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Abstract. Wake steering represents a viable solution to mitigate the wake effect within a wind farm. New
research that consider the effect of the control strategy within the layout optimization are emerging, adopting
a co-design approach. This study estimates the potential of this technique within the layout optimization for a
wide range of realistic conditions. To capture the benefits of such method, a genetic algorithm tailored to the
layout optimization problem has been developed in this work, hence appointed as layout-optimization genetic
algorithm (LO-GA). The crossover phase is designed to recognize and exploit the differences and the similarities
between parent layouts whereas the randomness of the mutation is limited to improve the exploration of the
design space. New relations have been introduced to calculate the geometric yaw angles based on the reciprocal
positions between the turbines. For a base case of 16 turbines located at Hollandse Kust Noord site, a gain in the
annual energy production (AEP) between 0.3% and 0.4% is obtained when the co-design approach is adopted.
This increases up to 0.6% for larger farms, saturating after 25 turbines. However, the benefit of the co-design
decreases in case of low power densities or if the wind resource is highly unidirectional. On the other hand, in
case wake steering is not applied during the operation of the farm, a decrease in the AEP up to 0.6% is registered
for a layout optimized with the co-design method. To prevent the risk related to future decisions on the control
strategy, a multi-objective co-design approach is proposed. This is based on the simultaneous optimization of
the layout for a scenario in which wake steering is applied versus a case where wake steering is not adopted
during the operation of the farm. We have concluded that the solutions obtained with this method ensure an AEP
gain higher than 0.3% for a 16-turbines farm while limiting the loss below 0.1% in case wake steering is not
applied. However, these AEP gains are affected by the size of the wind direction bins adopted in the simulations,
enhancing the necessity of taking into account the wind direction errors and the yaw actuation constraints for a
realistic evaluation of the co-design approach.

1 Introduction

The mitigation of the wake interaction between wind turbines
represents one of the major challenges within the design and
the operation of wind farms (Meyers et al., 2022). Higher
power generation and load reduction can be achieved by min-5

imizing the wake effect, increasing the revenues associated to
the electricity production while extending the lifetime of the
farm (Cassamo, 2022). The rapid development of offshore
wind energy has urged the necessity of constraining a large

number of turbines in limited areas, increasing the impact of 10

these effects (Pettersen et al., 2023). Therefore, innovative
solutions are required to address the wake interactions in or-
der to extract the topmost value from a wind farm.

The minimization of the wake losses is generally ad-
dressed by selecting appropriately the positions of the tur- 15

bines within the available surface (Mosetti et al., 1994).
This design phase is usually referred to as wind farm lay-
out optimization problem (WFLOP) and aims to maximize
one or multiple objectives while satisfying various types of
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constraints, e.g. geographical restrictions or minimum spac-
ing (Feng and Shen, 2015). Different implementations of
WFLOP can be distinguished depending on how the posi-
tions of the turbines are related to the optimization variables.
Specifically, they can be parameterized through a limited5

number of variables by introducing regular layouts, where
periodic patterns are repeated throughout the farm. Other-
wise, the positions of the turbines can be identified by dis-
crete or continuous coordinates, depending on the require-
ments on the resolution of the design space. Therefore,10

WFLOP can assume different natures, whose choice often
depends on the trade-off between the required accuracy and
the computational cost, usually determined by the size of the
farm and the level of fidelity of the models adopted to calcu-
late the wake interactions. Depending on the purpose of the15

study, different objectives can be considered for the WFLOP.
However, current methods mainly focus on the maximization
of the annual energy production (AEP) or the minimization
of the levelized cost of energy (LCOE) (Tao et al., 2020).

Wind farm control represents another viable solution to20

mitigate the wake effects during the operation of the plant,
based on the performance optimization of the entire farm
considered as a one entity instead of a summation of individ-
ual optimized turbines (van Wingerden et al., 2020). Relying
on various concepts, different wind farm control techniques25

have been developed in the recent years (Meyers et al., 2022).
Among these approaches, wake steering has been demon-
strated to improve significantly the power production of a
wind farm, deviating the wakes from the downstream tur-
bines by actuating yaw control (Doekemeijer et al., 2021).30

The design phase of a wind farm is often not influenced
by the wind farm control technique, which are only consid-
ered during the operation of the plant (Stanley et al., 2023).
However, different studies have proved that taking into ac-
count the wind farm control strategy already during the de-35

sign stage could lead to significant improvements in the per-
formance, especially within the WFLOP. This is usually re-
ferred to as the co-design approach, in contrast to the tra-
ditional sequential method in which design and operation
phases constitute two separate blocks that are optimized in-40

dividually (Fleming et al., 2016).
The co-design approach is included in the WFLOP by

adapting the control variables during the computation of the
objective function, e.g. the axial induction factor for static
induction control or yaw angles for wake steering (Stanley45

et al., 2023). Aiming to optimize the wind farm layout con-
sidering its entire lifetime, the optimal control variables have
to be determined for each possible case experienced by the
farm, i.e. different combinations of wind speeds and direc-
tions. However, this leads to an optimization problem charac-50

terized by an extremely high number of variables, requiring
expensive computational resources in terms of core numbers
and/or simulation time (Fleming et al., 2016).

Various solutions have been introduced to tackle the "curse
of dimensionality" while capturing the benefits of the co-55

design approach. Fleming et al. (2016) and Yin et al. (2023a)
have decoupled the optimization problem, i.e. the control
variables are optimized on an initial layout and then these
values are assumed within the WFLOP. A nested approach
has been proposed by Pedersen and Larsen (2020), who have 60

iterated for each step the calculation of the optimal coordi-
nates followed by the optimization of the control variables.
Another nested method has been adopted by Chen et al.
(2022), decomposing the WFLOP for different wind scenar-
ios and constraining the same turbines’ positions through 65

a coordination problem. Another possible strategy consists
in the use of regular layouts to reduce the number of vari-
ables related to the WFLOP without affecting those related
to the control optimization (Hou et al., 2017). This approach
can be followed by a position refinement, as implemented 70

by Tang et al. (2022). Alternatively, the number of variables
can be diminished by limiting the simulations to one rep-
resentative wind speed value for each wind direction (Ge-
braad et al., 2017; Song et al., 2023). Machine learning sur-
rogate models are also implemented to fasten the computa- 75

tion of the objective function or to improve the exploration of
the highly-dimensional design space (Song et al., 2023; Yin
et al., 2023b).

Recently, a novel approach has been introduced by Stan-
ley et al. (2023) where analytical relations are used to ob- 80

tain the optimal control variables within the AEP calculation,
avoiding an expensive nested optimization. Specifically, this
study focuses on the wake steering technique and the yaw
angle of each turbine is determined for each flow case based
on the position of the downstream turbines, hence this ap- 85

proach is referred to as geometric yaw. This approximation
of the optimal yaw angles has also been implemented in the
open-source software FLORIS (National Renewable Energy
Laboratory, 2024). In the study of Stanley et al. (2023), this
method enables the integration of the wake steering within 90

the WFLOP, increasing the AEP up to 0.8% with respect
to the traditional sequential approach. However, this value
refers to a rather specific farm consisting of 16 wind tur-
bines simulated in a site characterized by a Gaussian hill
spatially varying inflow. Moreover, high power density and 95

low minimum distance spacing between turbines have been
adopted. As mentioned by Stanley et al. (2023), these con-
ditions boost the benefits of the co-design approach, com-
ing close to the maximum improvement achievable with the
proposed method. On the other hand, the geometric yaw re- 100

lation introduced by Stanley et al. (2023) is based on a lim-
ited number of variables, enabling a straightforward interpre-
tation and implementation. Therefore, there is a significant
margin of improvement that could enhance the advantage of
the co-design approach for wake steering. These consider- 105

ations demonstrate the necessity to understand the real po-
tential of the geometric yaw method within the WFLOP for
more realistic conditions.

A crucial aspect of the WFLOP is the choice of the op-
timization algorithm to extract the optimal positions of the 110
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turbines. The literature lacks a full agreement on the most
appropriate optimization algorithm and both gradient-based
(GB) and gradient-free (GF) techniques are adopted to solve
the WFLOP (Thomas et al., 2023). The non-convexity of
WFLOP challenges conventional GB methods in reaching5

the global optimum, requiring multiple runs from a variety
of starting conditions (Guirguis et al., 2016). An attempt to
reduce the multi-modality of the problem has been made by
Thomas et al. (2022), who introduced a technique named
wake expansion continuation, based on the gradual reduc-10

tion of the wake diameter during each iteration. Moreover,
GB methods cannot guarantee high performance on black-
box objective functions, which would require the compu-
tationally expensive finite differences for the calculation of
the gradient (Martins and Ning, 2022). On the other hand,15

GF approaches such as genetic algorithm (GA) and particle
swarm optimization (PSO) are usually favorable in case of
a design space characterized by many local optima. How-
ever, these methods could lead to a higher number of func-
tion calls than GB and tend not to scale effectively with high20

number of variables (Rios and Sahinidis, 2013). Sparse non-
linear optimizer (SNOPT) (Gill et al., 2005) is often adopted
for WFLOP and it has been used by Stanley et al. (2023) to
test the co-design approach using the geometric yaw relation.
However, the study from Thomas et al. (2023) has compared25

eight promising optimization algorithms, including SNOPT,
and has concluded that the best performance are achieved by
a discrete exploration-based optimization (DEBO) method,
which combines a greedy initialization and discrete refine-
ment of the solution, developed specifically for the WFLOP.30

The popularity of GA to solve the WFLOP is due to its
ability to explore the design space with a high degree of solu-
tions’ variety. However, as the number of turbines increases,
the capability of convergence is seriously affected. This is
demonstrated in Fig. 1, which shows the results of a basic im-35

plementation of the GA using the open-source python library
PyGad (Gad, 2023). In this figure, the case where a regular
layout is used to create an initial population is compared to a
random initialization of the optimization variables. It can be
observed that in the former case the GA is not able to further40

improve the initial layout whereas in the latter the GA can-
not converge to a solution better than a regular layout. This
behavior is related to the excessive randomness that charac-
terizes the exploration of the design space. Therefore, this
study aims to exploit the ability of the GA to explore a non-45

convex design space while improving its convergence ability
by capturing the physical meaning of the optimization vari-
ables. This is achieved by developing novel method named
layout-optimization genetic algorithm (LO-GA), where the
selection, crossover and mutation phases are designed specif-50

ically for the WFLOP.
The contribution of this work is fourfold:

– New geometric yaw relations are formulated to improve
the capability of approximating the optimal yaw angles.
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Figure 1. WFLOP using PyGad GA: comparison between the use
of a random initial population and a population generated from a
regular layout. The solid lines represent the median AEP increase
with respect to the regular layout, whereas the areas refer to the
range between the 25th and 75th percentiles, being the results of
multiple simulations of the same case.

– The effectiveness of the co-design approach is tested for 55

different power densities, farm sizes and site types, to
understand the potential of this method in realistic con-
ditions.

– The impact of not applying wake steering for a layout
optimized using the co-design method is quantified and 60

a multi-objective co-design approach is investigated.

– A tailored genetic algorithm for the WFLOP is devel-
oped, referred to as LO-GA.

The remainder of the paper is structured as follows. In sec-
tions 2-5 the methodology adopted in this work is explained, 65

describing the LO-GA and the geometric yaw relations de-
veloped in this study, as well as introducing the case stud-
ies that have been selected. Then, section 6 includes the re-
sults that quantify the potential of the co-design approach.
These results are then discussed in section 7 whereas section 70

8 draws the conclusions and includes the recommendations
for future work.

2 Co-design within wind farm layout optimization

This section explains how the wind farm layout optimiza-
tion can be solved adopting a co-design approach. First, the 75

WFLOP is defined specifying objectives and constraints con-
sidered in this study. Second, the methodology adopted to ap-
ply and evaluate the co-design concept within the WFLOP is
described.
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2.1 Wind farm layout optimization problem

WFLOP consists in optimizing the position of the turbines
within a pre-defined area. In this study, the objective of the
WFLOP is the maximization of the AEP, calculated as shown
in Eq. 1 by summing the power (Pθ,u) generated by the farm5

for every wind direction (θ) and speed (u) multiplied by the
correspondent probability of occurrence (ρθ,u). This is re-
ferred as the objective or fitness function. The optimization
variables are identified by the Cartesian coordinates of the
turbines (x,y), hence the total number of variables is equal10

to 2nwt, with nwt indicating the total number of turbines.
The turbines’ positions are restricted to a rectangular area, as
expressed in Eq. 2. Moreover, a spacing constraint is con-
sidered to guarantee a minimum distance (dmin) between the
turbines, formulated in Eq. 3.15

max
x,y

AEP (x,y) = max
x,y

8760hyr−1·
Nθ∑
θ=0

Nu∑
u=0

ρθ,u·Pθ,u(x,y)

(1)

xi ∈ [xmin,xmax] , yi ∈ [ymin,ymax] ∀i, j ∈ nwt (2)

√
(xi −xj)

2
+(yi − yj)

2 ≥ dmin ∀i, j ∈ nwt s.t. i ̸= j (3)

The AEP of the wind farm is computed using PyWake
(Pedersen et al., 2023), an open-source tool developed by the20

Technical University of Denmark (DTU) which simulates the
wake interaction between the turbines of a wind farm. The
Bastankhah Gaussian Deficit (Bastankhah and Porté-Agel,
2014) model is selected in this study to calculate the wake
deficit whereas the wake deflection is calculated according25

to Jiménez et al. (2010).

2.2 Co-design approach

Within the WFLOP, the co-design approach consists in con-
sidering the control strategy of the wind farm while comput-
ing the objective function. In this case, the wind farm control30

strategy is limited to the wake steering whereas the objec-
tive consists in the AEP calculation. Yaw angles are there-
fore specified for each wind speed and direction bin while
computing the AEP through the PyWake function.

In this study, the improvement obtained through the co-35

design approach is determined as follows. First, the wind
farm layout optimization is performed for both cases, namely
neglecting and considering wake steering through the geo-
metric yaw relations, obtaining two different layouts. The
same starting layout is adopted to avoid the influence of40

different initial conditions. Second, an accurate yaw opti-
mization is computed for both layouts, determining the op-
timal angles for each wind speed and direction. Specifically,

Table 1. Hyperparameters of LO-GA

Hyperparameter name Symbol

Number of generations ngen

Size of the population npop

Number of parent solutions to keep nkeep

Percentage of selection ps
Percentage of mutation pm
Step of mutation sm
Distance limit dlim

the serial-refine yaw optimization method is adopted in this
study for this phase (Fleming et al., 2022). Then, the AEP 45

is calculated for both layouts considering the optimal yaw
angles obtained in this last step. These AEP values are fi-
nally compared, expecting the wind farm layout obtained
through the co-design approach to outperform the layout re-
sulted from the traditional method. 50

3 Layout optimization genetic algorithm (LO-GA)

A genetic algorithm named LO-GA tailored to the WFLOP
is developed in this work, where new methods are intro-
duced specifically for this optimization problem. These are
explained in the next sections following the main blocks that 55

constitute the classic implementation of a GA, namely ini-
tialization of the population, selection, crossover and muta-
tion. Table 1 includes all the hyperparameters required by
the algorithm, which will be described in the next sections
in detail along with their tuning phase. Specifically, some of 60

these hyperparameters allow different values depending on
the generation number, enabling dynamic selection and dy-
namic mutation (Hassanat et al., 2019). An overview of LO-
GA is included in Fig. 2, where the main blocks, i.e. selec-
tion, crossover and mutation, are highlighted. 65

3.1 Initial population

The starting point of a GA consists in providing an ini-
tial population of solutions that enables the algorithm to
converge towards an optimal solution. Therefore, the initial
population has to be sufficiently close to the optimal solu- 70

tion while preserving the randomness required to further im-
prove such starting solution. Specifically, an initial popula-
tion with a low degree of randomness would achieve only
limited improvements whereas an excessive degree of ran-
domness would require an unfeasible number of the gener- 75

ations for the algorithm to converge. In this study, a regular
layout (xreg,yreg) is generated based on the number of tur-
bines (nwt), where these occupy the positions of a squared
grid. Such layout is duplicated nwt times in order to form
the population matrices (Xreg,Yreg). These matrices will 80

be the base unit for the LO-GA iterations, where different
solutions are contained along the first dimension (axis 0)
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Figure 2. Layout optimization genetic algorithm (LO-GA)

whereas the coordinates of each solution are present in the
second dimension (axis 1). To include the randomness within
the initial population a mutation step is applied, obtaining
the parent population matrices (Xpar,Ypar). The mutation
phase is described in detail in section 3.4, where it is men-5

tioned that it requires the fitness value of the solutions, i.e.
the AEP in this study. Specifically, the fitness value of each
individual turbine is needed. Such calculation is enabled by
the PyWake method for AEP calculation and it is performed
for Xreg,Yreg. These values are stored in the fitness matrix10

(Freg), which has the same structure of Xreg,Yreg. Lastly,

the fitness values are computed for the parent population
matrices (Xpar,Ypar) and stored in the parent fitness ma-
trix (Fpar). In conclusion, Xpar,Ypar and Fpar represent the
starting point for the LO-GA iterations described in the fol- 15

lowing sections.

3.2 Selection

The selection phase developed in the LO-GA is divided into
two different steps. First, a pre-selection is applied, where
the (1− ps) ·npop solutions characterized by the lowest fit- 20
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ness are discarded. The fitness of the solutions is expressed
through the fitness parent vector (fpar), obtained by the sum
of the AEP of all the turbines for each layout in the popula-
tion. After this pre-selection phase, the tournament technique
is adopted to extract the best solutions while ensuring a suf-5

ficient degree of randomness (Miller and Goldberg, 1995).
Therefore, the outputs of this phase are new parent popula-
tion matrices (Xpar,Ypar) with the selected solution, along
with their correspondent fitness parent matrix (Fpar).

3.3 Crossover10

The purpose of the crossover phase is to generate children
solutions from the parent population, aiming to capture and
combine the optimal characteristics of each parent. This rep-
resents the main difference with respect to the traditional ge-
netic algorithms where the crossover is determined by the15

random combination of the parent solutions. On the other
hand, the crossover phase integrated in the LO-GA relies on
the fitness value of every individual turbine to prevent an ex-
cessive randomness during the design space exploration. The
first step consists in dividing the parent population into two20

different parent matrices, i.e. obtaining Xpar,1,Ypar,1 and
Xpar,2,Ypar,2 starting from Xpar,Ypar. Meanwhile, the val-
ues of the parent fitness matrices Fpar,1,Fpar,2 are inherited
from Fpar since the parent solutions have not been mod-
ified yet. Then, each solution contained in Xpar,1,Ypar,125

is coupled with a solution of Xpar,2,Ypar,2 and the actual
crossover phase starts. This is applied to each couple of solu-
tions and is divided into two different steps, namely the tur-
bine association and the linear/random crossover, where for
every couple of parent solutions two different children solu-30

tions are generated. First, the turbine association aims to un-
derstand the similarities of the two coupled layouts, labelling
each turbine as paired or outliers. In case a turbine from the
first layout is positioned within a distance lower than dlim
from a turbine of the second layout, these two turbines are35

labelled as paired. The condition that a turbine of the first
layout can be paired with a maximum of one turbine of the
second layout, and vice versa, is enforced. Otherwise, the tur-
bines are labelled as outliers. An example of this process of
turbine association is depicted in Fig. 3.40

The second step consists in applying two novel techniques
developed specifically for this optimization problem: ‘linear
crossover’ between paired turbines and ‘random crossover’
between the outliers. The former technique aims to com-
bine the positions of the two paired turbines, identified by45

(xp,1,yp,1) and (xp,2,yp,2), in order to generate two different
children turbines, identified by (xc,1,yc,1) and (xc,2,yc,2),
contained in the first and in the second children layouts and
positioned along the line that connects the parent turbines.
Specifically, (xc,1,yc,1) is placed within the parent turbines50

whereas (xc,2,yc,2) on the side of the parent turbine charac-
terized by the highest fitness value. Indicating with f1 and f2
the fitness values of the two paired parent turbines extracted

from Fpar,1,Fpar,2, the coordinates of the children turbines
are calculated as shown in Eq. 4-6. Therefore, the children 55

turbines move closer to the parent turbine characterized by
the higher fitness. This process is shown through an example
in Fig. 3. Lastly, to complete the children population, a ran-
dom crossover is applied between the outlier turbines. This
means that the remaining turbines for each children layouts 60

are selected randomly among the outlier turbines of the par-
ent coupled layouts.


xc,1 =

f1
f1 + f2

·xp,1 +
f2

f1 + f2
·xp,2

yc,1 =
f1

f1 + f2
· yp,1 +

f2
f1 + f2

· yp,2
(4)


xc,2 = xp,1 +(xp,1 −xp,2) ·

f1
f1 + f2

yc,2 = yp,1 +(yp,1 − yp,2) ·
f1

f1 + f2

if f1 ≥ f2 (5)


xc,2 = xp,2 +(xp,2 −xp,1) ·

f2
f1 + f2

yc,2 = yp,2 +(yp,2 − yp,1) ·
f2

f1 + f2

if f2 > f1 (6) 65

3.4 Mutation

After the crossover phase the children solutions are com-
pacted into the children population matrices Xchild,Ychild,
which will be mutated to foster the diversity and the ran-
domness of the solutions. Specifically, adaptive mutation is 70

applied in this study while keeping the physical meaning
of the design variables, i.e. spatial coordinates (Marsili Li-
belli and Alba, 2000). However, to apply an adaptive muta-
tion the fitness values of the children solutions have to be
calculated hence the fitness children matrix (Fchild) is com- 75

puted. Specifically, the concept of adaptive mutation is ap-
plied within each individual turbine of the children layouts
through assigning a different probability of mutation to ev-
ery turbine. Therefore, for every solution, the turbines are
sorted based on their fitness,and a value increasing linearly 80

from 0 (best turbine) to max[nwt · pm,1] (worst turbine) is
assigned to every turbine. Based on this probability of muta-
tion, a boolean matrix (Mx,y) is created to determine which
of the turbines of Xchild,Ychild will mutate. Simultaneously,
the matrices containing the step of mutation (Sm) and direc- 85

tion of mutation (Θm) are created by generating random val-
ues within [0,sm] and [0◦,360◦], respectively. These values
differ for each turbine in the children population matrices.
Then, Eq. 7 is applied to perform the mutation of the children
population. The presence of Mx,y ensures that only a lim- 90

ited number of turbines will mutate irrespective of the values
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Figure 3. The figure on the left shows an example of the turbine association phase. The figure on right depicts the linear crossover technique
for a limited number of turbines, highlighted by the yellow area. This example does not represent an optimized layout used in this study but
it has the only purpose of clarifying the process adopted to apply these techniques.
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Figure 4. Example of mutation. This example does not represent
an optimized layout used in this study but it has the only purpose of
clarifying the process adopted to apply this technique.

of Sm and Θm. This type of mutation limits the degree of
randomness but ensures that the new mutated solutions will
not differ significantly from the optimal layout, obtaining a
faster convergence. An example of this mutation process is
depicted in Fig. 4.5

{
Xchild =Xchild +Mx,y ·Sm · cos(Θm)

Ychild =Ychild +Mx,y ·Sm · sin(Θm)
(7)

The last step of the LO-GA is to compute the fitness cal-
culation of the children population after mutation, obtaining
a new fitness matrix ( Fchild), which will be the input for the
next generation along with Xchild,Ychild.10

3.5 Hyperparameters tuning

To ensure an effective usage of the GA described in the pre-
vious paragraphs, the hyperparameters mentioned in Table 1
have to be properly tuned. The tuning phase presented in this
study focuses only on the values of ps, pm, sm and dlim,15

whereas nkeep is assumed equal to 3 for each simulation. On

the other hand, ngen and npop are chosen depending on the
specific analysis since a saturation behaviour is expected in-
stead of finding optimal values.

The concept of dynamic mutation and selection is tested, 20

which consists in changing the hyperparameters depending
on the generation number (Hassanat et al., 2019). In this case,
the purpose is to foster the mutation in the earliest genera-
tions to maximize the randomness and adopting a less ag-
gressive mutation in the last generations, where only few re- 25

finements are intended. Specifically, the maximum and the
minimum values are specified for each parameter to tune and
a linear increase/decrease is adopted to obtain the values for
each generation. Therefore, different combinations of hyper-
parameters are tested in order to find the optimal values for 30

this analysis. The WFLOP described in the base case in sec-
tion 5.2 is adopted at this stage.

The results of this tuning phase are depicted in Fig. 5,
where the violin plots of different cases specified on the x-
axis are shown. To limit the computational resources of this 35

phase, when a hyperparameter is tested, the others are kept
constant and equal to a pre-defined values. The reason why
violin plots are included instead of individual values is re-
lated to the random nature of the LO-GA, which requires a
statistical interpretation of the results. The values present in 40

the violin plot refer to the percentage difference in the AEP
with respect to the average value of all the simulations per-
formed in this hyperparameter tuning analysis. The optimal
values are summarized in Table 2 and are adopted in the other
simulations performed in this study. It can be observed that 45

the dynamic mutation is favorable for the performance of the
LO-GA whereas a constant value of percentage of selection
for all the generations is more effective.

3.6 Multi-objective LO-GA

A multi-objective version of the LO-GA described in the pre- 50

vious sections has been developed in this work to enable a
wider evaluation of the co-design approach. Such implemen-
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Figure 5. Violin plots of the hyperparameter tuning. 10 simulations of the same case are performed to create each plot. Unless explicitly
mentioned in the x-axis of each plot, the following hyperparameters are adopted: ps = 0.3→ 0.9, pm = 0.3→ 0.1, sm = 2D → 0.5D,
dlim = 2D. The remaining hyperparameters are set as follows: npop = 100, ngen = 100, nkeep = 3.

Table 2. Optimal values for the hyperparameters of GA. Two num-
bers are specified, referring to the first and the last generation, re-
spectively. These values are adopted in the simulations performed
in this study.

Hyperparameter Optimal values

ps 0.7→ 0.7
pm 0.4→ 0.05
sm 3D → 0.2D
dlim 2D

tation requires some modifications to be applied to a multi-
objective optimization problem and it is based on the con-
cepts of non-domination rank and crowding distance (Deb
et al., 2002). As described in the previous sections, the fit-
ness evaluation of every individual turbine is required for the5

crossover and the mutation phases. Specifically, these values
are used to apply the linear crossover technique e to deter-
mine the probability of mutation, whose require the turbines
to be ranked based on their fitness value. However, in case
of a multi-objective optimization problem, the ranking of the10

turbines is not univocal. Therefore, to avoid the ambiguity in-
troduced by the multiple objectives, the fitness of the turbines
is determined by the norm-1 between the normalized fitness
values of the different objectives. This allows to preserve the
structure of the crossover and mutation phases described in15

sections 3.3 and 3.4.

4 Geometric yaw relations

This section describes the novel geometric yaw relations de-
veloped in this study and adopted for the co-design simu-
lations. First, the dependence on the main variables is dis- 20

cussed and new relations are introduced, comparing these
approaches to the work of Stanley et al. (2023). Second, vari-
ous effects that impact the optimal yaw angle of a turbine are
examined and approximated through a new expression that
ensures a higher accuracy in optimal yaw predictions. 25

4.1 Dependence on geometric variables

Stanley et al. (2023) have introduced a geometric yaw rela-
tion to approximate the optimal yaw angle of a turbine based
on the streamwise (dx) and the cross-stream (dy) distance to
its nearest downstream waked turbine. This relation is linear 30

with respect to dx whereas the influence of dy is only lim-
ited to the sign of the geometric yaw value, as shown in Eq. 8
(Stanley et al., 2023).

γgeom = sign(dy) · 30 ·
[
1− 1

25

dx

D

]
(8)

However, it can be detected from the study of Stanley et al. 35

(2023) that a decreasing trend is present between the abso-
lute value of dy and the optimal yaw angles. Therefore, two
novel relations are introduced to capture this behaviour, in-
cluded in Eq. 9 and 10, respectively. The first relation extends
the linear behaviour on dx present in Eq. 8 also to dy and is 40

characterized by three coefficients (γmax,mx,my) that have
to be properly tuned. This relation is appointed as linear ap-
proach in this study. On the other hand, Eq. 10 is based on
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exponential relations in order to guarantee higher flexibility
in the shape of the curves, ensured by two more coefficients
to tune. Therefore, this novel expression is referred as ex-
ponential approach and is characterized by five coefficients
(γmax,px,py, qx, qy).5

γgeom = sign(dy) ·max

[
γmax −mx

dx

D
−my

|dy|
D

,0

]
(9)

γgeom = sign(dy)·γmax·
px +1

px +exp
(

1
qx

dx
D

) · py +1

py +exp
(

1
qy

|dy|
D

)
(10)

These approaches described in Eq. 9 and 10 focus only
on the position of the nearest downstream waked turbine for
the calculation of the geometric yaw, whose identification10

is performed as described by Stanley et al. (2023). How-
ever, it is preceded by a filtering phase based on the effec-
tive wind speed value assuming that wake steering is not ap-
plied. Specifically, the effective wind speed (wseff ) is com-
puted for each wind turbine of the farm using the appro-15

priate PyWake function. Then, the turbines characterized by
wseff >wsrated are filtered out from the identification of the
nearest waked turbine. This stage is introduced to avoid that
a loss in power in the upstream turbine when an increase in
the wind speed experienced by the downstream turbine does20

not affect its power generation, i.e. it is operating above rated
region. This step is referred as the wind speed filtering phase
and slightly increases the computational time of the process.
However, a gain in accuracy of the geometric yaw approxi-
mation is expected.25

4.2 Implementing corrections to the geometric yaw

The purpose of this section is to apply different corrections to
the geometric yaw relation, aiming to improve the approxi-
mation of the optimal yaw angle. The novelty of this method
is based on considering multiple waked turbines instead of30

limiting the relation to the nearest turbine. This new approach
is referred as exponential corrected relation since it is based
on the Eq. 10. The corrective/filtering steps applied in this
approach are summarized in the following list and explained
in detail in the next paragraphs.35

1. Wind speed filtering

2. Initial optimal yaw approximation

3. Optimal yaw correction

4. Effective wind speed correction

The wind speed filtering phase consists in the calculation40

of the effective wind speed assuming no wind farm control

strategy. However, in this case not only the turbines char-
acterized by wseff >wsrated are filtered out from the iden-
tification of the waked turbines, but also those presenting
wseff <wscut−in − δcut−in. In this study, δcut−in = 2 ms−1

45

is assumed. The reasoning behind this additional correction
is to avoid the penalization of the upstream turbine caused by
the yaw misalignment if the gain in wind speed for the down-
stream turbine is not sufficient to achieve a value higher than
wscut−in. 50

After the wind speed filtering, an initial approximation of
the optimal yaw angle (γinitial) is calculated based on Eq. 10.
Unlike the previous approaches focused only on the near-
est waked turbine, the geometric yaw is calculated consider-
ing every downstream waked turbine individually, identified 55

through the variables dx and dy. Among these multiple ge-
ometric yaw values, the γinitial is given by highest of these
values. Even though in many cases this value is determined
by the nearest downstream waked turbine, there are some sit-
uations when such turbine does not coincide with the one that 60

influences the most the optimal yaw of the upstream turbine.
This is explained through an example depicted in Fig. 6. In
this illustration, three turbines are considered, and the opti-
mal yaw angle of the first turbine is studied in relation to the
position of the third turbine. These optimal yaw angles de- 65

picted in the figure on the right are calculated through the
serial-refine method, hence they represent the target for the
geometric yaw relation. The dashed line represents the op-
timal yaw angle of the first turbine in case only the second
turbine is present, i.e. the nearest turbine. It can be observed 70

that for high values of dy, the third turbine does not influ-
ence the optimal yaw angle of the first turbine. However, in
case of a better alignment with the first turbine, i.e. dy ≈ 0,
the third turbine has an impact on the value even though it is
not the nearest turbine. In summary, this initial yaw approxi- 75

mation identifies the downstream waked turbine that has the
highest impact on the optimal yaw angle and calculates the
geometric yaw based on the dx and dy of this turbine.

The initial yaw approximation is then corrected consider-
ing the influence of the other downstream waked turbines. 80

The aim of this correction is to avoid that the wake of the up-
stream turbine is steered towards other downstream turbines
after the initial yaw approximation. Suppose that the most
impactful downstream turbine on the optimal yaw angle of
the upstream turbine is characterized by sign(dy)> 0. The 85

initial yaw approximation causes a steering of the wake to-
wards the region such that sign(dy)< 0. Therefore, only the
turbines characterized by a sign(dy) opposite to the sign(dy)
of the turbine that has determined the initial yaw approxima-
tion are relevant for this correction. Similarly to the previous 90

case, an example is introduced to clarify the need of this cor-
rection, illustrated in Fig. 7. It can be observed that the third
turbine has no influence on the optimal yaw angle of the first
turbine in case of dy ≪ 0. However, as the dy of the third tur-
bine increases, the optimal yaw angle decreases to avoid that 95

the wake is steered toward this turbine. However, if dy ≈ 0
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Figure 6. Example introduced to explain the reasoning behind the
initial optimal yaw approximation. The influence on the optimal
yaw angle of the upstream turbine is studied depending on the po-
sitions of two downstream turbines. The optimal yaw angle of tur-
bine 1 is studied in relation to the position the turbine 3. The left
plot illustrates the different positions considered in this example,
The right plot shows the optimal yaw angle of the turbine 1 for two
cases: neglecting the presence of turbine 3 (dashed line) and consid-
ering different positions (identified by dy) of turbine 3 (solid line).

it becomes more convenient to increase the magnitude of the
yaw of the first turbine in order to steer the wake away from
both turbines.

This situation is tackled as follows. First, the wake deflec-
tion caused by γinitial is calculated using the approach of5

Jiménez et al. (2010). Therefore, the local change in wind
direction experienced by the downstream waked turbine is
calculated through Eq. 11 (Jiménez et al., 2010). CT and k
refer to the thrust coefficient and the wake expansion coeffi-
cient, respectively. The former is extracted from the turbine10

data, depending on the free-stream wind speed, whereas the
latter is assumed equal to 0.1.

δwd =−CT

2

sin(γinitial) · cos2(γinitial)
1+ k · dx

D

(11)

The values of dx and dy of the turbine of interest, i.e. such
that sign(dy) is opposite to the value from which γinitial15

is calculated, are then modified through a rotation of δwd.
Therefore, new values dxδwd

and dyδwd
are obtained, de-

scribing the position of the relevant downstream waked tur-
bines based on the direction of the deflected wake. Subse-
quently, the method used to calculate γinitial is repeated us-20

ing dxδwd
and dyδwd

as input for the exponential relation of
Eq. 10. Therefore, a new geometric yaw value for the up-
stream turbine is obtained, appointed as geometric yaw cor-
rection (γcorr) and used to improve the initial approximation
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Figure 7. Example introduced to explain the reasoning behind the
optimal yaw correction. The influence on the optimal yaw angle of
the upstream turbine is studied depending on the positions of two
downstream turbines. The optimal yaw angle of turbine 1 is studied
in relation to the position the turbine 3. The left plot illustrates the
different positions considered in this example, The right plot shows
the optimal yaw angle of the turbine 1 for two cases: neglecting
the presence of turbine 3 (dashed line) and considering different
positions (identified by dy) of turbine 3 (solid line).

as described in Eq. 12. The coefficient αcorr is properly tuned 25

to weight this yaw correction accordingly.

γgeom = γinitial +αcorr · γcorr (12)

Lastly, a wind speed correction factor (fws) is multiplied
to the geometric yaw to penalize high values of γgeom in case
the deviation of the effective wind speed from the free-stream 30

value is limited. The motivation to include such correction
in the geometric yaw is related to cubic dependence of the
generated power with respect to the incident wind speed. fws

is calculated as described in Eq. 13, where the coefficient
αws is part of the tuning process. 35

fws = 1−αws · exp(wseff −ws) (13)

Table 3 summarizes the geometric yaw relations analysed
in this study along with their coefficients, which are properly
tuned as described in the next section.

4.3 Tuning of the coefficients 40

The tuning of the coefficients of the relations introduced in
the previous paragraphs aims to guarantee a precise approx-
imation of the optimal yaw angles. The method adopted for
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Table 3. Geometric yaw relations analysed in this study.

Name Relation Coefficients

Stanley relation γgeom = sign(dy) · 30 ·
[
1− 1

25
dx
D

]
-

Linear relation γgeom = sign(dy) ·max
[
γmax −mx

dx
D

−my
|dy|
D

,0
]

γmax, mx, my

Exponential relation γgeom = sign(dy) · γmax · px+1

px+exp
(

1
qx

dx
D

) · py+1

py+exp

(
1
qy

|dy|
D

) γmax, px, py, qx, qy

Exponential corrected relation γgeom = fws · (γinitial +αcorr · γcorr) γmax, px, py, qx, qy, αcorr, αws

this tuning phase assumes that the optimal values of the co-
efficients are those that lead to the maximization of the AEP
when the geometric yaw relations are applied. Specifically,
the tuning of the coefficients can be divided into two differ-
ent steps. First, different wind farm layouts are generated to5

evaluate the geometric yaw relations. Second, an optimiza-
tion problem is solved to extract the values of the coefficients
that maximize the AEP for the given layouts.

Since in the second step the AEP is calculated for all the
layouts at each evaluation of the objective function, the to-10

tal number of layouts has to be limited to avoid excessive
computational requirements. On the other hand, these layouts
have to be chosen in order to prevent that the geometric yaw
relations are effective only for few specific cases. Therefore,
20 different layouts are generated through few generations of15

the LO-GA. Specifically, population size and number of gen-
erations are set equal to 100 and 10, respectively, whereas
the number of turbines and the power density are selected
randomly in the ranges 16− 72 and 10− 20Wm−2.

After the generation of these layouts, the optimization20

problem to tune the coefficients of geometric yaw relations is
structured as follows. The objective function consists in the
average percentage increase in the AEP among the 20 differ-
ent layouts when applying the geometric yaw relation with
respect to the case without wake steering. The optimization25

variables are the coefficients of the geometric yaw relations,
which are bounded in ranges determined by the experience
based on preliminary simulations. This optimization prob-
lem is solved using a basic GA implementation in PyGad
(npop = 50, ngen = 30). The results of this tuning phase, i.e.30

the optimal coefficients, are included in Table 4 and adopted
during the simulations performed in this study.

Among the various coefficients present in the geometric
yaw relations and included in Table 4, γmax has a clear phys-
ical interpretation since it represents the maximum absolute35

value for the yaw angles of the turbines. In this study, γmax

has been tuned targeting the maximization of the AEP with-
out applying any restriction. However, the tuning of γmax

could be constrained to take into account actuation limits
or requirements on the structural loading, since it has been40

demonstrated that wake steering can have a negative impact
on some load channels (Shaler et al., 2022).
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Figure 8. Wind rose of Hollandse Kust Noord site.

5 Case study

This section defines the case study adopted in this work to
evaluate the co-design approach for the WFLOP. First, the 45

wind scenario and the turbines adopted in the simulations are
defined. Second, the base-case selected to evaluate the differ-
ent geometric yaw relations is introduced. Lastly, the modi-
fications introduced to the base-case to perform a sensitivity
analysis are explained. 50

5.1 Site and turbines

The wind conditions adopted for the simulations in this study
refer to the Hollandse Kust Noord (HKN) site in the Nether-
lands (Netherlands Enterprise Agency, 2019). The wind rose
is computed assuming a uniform Weibull distribution from 55

the scale and shape factor of 12 sectors, as shown in Fig. 8.
The turbine type chosen for the simulation is the reference
DTU 10MW, available in PyWake.

5.2 Base case

The aim of this base-case is to evaluate the potential of the 60

co-design approach in comparison with the study of Stan-
ley et al. (2023), assuming HKN site conditions. Therefore,
a 16-turbine wind farm is adopted, characterized by a power
density of 20Wm−2 and a squared available area. 36 and 23
bins are used during the simulations for the wind direction 65
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Table 4. Tuned coefficients of the geometric yaw relations.

Stanley relation Linear relation Exponential relation Exponential corrected relation

- - γmax 19.788◦ γmax 20.928◦ γmax 20.771◦

mx 0.424 px 8.146 py 5.069
my 12.019 py 6.320 py 7.474

qx 5.381 qx 6.519
qy 0.346 qy 0.393

αcorr 0.473
αws 0.091

Table 5. Base-case

Wind rose HKN
Turbine DTU 10 MW
Wind speed bins 23
Wind direction bins 36
Minimum distance constraint 2 D
Power density 20Wm−2

and the wind speed, respectively. Lastly, the minimum dis-
tance constraint (dmin) is set equal to 2D. These information
are summarized in Table 5.

5.3 Sensitivity analysis

Due to the limited size and the large power density of the5

farm studied in the base-case, a sensitivity analysis is per-
formed to understand the potential of the co-design approach
for a wider range of conditions. Specifically, different power
density values are tested to match conditions similar to cur-
rent wind farm development projects. This is achieved by10

keeping the same number of turbines included in the base-
case while extending the available area. On the other hand,
larger size of wind farms are simulated to investigate the ben-
efits of this method for future large plants. Therefore, new
simulations are performed increasing both the number of tur-15

bines and the available area, while keeping the power density
equal to 20Wm−2. Lastly, the impact of the site is analyzed
in terms of distribution of the wind probability among the dif-
ferent wind sectors. For this purpose, average scale and shape
factors of HKN site are assumed while the probability of oc-20

currence of each wind direction is modified. Specifically, this
is modelled as a Gaussian distribution and different values
for the standard deviation are used. Adopting this method,
various conditions are obtained ranging from unidirectional
wind roses to omnidirectional cases. These are depicted in25

Fig. 9, where the HKN site is included as well. In general,
the same conditions of the base case are adopted in the sen-
sitivity analysis, unless explicitly specified.

0 50 100 150 200 250 300
Wind direction [deg]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
of

 o
cc

ur
en

ce
 [-

]

Std=0.2
Std=0.4
Std=0.6
Std=0.8
Std=1.0
HKN

Figure 9. Probability of occurrence of different wind directions for
the cases studied in the sensitivity analysis. HKN values are in-
cluded and indicated with the dashed line.

6 Results

This section illustrates the results of the simulations per- 30

formed in this analysis to evaluate the potential of the co-
design approach for WFLOP. First, the LO-GA is evaluated
in comparison to a general GA implementation. Second, the
geometric yaw relations introduced in this work are assessed
through a preliminary test and the results obtained in the 35

base-case simulations are shown. Then, the influence of the
power density, the number of turbines and the site type is
studied through a sensitivity analysis. Lastly, the results con-
cerning a multi-objective implementation of the co-design
approach are shown and the impact of the wind direction dis- 40

cretizatiotn is investigated.

6.1 Evaluation of the genetic algorithm

The LO-GA is compared to the basic implementation of the
GA in PyGad, introduced in Fig. 1. The results are depicted
in Fig. 10, where it can be observed that the LO-GA outper- 45

forms the PyGad implementation, being able to improve the
regular layout from which the population is initialized.
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Figure 10. Comparison between LO-GA and PyGad GA to solve
the WFLOP. The solid lines represent the median AEP increase with
respect to the regular layout, whereas the areas refer to the range
between the 25th and 75th percentiles, being the results of multiple
simulations of the same case.

6.2 Preliminary test on geometric yaw relations

To evaluate the effectiveness of the geometric yaw relations
summarized in Table 3, a preliminary analysis is performed
and the results are depicted in Fig. 11. Specifically, for dif-
ferent farm sizes, the percentage difference in the AEP is cal-5

culated between the case when the geometric yaw angles are
applied and the case when wake steering is not considered.
This is compared also with the AEP value obtained from
the yaw angles computed through the serial-refine method
(Fleming et al., 2022), considered the optimal yaw angles10

in this study. For each size of the farm, this calculation is
performed on 10 different layouts optimized using the LO-
GA (npop = 100, ngen = 200), assuming a power density of
20Wm−2. It can be observed that the linear and the expo-
nential relation guarantee approximately the same increase15

in the AEP whereas higher values are obtained for the expo-
nential corrected relation. This indicates that the corrections
included in this approach improve the optimal yaw estima-
tion. The results concerning the Stanley relation are not in-
cluded in the figure since significantly lower values of AEP20

increase are produced.

6.3 Base-case

The results obtained for the base-case are included in Fig. 12,
where the procedure explained in section 2.2 is followed,
namely comparing optimized layouts resulted from including25

or neglecting the geometric yaw angles within the objective
function of the WFLOP. In both cases, the optimal yaw an-
gles are then applied to calculate the actual AEP associated to
the layout. Due to the random nature of the LO-GA, 100 iter-
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Figure 11. Preliminary test to evaluate the geometric yaw relations.
The solid lines represent the median values whereas the area refer
to the range between the 25th and 75th percentiles, being the results
of multiple simulations of the same case.

ations of each case are performed, obtaining the distributions 30

shown in the plots. In this case, the hyperparameters adopted
for the layout optimizations are npop = 100 and ngen = 400.
It is evident that the relations introduced in this paper, i.e. lin-
ear, exponential and exponential corrected, outperform the
Stanley relation. However, no significant difference can be 35

detected among the three new approaches. Specifically, the
higher gains of the exponential corrected relation observed
in Fig. 11 do not guarantee significantly better performance
for the co-design method. Overall, considering median val-
ues, an AEP increase between 0.3% and 0.4% is obtained for 40

this base-case.
The improvements in the AEP obtained with the co-design

approach for WFLOP can be achieved only if wake steer-
ing is applied during the operation of the farm. Therefore,
in case wake steering is not adopted, a drop in performance 45

is experienced for the layouts optimized using the co-design
method. Assuming no wake steering during the operation,
Fig. 13 illustrates the reduction in the AEP with respect to
layouts optimized with the traditional approach. These re-
sults are generated using the same method and parameters of 50

Fig. 12. From this analysis it can be concluded that the drop
in performance has the same magnitude and follows the same
trend of the gains shown in Fig. 12.
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Figure 12. AEP improvement obtained with co-design approach
for WFLOP using different geometric yaw relations. The distribu-
tions of multiple iterations for each case are included, highlighting
the median value.
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Figure 13. AEP reduction obtained with co-design approach for
WFLOP using different geometric yaw relations in case wake steer-
ing is not applied during the operation. The distributions of multiple
iterations for each case are included, highlighting the median value.

6.4 Sensitivity analysis

This section presents the results concerning the sensitivity
analysis on the co-design approach in relation with three dif-
ferent aspects: power density, farm size and site type.

6.4.1 Power density5

The AEP increase obtained through the co-design approach
is dependent on the power density of the wind farm, as high-
lighted by the solid lines in Fig. 14. Specifically, it can be
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Figure 14. AEP gain obtained with co-design method for different
power densities, showing the cases when wake steering is applied
(solid lines) and not applied (dashed lines) during the operation of
the farm. The areas surrounding the lines (median values) refer to
the range between the 25th and 75th percentiles, being the results
of multiple simulations of the same case.

observed that the benefits of this method diminish for values
below 15Wm−2, representing a threshold after which the 10

gain stabilizes. These results demonstrate the effectiveness
of the co-design method only for wind farms constrained in
a limited area, i.e. characterized by a higher power density.
For this analysis the optimization hyperparameters are set to
npop = 100 and ngen = 400 and the randomness associated 15

to the results is handled by computing each case 25 times.
Similarly to the base case, the drop in performance in case
wake steering is not applied during the operation is investi-
gated for different power densities. These results are included
in Fig. 14 using dashed lines, exhibiting an opposite trend 20

with respect to the case when wake steering is applied, as
observed for the base case. However, the saturation behav-
ior observed for values higher than 15Wm−2 is not present,
since the performance worsen for larger values.

Further analysis is performed to investigate whether the 25

saturation limit of 15Wm−2 is dependent on the squared
shape of the domain or it remains valid for other geometries.
For this purpose, the simulations are repeated for two differ-
ent rectangular areas, characterized by a ratio between the
sides equal to 1.5 and 2.0, respectively. The results are lim- 30



M. Baricchio et al.: Evaluating the potential of wake steering co-design 15

10 12 14 16 18 20
Power density [Wm 2]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AE
P 

im
pr

ov
em

en
t [

%
]

Ratio: 1.0 (square)
Ratio: 1.5 (rectangle)
Ratio: 2.0 (rectangle)

Figure 15. AEP gain obtained with co-design method (exponential
corrected relation) for different power densities, showing the trend
for different shapes of the available surface, identified through the
ratio between the sides of a rectangle. The areas surrounding the
lines (median values) refer to the range between the 25th and 75th

percentiles, being the results of multiple simulations of the same
case.

ited to the exponential corrected relation and are included in
Fig. 15. It can be observed that the magnitude of the AEP
gains decreases and the saturation behavior identified in the
previous case is not evident anymore, concluding that such
results are dependent on the shape of the area where the tur-5

bines can be positioned. However, the decreasing trend for
the AEP gains in case of lower power density values remains
valid, hence it can be considered a general conclusion for this
sensitivity analysis.

6.4.2 Number of turbines10

The co-design approach is tested for different farm sizes to
understand its potential if the number of turbines increases.
The results are included in Fig. 16, where each case is simu-
lated 20 times, adopting npop = 100 and ngen = 600 as opti-
mization hyperparameters. The choice of a higher number15

of generations is needed to ensure the convergence when
the number of optimization variables increases. In this case,
it can be observed that the AEP improvement increases up
to 0.6% and a saturation behavior can be detected when
nwt > 25. However, as nwt increases, the trend becomes less20
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Figure 16. AEP gain obtained with co-design method for farm
sizes, showing the cases when wake steering is applied (solid lines)
and not applied (dashed lines) during the operation of the farm. The
areas surrounding the lines (median values) refer to the range be-
tween the 25th and 75th percentiles, being the results of multiple
simulations of the same case.

evident due to the higher oscillations between different runs,
caused by the limited hyperparameters values in proportion
to the number of optimization variables. This occurs also in
the case when the robustness of the method is tested when
wake steering in not applied for a co-design optimized lay- 25

out, as observed form the dashed lines in Fig. 16.

6.4.3 Wind direction variability

Various site types are investigated to determine the effective-
ness of the co-design method in different wind conditions.
As mentioned in section 5.3, this study focuses on the shape 30

of the wind rose in terms of the probability of occurrence for
the wind directions. Figure 17 shows that the co-design ap-
proach becomes less convenient for sites characterized by an
evident dominant wind direction, i.e. low standard deviation
of the probability of occurrence along the 360◦. This can be 35

observed not only by a drop in the increase in AEP when
wake steering is applied during the operation, but also by a
significant reduction in case wake steering is not adopted. On
the other hand, the increase in the AEP does not vary for val-
ues of standard deviations higher than 0.4. Similarly to the 40
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Figure 17. AEP gain obtained with co-design method for site types,
showing the cases when wake steering is applied (solid lines) and
not applied (dashed lines) during the operation of the farm. The x-
axis refers to the standard deviation of the probability of occurrence
of each wind direction, i.e. from unidirectional (low values) to om-
nidirectional (high values) wind roses. The areas surrounding the
lines (median values) refer to the range between the 25th and 75th

percentiles, being the results of multiple simulations of the same
case.

power density, these results have been obtained from 25 iter-
ations, adopting npop = 100 and ngen = 400.

6.5 Multi-objective co-design approach

The previous results have highlighted the negative impact in
term of AEP losses in case wake steering is not applied dur-5

ing the operation phase in a layout optimized through the
co-design approach. This is tackled by performing a multi-
objective optimization that maximizes the AEP for both the
case when wake steering is applied and when this does not
occur during operation. This analysis is limited to the base10

case and to the exponential corrected geometric yaw relation,
and it is performed using the multi-objective version of the
LO-GA introduced in section 3.6. The results are outlined
in Fig. 18, where the Pareto front is visible on the top-right,
resulting from a max-max optimization. These have been ob-15

tained after 50 iterations of each case, for which the hyper-
paremeters adopted for the base case are used. As highlighted
by the cross in Fig. 18, it can be extracted from the Pareto
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Figure 18. Multi-objective co-design approach based on the multi-
objective optimization. Each data point indicates an optimized lay-
out. Multiple data points are included also for the sequential and the
co-design approach, resulting from different simulations and pro-
viding a probabilistic interpretation of the results in accordance with
the other graphs. The axis of the plot refer to the AEP increase with
respect to the average AEP value obtained through the traditional
sequential approach. The Pareto front is present on the top-right of
the plot, resulting from a max-max problem. A cross is included to
identify a possible robust solution.

front a layout that limits the AEP losses to 0.1% in case wake
steering is not applied while ensuring a gain higher than 0.3% 20

if wake steering takes place.

6.6 Effect of wind direction discretization

The AEP calculation within this study is based on the tradi-
tional procedure of discretizing the wind direction, selecting
appropriate bins at which the power production of the farm 25

is computed. The resolution of this discretization can have
a significant impact on the WFLOP since a sufficiently high
resolution is required to consider all the wake interactions
between the turbines. On the other hand, using a fine reso-
lution for the wind directions can increase significantly the 30

computational cost of the optimization. As mentioned in sec-
tion 5.2, 36 wind direction bins are adopted in our simula-
tions, namely the wind direction is discretized using bins of
10◦.The purpose of this section is to investigate the influence
of this parameter on the co-design approach described in this 35

study.
The simulations of the base-case are repeated modifying

the size of the bins adopted for the wind direction, hence al-
tering the objective function used to calculate the AEP. Since
such function is used also during the tuning phase of the LO- 40

GA hyperparameters, their values are recalculated accord-
ingly. Specifically, a higher randomization of the initial pop-
ulation has shown to be beneficial for both the sequential and
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the co-design approach, obtaining higher AEP values. This
is applied for all the wind direction resolutions tested in this
section to provide consistency between the results. Moreover,
for each case the same resolution is applied for the layout op-
timization and the subsequent yaw optimization performed5

with the serial-refine method.
The results are presented in Fig. 19, which shows a signif-

icant drop in the AEP improvement obtained through the co-
design approach as the wind direction resolution is increased,
i.e the size of the bins becomes smaller. Moreover, the AEP10

values correspondent the sequential and the co-design lay-
outs are also shown individually to gain further insights on
this behavior. These results are limited to exponential cor-
rected relation since the influence of the wind direction res-
olution does not vary for the different geometric yaw ap-15

proaches. In general, the values of AEP improvement ob-
tained for 10◦ bin size are lower with respect to the results
presented in Fig. 12, as a consequence of the higher random-
ization of the initial population.

Two different effects can be detected from this analysis.20

First, the AEP values decrease for both the sequential and the
co-design methods when the bin size is halved from 10◦ to
5◦. Increasing the wind direction resolution, more wake in-
teractions are simulated within the farm, amplifying the wake
losses. This sensitivity on the wind direction resolution is en-25

hanced by the characteristics of the base-case, where the lim-
ited number of turbines and the higher power density lead to
fewer wake interactions and prevent wake expansions. More-
over, the squared shape of the domain causes the wind direc-
tions that are multiples of 45◦ to be characterized by high30

wake losses. This occurs due to the tendency of the turbines
to be positioned at the corners of the domain to maximize
the use of the available area. All of these directions cannot
be simulated in case the bin size is set to 10◦, limiting the ac-
curacy of the results. However, the AEP reduction obtained35

for the 5◦ bin size is more evident for the co-design case, di-
minishing the improvement obtained through this approach.
Nevertheless, this effect is expected to decrease when the
number of turbines is larger, due to the occurrence of wake
interaction for a wider range of wind directions. The second40

effect that can be detected from Fig. 19 concerns the AEP
trends as the wind direction bin size is reduced from 5◦ to
lower values. It can be observed that AEP values of the co-
design layouts remain stable whereas those of the sequential
layouts increase when a finer resolution is adopted. There-45

fore, they tend to converge towards the AEP values of the lay-
outs optimized using the co-design method, i.e. leading to an
AEP improvement equal to 0% and nullifying the usefulness
of this approach. However, such result is highly conditioned
by the application of the serial-refine method for yaw opti-50

mization with a fine wind direction resolution. For instance,
when a bin size of 1.25◦ is adopted for the simulations, the
optimal yaw angle is recalculated for every 1.25◦. Therefore,
it is assumed that during the farm operation the wind direc-
tion is measured with an accuracy higher than 1.25◦ and the55
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Figure 19. Effect of wind direction resolution to the co-design ap-
proach, in terms of AEP for the sequential and the co-design layouts
(on the left) and AEP improvement (on the right). The areas sur-
rounding the lines (median values) refer to the range between the
25th and 75th percentiles, being the results of multiple simulations
of the same case.

yaw angles of turbines are modified every time such change
of 1.25◦ is detected. These conditions are far from being re-
alistic, as mentioned by Quick et al. (2020). Therefore, the
results presented in Fig. 19 are altered by this assumption
which is not consistent with current wind farm operational 60

limits. Nevertheless, it can be concluded that the application
of an extremely precise wake steering control would saturate
the benefits of the co-design approach proposed in this study.

7 Discussion

This section aims to interpret and provide further explana- 65

tion on the results presented in the previous paragraphs. In
general, the methodology introduced in this work to solve
the WFLOP based on co-design approach, namely the LO-
GA and the different geometric yaw relations, have suc-
ceeded to improve the methods available in literature. How- 70

ever, the increase in the AEP of 0.8% described by Stanley
et al. (2023) for a site characterized by Gaussian hill spatially
varying inflow cannot be obtained for common sites such as
the HKN location adopted for this study. Specifically, val-
ues up to 0.6% have been obtained in this analysis, when 75

farms composed by more than 25 wind turbines are consid-
ered. As mentioned by Stanley et al. (2023), this limited per-
centage can be translated into significant amounts in term
of revenues and energy production. Specifically, since HKN
wind farm plans to fulfill the energy demand equivalent to 80

1 million households, this increase of 0.6% can be quanti-
fied as the consumption of 6 thousand households in this case
(Crosswind, 2024). Most importantly, this approach based on
geometric yaw angles does not involve significantly higher
computational cost with respect to traditional methods, un- 85

like other co-design implementations. On the other hand, the
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limited improvement in the AEP obtained with the co-design
approach is affected by the uncertainty related to the engi-
neering models adopted for the calculations. Moreover, this
modest increase in the AEP can be difficult to detect dur-
ing wind tunnel experiments or field tests. These considera-5

tions can challenge the reliability of this method despite the
promising results obtained from the simulations.

Besides the benefits associated to the co-design approach
in case wind farm control is applied during the operation, this
study has also highlighted the downsides of not implement-10

ing such control strategy. A decrease in the AEP is registered
in this case, as a consequence of adapting the objective func-
tion of the WFLOP to the wake steering technique. The mag-
nitude of such loss in the energy production is similar to the
gain observed if the coherent procedure is applied. Therefore,15

it is essential that the wind farm operator takes firm decisions
on the control strategy prior to the design phase. Otherwise,
the limited improvement of the co-design approach would be
further challenged by the uncertainty caused by the future de-
cisions of the wind farm operator. To prevent such situation, a20

multi-objective co-design approach is proposed in this study,
optimizing the wind farm layout for both the case when wake
steering is applied and the case when this does not happen.
Therefore, such method increases the reliability of the wind
farm layout, minimizing the risk related to future decision on25

the control strategies taken during the operation of the farm.
The perspective and the limitations of the co-design ap-

proach for wake steering have been shown by the sensitiv-
ity analysis performed in this study. First, a decrease in the
AEP gain is observed for low power densities, irrespective30

of the shape of the available surface. Such behavior proves
that including the geometric yaw within the WFLOP is more
effective when wake steering plays a major role. In particu-
lar, higher gains are obtained when the distances between the
turbines decrease hence the wake effect is more impactful.35

However, after a certain power density this improvement can
saturate due to the impossibility of further mitigation of the
wake deficit. Second, similar explanations can be provided to
justify the dependence of the AEP improvement on the farm
size, expressed in term of number of turbines. In principle,40

extending the size of the farm increases the number of down-
stream turbines that experience lower wind speeds, hence
boosting the potential of wake steering and consequently of
the co-design approach. However, a saturation trend can be
observed also in this case, caused by the impossibility of45

deflecting the wake towards a turbine-free region when the
number of turbines surpasses a certain limit. Lastly, analyz-
ing the effect of different wind resources it can be observed
that the sites characterized by unidirectional wind do not ben-
efit significantly from the co-design approach. In this case,50

the traditional methods adopted to solve the WFLOP arrange
the positions of the turbines in order to avoid alignment along
the dominant wind direction, limiting the necessity of apply-
ing wake steering.

The results described in these sections are limited to the 55

conditions tested in this study, which give a broad quantita-
tive overview of the co-design potential but leave some points
of discussion that can be addressed qualitatively as follows.
First, the wake models adopted in this work can influence the
results of this analysis. Specifically, the adoption of a wake 60

added turbulence model such as Crespo-Hernandez (Crespo
and Hernandez, 1996) is expected to widen the wake shape
and enhance its recovery. This could decrease the effective-
ness of wake steering and the co-design approach in case of
large wind farms. However, these choices are not expected to 65

impact significantly neither the geometric yaw relations nor
the magnitude of the AEP gains described in this study. Sec-
ond, the results presented in this research refer to the chosen
reference turbine, i.e. the DTU 10MW, and therefore can dif-
fer in case of a different turbine type. Nevertheless, all the 70

geometric relations presented here are normalized with the
rotor diameter, hence they are not sensitive on the size of
the turbine. However, the mismatch between the geometric
models, which generally scale with D, and the wind turbine
power, proportional to D2, can influence the analysis. This is 75

expected to have a consequence on the coefficients of the ge-
ometric yaw relations, requiring additional tuning, whereas
the final conclusion should not be impacted significantly.

Lastly, the analysis on the effect of the wind direction res-
olution adopted for AEP calculation with wake steering has 80

highlighted the importance of this parameter for the evalua-
tion of the co-design approach. Specifically, the simplicity of
the base-case chosen to enable a straightforward comparison
between the different methods has caused a high sensitivity
with respect to the wind direction bin size. In general, the 85

use of a fine resolution seems to decrease the benefits of the
co-design method, increasing the uncertainty on the results
presented in this work. However, whereas the magnitude of
the AEP improvement is seriously affected by the size of the
wind direction bins, the trends with the variables of interest 90

are expected to remain valid. Overall, this analysis has em-
phasized the necessity of including uncertainties within the
yaw optimization process, as suggested by the work of Quick
et al. (2020). This would enable a more realistic evaluation
of the co-design approach. 95

8 Conclusions

A genetic algorithm tailored to the layout optimization and
referred to as LO-GA has been developed in this study, where
the crossover and the mutation phases are implemented to
capture the physical meaning of the optimization variables, 100

in order to improve the exploration of the design space. This
method enables the improvement of regular layouts, usually
not achievable with basic versions of GA. Moreover, three
novel relations have been introduced to calculate the geo-
metric yaw angles, namely linear, exponential and exponen- 105

tial corrected approach. Whereas the former two methods are
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based only on the streamwise and cross-stream distances of
the nearest turbine, the last approach consider all the down-
stream turbines within the wake, enabling a more accurate
prediction.

A base-case consisting in a 16-turbines farms located at5

the HKN site has been used to calculate the improvement
achieved with the co-design method, for which an increase
in the AEP between 0.3% and 0.4% has been obtained. To
evaluate the potential of the co-design approach based on
wake steering, a wider range of cases have been tested and10

the conclusions are summarized in the following list:

– The wind farms characterized by a high power density
benefit the most from the co-design approach, irrespec-
tive of the shape of the available surface where the tur-
bines can be positioned.15

– Increasing the number of turbines, an AEP increase up
to 0.6% can be obtained. However, this value stabilizes
for a number of turbines higher than 25.

– Sites characterized by a unidirectional wind do not ben-
efit significantly from the co-design approach.20

Besides the advantages in terms of AEP increase that we
have mentioned, this study has investigated the effect of not
applying the control strategy during the operation phase in
a layout optimized using the co-design method. Specifically,
it has been shown that a decrease in the AEP would occur,25

recommending that firm decisions about the control strategy
have to be taken prior to the design phase. To minimize the
risk of losses related to future decisions on the control strat-
egy, a multi-objective co-design method has been proposed,
for which the layout is optimized simultaneously for the case30

when wake steering is applied and when this does not occur
during the operation phase. Adopting this approach, the AEP
losses in a 16-turbines layout can be limited to 0.1% if wake
steering is not adopted, while keeping the AEP gain above
0.3% in case wake steering is applied.35

An analysis on the effect of the wind direction resolution
has shown that the magnitude of the AEP gains is signif-
icantly affected by this parameter. Decreasing the size of
the wind direction bins has resulted in a negative effect on
the benefit of the co-design approach. However, such in-40

fluence is partially caused by the unrealistic assumption of
minimal error in wind direction measurements and absence
of constraints in yaw actuation. Therefore, this analysis has
raised the necessity of integrating uncertainties within the
yaw optimization to provide an accurate evaluation of the co-45

design method, indicating an interesting pathway for future
research.

Lastly, some other recommendations for future work are
mentioned. First, the geometric yaw relations can be im-
proved to provide a more accurate approximation of the op-50

timal yaw angles. Specifically, the relations developed in this
study neglect the scenario when wake steering is not ap-
plied when two aligned turbines are too close to each other.

Second, the integration of grey/black-box machine learning
models in the co-design framework is recommended to un- 55

derstand if a further increase in the AEP can be achieved in
case of a better approximation of optimal yaw angles. This
study has shown that better predictions of the optimal yaw
angles do not lead to a significant improvement in the co-
design approach. However, there is still a gap between the 60

yaw angles obtained with the serial-refine method and the
geometric yaw relations, which could be filled using models
based on machine learning techniques. Third, another rec-
ommendation for future work concerns the objective of the
WFLOP, which could be extended further than the AEP, for 65

instance to load mitigation.
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