nature of the LO-GA, 100 iterations of each case are performed, obtaining the distributions shown in the plots.

In this case, the hyperparameters adopted for the layout optimizations are npop = 100 and ngen = 400. It is evident that the

relations introduced in this paper, i.e. linear, exponential and exponential corrected, outperform the Stanley relation. However,

no significant difference can be detected among the three new approaches. Specifically, the higher gains of the exponential430

corrected relation observed in Fig. 11 do not guarantee significantly better performance for the co-design method. Overall,

considering median values, an AEP increase between 0.3% and 0.4% is obtained for this base-case.

The improvements in the AEP obtained with the co-design approach for WFLOP can be achieved only if wake steering is

applied during the operation of the farm. Therefore, in case wake steering is not adopted, a drop in performance is experienced

for the layouts optimized using the co-design method. Assuming no wake steering during the operation, Fig. 13 illustrates the435

reduction in the AEP with respect to layouts optimized with the traditional approach. These results are generated using the

same method and parameters of Fig. 12. From this analysis it can be concluded that the drop in performance has the same

magnitude and follows the same trend of the gains shown in Fig. 12.

6.4 Sensitivity analysis

This section presents the results concerning the sensitivity analysis on the co-design approach in relation with three different440

aspects: power density, farm size and site type.
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Figure 13. AEP reduction obtained with co-design approach for WFLOP using different geometric yaw relations in case wake steering is

not applied during the operation. The distributions of multiple iterations for each case are included, highlighting the median value.

6.4.1 Power density

The AEP increase obtained through the co-design approach is dependent on the power density of the wind farm, as highlighted

by the solid lines in Fig. 14. Specifically, it can be observed that the benefits of this method diminish for values below 15Wm−2,

representing a threshold after which the gain stabilizes. These results demonstrate the effectiveness of the co-design method445

only for wind farms constrained in a limited area, i.e. characterized by a higher power density. For this analysis the optimization

hyperparameters are set to npop = 100 and ngen = 400 and the randomness associated to the results is handled by computing

each case 25 times. Similarly to the base case, the drop in performance in case wake steering is not applied during the operation

is investigated for different power densities. These results are included in Fig. 14 using dashed lines, exhibiting an opposite

trend with respect to the case when wake steering is applied, as observed for the base case. However, the saturation behaviour450

behavior observed for values higher than 15Wm−2 is not present, since the performance worsen for larger values.

6.4.2 Wind farm size

Further analysis is performed to investigate whether the saturation limit of 15Wm−2 is dependent on the squared shape of the

domain or it remains valid for other geometries. For this purpose, the simulations are repeated for two different rectangular

areas, characterized by a ratio between the sides equal to 1.5 and 2.0, respectively. The results are limited to the exponential455

corrected relation and are included in Fig. 15. It can be observed that the magnitude of the AEP gains decreases and the

saturation behavior identified in the previous case is not evident anymore, concluding that such results are dependent on the

shape of the area where the turbines can be positioned. However, the decreasing trend for the AEP gains in case of lower power

density values remains valid, hence it can be considered a general conclusion for this sensitivity analysis.
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Figure 14. AEP gain obtained with co-design method for different power densities, showing the cases when wake steering is applied (solid

lines) and not applied (dashed lines) during the operation of the farm. The areas surrounding the lines (median values) refer to the range

between the 25th and 75th percentiles, being the results of multiple simulations of the same case.

6.4.2 Number of turbines460

The co-design approach is tested for different farm sizes to understand its potential if the number of turbines increases. The

results are included in Fig. 16, where each case is simulated 20 times, adopting npop = 100 and ngen = 600 as optimization

hyperparameters. The choice of a higher number of generations is needed to ensure the convergence when the number of

optimization variables increases. In this case, it can be observed that the AEP improvement increases up to 0.6% and a satu-

ration behaviour behavior can be detected when nwt > 25. However, as nwt increases, the trend becomes less evident due to465

the higher oscillations between different runs, caused by the limited hyperparameters values in proportion to the number of

optimization variables. This occurs also in the case when the robustness of the method is tested when wake steering in not

applied for a co-design optimized layout, as observed form the dashed lines in Fig. 16.
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Figure 15. AEP gain obtained with co-design method (exponential corrected relation) for different power densities, showing the trend for

different shapes of the available surface, identified through the ratio between the sides of a rectangle. The areas surrounding the lines (median

values) refer to the range between the 25th and 75th percentiles, being the results of multiple simulations of the same case.

6.4.3 Site typeWind direction variability

Various site types are investigated to determine the effectiveness of the co-design method in different wind conditions. As470

mentioned in section 5.3, this study focuses on the shape of the wind rose in term terms of the probability of occurrence for

the wind directions. Figure 17 shows that the co-design approach becomes less convenient for sites characterized by an evident

dominant wind direction, i.e. low standard deviation of the probability of occurrence along the 360◦. This can be observed not

only by a drop in the increase in AEP when wake steering is applied during the operation, but also by a significant reduction in

case wake steering is not adopted. On the other hand, the increase in the AEP does not vary for values of standard deviations475

higher than 0.4. Similarly to the power density, these results have been obtained from 25 iterations, adopting npop = 100 and

ngen = 400.
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Figure 16. AEP gain obtained with co-design method for farm sizes, showing the cases when wake steering is applied (solid lines) and not

applied (dashed lines) during the operation of the farm. The areas surrounding the lines (median values) refer to the range between the 25th

and 75th percentiles, being the results of multiple simulations of the same case.

6.5 Multi-objective co-design approach

The previous results have highlighted the negative impact in term of AEP losses in case wake steering is not applied during

the operation phase in a layout optimized through the co-design approach. This is tackled by performing a multi-objective480

optimization that maximizes the AEP for both the case when wake steering is applied and when this does not occur during

operation. This analysis is limited to the base case and to the exponential corrected geometric yaw relation, and it is performed

using the multi-objective version of the LO-GA introduced in section 3.6. The results are outlined in Fig. 18, where the Pareto

front is visible on the top-right, resulting from a max-max optimization. These have been obtained after 50 iterations of each

case, for which the hyperparemeters adopted for the base case are used. As highlighted by the cross in Fig. 18, it can be485

extracted from the Pareto front a layout that limits the AEP losses to 0.1% in case wake steering is not applied while ensuring

a gain higher than 0.3% if wake steering takes place.

6.6 Effect of wind direction discretization
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Figure 17. AEP gain obtained with co-design method for site types, showing the cases when wake steering is applied (solid lines) and not

applied (dashed lines) during the operation of the farm. The x-axis refers to the standard deviation of the probability of occurrence of each

wind direction, i.e. from unidirectional (low values) to omnidirectional (high values) wind roses. The areas surrounding the lines (median

values) refer to the range between the 25th and 75th percentiles, being the results of multiple simulations of the same case.

The AEP calculation within this study is based on the traditional procedure of discretizing the wind direction, selecting appro-

priate bins at which the power production of the farm is computed. The resolution of this discretization can have a significant490

impact on the WFLOP since a sufficiently high resolution is required to consider all the wake interactions between the tur-

bines. On the other hand, using a fine resolution for the wind directions can increase significantly the computational cost of the

optimization. As mentioned in section 5.2, 36 wind direction bins are adopted in our simulations, namely the wind direction

is discretized using bins of 10◦.The purpose of this section is to investigate the influence of this parameter on the co-design

approach described in this study.495

The simulations of the base-case are repeated modifying the size of the bins adopted for the wind direction, hence altering

the objective function used to calculate the AEP. Since such function is used also during the tuning phase of the LO-GA

hyperparameters, their values are recalculated accordingly. Specifically, a higher randomization of the initial population has

shown to be beneficial for both the sequential and the co-design approach, obtaining higher AEP values. This is applied for

all the wind direction resolutions tested in this section to provide consistency between the results. Moreover, for each case the500
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Figure 18. Multi-objective co-design approach based on the multi-objective optimization. Each data point indicates an optimized layout.

Multiple data points are included also for the sequential and the co-design approach, resulting from different simulations and providing a

probabilistic interpretation of the results in accordance with the other graphs. The axis of the plot refer to the AEP increase with respect to

the average AEP value obtained through the traditional sequential approach. The Pareto front is present on the top-right of the plot, resulting

from a max-max problem. A cross is included to identify a possible robust solution.

same resolution is applied for the layout optimization and the subsequent yaw optimization performed with the serial-refine

method.

The results are presented in Fig. 19, which shows a significant drop in the AEP improvement obtained through the co-design

approach as the wind direction resolution is increased, i.e the size of the bins becomes smaller. Moreover, the AEP values

correspondent the sequential and the co-design layouts are also shown individually to gain further insights on this behavior.505

These results are limited to exponential corrected relation since the influence of the wind direction resolution does not vary for

the different geometric yaw approaches. In general, the values of AEP improvement obtained for 10◦ bin size are lower with

respect to the results presented in Fig. 12, as a consequence of the higher randomization of the initial population.

Two different effects can be detected from this analysis. First, the AEP values decrease for both the sequential and the co-

design methods when the bin size is halved from 10◦ to 5◦. Increasing the wind direction resolution, more wake interactions510

are simulated within the farm, amplifying the wake losses. This sensitivity on the wind direction resolution is enhanced by

the characteristics of the base-case, where the limited number of turbines and the higher power density lead to fewer wake

interactions and prevent wake expansions. Moreover, the squared shape of the domain causes the wind directions that are

multiples of 45◦ to be characterized by high wake losses. This occurs due to the tendency of the turbines to be positioned

at the corners of the domain to maximize the use of the available area. All of these directions cannot be simulated in case515

the bin size is set to 10◦, limiting the accuracy of the results. However, the AEP reduction obtained for the 5◦ bin size is

more evident for the co-design case, diminishing the improvement obtained through this approach. Nevertheless, this effect
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Figure 19. Effect of wind direction resolution to the co-design approach, in terms of AEP for the sequential and the co-design layouts (on

the left) and AEP improvement (on the right). The areas surrounding the lines (median values) refer to the range between the 25th and 75th

percentiles, being the results of multiple simulations of the same case.

is expected to decrease when the number of turbines is larger, due to the occurrence of wake interaction for a wider range

of wind directions. The second effect that can be detected from Fig. 19 concerns the AEP trends as the wind direction bin

size is reduced from 5◦ to lower values. It can be observed that AEP values of the co-design layouts remain stable whereas520

those of the sequential layouts increase when a finer resolution is adopted. Therefore, they tend to converge towards the AEP

values of the layouts optimized using the co-design method, i.e. leading to an AEP improvement equal to 0% and nullifying the

usefulness of this approach. However, such result is highly conditioned by the application of the serial-refine method for yaw

optimization with a fine wind direction resolution. For instance, when a bin size of 1.25◦ is adopted for the simulations, the

optimal yaw angle is recalculated for every 1.25◦. Therefore, it is assumed that during the farm operation the wind direction525

is measured with an accuracy higher than 1.25◦ and the yaw angles of turbines are modified every time such change of 1.25◦

is detected. These conditions are far from being realistic, as mentioned by Quick et al. (2020). Therefore, the results presented

in Fig. 19 are altered by this assumption which is not consistent with current wind farm operational limits. Nevertheless, it can

be concluded that the application of an extremely precise wake steering control would saturate the benefits of the co-design

approach proposed in this study.530

7 Discussion

This section aims to interpret and provide further explanation on the results presented in the previous paragraphs. In general,

the methodology introduced in this work to solve the WFLOP based on co-design approach, namely the LO-GA and the

different geometric yaw relations, have succeeded to improve the methods available in literature. However, the increase in the

AEP of 0.8% described by Stanley et al. (2023) for a site characterized by Gaussian hill spatially varying inflow cannot be535

obtained for common sites such as the HKN location adopted for this study. Specifically, values up to 0.6% have been obtained
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in this analysis, when farms composed by more than 25 wind turbines are considered. As mentioned by Stanley et al. (2023),

this limited percentage can be translated into significant amounts in term of revenues and energy production. Specifically, since

HKN wind farm plans to fulfill the energy demand equivalent to 1 million households, this increase of 0.6% can be quantified as

the consumption of 6 thousand households in this case (Crosswind, 2024). Most importantly, this approach based on geometric540

yaw angles does not involve significantly higher computational cost with respect to traditional methods, unlike other co-design

implementations. On the other hand, the limited improvement in the AEP obtained with the co-design approach is affected by

the uncertainty related to the engineering models adopted for the calculations. Moreover, this modest increase in the AEP can

be difficult to detect during wind tunnel experiments or field tests. These considerations can challenge the reliability of this

method despite the promising results obtained from the simulations.545

Besides the benefits associated to the co-design approach in case wind farm control is applied during the operation, this

study has also highlighted the downsides of not implementing such control strategy. A decrease in the AEP is registered in

this case, as a consequence of adapting the objective function of the WFLOP to the wake steering technique. The magnitude

of such loss in the energy production is similar to the gain observed if the coherent procedure is applied. Therefore, it is

essential that the wind farm operator takes firm decisions on the control strategy prior to the design phase. Otherwise, the550

limited improvement of the co-design approach would be further challenged by the uncertainty caused by the future decisions

of the wind farm operator. To prevent such situation, a multi-objective co-design approach is proposed in this study, optimizing

the wind farm layout for both the case when wake steering is applied and the case when this does not happen. Therefore, such

method increases the reliability of the wind farm layout, minimizing the risk related to future decision on the control strategies

taken during the operation of the farm.555

The perspective and the limitations of the co-design approach for wake steering have been shown by the sensitivity analysis

performed in this study. First, a decrease in the AEP gain is observed for low power densitieswhereas it tends to saturate

above 15 Wm−2, irrespective of the shape of the available surface. Such behavior proves that including the geometric yaw

within the WFLOP is more effective when wake steering plays a major role. In particular, higher gains are obtained when

the distances between the turbines decrease hence the wake effect is more impactful. However, after a certain power density560

this improvement saturates can saturate due to the impossibility of further mitigation of the wake deficit. Second, similar

explanations can be provided to justify the dependence of the AEP improvement on the farm size, expressed in term of number

of turbines. In principle, extending the size of the farm increases the number of downstream turbines that experience lower

wind speeds, hence boosting the potential of wake steering and consequently of the co-design approach. However, a saturation

trend can be observed also in this case, caused by the impossibility of deflecting the wake towards a turbine-free region when565

the number of turbines surpasses a certain limit. Lastly, analyzing the effect of different wind resources it can be observed that

the sites characterized by unidirectional wind speed do not benefit significantly from the co-design approach. In this case, the

traditional methods adopted to solve the WFLOP arrange the positions of the turbines in order to avoid alignment along the

dominant wind direction, limiting the necessity of applying wake steering.

The results described in these sections are limited to the conditions tested in this study, which give a broad quantitative570

overview of the co-design potential but leave some points of discussion that can be addressed qualitatively as follows. First,

30



the wake models adopted in this work can influence the results of this analysis. Specifically, the adoption of a wake added

turbulence model such as Crespo-Hernandez (Crespo and Hernandez, 1996) is expected to widen the wake shape and enhance

its recovery. This could decrease the effectiveness of wake steering and the co-design approach in case of large wind farms.

However, these choices are not expected to impact significantly neither the geometric yaw relations nor the magnitude of the575

AEP gains described in this study. Second, the results presented in this research refer to the chosen reference turbine, i.e. the

DTU 10MW, and therefore can differ in case of a different turbine type. Nevertheless, all the geometric relations presented

here are normalized with the rotor diameter, hence they are not sensitive on the size of the turbine. However, the mismatch

between the geometric models, which generally scale with D, and the wind turbine power, proportional to D2, can influence

the analysis. This is expected to have a consequence on the coefficients of the geometric yaw relations, requiring additional580

tuning, whereas the final conclusion should not be impacted significantly.

Lastly, the analysis on the effect of the wind direction resolution adopted for AEP calculation with wake steering has

highlighted the importance of this parameter for the evaluation of the co-design approach. Specifically, the simplicity of the

base-case chosen to enable a straightforward comparison between the different methods has caused a high sensitivity with

respect to the wind direction bin size. In general, the use of a fine resolution seems to decrease the benefits of the co-design585

method, increasing the uncertainty on the results presented in this work. However, whereas the magnitude of the AEP improve-

ment is seriously affected by the size of the wind direction bins, the trends with the variables of interest are expected to remain

valid. Overall, this analysis has emphasized the necessity of including uncertainties within the yaw optimization process, as

suggested by the work of Quick et al. (2020). This would enable a more realistic evaluation of the co-design approach.

8 Conclusions590

A genetic algorithm tailored to the layout optimization and referred to as LO-GA has been developed in this study, where the

crossover and the mutation phases are implemented to capture the physical meaning of the optimization variables, in order to

improve the exploration of the design space. This method enables the improvement of regular layouts, usually not achievable

with basic versions of GA. Moreover, three novel relations have been introduced to calculate the geometric yaw angles, namely

linear, exponential and exponential corrected approach. Whereas the former two methods are based only on the streamwise and595

cross-stream distances of the nearest turbine, the last approach consider all the downstream turbines within the wake, enabling

a more accurate prediction.

A base-case consisting in a 16 turbines 16-turbines farms located at the HKN site has been studiedused to calculate the

improvement achieved with the co-design method, for which an increase in the AEP between 0.3% and 0.4% has been obtained.

To evaluate the potential of the co-design approach based on wake steering, a wider range of cases have been tested and the600

conclusions are summarized in the following list:

– The wind farms characterized by a high power density benefit the most from the co-design approach. Such trend saturates

above 15Wm−2. , irrespective of the shape of the available surface where the turbines can be positioned.
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– Increasing the farm sizenumber of turbines, an AEP increase up to 0.6% can be obtained. However, this value stabilizes

for a number of turbines higher than 25.605

– Sites characterized by a unidirectional wind do not benefit significantly from the co-design approach.

Besides the advantages in terms of AEP increase that we have mentioned, this study has investigated the effect of not

applying the control strategy during the operation phase in a layout optimized using the co-design method. Specifically, it

has been shown that a decrease in the AEP would occur, recommending that firm decisions about the control strategy have

to be taken prior to the design phase. To minimize the risk of losses related to future decisions on the control strategy, a610

multi-objective co-design method has been proposed, for which the layout is optimized simultaneously for the case when wake

steering is applied and when this does not occur during the operation phase. Adopting this approach, the AEP losses in a 16-

turbines layout can be limited to 0.1% if wake steering is not adopted, while keeping the AEP gain above 0.3% in case wake

steering is applied.

An analysis on the effect of the wind direction resolution has shown that the magnitude of the AEP gains is significantly615

affected by this parameter. Decreasing the size of the wind direction bins has resulted in a negative effect on the benefit

of the co-design approach. However, such influence is partially caused by the unrealistic assumption of minimal error in

wind direction measurements and absence of constraints in yaw actuation. Therefore, this analysis has raised the necessity of

integrating uncertainties within the yaw optimization to provide an accurate evaluation of the co-design method, indicating an

interesting pathway for future research.620

Lastly, some other recommendations for future work are mentioned. First, the geometric yaw relations can be improved to

provide a more accurate approximation of the optimal yaw angles. Specifically, the relations developed in this study neglect

the scenario when wake steering is not applied when two aligned turbines are too close to each other. Second, the integration

of machine grey/black-box machine learning models in the co-design framework is recommended to understand if a further

increase in the AEP can be achieved in case of a better approximation of optimal yaw angles. This study has shown that a625

better predictions of the optimal yaw angles does do not lead to a significant improvement in the co-design approach. However,

there is still a gap between the yaw angles obtained with the serial-refine method and the geometric yaw relations, which could

be filled using models based on machine learning techniques. Third, another recommendation for future work concerns the

objective of the WFLOP, which could be extended further than the AEP, for instance to load mitigation.
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