
Reviewer 3 Response

This study presents a valuable attempt to address the scarcity of offshore wind speed profile data by 

developing a machine learning-based extrapolation model utilizing satellite-derived wind data, which 

could benefit wind resource assessment along U.S. coasts. The authors should be commended for their 

extensive data collection and model validation efforts across multiple coasts, showcasing the model’s 

performance relative to traditional methods like the Logarithmic and Power Laws. However, while the 

work offers interesting results, there are notable areas where the study could be improved. Primarily, the 

claimed novelty of the research is somewhat diluted, as the Random Forest Regression (RFR) model has 

already been widely applied in similar extrapolation studies, and the spatial and temporal resolution of 

the resulting dataset is still coarser than other products like NOW23. Additionally, the reliance on 

standard stability assumptions and shear exponent limitations in the comparison methods may not fully 

reflect real-world conditions, and the leave-oneout cross-validation (LOSOCV) approach, though 

thorough, detracts from the goal of developing a single, generalizable model. Furthermore, the study 

would be strengthened by more focus on the practical application of the new dataset (NOSP) and its 

insights for wind energy stakeholders, potentially incorporating o shore wind resource assessments and 

Levelized Cost of Energy (LCOE) analyses. These enhancements, along with restructuring of certain 

sections and clarifications in the visual elements, could provide a clearer scientific contribution and 

highlight the value of the NOSP dataset for the wind energy community. After careful evaluation, I find 

that the manuscript, in its current form, lacks sufficient novelty to warrant publication. To enhance the 

paper’s contribution, I recommend the authors consider incorporating novel elements that extend 

beyond current literature, such as using the derived dataset (NOSP) for offshore wind resource 

assessments or cost analyses (e.g., LCOE calculations) that can directly benefit the wind energy industry. 

If such advancements are added, the work would more clearly demonstrate its unique value. Specific 

comments: 

We appreciate the reviewer’s comments and the effort they put into reviewing our manuscript. We 

understand that the reviewer has concerns and hope that our comments will address these and help 

clarify the novelty of our work.

1. With the current pace of growing wind turbine sizes, it is of paramount importance to accurately 

measure the wind speed profiles, rather than just hub height wind speed. Introduce the importance of 

wind speed profiles, in terms of their interaction with wind turbines and their impact on loading and 

power estimation. 

Changes have been made to include mentioning the importance of measuring wind speeds within the 

rotor layer of turbines in addition to just the hub heights throughout the introduction (lines 43–46, 

58). The importance of wind speed profiles and impacts on wind energy production, especially of LLJs 

and high shear events, are also included in the introduction and beginning of section 5.2 (lines 84–87, 

342-343).

2. In addition to tall towers and lidars, sodars also serve as wind profile measuring instruments. 

Introduce them. Also, lidars have several limitations, such as failed to measure wind speed during 

raining, snowing, or other precipitation events; no measurement without aerosols. Instead of “lidars are 

very accurate alternative devices”, at lines 54, introduce the limitations as well. 



We have rephrased calling lidars a “very accurate” alternative and instead consider them an 

alternative with a few limitations listed (Lines 51–54). A couple of sentences on sodars are also 

included in the the introduction  (Lines 47–51)

3. Line 59: 20 years of mesoscale model simulated hindcasts of wind profiles (NOW23) can offer a 

concise resource assessment, which are sufficient in temporal scale, covering annual to decadal analysis, 

and at a high resolution of 2 km. It doesn’t appear to be a gap in the long-term wind speed profile 

knowledge along the US coast. Rephrase this sentence. 

The sentence has been rephrased to focus more on the gap in real-time wind speed knowledge only 

(lines 59–60).

4. Lines 60-64: The authors claim the novelty lies in the idea of bridging critical database gap. However, 

the NBSv2.0 gridded dataset available at a resolution of 0.25 deg, and at a temporal resolution of 6 

hours, which is poorer in temporal and spatial resolution, than NOW23, except for the coverage. Here it 

dilutes the novelty. 

We recognize the dataset is at poorer spatial and temporal resolutions compared to NOW-23. The 

NOW-23 dataset is a highly valuable dataset for wind energy developers, especially for its high 

resolution. However, our dataset differs in a few important ways that address the unmet needs of 

some stakeholders. Our wind profile dataset provides observations from 1987 to present (currently 38 

years) compared to NOW23’s ~20 years (from 2000 to 2019–2022; end date depends on region). Our 

dataset will have near real time production with ~1 day delay and monthly processed science quality 

data, allowing wind developers access to the most recent wind profile observations, compared to 

NOW23 which is not regularly updated and does not contain data for the most recent years. We realize 

we had not included all these details in the initial manuscript submission and had said 1987–2022 

instead of 1987–present for the time span of our product. This has been corrected in the manuscript 

where appropriate (lines 16, 23, 33, 64, 101, 485, 627).

Further, our dataset incorporates satellite observations and uses the random forest model to 

estimate wind profiles, compared to NOW23 that is solely based on ERA5 reanalysis and a WRF model. 

Comparatively, NOAA’s Blended Seawinds blends observations from multiple satellites and much more 

accurately estimates high wind speeds, including extreme weather events, compared to reanalysis 

data including ERA5 

(https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.935549/full). The 

WRF model implemented in NOW23 is based on the logarithmic law for profile extrapolation, which 

has been shown in many studies (including several cited in our introduction) to be outperformed by 

the random forest. These results are validated for our product by the triple collocation analysis. Our 

dataset shows lower errors compared to those of ERA5 and NOW23 around the US coastal regions. 

While we do understand the value of both ERA5 and NOW-23 to many users, we believe that the 

addition of our dataset would further benefit stakeholders in the offshore wind energy industry. These 

two datasets complement each other, together providing users more comprehensive information.  

5. There are several studies extrapolated wind speed from surface to 200 m level, utilizing random forest 

regression (RFR). A very recent study under review is Rouholahnejad et al. (2024), which did exact similar 

work. The authors could have referred to this article. In addition, the RFR methodology has been 

adopted in several other studies, showcasing the better predictability in low-level jet cases and high 

https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.935549/full


shear events, compared to the conventional low-logarithmic law power law. In comparison to the 

existing studies, there seems little added value in this study to the scientific community. Rouholahnejad, 

F. and Gottschall, J.: Characterization of Local Wind Profiles: A Random Forest Approach for Enhanced 

Wind Profile Extrapolation, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2023-178, 

in review, 2024. 

The authors were unaware of this study at the time of our submission. While we understand that this 

study’s title suggests it may overlap with our analyses, upon further review it seems that it contains 

significantly different analysis than the work we have presented in this manuscript. The 

Rouholahnejad and Gottschall study, similar to many previous studies we have already referenced in 

the Introduction (Lines 72–97), focused on validating the model in a small region, at stations within 

200 km of each other. They also noted that while their model captures regional effects well, the bias 

increases at locations 200 km away from the training data. The limited ability of their model for profile 

extrapolation far from the training data locations is a sharp contrast to the work presented here where 

we develop an RFR model, through extensive hyperparameter tuning and feature selection using cross 

validation, that generalizes well and does not overfit to one small region. This is what enables us to 

produce a wind speed product for all the coastlines of the contiguous US and Hawai’i using this model. 

By testing our resulting wind speed estimates against the two ASOW and several NOW-23 stations, we 

find that our RFR model is able to robustly produce such estimates in a variety of regions substantially 

farther than 200 km from our training data locations. We are not aware of any previous studies, 

including the Rouholahnejad and Gottschall study, that developed an RFR model for extrapolating 

wind speeds that could generalize well to multiple coasts and in distant regions (relative to the 

training data locations). Furthermore, we are not aware of a study that introduces a long-term satellite 

observation based and gridded dataset of wind speed profiles created using the random forest model, 

as we have done in this work. We hope this helps clarify the major differences between the 

Rouholahnejad and Gottschall study and this work.

6. In fact, this current study resembles extension of Optis et al., 2021. However, there is limited scientific 

addition in novelty. 

See reply comment on #5. Additionally, The study from Optis et al., 2021 focuses on two of the Hudson 

buoys which are 83 km apart for their analysis. As such, we cannot assume that their RFR model will 

work all around the US coasts without performing that analysis ourselves as their model could have 

learned localized climate patterns to help in extrapolating profiles that would not necessarily be the 

same at all offshore locations. We innovate from the Optis et al., 2021 model by training our RFR using 

more lidar stations and doing a more detailed feature selection process. Furthermore, we perform a 

more rigorous assessment of our model’s ability to generalize to unseen locations through 

comparisons to the two ASOW stations and additional NOW-23 stations, while also comparing its 

performance to the ERA5 and NOW-23 reanalyses by performing a correlated triple collocation 

analysis. Further, Optis et al., 2021 does not introduce a dataset based on the random forest model as 

we have done here.

7. Lines 94-96: the authors state that the main novelty of this present work lie in extrapolating wind 

speed profiles on a larger spatial scale covering multiple coasts. However, they focused vastly on the RFR 

model and its validity compared to the conventional methods, which in fact several researchers have 



already reported. Similar to the previous studies, the current study also failed to accurately estimate the 

LLJ cases. If the authors have captured the LLJ events, it could be a stand-alone novelty. 

Our responses to earlier comments (#5 and #6 above) addressed this comment as well. Our focus on 

the model and its validity against conventional methods is to ensure that it is clear that we have 

examined that this specific RFR model is capable of extrapolating wind speeds with higher accuracy 

than other models across large spatial scales. While other papers have validated the RFR model in 

regional analyses, no paper has validated across as large of a region as done here (contiguous US and 

Hawai’i coastlines). Thus, it is imperative for us to demonstrate the model is capable of extrapolating 

wind speeds with higher accuracy compared to conventional methods over such a broad region before 

using it to generate a product covering the coastal US regions.

We recognize that the inability of our model to currently capture LLJ events is a shortcoming of the 

model. We are in the process of furthering this work to capture the LLJs in a future version of the 

product and a future paper. However, given that >94% of profiles at each station are non-LLJ profiles, 

we feel our current model is able to perform well at replicating the majority of observed wind profiles.

8. Lines 143-150: this paragraph seems out of order and introduces confusion, since the ML 

methodology has not been explained. For a clarity, remove this from here and explain it when 

introducing the RFR model training. 

This paragraph has been removed and it is explained instead in the sections for their given analyses 

(Lines 151, 458–460, 524).

9. One major drawback of this study is using the conventional Logarithmic Law and Power Law for 

comparison, which have been proven to be inadequate in extrapolating wind profiles, due to their 

dependance on stability conditions and shear exponent. Also, the assumption of neutral conditions for 

Logarithmic Law and a constant sear exponent for Power Law already introduces substantial errors in 

wind profile extrapolation. To make the study novel, it is better to consider all the stability conditions 

and variable shear exponent in estimating wind speed profiles. 

Due to not having measured friction velocity or surface roughness sampled at the same resolution as 

the SST and w10 at the lidar stations, we were not able to consider stability correction functions. One 

of the strengths of our model is its ability to predict high wind shear, which generally occurs during 

stable conditions, as seen in Figure 8 where most high shear cases have a positive air-sea temperature 

difference. On the other hand, the logarithmic law is known to break down under stable conditions 

and is incapable of predicting LLJs. This was shown in Optis et al., 2021 which showed the logarithmic 

law greatly underestimating wind speeds in stable conditions at Hudson North and Hudson South 

buoys. As such, we can assume that the logarithmic profile (at these two buoys at least) breaks down 

in cases of high wind shear whereas our model is capable of predicting these high shear cases in stable 

conditions. Since the logarithmic law is known to break down in stable conditions where our model 

shows to perform well (excluding the inversion in LLJs), we can assume our model would similarly 

outperform the logarithmic law considering stability as well. Again, in addition to the methodology, 

here we also create a gridded, near-real-time wind profile product based on the random forest model 

and multiple satellite based observation, showing our model can perform skillfully across large 

regions. 



10. The authors gave a tremendous importance to the leave-out-station-out cross validation. It is 

common practice to split the data into training and validation, to optimize the model parameters. 

Instead, the authors constructed five RFR models by leaving one station at a time, and testing the model 

accuracies on these stations. This actually comes into “testing” the model accuracy, but not the 

“validation”. The authors should understand that the wind energy community surpassed validating the 

accuracy of RFR model, rather a unique model accurate enough to extrapolate the entire wind speed 

profile is needed. 

We thank the reviewer for your comment, however, we feel there is some confusion about our use of  

LOSOCV, which was in fact used for the training and validation process only. Specifically, the use of 

LOSOCV in this manuscript is to optimize the hyperparameters and select features that will be used for 

the final model. The features are selected by assessing the increase/decrease in error on the held-out 

stations. This point is now further elaborated in the revised manuscript (lines 260, 268–269, 272). The 

hyperparameters were tuned using the out-of-bag training error, however the optimal values were still 

validated on the held-out locations to ensure they generalize well to data at distant locations. This 

approach provides a more detailed way of selecting optimal hyperparameters than only using one 

validation set since only holding out a single location as the only validation set can lead to overfitting a 

model that might only be optimal at that location. For example, one input may show an increase in 

model accuracy at Humboldt when added, but a decrease in accuracy at Morro Bay when added. Our 

analysis showed the optimal values for the hyperparameters did not change depending on the 

held-out location, which we could not have proved by only using one training/validation split alone. 

As we used the hold out stations to select features and determine improvements from 

hyperparameters, as well as the fact that all five stations are used as training data in construction of 

the final model for our product, none of the steps involving the LOSOCV models can fall into the 

category of “testing” since they all contributed to model development. This is why the two Atlantic 

Shores wind stations are introduced as testing stations. Neither station was used at all in the training 

and validation of hyperparameters and feature selection so they provide data independent of our 

model training to test the model’s ability to generalize to unseen data. The NOW-23 stations serve a 

similar purpose.

While we have seen other papers from the offshore wind community validating the use of the 

random forest, there are no studies we are aware of that validate a model over as large of a region as 

used here. Other papers have focused only on validating the model in a specific small region, including 

Rouholahnejad and Gottschall (2024) which focused on the North Sea only. While the fact that 

regional models have been well validated is promising for a model to be used over such a large region, 

it does not necessarily mean that fact can be taken for granted. In fact, our LOSOCV shows that the 

LOSOCV RFR with all features input into the model had slightly lower errors at the three Hudson 

stations while performing worse than the optimal RFR at other stations. This points to additional 

(non-w10 or ΔT)  features potentially having more feature importance in models used in small regions, 

consistent with Optis et al. (2021) (at the Hudson stations) and Rouholahnejad and Gottschall (2024) 

(in the North Sea). Here, we aimed to train and validate a model that is optimal for extrapolating 

winds over a large scale and generalizes well to many areas, which had not been done before. 

Instead of bombarding the manuscript with LOSOCV model, the authors should bring new insights from 

the one single optimized RFR model.  



Thank you for this comment as it highlighted the need for us to clarify in the manuscript when the five 

LOSOCV RFR models were being used as opposed to the final, optimal RFR trained on all 5 

training/validation stations. In addition to the existing note on line 296, we have made this more clear 

at the start of sections 6.1 (line 421) and 7 (line 484). We provide insights into how the one single 

optimized RFR performs showing that it is capable of extrapolating winds at locations completely 

independent of the training/validation stations, including independent model testing at the Atlantic 

Shores stations (lines 420–455) and 6 different NOW-23 stations (lines 458–481) in regions far from the 

training data, such as two stations in the Gulf of Mexico where no training data is provided. Further, 

this single optimized model is applied to the NOAA Blended Seawinds dataset to produce our new 

wind profile product and error analysis is done on the resulting product and compared to ERA5 and 

NOW-23 (lines 484–563). The error analysis shows our dataset created with the final optimized 

random forest model outperforms both ERA5 and NOW-23 with the lowest errors among the three 

datasets. No other paper we are aware of has applied a random forest model to a gridded 

satellite-based dataset for widespread wind speed profile estimation nor compared the resulting 

profiles with other current wind profile reanalysis datasets.

11. The authors conducted feature importance and came up with only two variables, namely 10 m wind 

speed and temperature difference. The model trained with these parameters is termed as “Optimal 

LOSOCV RFR”, while the model trained with all features is termed as “Basic LOSOCV RFR”. However, 

training a RFR model requires least computational resources, thus eliminating features doesn’t 

necessary. 

While eliminating features may not be necessary to significantly reduce computation time, including 

features that do not improve the model is known to degrade the RFR’s performance because they are, 

in a way, adding noise to the model. Hyperparameter tuning can often resolve this issue to a degree 

but we decided to take a more direct approach to limit the impact of these less predictive variables in 

this study. We also found that including some features actually decreased accuracy at some held out 

locations, so it is important that those be removed.

The entire manuscript compares Optimal vs Basic LOSOCV RFR models, which makes the manuscript 

more like a lab report, rather than a scientific article. The authors should come out of the thought of 

evaluating multiple RFR, but rather bring new novelty.

The comparisons between the optimal and basic LOSOCV RFR are limited to the model 

training/validation sections while the rest of the manuscript’s analyses use the optimal RFR. We have 

strived to make it more clear in the manuscript when which of these models are being used (see 

comment #10 reply above). The manuscript also tests the accuracy of the optimal model on 

independent testing locations at Atlantic Shores Offshore Wind 4, Atlantic Shores Offshore Wind 6, 

and six NOW23 locations as independent testing from our training locations is needed. This 

independent testing demonstrates that the optimal model can accurately estimate wind speed profiles 

in distant regions from the training data where the model has no prior knowledge of wind resources, 

something that we could not find previously demonstrated in the literature. Furthermore, the 

manuscript not only evaluates the model’s performance rigorously but also uses it to generate a 

gridded product around the whole US coastal regions, which has not been previously done. The 

manuscript then compares the random errors of our new dataset based on satellite data and machine 



learning to ERA5 and NOW23 and shows lower random errors in all US coastal regions compared to 

ERA5 and NOW23.

12. The authors should consider feature engineering, rather than merely feature importance. 

The authors believe feature engineering and feature importance to serve two different functions. We 

define feature engineering as transforming data into features useful for machine learning models. We 

did this for several of the candidate features for the RFR, including: (1) breaking down all the cyclical 

features in the manuscript into their sine and cosine components so that the model could capture 

their cyclical nature; and (2) calculating  from the measured air temperature and SST. Given the Δ𝑇
authors’ understanding of feature engineering, we believe we have already undertaken it as part of 

this manuscript. 

On the other hand, we define feature importance as a measure of how much a feature improves 

predictions in an ML model. As such, feature importance was used to assess which features to keep, 

including features that were engineered from the raw data.

13. Same as previous studies, this study also reports poor performance in LLJ cases. In fact, the RFR 

model predicted profiles doesn’t even fall under LLJ cases, since no jet nose and increased/decreased 

shear below/above the nose are identified (though the authors did not show the RFR predicted profiles, 

it is evident from the bias plots). This further hinders the novelty of this study. 

We recognize that our model is not capturing LLJs and plan to address this in future research. We have 

mentioned that in the manuscript (lines 597–598) and discussed this issue in more detail in our reply 

to comment 7. 

14. Sections 5.1 and 5.2 should be reduced with limited metrics in the text. Rather keep the metrics in 

the figures. Instead of reporting the metrics in quantitative way, explain the reasons behind the 

poor/better performance, which gives a scientific reasoning to the reader. 

Sections 5.1 and 5.2 were rewritten to be more qualitative in explanations without as many values of 

the metrics placed in the text.

15. Figures 3-12: Increase the font size and make them clearer. 

We made the figures bigger and increased the font sizes.

16. Tables 2-3: Comparing with the conventional Logarithmic Law and Power Law does not bring any new 

scientific insights, rather repeats what the previous studies have found. 

The comparisons with the logarithmic law and power law is done to make sure the RFR still 

outperforms them over a broader region before implementing the RFR across such a wide swath of 

coastlines. While not a completely new idea in itself to validate against these methods, it does confirm 

the model’s ability to accurately estimate wind speeds at far distances, which has not been confirmed 

as other studies on the model are all performed in small regions.

17. The authors stressed that the RFR model can perform skillfully around the coast of the contiguous 

US, including regions not included in the training data. However, it is paramount of importance to note 

that the RFR model doesn’t know which locations the data comes from (since no lat/lon information are 

provided), rather it only knows the correlations within the data. 



We agree that this is an important point to note. This shows that the model generalizes well to many 

offshore regions and is not reliant on lat/lon to perform well, instead drawing solely upon the 

relationship between w10 and ΔT to make the wind speed profile estimates. We have added this fact 

into the manuscript when talking about our inputs used to avoid any potential confusion for readers 

(lines 230–232).

18. The authors spent vastly on validating the RFR model in comparison with conventional methods but 

spent very little on the generation of NOSP and the insights from this data. To make this study novel, 

conduct offshore wind resource assessment using NOSP, and several wind turbine models. A Levelized 

Coast of Energy (LCOE) using NOSP could be a novelty. 

We intended this manuscript to focus on the methodology and creation of our dataset as well as 

assessment of the uncertainty in our product. We would like to contribute further research using this 

data such as including it in wind turbine models and LCOE analyses. However, given the focus and 

length of the current manuscript we feel such additional analysis is beyond the scope of the current 

work. We thank the reviewer for the suggestions.

19. Lines 537-657: this analysis is not necessarily in the main manuscript, since the ERA5 and NOW23 are 

expected to be correlated, due to their parent/child relation. Move it to the Supplement. 

Details of the correlation between ERA5 and NOW-23 and the bivariate plot were moved to the 

appendix as we believe it is more suitable there per WES standards. We still believe it is important to 

introduce triple collocation as background for correlated triple collocation and have kept some of the 

salient background discussion in the main text.

20. The last paragraph of results seems be out of context. Could you elaborate why this was explained 

here? 

This paragraph was included to reiterate the fact that the error statistics that we obtained at 100 m 

altitude are slightly higher from what Bodini et al 2024 reported at 140 m.

Minor comments: 

1. Limit abstract to one paragraph, only providing necessary overview, without describing in detailed. 

The abstract is now shortened to one paragraph.

2. Lines 134-135: the NOW23 is generated by using the WRF model, provided ERA5 reanalysis. Rewrite 

the sentence “this product implements the WRF …” 

This sentence has been rewritten.

3. At this point, the RFR model has been widely used in wind speed extrapolation. Thus, move the RFR 

model description to supplement, and only explain the training with detailed flowchart of inputs and 

targets. 

We have found in our discussions with the community that briefly reviewing the general structure of 

the RFR before diving into its specific application here is useful despite its increase in prevalence. 

Given that some readers may find this brief review helpful and that the description is only a paragraph 



in length, we think it would be more beneficial for it to remain in the text where it is more easily 

accessible to the reader. However, we also added a flowchart as suggested by the reviewer (see Fig 1).

4. Tables: Put the captions on top of the table.

Table captions are now moved to the top of the tables.


