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Abstract. This study introduces a combined analytical approach, to simulate the wake flow in large-scale offshore wind farms

and forecast their power output. The developed tool, Qwyn, integrates the Ishihara-Qian single-wake model, a momentum-

conserving superposition method by Zong & Porté-Agel, and a wake meandering correction by Braunbehrens & Segalini. A

validation against both measurement data and Large Eddy Simulation (LES) results at the Horns Rev 1 (HR1) wind farm

is performed. This demonstrates the tool’s capability in capturing the wind farm flow and power output for different wind5

directions. Notably, the momentum-conserving superposition method significantly enhances the accuracy of power prediction

for narrow directional wind bins, while the wake meandering correction improves precision for wider bins. Subsequently,

the validated computational tool is used to optimise the layout of HR1 to enhance its annual power production (AEP). By

introducing a convexly shaped layout a projected 0.12% increase in AEP when optimising for a wind rose with 72 wind bins is

found. Furthermore, this study shows, that omitting the meandering correction leads to an even more convexly shaped layout10

without substantial change in AEP improvement.

1 Introduction

Wind energy continues to play a pivotal role in global renewable energy strategies, with an ever-increasing focus on optimising

wind farm efficiency. The arrangement of turbines within a wind farm significantly impacts its overall performance (Barthelmie

et al., 2007). With the rapid growth of offshore wind farms, optimising their layout becomes increasingly complex yet essential15

for improving the annual energy production (AEP) (Charhouni et al., 2019; Kirchner-Bossi and Porté-Agel, 2018, 2021). Due

to the complexity of the case, running such optmisation cases is very time consuming. Analytical modelling approaches present

a quick possibility of modelling wake flows within wind farms, which qualifies them for use in optimisation algorithms.

The core wake model used in this work is the Ishihara-Qian model, which considers a Gaussian velocity deficit similarity

profile (Ishihara and Qian, 2018). Whilst numerous Gaussian wake models exist (Frandsen et al., 2006; Bastankhah and Porté-20

Agel, 2014), none of them includes the prediction of rotor-added turbulence. However, this information is crucial for modelling

the flow within a wind farm, as the wake recovery is significantly affected by the ambient turbulence levels, which grow

within the wind farm (Crespo and Hernández, 1996; van der Laan et al., 2023). This effect can be considered by including a

turbulence model such as introduced by Crespo and Hernández (1996). The comparison of modelled wake data to wind tunnel

experiments showed that the consideration of rotor-added turbulence intesity increases the modelling accuracy (Polster et al.,25
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2018). However, the Ishihara-Qian model’s ability to predict both velocity deficit and rotor-added turbulence intensity within

a single framework presents a significant advantage for practical implementation.

Furthermore, when modeling wake effects on a farm scale, it is essential to consider the overlap of wakes during computation.

There are several superposition methods available, which all rely on mathematical intuitive rules (Lissaman, 1979; Katic et al.,

1986; Niayifar and Porté-Agel, 2016; Voutsinas et al., 1990). Hereby, the superposition method proposed by Niayifar and30

Porté-Agel (2016) yields the best results compared to experimental & LES data and is therefore widely used in open-access

wind farm modelling tools, such as FLORIS and FOXES (Fleming et al., 2020; Schmidt et al., 2023). This approach will be

hereafter referred to as the conservative superposition method. To include a more physical description of a superimposed wake,

Zong and Porté-Agel (2020) introduced a new, iterative superposition method derived from momentum conservation. This

approach showed lower modelling errors with respect to LES & experimental data and will therefore be used in the present35

work.

Finally, the traditional wake modelling methodology is extendend by taking first steps towards including the effect of wake

meandering. While Medici and Alfredsson (2006, 2008) found evidence for a wake’s dynamical meandering motion through

large atmospheric eddies, the effect has been long neglected in wind farm modelling. In a further experimental advance,

Coudou et al. (2017) showed, that the meandering motion persists within wind farms, influencing their power output. The40

wake’s influence on downstream turbines is known to decrease with more active meandering, which means that modelling

approaches neglecting this effect will always tend to overestimate the modelled power losses (Braunbehrens and Segalini,

2019). Since the steady state nature of this studys approach does not allow to resolve time dependent effects, a statistical

meandering correction introduced by Braunbehrens and Segalini (2019) is added to the modelling framework.

2 Wake modelling & superposition45

This section gives insight into the key aspects and interconnection of the modells used. The computational framework computes

a plane at hubheight of the modelled wind farm and therefore does not capture the wind’s shear profile. All used models support

this simplification by neglecting the third dimension as will be shown in the following sections.

2.1 Ishihara-Qian wake model

The single wake model used in this work is based on the assumption of a Gaussian-shaped wake, derived from momentum50

conservation. Since the model also considers rotor-added turbulence intensity, the main equations will be explained in two

parts: velocity deficit and rotor-added turbulence intensity. All information given in this section is based on the latest published

version of the Ishihara-Qian model (Ishihara and Qian, 2018).

Velocity deficit55
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The basic expression of the model is given by

∆u(x,y)
uwind

= C(x) ·ϕ(y), (1)

where x and y are the coordinates of a downstream point behind the turbine’s hub, ∆u is the velocity deficit in the wake

region, C is the wake-deficit intensity and ϕ is the distribution function of the wake’s cross-section. Here, C is the streamwise

function of the wake shape, which mainly dependends on the downstream distance x, while ϕ in turn is the spanwise function.60

Assuming linear expansion of the wake, the wake width σ can be expressed with

σ

D
= k

x

D
+ ε. (2)

Here, D is the rotor diameter, k is the wake growth rate and ε is a linear offset parameter equalling to σ/D for x= 0. Both

values were obtained from fitting LES data resulting in k and ε being functions of the turbine’s thrust coefficient CT and the

ambient turbulence intensity TIa resulting to65

k = 0.11C1.07
T TI0.20

a , ε= 0.23C−0.25
T TI0.17

a . (3)

Having defined the wake width σ, the streamwise function ϕ follows as

ϕ= exp(− y2

2σ2
), (4)

with y being the spanwise coordinate. To find an expression for the streamwise function C, Ishihara and Qian (2018) make

use of the Taylor expansion, since a purely analytical solution showed diverging behaviour in the far wake for some parameter70

combinations. Therefore, C can be found using two empirical parameters a and b as

C(x) =
1

(a+ b ·x/D)2
. (5)

The parameters a and b can be written as a function of k and ε and can in turn be expressed with CT and TIa as

a= 0.93C−0.75
T TI0.17

a , b= 0.42C0.6
T TI0.2

a . (6)

Now, Eq. (5) only yields realistic results for the far wake. Thus, the expression needs to be extended by the term c, in order to75

introduce a correction for the near wake with

C(x) =
1

(a+ b ·x/D+ c · (1 +x/D)−2)2
. (7)

Again, the expression for c is obtained by data fitting, resulting in

c= 0.15C−0.25
T TI−0.7

a . (8)

Inserting Eq. (4) and (7) in Eq. (1) gives the final expression for the normalised velocity deficit80

∆u
uwind

=
1

(a+ b ·x/D+ c · (1 +x/D)−2)2

· exp(− y2

2σ2
). (9)
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Rotor-added turbulence

The turbulence in the wake of a wind turbine is the combination of the standard deviation of the ambient flow σu,wind and the85

rotor-added fluctuation σ+rotor, following

σu,combined =
√
σ2

u,wind +σ2
+rotor. (10)

Note, that σu,i is the standard deviation of the corresponding velocity and should not be confused with the σ, which is the

common variable for the wake width (cf. Eq. (4)). The rotor-added turbulence intensity is therefore defined as

TI+rotor =
σ+rotor

uwind
, (11)90

while the total turbulence in the wake region can be obtained from

TIa,combined =
σu,combined

uwind
=

√
σ2

u,wind +σ2
+rotor

uwind
. (12)

The rotor-added turbulence can be described analogous to the velocity deficit, by a streamwise function G, indicating the

maximum added turbulence and a spanwise function φ

TI+rotor =
σ+rotor

uwind
=G(x) ·φ(y). (13)95

The rotor-added turbulence has its peak at the wake’s outer boundaries. LES data showed, that this spanwise distribution can

be described with a Gaussian distribution by combining two curves with their initial peaks at the height of the blade tip and

later following the outer wake boundary in streamwise distance. The spanwise function φ is modelled with

φ(y) =k1 exp
(
− (y−D/2)2

2σ2

)

+k2 exp
(
− (y+D/2)2

2σ2

)
, (14)100

using the same wake width σ as the velocity deficits in Eq. (2). The parameters k1 and k2 are hereby set to 1 and 0 for

coordinates outside the region of the blade tips (y > D/2), giving the added turbulence a Gaussian shape on the outside of the

wake region. For coordinates inside of the blade tips (y ≤D/2), the model parameters are set to fit continuity with

k1 =





cos2(π/2 · (y/D− 0.5)) y ≤D/2

1 y > D/2
(15)

105

k2 =





cos2(π/2 · (y/D+ 0.5)) y ≤D/2

0 y > D/2
(16)
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Having the spanwise function defined, the streamwise addition G is computed using

G(x) =
1

d+ e ·x/D . (17)

Similar to a and b, the parameters d and e are obtained through data fitting as

d= 2.3C−1.2
T , e= 1.0TI0.1

a . (18)110

Here, too, a near-wake correction is added altering Eq. (17) to

G(x) =
1

(d+ e ·x/D+ f · (1 +x/D)−2)2
, (19)

with f again being an empirically fitted parameter

f = 0.7C−3.2
T TI−0.45

a . (20)

Combining Eq. (13), (14) and (19), gives the final expression for the rotor-added turbulence TI+rotor115

TI+rotor =
1

(d+ e ·x/D+ f · (1 +x/D)−2)2

·
{
k1 exp

(
− (y−D/2)2

2σ2

)

+k2 exp
(
− (y+D/2)2

2σ2

)}
. (21)

2.2 Momentum-conserving wake superposition

As mentioned before, the conservative superposition approaches to predict the properties of a mixed wake region, lack a120

solid theoretical background. Zong and Porté-Agel (2020) argue that none of the available methods is actually conserving

momentum. Following this conclusion, they proposed a momentum-conserving superposition method which will be explained

in this section. Note that this model only refers to the superposition of velocity deficits and is unsuitable for superimposing

rotor-added turbulence intensities. Figure 1 shows a simple example of three aligned turbines to clarify the indication used for

the following equations. The velocity deficit behind each turbine is labelled with ∆ui, while the velocity itself is described125

with ui. The inflow velocity of the corresponding i-th turbine is described with u0,i.

Applying the law of momentum conservation on a turbine’s wake flow, the induced thrust force on the wind turbine FT,i can

be expressed with

FT,i = ρ

∫
ui(x,y) ·∆ui(x,y)dy, (22)

assuming a two-dimensional plane at hub height with the streamwise coordinate x and spanwise counterpart y. Here, ui(x,y)130

denotes the velocity in the wake region at a point p(x,y) downstream, and ∆ui(x,y) is the corresponding velocity deficit with

respect to the turbine’s inflow speed u0,i (cf. Fig. 1). Introducing a spatially mean wake convection velocity uc,i, the thrust of

the turbine can be related linearly to the velocity deficit in the wake

FT,i = ρuc,i(x)
∫

∆ui(x,y)dy. (23)
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Figure 1. Schematic view of velocity profiles and indications for the superposition. Note, that the depicted velocity profiles do not indicate

the superimposed result, but rather show the contribution of each turbine displayed.

Substituting Eq. (23) in Eq. (22) yields a mathematical expression for uc,i with135

uc,i(x) =

∫
ui(x,y) ·∆ui(x,y)dy

∫
∆ui(x,y)dy

. (24)

The convection velocity uc,i is, therefore, a weighted average of the spanwise wake velocity. The explicit expression for uc,i,

is derived by Zong and Porté-Agel (2020) from the Bastankhah model (Bastankhah and Porté-Agel, 2014) for an i-th turbine

as

uc,i(x)
u0,i

=
1
2

+
1
2

√
1− CT,iD2

8σ2(x)
, (25)140

where u0,i is the turbine inflow velocity,CT,i its thrust coefficient,D the turbine diameter and σ(x) is the modelled wake width

as introduced in Sect. 2.1. Figure 2 shows a schematic view of a modelled wake region with all relevant velocities marked. The

Figure 2. Schematic view of an i-th turbine’s wake region with inflow velocity u0,i, wake velocity ui, velocity deficit ∆ui and convection

velocity uc,i.
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introduced procedure can now be applied to a combined wake as it occurs in wind farms, where Fig. 3 gives an overview of all

notable velocities. First, applying momentum-conservation to a wind farm gives the sum of all turbine’s thrust forces
∑

i FT,i

using the total wake velocity UFarm and deficit ∆UFarm145

∑

i

FT,i = ρ

∫
UFarm(X,Y ) ·∆UFarm(X,Y )dY. (26)

Here, global coordinates X and Y are used and ∆UFarm is defined as UFarm−uwind, which is the difference between the total

farm wake velocity and ambient wind speed. When combining Eq. (23) and Eq. (26), it becomes clear that UFarm has to satisfy

ρ

∫
UFarm(X,Y ) ·∆UFarm(X,Y )dY =

∑

i

FT,i

=
∑

i

(
ρuc,i(X)

∫
∆ui(X,Y )dY

)
. (27)150

Analogous to the single wake convection velocity uc,i, a global wind farm convection velocity Uc,Farm can be found using the

Figure 3. Schematic view of a control volume containing a whole wind farm with the ambient velocity uwind, wake velocity UFarm, velocity

deficit ∆UFarm and convection velocity Uc,Farm.

global values of wake velocity and deficit with

Uc,Farm(X) =

∫
UFarm(X,Y ) ·∆UFarm(X,Y )dY

∫
∆UFarm(X,Y )dY

. (28)

7

https://doi.org/10.5194/wes-2024-62
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



This expression can be rewritten, discretising it to match the explicit, analytical nature of the used modelling approach as

Uc,Farm(Xj) =
∑

Y UFarm(Xj ,Y ) ·∆UFarm(Xj ,Y )∑
j ∆UFarm(Xj ,Y )

, (29)155

with index j indicating each considered global streamwise position Xj as displayed in Fig. 3. In other words, a global convec-

tion velocity Uc,Farm(Xj) is obtained by computing the weighted average of the spanwise farm wake velocities. Finally, the

conservation of momentum during the superposition of wakes is considered by computing ∆UFarm with

∆UFarm(X,Y ) =
∑

i

uc,i(X)
Uc,Farm(X)

∆ui(X,Y ). (30)

This indicates that the combined velocity deficit of several overlapping wakes at a global point pglobal = (X,Y ) can be com-160

puted as a weighted sum of the wake deficits induced by each turbine at this very point. The weighting factor here is the ratio

of the individual convection velocity uc,i and the farm’s global convection velocity Uc,Farm. Since Uc,Farm is computed using

values for the combined wake velocity and deficit, it has to be computed iteratively. For the first iteration, an initial value of

U initial
c,Farm is approximated by evaluating the highest available individual convection velocity at each given point as

U initial
c,Farm(Xj) = max(uc,i(Xj)). (31)165

For all further iterations Eq. (29) is used to compute Uc,Farm.

2.3 Meandering correction

Wake meandering has been known for almost as long as efforts for turbine wake characterisation have been made (Baker

and Walker, 1984). Yet, the lack of data quantifying the meandering motion has made it difficult to incorporate it into wake

modelling and power prediction. Larsen et al. (2008) proposed a first approach for a numerical dynamic wake meandering170

model for CFD applications. To include this effect in analytical modelling Braunbehrens and Segalini (2019) introduced an

approach to express the meandering motion of the wake as a time-averaged, explicit function using statistical meandering

data from numerically solving linearised Navier-Stokes equations. This section gives an overview of the model presented by

Braunbehrens and Segalini (2019) and connects it to the Ishihara-Qian wake model presented in Sect. 2.1.

The main assumptions for the statistical wake meandering model are, firstly, that the wake is a passive tracer, not influencing175

the ambient flow, and secondly, that the wake maintains its basic shape while moving in the lateral and vertical directions

(Braunbehrens and Segalini, 2019). Following these thoughts, a time-averaged, meandering velocity deficit profile ∆ui,m can

be drawn as shown in Fig. 4. As can be seen, the lateral movement of the wake causes the effective wake width to be wider than

a stable wake’s width. At the same time, the intensity of the velocity deficit decreases. This also applies to the height profile of

the wake, since the meandering motion occurs in both, horizontal and vertical directions.180

Now, following this introduction and keeping the equation for the wake velocity deficit in mind (cf. Eq. (9)), two alterations

are to be made to the initial modelling approach. First, the streamwise function C as presented in Eq. (5) has to be reduced,

while the width of the spanwise function ϕ (cf. Eq. (4)) is to be increased. For this reason, Braunbehrens and Segalini (2019)
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Figure 4. Qualitative velocity deficit profile of a turbine wake with ∆ui,m (solid line) and without time averaged wake meandering ∆ui

(dashed line), inspired by de Vaal and Muskulus (2021). The dark area indicates the added wake width in comparison to the light-coloured

area of a non meandering wake.

introduce the statistic parameter σm,i describing the standard deviation of the wake centre1, which can be computed for the

i-th turbine with185

σm,i(x)2 = 2ψΛ2

[
x

uc,i(x)Λ

+exp
( −x
uc,i(x)Λ

)
− 1

]
. (32)

Here, ψ is the fluctuation intensity of the wake, Λ is the integral length scale of the meandering inducing turbulent eddies, x is

the streamwise distance, while uc,i is the already known convection velocity introduced in Sect. 2.2 (cf. Eq. (25)). The fluctu-

ation intensity ψ depends on the ambient conditions and can either be computed using the friction velocity u∗ (Braunbehrens190

and Segalini, 2019) with

ψ = 2.5u∗, (33)

or using the ambient conditions of the free flow (de Vaal and Muskulus, 2021) as

ψ = 0.7TIa ·uwind. (34)

Both approaches initially yield very similar results. However, while Eq. (33) is purely derived from surface roughness, which195

is not constant in offshore conditions (Edson et al., 2013), the second approach is using the ambient wind speed and turbulence

intensity. When applied to the i-th turbine within a wind farm, Eq. (34) can be rewritten as

ψi = 0.7TI0,i ·u0,i. (35)

1Not to be confused with the wake width σ or the standart deviation of wind velocity σu,i introduced in Sect. 2.1.
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By using the real inflow conditions u0,i and TI0,i, ψi accounts for the changing inflow conditions within the wind farm.

Therefore, in this work, ψ is computed as shown in Eq. (35). Now, Braunbehrens and Segalini (2019) provide an assumption200

for the integral length scale. They suggest Λ to be chosen with respect to the height z above the ground as

Λ =
κz

ψ
, (36)

where κ≃ 0.4 is the Karman constant. This approach is motivated by the expectation, that the meandering causing eddies

increase in size with height. They further suggest to use the hub height of the considered turbine to be z ≃ zhub. Despite this,

the authors of the model firmly point out that investigating Λ and its connection to atmospheric conditions by relating it to205

LES or weather mast data is crucial when using the presented approach. However, the meandering model is based on data of

the wind farm Horns Rev 1, which is also the focus of this work’s study (cf. Sect. 4). As a result, Λ = 0.8 was chosen for this

work, which reflects the order of magnitude suggested by the model’s authors, as well as by LES simulations results (Keck

et al., 2014).

After discussing the central parameter σm (cf. Eq. (32)), the wake meandering model must be linked to the single wake210

model. Directly applying Braunbehrens & Segalinis proposal to the basic equation Eq. (9) of the Ishihara-Qian model yields

the corrected version for the speed deficit ∆um

∆um

uwind
= C

[
1 +

(σm

σ

)2
]−1/2

· exp
(
− y2

2(σ2 +σ2
m)

)
. (37)

The authors of the meandering model do not propose how the profile of rotor-added turbulence is to be corrected respectively.

However, as the added turbulence is assumed to be strongly linked to the shape of the wake’s velocity profile (cf. Sect. 2.1), the215

meandering-corrected expression for the rotor-added turbulence TIm
+rotor is assumed to be analogous to Eq. (37) and results

from incorporating σm into Eq. (21) yielding

TIm
+rotor =G

[
1 +

(σm

σ

)2
]−1/2

·
{
k1 exp

(
− (y−D/2)2

2(σ2 +σ2
m)

)

+k2 exp
(
− (y+D/2)2

2(σ2 +σ2
m)

)}
. (38)220

3 Computation methodology

The models described in Sect. 2 are joined together as Qwyn (quick wake analytical modelling), a computational framework

for wind farm power prediction. This version of the code is written in MATLAB (R2022b) and contains a wind farm model

computing the mean and turbulent flow field in a two-dimensional plane at hub height. Figure 5 shows the main in- and

output parameters of Qwyn. On farm level, the number and position of the turbines is passed on to the code, while data of225

the considered turbine model consists of rotor diameter, power- and thrust coefficient. Finally, information on the ambient

flow contains the ambient turbulence intensity, wind speed and wind direction. Qwyn computes the mixed wake region and
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estimates the turbine’s inflow conditions iteratively. The output consists of an estimate of each turbine’s inflow wind speed,

turbulence intensity, their power output, as well as the combined power production of the farm for the modelled steady case.

Figure 5. In- and output parameters of Qwyn.

To ensure numerical grid independence, a sensitivity study of three main parameters has been conducted. The inflow condi-230

tions of each turbine are obtained by averaging NRotor = 100 evenly spaced points in each rotor plane. Further, the compu-

tation of a wind farms streamwise convection speed (cf. Eq. (29)) has to be discreticised in lateral direction to the freestream.

Here, a number of NUc
= 200 points has been found to yield accurate results while being considerate of the computation

time. Finally, as the computation is iterative, a termination criterion is defined through

ζ =max(|u0,inew−u0,iold|). (39)235

Here ζ is the change in estimated inflow velocity of each turbine from one iteration to another. The value ζ = 10−3 is set

with respect to the models accuracy. The relative accumulated numerical error found with respect to the converged quantity is

< 0.053% and therefore negligible.

The computation method presented so far predicts a wind farms power output for a fixed combination of ambient wind

speed, turbulence intensity and wind direction. To predict a farm’s AEP, all combinations of the mentioned parameters need to240

be computed and weighted according to ambient data provided by the corresponding wind rose. The tool’s input is therefore

extended by wind rose data, which consists of j combinations of wind speed and direction, complemented by the according

frequencies fj . Each of these combinations needs to be evaluated separately by Qwyn. The according computation scheme is

shown in Fig. 6. It can be seen, that the output changes to a series of predicted power for both, the individual turbines Pi,j ,

as well as the farms combined power generation PFarm,j for all combinations j of wind rose data. These are then weighted245

by the according frequency and multiplied with the annual production time tProd to obtain the turbines and farms weighted

energy production, EPi,j and EPFarm,j . Summing up the weighted energy contributions finally yields each turbine’s AEPi

and cummulated farm’s AEPFarm.
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Figure 6. Schematic view of the computational flow for a wind farm’s AEP prediction.
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4 Study case

To investigate the validity of the presented approach, a study is performed comparing the modelled results to experimental data,250

numerical results and other analytical modelling approaches. For this purpose the wind farm Horns Rev 1 (HR1), located in the

North Sea in front of the Danish western shore, is considered. It consists of 80 turbines of the type Vestas V80-2MW, whose

corresponding power and thrust curve is given in Fig. 7. The farms layout can be seen in Fig. 8. The depicted wind directions

Figure 7. Power curve and thrust coefficient over inflow wind speed for the turbine Vestas V80-2MW adapted from Qian and Ishihara (2020).

are worst case operating scenarios, in which most turbines are fully impinged by upstream turbine wake regions, leading to

high wake overlap and power losses. The turbines are placed with a streamwise and spanwise spacing of Sx,0 = Sy,0 = 7D255

when viewed from the first predominant wind direction α0 = 270◦. For α1 = 222◦ and α2 = 312◦, the corresponding

streamwise spacings are Sx,1 = 9.4D and Sx,2 = 10.4D, respectively (Barthelmie et al., 2009). The primary key data of the

presented wind farm are summarised in Table 1. The measurement data for this validation case is taken from Barthelmie et al.

Table 1. Key data of Horns Rev 1 (Vattenfall, 2023).

Number of turbines N 80

Turbine model - Vestas V80-2MW

Rated power Prated 160MW

Rated wind speed urated 10m/s

Main wind directions α0−2 270◦, 222◦, 312◦

Corr. streamwise spacing Sx,i 7D, 9.4D, 10.4D

(2007, 2009, 2010), who evaluated various data sets for the wind farm’s power production at different wind directions. The

data is mostly based on a wind speed of uwind = 8m/s at an ambient turbulence intensity of TIa = 8% with an uncertainty260
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Figure 8. Layout of the wind farm Horns Rev 1 with three worst case operation wind directions, adapted from Qian and Ishihara (2020).

of ±0.5m/s and ±2%, respectively. The wind direction varies in the whole interval from 0◦ to 360◦, as the data sets were

obtained over several months. Therefore, the measured power production results from averaging data within certain directional

sectors, the so-called wind bins. The following validation study focuses on two bin sizes, α=±1◦ and α = ±5◦. A summary

of the measurement data and the known uncertainties are given in Table 2.

The validation is also complemented by LES results published by Wu and Porté-Agel (2015). Their simulation study, too,265

focuses on the power production of HR1 at the main wind directions α0−2, analogous to the previously mentioned measurement

campaign. However, only the bin size of α± 1◦ was considered. All results were obtained by assuming a wind speed of

uwind = 8m/s and an ambient turbulence level of TIa = 7.7% for all wind directions. The choice of ambient turbulence

corresponds to measurement results presented by Hansen et al. (2012), who showed that the mean turbulence level at HR1 is

nearly the same for all significant wind speeds of uwind = 6− 12m/s.270

Finally, the analytical results of a conservative approach by Sukhman et al. (2023) are used for direct comparison. These

results were likewise obtained using the Ishihara-Qian wake model. However, wake mixing was predicted conservatively, and

no additional models (such as wake meandering correction, nor momentum conservation) were considered.

Analogous to the LES and analytical reference data, all results presented in the validation study are computed assuming

uwind = 8m/s and TIa = 7.7%, focussing on neutral atmospheric conditions, since this is the predominant state at HR 1275

(Barthelmie et al., 2007). A summary of the essential data used for the validation is given in Table 2.

5 Validation results

To perform a comprehensive comparison, three versions of Qwyn’s output are evaluated to understand the contribution of each

implemented model addition. All versions use the Ishihara-Qian single-wake model and vary the following:
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Table 2. Data and uncertainties of the measurements by Barthelmie et al. (2007, 2009) and corresponding parameters used for this validation

case.

Measurement data

Wind speed uwind 8± 0.5m/s

Turbulence intensity TIa 8± 2%

Wind directions αi 222◦, 270◦, 312◦

Atmospheric stability - neutral

Data uncertainty ∆Pi/P1 ±0.1

Modelling & simulation data

Wind speed uwind 8m/s

Turbulence intensity TIa 7.7%

Wind directions αi 222◦,270◦,312◦

Wind bins evaluated ∆α ±1◦, ±5◦

Atmospheric stability - neutral

1. using (a) momentum conserving superposition without (b) wake meandering correction,280

2. conservative superposition, including (b) wake meandering correction,

3. combining both (a) momentum conserving superposition and (b) wake meandering correction.

The prediction is first performed in 1-degree steps. Afterwards, the obtained results are averaged to account for different sized

of wind direction bins.

5.1 Power prediction285

The results for the inflow case αwind = 270◦± 1◦ can be seen in Fig. 9a. The graphic shows one turbine row’s measured,

simulated and modelled power output. The conservative approach and the momentum-conserving superposition under-predict

the measured and LES results. This aligns with the tendency of analytical models to underestimate a farm’s power as statet by

Qian and Ishihara (2020). The momentum-conserving superposition seems to show better agreement when compared to the

conservative approach. It follows the trend given by the LES data, resulting in a positive power recovery between the second and290

third turbine. This suggests that the physical background of the momentum-conserving approach outperforms the conservative

approach. On the other hand, the wake-meandering correction leads to over-prediction of the power yield. Qwyn shows an

even higher disagreement when combining wake meandering and the new superposition approach. The trend of predicting a

higher power output with meandering correction than with the previous models is understandable as adding wake meandering
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Figure 9. Modelled power for one row of HR1 evaluated with (a) ±1◦ and (b) ±5◦ bins. Inflow case: αwind = 270◦, Sx = 7D.

correction results in a less intense wake and thus lowering the velocity deficits within the farm. Analysing the inflow velocities295

u0,i of the individual turbines confirm these trends, which is expected since u0,i is the only modelled parameter influencing

the power prediction.

The wind direction α0 = 270◦ considered so far, is a worst-case scenario for the presented wind farm, as all turbine

wakes align within a row of turbines. When considering a wider directional bin of ±5◦, the power prediction will naturally be

higher than the values for a narrow bin of ±1◦, as more favourable wind directions are included in the power computation.300

The wake-meandering model is empirically fitted to a measurement data set based on a wind bin of ±5◦. Therefore, the

validation is extended by this wind sector. Figure 9b shows the modelled and measured power prediction for the inflow case

αwind = 270◦± 5◦. For this case, however, no LES reference data are available. It is evident that all models under-predict

the measured values when modelling a larger bin width. While all results follow the general trend of the validation data, the

meandering corrected values show the best performance. This suggests that the combined approach is better at capturing wider305

bins, while a model neglecting meandering correction leads to better agreement when focusing on narrow bins.

Having understood Qwyn’s performance for one wind direction, two more are examined with α1 = 222◦, corresponding to

Sx = 9.4D and α2 = 312◦, corresponding to Sx = 10.4D. Both cases are shown in Fig. 10, for ±1◦ on the left-hand side

and ±5◦ on the right-hand side. Again, the models considering wake meandering show a significantly better agreement for the

wider bin, with a root-square mean error (RSME) of down to 0.60%. The conservative approach and the momentum-conserving310

superposition show comparably good agreement for narrow wind bins, with an RSME between 2.52%− 3.71%. While the

model’s described trends are reasonable, note that the measurement results have a significant error margin of ∆Pi/P1 =±0.1

(cf. Table 2).

5.2 Sensitivity to wind direction

Since the modelling approach aims to predict a wind farm’s AEP, the validation is extended to investigate Qwyn’s sensitivity to315

a wide interval of wind directions. Contrary to the results presented so far, no measurement data are available for comparison.

However, Porté-Agel et al. (2013) investigated the performance of HR1 in the directional interval of αi = [173◦, 354◦] using
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Figure 10. Measured and modelled power loss for the wind directions α1 = 222◦, Sx = 9.4D (a, b) and α2 = 312◦, Sx = 10.4D (c, d). The

left-hand side graphs consider a direction bin of ±1◦, while the right-hand side shows a bin of ±5◦.

LES simulations. Additionally, Niayifar and Porté-Agel (2016) performed a comparative study using analytical modelling by

implementing the Bastankhah single wake model (Bastankhah and Porté-Agel, 2014) and conservative superposition. Unlike

the previous validation, no averaging within wind direction bins is performed in this last study. The reason for that is that320

isolating the results for each wind direction gives a better understanding of Qwyn’s sensitivity. This study’s key data are

summed up in Table 3.

Table 3. Key data of the wind direction sensitivity study.

Wind speed uwind 8m/s

Turbulence intensity TIa 7.7%

Wind directions αi [173◦, 354◦]

Atmospheric stability - neutral

Figure 11 shows the power output of the whole farm PFarm over different inflow angles, normalized by the power output

of 80 corresponding turbines operating in the freestream. It can be seen that all displayed analytical models capture the gen-

eral trends proposed by the LES. However, the models neglecting the wake-meandering correction show better agreement at325
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inflow directions with high wake interactions. This is reasonable, as the wake meandering correction performs worse when no

averaging of wind bins is done during modelling.

Figure 11. Normalised power output of HR1 for a wide range of inflow angles.

All analytical results show some disagreement with the LES data outside of the worst-case scenarios. Two preliminary

assumptions can be made to explain this effect. When a wind turbine rotates, its wake is obeying momentum conservation by

rotating in the opposite direction. This rotation is amplified, when two wakes are fully overlapping, which is captured by all330

presented analytical approaches. However, when partially overlapping, the rotational directions of the wakes become opposite,

causing the combined turbulence intensities to weaken at the corresponding mixing area (Qian and Ishihara, 2020). None of

the analytical approaches used in this study accounts for said effect. This arguably drives the deviations between LES data and

analytical results for wind directions where partial wake overlap is dominant. This could be investigated by extending Qwyn

to account for partial wake mixing simmilarly to the approach by Qian and Ishihara (2020).335

Secondly, the question may arise if analytical modelling becomes insensitive towards large turbine spacings. As we know,

the streamwise distance Sx of the turbines changes with the inflow direction. The smallest distance of Sx,0 = 7D corresponds

to a inflow direction of α0 = 270◦, while the highest value of Sx,4 = 28.9D occurs at α4 = 284◦. On a first look Fig.

11 can give the impression, that deviation between LES and analytical results is higher for wind directions corresponding

to larger turbine spacings. This potential effect has been studied through comparing the tool’s modelling results at different340

turbine spacings to LES data by Porté-Agel et al. (2013). This investigation, however, could not confirm a correlation between

modelling accuracy and turbine spacing, which excludes it as a systematic source of error.

5.3 Conclusions from validation

The validation study presented confirms the capability of Qwyn to capture the main trends of power yield of the wind farm

HR1. Neglecting the introduced meandering correction leads to a reasonable agreement when considering narrow wind bins,345

yielding a maximum RSME of 3.63% with respect to the measurement data. However, when evaluating wider bins adding the

meandering correction improves the RSME up to 0.62%. The proposed tool is sensitive to a wide range of wind directions
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(αi = 173− 354◦), capturing all main trends as suggested by the reference LES data. Even though the RSME to the vali-

dation data is not negligibly small, the tool is well suited for a wind farm’s power prediction. One reason for the deviation

is the uncertainty of the validation data used for this study. Firstly, the measurement data have a significant error margin of350

∆Pi/P1 = ±0.1. Secondly, several simplifications and follow-up additions have been made to the used reference LES data

over time. While some results were sharpened, these changes were not applied to all LES datasets used for the validation.

Therefore, the study was performed with respect to the partially outdated, original LES results of Porté-Agel et al. (2013) and

Wu and Porté-Agel (2015). Even though an exact quantification of the absolute error is difficult, all shown results picture sim-

ilar trends and predict the same order of magnitude, which supports the informative value of both this work and the reference355

data.

In addition to the presented study, some further influencing factors still need to be investigated in future. The validation

case considers only the wind farm HR1. A comprehensive investigation of Qwyn’s sensitivity to different layouts and turbine

models should be conducted to confirm the tool’s applicability to other farm designs. Further, the validation case assumed

neutral atmospheric stability, a wind speed of uwind = 8m/s and a turbulence intensity level of TIa = 7.7%. Even though360

this corresponds well to the average operation condition of HR1, modelling other wind farm locations will require a wider scope

of these parameters. Nevertheless, this study shows, that the tool is applicable and valid for HR1, outperforming conservative

modelling approaches.

6 Layout Optimisation

With the rising availability of computationally inexpensive wind farm modelling approaches, research started to focus on365

investigating optimal farm layout designs. By considering only one wind direction, Charhouni et al. (2019) showed that the

power yield of HR1 could be increased by up to ∆PFarm = 57.89%. This order of magnitude was confirmed by Sukhman et al.

(2023), suggesting a power gain of ∆PFarm = 57.17%. Both studies showed the potential of a layout optimised towards wake

effects. However, the actual operating conditions of a wind farm consist of various wind speeds and directions. Considering

a full wind rose significantly increases the degrees of freedom of this optimisation problem, making it difficult to find an370

optimum. Kirchner-Bossi and Porté-Agel (2018) took this fact into account and proposed a solution considering 72 different

wind directions, which led to an AEP gain of ∆AEPFarm = 0.24%. This significantly lower power gain is more reasonable

when accounting for the complexity of the given optimisation case. All mentioned references modelled the wind farm using

different single-wake models and combined them with conservative superposition. This work’s layout optimisation focuses on

finding a solution using Qwyn. The following sections first give an overview of the optimisation’s computational structure and375

the reference case used for this study. Then, two optimised layout proposals are compared.

6.1 Optimisation set-up

For this study, Qwyn is embedded into an optimisation structure, as shown in Fig. 12, where the gradient based optimisation

function fmincon (Mathworks, 2023) is used to find the optimal AEP by varying the farm’s layout. The input is extended
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Figure 12. Schematic view of the layout optimisation’s computation flow.

by boundary conditions, restraining the optimisation problem to a realistic scope. First, the outer boundaries of the modelled380

domain have to be chosen by specifying a value for Xmin,max, Ymin,max, limiting the farm’s outer shape. Next, the minimal

turbine distance Smin has to be defined. This value is the radius of a safety space around every single turbine as visualised in

Fig. 13. The placement of one turbine inside another turbine’s safety space needs to be excluded by the optimiser. If this rule

is violated, a turbine could operate in another ones near wake region. This would lead to substantial structural loads, as the

near wake is characterised by strong velocity gradients and turbulent structures. The turbine’s positions, expressed as global385

coordinates Xi and Yi, are now used as the input variables for the optimisation problem. A specified initial layout is used as

the starting point for the optimisation problem. While trying to find the global optimum, this starting point has to be varied,

running repeated optimisations. Here, a handful of random starting points are chosen to investigate the validity of the optimum

found. The optimisation function then uses the interior-point algorithm, to optimise the target value AEPFarm by varying the

wind farm layout. OnceAEPFarm reaches an optimum, the corresponding layoutXiOpt, YiOpt is given as an additional output390

of the tool.
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Figure 13. Schematic view of the safety space around three wind turbines to ensure a minimal turbine distance of Smin. The shaded areas

indicate the wake regions at a wind flow from left to right.

As for the validation, the wind farm Horns Rev 1 serves as reference case for the optimisation study. Therefore, the outer

boundaries of HR1 are set as the optimiser’s outer boundaries for turbine placement. The wind rose data is provided by

Kirchner-Bossi and Porté-Agel (2018) and is shown in Fig. 14. The wind rose on the left-hand side is highly resolved and

Figure 14. High resolved wind rose with 2640 combinations (left) and reduced one (right) with 72 bins, adapted from data by Kirchner-Bossi

and Porté-Agel (2018).

consists of 2640 combinations of wind speeds and directions. As the optimisation problem is very time consuming, a reduced395

wind rose is proposed, as illustrated on the right-hand side of the graphic. Here, the wind directions are given in 5◦ bins,

resulting in 72 directions with one single wind speed. Each sector of the reduced wind rose provides the same wind power and

frequency as the corresponding bins of the resolved wind rose. The optimisation procedure itself is processed using the reduced

wind rose. The optimised layout is then evaluated using the resolved wind data returning the optimised AEPFarm. Analogous
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Table 4. Optimisation Key Data.

Wind farm data

Parameter Symbol Value

Number of turbines N 80

Reference layout (Xi,Yi) Horns Rev 1

Turbine model - Vestas V80

Rotor diameter D1 80m

Ambient turbulence TIa 7.7%

Optimisation settings

fmincon algorithm - interior-point

Minimal turbine distance Smin 3.7D

Outer boundaries (Xmin,max, Ymin,max) Horns Rev 1

Variables (Xi, Yi) farm layout

Target quantity AEPFarm

to the validation study, an ambient turbulence intensity of TIa = 7.7% is chosen for all considered wind speeds following400

measurements by Hansen et al. (2012). To find an appropriate minimal turbine spacing the average length of the near wake

region for the modelled conditions needs to be predicted. For that, the Ishihara-Qian wake model is run for all cases described

in the wind roses. The rough, maximum occurring streamwise length for the near wake region is hereby estimated to be 3.7D.

Therefore, a minimal turbine distance of Smin = 3.7D is chosen as the final boundary condition. A summary of all settings

and conditions applied to the optimisation study can be seen in Table 4.405

6.2 Optimisation results

This optimisation study contains two different optimisation cases. First, the layout is optimised using Qwyn with all models

as described in Sect. 2. Then, to investigate the influence of the wake meandering model, a second optimisation is performed,

where the wake meandering correction is turned off.

The result of the first case is shown in Fig. 15. The round marks indicate the turbine positions, while their colour visualises410

their individualAEPi. The left-hand side graph shows the layout and energy yield of HR1 for reference. While the region in the

centre of the farm shows a lower power yield, it can be seen that turbines at the edges are more productive. This is reasonable,

since the centre region is most affected by wakes, while turbines at the farm’s edges are more often operating under undisturbed

conditions. Note, that the highest power of the farm is in its lower left corner, which corresponds to the shape of the wind rose
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Figure 15. Optimisation result with reference (a) and optimised proposal (b). The coloured representation indicates the AEPi of the indi-

vidual turbines.

Figure 16. Normalised power output of Horns Rev 1 for a wide range of inflow angles. The graphic resembles the first optimisation case.

in Fig. 14. The right-hand side of Fig. 15 shows the optimised layout. The algorithm proposes a convex shape of the turbine415

rows, which increased the predicted power yield by ∆AEPFarm = 0.12%. This results in the same order of magnitude found

by Kirchner-Bossi and Porté-Agel (2018). The new layout shows a more even distribution of power yield in the centre of the

farm. This is achieved at the expense of lower energy production at the farm’s edges. Still, the left lower corner is showing the

highest yield. A comparison of sensitivity to wind direction between the reference and optimised layout is shown in Fig. 16.

For continuity reasons, the graph shows a directional interval of ∆α = [173◦, 354◦] as previously used in the validation study420

(cf. Fig. 11). The predicted power output of the farm is normalised by the output of 80 corresponding turbines operating in free

stream conditions. The graph shows that the area under the curve increases after optimising the layout. Two significant power
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drops are reduced at α1 = 222◦ and α2 = 312◦. At the same time, the curve is flattened for most other wind directions.

This illustrates the optimisation’s limitations in increasing the AEP, which is likely due to strict boundary conditions and high

turbine density. Four further power minima can be found at α = 90◦, α = 172◦, α = 270◦ and α = 352◦, where the first425

two are not shown in Fig. 16. Here, the predicted deficits in power are similar for both reference and optimised layout. This

occurs due to the outer boundaries of the modelled domain. The turbines align alongside the wind farm’s borders, since the

Figure 17. Comparison of optimisation results using wake meandering model (left) and without wake meandering model (right).

optimisation function can not violate these. As a result, four worst case wind directions remain, where the wakes align with

downstream turbines, which can not be dampened due to the given constraints. This underlines the optimisation’s restriction

by the given boundary conditions.430

To evaluate the influence of wake meandering, a second optimisation is conducted without meandering correction. The

achievable increase in annual energy production is ∆AEPFarm = 0.10% and therefore very similar compared to the first

result, as shown in Table 5. Figure 17 compares the first optimised layout with the second optimisation case. The optimisation

Table 5. Achieved increase in AEPFarm with respect to the reference layout for both optimisations conducted.

Modelling approach ∆AEPFarm

Proposed tool +0.12%

Without meandering correction +0.10%

function balances the power production in the centre of both proposed layouts by introducing a convex shape of the rows.

While layout adjustments for the meandering-neglecting version are more noticeable, the power yield improvement is similar435

when compared to the layout obtained including the meandering correction. Even though the power production for the second
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optimisation case is balanced over the farm, we can observe lower yield not only at the very edges of the farm, but also at

turbines located at the corners of the second rows. It appears that the optimisation has to adjust the layout more significant to

achieve a comparable power gain. This can be traced back to the fact, that models without meandering correction overestimate

wake induced power losses as addressed in Sect. 5. More interestingly, when evaluating the second proposed layout with440

meandering correction, the wake losses exceed those of the reference case. A mindful choice of models and ambient parameters

shows to be very important, to not worsen a designed layout, rather than optimising it.

As shown in Fig. 4, the inclusion of meandering correction in the model results in broader and less intense wakes. Because

of that, larger parts of the wind farm’s internal area are affected by wake effects. This fact is more realistic when thinking of the

real dynamic nature of the flow field, compared to conservative steady-state results. Consequently, parts of the farm’s internal445

area that are little affected by wake effects become smaller. To relate this back to the optimisation: when areas of low wake

effect become smaller, the power increasing relocation of turbines is more restricted. This leads to significantly lower possible

layout adjustments, as observed.

While the study confirms, that considering wake meandering influences both prediction and optimisation of a wind farms

AEP, the results suggest that the reference layout (cf. Fig. 15) performs similar to the optimised proposals. It is important to450

mention that this study did not necessarily discover a global optimum of the problem. A handful of random starting points con-

tinuously returned the same result. However, choosing a Latin Hypercube sampling plan (Forrester et al., 2008) or deploying

a sophisticated Kriging optimisation method (Kamaludeen et al., 2016) could return a global optimum with higher certainty.

Furthermore, the results also show the limitations of the considered optimisation case. Varying constraints, such as the farm’s

outer shape and type or number of turbines are likely to yield higher AEP improvements, than merely focusing on the distri-455

bution of turbines within a given area. The results show, that the optimiser tends to reduce linear arrangement of turbines by

proposing a convex shape of rows. Investigating a circular shape of the farm could support this behaviour highlighting the true

potential behind breaking up conservative layout design strategies. However, the feasibility of such a farm is of course bound

to legal and contractual ties, which need to be further examined when suggesting an innovative farm shape. Another important

point to mention is the sensitivity of the optimisation to the given wind rose. As addressed in Sect. 6.1, the optimisation uses460

a wind rose, which is reduced to 5◦ bins with one wind speed each. The evaluation is then performed with the fully resolved

data comprising 2640 combinations of wind directions and speed. When evaluating the optimised results with the reduced wind

rose, the predicted power improvements from reference to optimised layout are roughly twice as high as the values summarised

in Table 5. This emphasizes the importance of high quality ambient wind data when running AEP optimisation. Yet, the use

of reduced wind rose data is mainly motivated by the long computation time of the optimisation problem. Here, too, the intro-465

duction of a Kriging-surrogate optimisation method could further improve the tool’s performance, decreasing the computation

time (Kirchner-Bossi and Porté-Agel, 2018; Kamaludeen et al., 2016). This, in turn, could open up the opportunity to optimise

farm layouts using higher resolved wind roses, thus, increasing the quality of the result.

Finally, the model shows a purely aerodynamic optimisation of the given problem. In reality, the partial overlapping of wakes

leads to an asymmetric load of the turbine rotors, increasing wear and maintenance. Also, the length of electrical cables is a470
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high-cost factor when planning wind farms. Therefore, a separate analysis of the turbine loads and costs must be done when

designing and optimising wind farm layouts.

7 Conclusions

This work investigates an extended steady-state modelling approach for wind farms. The wakes’ influence on the farm’s power

output is predicted by using analytical modelling techniques joining them into Qwyn, a new computational framework. Qwyn475

incorporates the single-wake model by Ishihara and Qian (2018) as its foundation, the momentum-conserving superposition

method by Zong and Porté-Agel (2020) for wake mixing, and a wake meandering correction based on work by Braunbehrens

and Segalini (2019).

To verify the accuracy and reliability of Qwyn, extensive validation against measurement data, LES results and a conserva-

tive analytical modelling approach is conducted at the Horns Rev 1 wind farm. The results demonstrate the tool’s capability480

to capture the behaviour and influence of wakes and their interactions on the wind farm’s power output. The momentum-

conserving superposition method improves the predicted results considerably with respect to the conservative approach of

linear, rotor-based summation. When considering narrow wind bins of ±1◦, Qwyn performs best when neglecting the wake

meandering correction, yielding RSME values of down to 2.52% with respect to the measurement data. However, for wider

bins of ±5◦ the wake meandering correction adds significant value to the power prediction, where the minimum RSME cap-485

tured is only 0.62%. Moreover, Qwyn performs reasonably well at different wind directions, capturing all trends in predicted

farm power output by the LES validation data. This enables the prediction of a wind farm’s annual energy production (AEP)

when provided with the corresponding wind rose data.

The tool is then utilised to predict and optimise the AEP of HR1 using a whole wind rose. An optimised layout design

is suggested by embedding the tool into an optimisation structure using the gradient-based optimisation function fmincon in490

MATLAB. The study finds that an optimised, convexly shaped farm layout increases the predicted yearly power output by

0.12%, which corresponds to the magnitudes found by Kirchner-Bossi and Porté-Agel (2018). Morever, the study is extended

to investigate the influence of wake meandering correction on the resulting optimised layout proposal. Omitting the wake

meandering correction led to a very close increase in AEP of 0.10%. This however was achieved by a more distinct convex

layout shape, which underlines the importance of correct choice of models to obtain a realistical optimisation result. Even495

though Qwyn only considers a purely aerodynamic optimisation, the study shows potential for a layout improvement. At the

same time, it exemplifies the optimisation’s limitations to restrictive boundary conditions, which suggest further examination

of farm area shape, as well as turbine model and density evaluation. This could be investigated in future studies, e.g. by chosing

the energy density of a wind farm as optimisation target.

This work contributes to the field of fast and efficient wind farm modelling and optimisation by developing an analytical tool500

capable of representing aerodynamic interactions within wind farms. The insights gained through this research pave the road

for further optimisation studies with focus on additional performance-defining parameters of a wind farm.
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