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Abstract. Offshore wind farms are a low-cost, efficient technology for green energy. They deliver significant economic benefits 10 

through their manufacturing and operation, and can be readily deployed at scale. Offshore wind also offers a route to opening up 

access to renewable energy for a global population, 40% of whom live within 100 km of the coast. Presently, offshore wind speed 

data around wind turbine hub heights are fairly limited, available either through in situ observations from wind masts and floating 

Light Detection and Ranging (lidar) buoys at selected locations or as forecasting-model based output such as from the 2023 

National Renewable Energy Laboratory (NREL) National Offshore Wind (NOW-23) and the European Centre for Medium-Range 15 

Weather Forecasts (ECMWF) Reanalysis v5 (ERA5). In situ wind profiles are very sparse and costly to obtain en masse, whereas 

satellite-derived 10 m wind speeds have vast coverage at high resolution. In this study, we show the improvement of deploying 

machine learning techniques, in particular random forest regression (RFR), over conventional methods for accurately estimating 

offshore wind speed profiles on a high-resolution (0.25°) grid at 6-hourly resolution from 1987 to 2022 using satellite-derived 

surface wind speeds from the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 20 

Information’s (NCEI) Blended Seawinds version 2.0 (NBSv2.0) product. We use 276,577 wind profiles from five publicly 

available lidar datasets over the Northeast US and California coasts to train and validate a RFR model to extrapolate wind speed 

profiles up to 200 m. A single extrapolation model applicable to the coastal regions of the contiguous US and Hawai’i is developed, 

instead of site-specific ones attempted in previous studies. 

Our RFR outperforms conventional extrapolation methods at the five training stations under cross validation (where each 25 

station is held out from the training once and used for validation), especially under conditions of high vertical wind shear and at 

wind turbine hub heights (~100 m). This model is then tested on two lidar stations that were not used in the training data and 

profiles from six NOW-23 station locations to evaluate its performance on unseen data. The final model is applied to the NBSv2.0 

data from 1987–2022 to create publicly available wind speed profiles over the coastal regions of the contiguous US and Hawai’i 

on a 0.25° grid, which are shown to outperform NOW-23 and ERA-5 reanalysis at 100 m using a correlated triple collocation 30 

method over five years of matchup data (2015–2019). Gridded maps of wind profiles in the marine boundary layer over US coastal 

waters will enable the development of a suite of wind energy resources and will help stakeholders in their decision making related 

to wind-based renewable energy development. 

 

Short Summary 35 

A machine learning model is developed using lidar stations around the US coasts to extrapolate wind speed profiles up to the hub 

heights of wind turbines from surface wind speeds. Independent validation shows that our model vastly outperforms traditional 
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methods for vertical wind extrapolation. We produce a new long-term gridded dataset of wind speed profiles from 20 to 200 m at 

0.25°, 6-hourly resolution from 1987 to 2022 by applying this model to the NOAA/NCEI Blended Seawinds product. 

 40 

1 Introduction 

By March 2023, the US offshore wind energy potential capacity will have grown to ~53 GW (Musial et al., 2023). This 

includes already operational projects, wind farms under construction, and those which are in various other stages of development. 

Planning an offshore wind farm requires finding the optimal location that fulfills different requirements including pricing, 

optimized siting, regulation, and grid integration, among others. For these efforts, stakeholders in the wind energy industry need a 45 

suite of wind resources, including a wind atlas that will examine the wind at various heights from the ocean surface up to the wind 

turbine hub heights. A long-term stable database of wind speeds is a particularly pressing need for the wind energy sector, not only 

at commonly used hub heights of ~100 m (with rotor diameter of ~90 m), but also at higher hub heights of ~140 m to 160 m as 

continued technological improvements allow for larger wind turbines.  

The biggest hindrance of developing such a long-term database is scarcity of accurate measurements of wind speeds at 50 

the hub heights, which requires installing meteorological towers around the coastal US. This becomes less cost-effective as newer, 

larger turbines are developed since the price of measurements increases with height. Buoy-mounted floating Light Detection and 

Ranging (lidar) instruments are very accurate alternative devices to measure winds at those heights but are equally expensive. 

However, due to their lower maintenance cost they are commonly used by wind farm developers. As most of these lidar data are 

not publicly available due to proprietary reasons, there remains a scarcity of wind speed observations at hub heights. The only data 55 

that are publicly available are from a few lidar stations and the 2023 National Renewable Energy Laboratory (NREL) National 

Offshore Wind (NOW-23) dataset that is based on the Weather Research and Forecasting (WRF) model in and around the coastal 

US (National Renewable Energy Laboratory, 2020) described in Sect. 2. As the few publicly available lidar stations have limited 

spatio-temporal coverage and NOW-23 only covers ~20 years, there is a gap in both real-time and long-term wind speed profile 

knowledge along the US coasts. Satellite-based products can be utilized to develop wind speed profile gridded datasets with vast 60 

coverage and high resolution that can help address this critical database gap. Using the National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental Information’s (NCEI) Blended Seawinds (NBSv2.0) product, we 

derive vertical wind speed profiles around the US coasts from July 1987 through 2022. 

The buoy-based wind speed (hereafter, “surface” wind speed) measurements from the National Data Buoy Center, 

maintained by NOAA (National Data Buoy Center, 1971), have been used along with satellite-based surface wind data to simulate 65 

winds at the turbine rotor-swept heights, but these studies used either conventional extrapolation techniques or industry accepted 

wind models like the Wind Atlas Analysis and Application Program (WAsP) and are very region specific (Doubrawa et al., 2015; 

Optis et al., 2020a; Optis et al., 2020b).  

Several studies have estimated wind profiles from the surface up to the turbine rotor-swept heights using various artificial 

intelligence/machine learning (AI/ML) techniques but most of these are site-specific case studies, where lidar measurements were 70 

used to train and develop the respective models (Mohandes and Rehman, 2018; Bodini and Optis, 2020a; Optis et al., 2021). A 

study using two years of wind mast and modeled mesoscale data below 80 m from the New European Wind Atlas (NEWA) to 

extrapolate 102 m wind speeds showed that multiple machine learning methods including linear, ridge, lasso, elastic net, support 

vector, decision tree, and random forest regression (RFR) outperformed the power law with RFR performing the best with an 

increase in coefficient of determination (R2) of 42% over the power law (Basquero et al., 2022). Over a land-based site in China, 75 

the RFR outperformed the power law for extrapolating wind speeds at 120, 160, and 200 m (Liu et al., 2023). At four-land based 

stations in Oklahoma, the RFR outperformed both the logarithmic and power law based extrapolation, improving accuracy by 25% 
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when trained and validated at the same site and by 17% when using a round-robin approach where cross validation was performed 

by leaving out one station from training at a time for validation (Bodini and Optis, 2020a). In addition, the RFR was able to 

extrapolate wind profiles during low-level jet (LLJ) occurrences at the four land-based stations, showing improved performance 80 

over the logarithmic method, which is unable to replicate such events where surface winds decouple from winds aloft (Optis et al., 

2021). LLJs are defined by their wind speed gradient inversion within the stable boundary layer and are important resources for 

offshore wind energy production along with other high vertical wind shear events (Borvarán, Peña, and Gandoin, 2020; Gadde and 

Stevens, 2021; Doosttalab et al., 2021). In many previous studies, machine learning shows potential to more accurately estimate 

wind profiles over conventional methods, allowing for more informed decision-making for wind farm siting. 85 

RFR in particular has shown promise in extrapolating wind profiles, specifically within the offshore environment. At the 

E05 Hudson North and E06 Hudson South stations equipped with floating lidar buoys, the RFR outperformed the logarithmic 

formula, a single column model, and the WRF model, with no evidence of decreased model performance under the same round-

robin approach between the two buoys 83 km apart (Optis et al., 2021). As such, they suggested that machine learning is promising 

for extrapolating 10 m satellite-resolved wind speeds in the relatively homogeneous offshore environment. In addition, they showed 90 

that including the difference between air temperature and sea surface temperature as input to the RFR greatly improved the model 

by quantifying atmospheric stability. Other work at the three German Forschung In Nord- und Ostsee (FINO1, FINO2, and FINO3) 

mast stations located in the North Sea and the Baltic Sea around Denmark also found the air-sea temperature difference to be an 

important input to the RFR (Hatfield et al., 2023). While machine learning has been used to improve the wind extrapolation in a 

site-specific manner, we are unaware of any past studies that have used it on a large spatial scale covering multiple coasts, as done 95 

in our paper. We use RFR in this analysis as it has shown more promise than other machine learning models for this task. 

In this study we apply an RFR developed using offshore lidar data to NBSv2.0 satellite-derived blended gap-free sea 

surface winds to generate a long-term (1987–2022) product of wind speed profiles up to 200 m on a 0.25° grid around the coastal 

regions of the contiguous US and Hawai’i. Section 2 introduces the data used for training, validation, and testing of the 

extrapolation methods, Sect. 3 describes the conventional vertical wind extrapolation methods, Sect. 4 describes the RFR 100 

extrapolation model development, Sect. 5 compares the performance of the RFR and conventional methods both overall and 

specifically for LLJs and high vertical wind shear events, Sect. 6 describes the independent validation of the extrapolation models, 

Sect. 7 introduces the new wind profile product, NOAAOffshoreWindProfiles-USA (NOSP), and its error estimation at hub 

heights, and Sect. 8 summarizes our analysis and gives conclusions. 

 105 

2 Data 

2.1 Lidar Stations 

Data from five offshore lidar stations were used to train and validate the models in this analysis (locations shown in Fig. 

1). Three stations (E05 Hudson North, E05 Hudson South West, and E06 Hudson South) are freely available from OceanTech 

Services/Det Norske Veritas (DNV) under contract to New York State Energy Research and Development Authority (NYSERDA) 110 

and are located in the New York Bight Call Areas. The other two stations are on the California coast at Humboldt (Krishnamurthy 

and Sheridan, 2023a) and Morro Bay (Krishnamurthy and Sheridan, 2023b) and those data are freely available from the Department 

of Energy-funded Wind Data Hub. All lidar stations provide 10-minute data including surface wind speed, surface wind direction, 

wind profiles ranging between 40 m and 200 m at intervals of 20 m, surface air temperature, sea surface temperature, and surface 

pressure; all of which are considered in this analysis. In total, there are 276,577 10-minute profiles that are used to train and validate 115 

the model with 35% of the data coming from Hudson North, 31% from Hudson South, 15% from Hudson South West, 4% from 

Morro Bay, and 15% from Humboldt. Additional lidar buoy data from the Atlantic Shores Offshore Wind (ASOW) 4 and 6 stations 
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were used as an independent test set that was not used in the model training or validation. These included 14,531 and 36,659 

profiles from ASOW-4 and ASOW-6, respectively, provided at 10-minute intervals. Each of the seven stations provided data over 

a different time period within the range of August 2019 to January 2023 (Table 1).  120 

 

2.2 NOAA/NCEI Blended Seawinds 

The NOAA/NCEI Blended Seawinds v2.0 product (NBSv2.0) contains 10 m neutral winds and wind stresses globally 

gridded at a 0.25° spatial resolution dating back to July 1987 at 6-hourly, daily, and monthly resolution. The data from 17 satellites 

is blended to create the product, with up to 7 satellites at a given time, enabling the product to delineate extreme wind speeds with 125 

higher accuracy than other wind based products (Saha and Zhang, 2022). The data is currently archived at NCEI and is available 

in both near-real time as well as in a science quality (post-processed) format from the NOAA CoastWatch server. NBSv2.0 is a 

well-calibrated, uninterrupted, long-term, gap-free, and stable dataset. The 6-hourly data is used here as the input to generate the 

final gridded wind profile product. 

 130 

2.3 Model and Reanalysis Data 

The offshore wind industry widely uses wind profiles from the NREL Wind Integration National Dataset (WIND) Toolkit 

(Draxl et. al., 2015), which are available around the coastal US at high spatial and temporal resolution. The latest version of this 

dataset is the NREL NOW-23 reanalysis data (Bodini et al., 2023; 2024). This product implements the WRF numerical weather 

prediction model (NWP) to estimate wind profiles up to 500 m for US coastal regions beginning on January 1, 2000. NOW-23 135 

data currently extends through December 31, 2019 for Hawai’i and the North Pacific regions, through December 21, 2022 for the 

South Pacific region (e.g., offshore of California), and through December 31, 2020 in all other regions. The 2 km horizontal spatial 

resolution NOW-23 files are available at both 5-minute and 1-hour time resolution through the Open Energy Data Initiative 

program of the US Department of Energy via their Amazon Web Service (AWS) public data registry page. Another source of long-

term wind speeds, at 10 m and 100 m only, is the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 140 

v5 (ERA5) product, which uses the Integrated Forecast System (IFS) to produce hourly estimates on a 0.25° global grid dating 

back to 1940. These fields are downloaded using the Climate Data Store (CDS) Application Program Interface. 

One year of wind speed profile data (2019) from six offshore NREL locations representing different oceanic regions 

around the US coasts is also used to initially evaluate the accuracy of the RFR based model. We average the original 5-minute data 

into 6-hourly average profiles. Five years of 6-hourly output between 2015 and 2019 are selected from both the NOW-23 and 145 

ERA5 reanalysis datasets to further evaluate our wind speed estimates at 100 m, a commonly used hub height for wind turbines. 

A triple collocation analysis is used to compare both these products to the wind speeds estimated by applying the RFR to NBSv2.0. 

Additionally, ERA5 2 m air temperature and sea surface temperature are used to generate air-sea temperature differences (𝛥𝛥T) as 

input to the RFR when implemented on NBSv2.0, which does not contain any temperature data. 
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 150 
Figure 1: Locations of floating lidar buoy stations used for training, validating, and testing the random forest regression. 

 

Station Start/End Dates Heights of Available Wind Speeds 
(m) 

Nobs Use 

NYSERDA E05 
Hudson North 

8/12/2019 
9/19/2021 

3, 20, 40, 60, 80, 100, 120, 140, 
160, 180, 200 

97779 train 
validate 

NYSERDA E05 
Hudson South West 

1/29/2022 
1/28/2023 

3, 20, 40, 60, 80, 100, 120, 140, 
160, 180, 200 

40372 train 
validate 

NYSERDA E06 
Hudson South 

9/4/2019 
3/27/2022 

3, 20, 40, 60, 80, 100, 120, 140, 
160, 180, 200 

86860 train 
validate 

Morro Bay, CA 10/1/2020 
2/18/2021 

4, 40, 60, 80, 90, 100, 120, 140, 
160, 180, 200, 220, 240 

10715 train 
validate 

Humboldt, CA 10/8/2020 
6/29/2022 

4, 40, 60, 80, 90, 100, 120, 140, 
160, 180, 200, 220, 240 

40851 train 
validate 

Atlantic Shores 
Offshore Wind 4 

5/14/2021 
9/30/2021 

10, 40, 60, 80, 90, 100, 120, 140, 
160, 180, 200, 250 

36659 test 

Atlantic Shores 
Offshore Wind 6 

2/26/2020 
5/14/2021 

10, 40, 60, 80, 90, 100, 120, 140, 
160, 180, 200, 250 

14531 test 

Table 1: Data availability of each lidar station used in this analysis. 

 

3 Conventional Methods for Wind Extrapolation 155 

3.1 Logarithmic Law 

Conventional physics-based models are typically implemented to vertically extrapolate surface winds, namely a 

logarithmic law and a power law. The logarithmic law is based on Monin-Obukhov Similarity Theory (Monin and Obukhov, 1954) 

and relates wind speed v to height z as follows, 

𝑣𝑣(𝑧𝑧) =  𝑢𝑢∗
𝐾𝐾
�𝑙𝑙𝑙𝑙 � 𝑧𝑧

𝑧𝑧0
� − 𝜓𝜓 �𝑧𝑧

𝐿𝐿
�  +  𝜓𝜓 �𝑧𝑧0

𝐿𝐿
�� ,          (1) 160 
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where u* is the friction velocity of the surface, K is the von Karman Constant (usually 0.4), z0 is the surface roughness, and 𝜓𝜓 is a 

correction function for atmospheric stability that relies on the Obukhov Length (L) (Holtslag et al., 2014). 𝜓𝜓�𝑧𝑧0

𝐿𝐿
� can usually be 

ignored as it tends to be minimal compared to 𝜓𝜓�𝑧𝑧
𝐿𝐿
� in an offshore environment. There are many different formulations for 𝜓𝜓, 

many of which only have applicability within a certain range of L. Much research has been done to compare the various different 

formulations and create new ones that have their own ranges of applicability (Essa, 1999; Holtslag et al., 2014; Jiménez et al., 165 

2012; Optis et al., 2015; Schlögl et al., 2017). In addition to needing different formulations under certain conditions, the logarithmic 

law fails to accurately estimate wind profiles in conditions where surface winds decouple from winds aloft, namely in the presence 

of LLJs (Optis et al., 2021). As such, a more simplistic and accurate model is desired. The neutral logarithmic law removes the 

stability functions (assumes neutral stability) to give a simpler model but tends to have lower accuracy than other variations of the 

logarithmic law. The neutral logarithmic law finds wind speed v2 at height z2 by relating to a reference wind speed v1 at height z1 170 

(Monin and Obukhov, 1954): 

𝑣𝑣2  =  𝑣𝑣1
𝑙𝑙𝑙𝑙�𝑧𝑧2𝑧𝑧0

�

𝑙𝑙𝑙𝑙�𝑧𝑧1𝑧𝑧0
�
 ,             (2) 

Below, we compare wind profiles extrapolated using the neutral logarithmic law to those from the RFR. Due to lack of variables 

necessary for estimating the stability functions, namely u* and z0, we were restricted to using the neutral logarithmic law. 

 175 

3.2 Power Law 

The power law for wind profile extrapolation relates wind speeds v2 and v1 at two heights z2 and z1, respectively, as 

𝑣𝑣2  =  𝑣𝑣1 �
𝑧𝑧2
𝑧𝑧1
�
𝛼𝛼

 ,             (3) 

where 𝛼𝛼 is the wind shear coefficient. When the wind speeds at two heights (z1, z2) are known, 𝛼𝛼 can be computed directly from 

the two wind speeds 180 

𝛼𝛼 =  
𝑙𝑙𝑙𝑙�𝑣𝑣2

𝑣𝑣1
�

𝑙𝑙𝑙𝑙�𝑧𝑧2
𝑧𝑧1
�
 ,             (4) 

which in turn can be used to extrapolate the wind speeds at a third height in the given profile by substituting equation 4 (re-written 

for height 3 and either height 1 or 2) for 𝛼𝛼 in equation 3.  

When wind speed is only provided at one height in a profile, 𝛼𝛼 must be estimated to extrapolate wind speeds at subsequent 

heights. 𝛼𝛼 can be estimated as a constant of 0.10 over oceans (Bañuelos-Ruedas 2011). However, 𝛼𝛼 is highly variable over time 185 

of day, season, location, wind speed, and height so 𝛼𝛼 should not be used as a constant and instead be modeled as a parameter 

(Spera and Richards, 1979). Some studies focus on finding the best average estimate of 𝛼𝛼 for a specific wind resource site (Gualtieri 

and Secci 2011; Werapun et al., 2017). Others define formulations for 𝛼𝛼 that account for the effects of wind speed and surface 

roughness (Spera and Richards, 1979) or for the effects of atmospheric stability by using correction functions based on Monin-

Obukhov Similarity Theory (Panofsky and Dutton, 1984). While the addition of stability corrections into the formulation of 𝛼𝛼 190 

greatly increases the accuracy of a site-specific long-term average 𝛼𝛼, site-specific information on stability is necessary for this 

method and it is rather sensitive to the surface roughness z0 (Gualtieri, 2016). A time-varying model for 𝛼𝛼 showed large increases 

in accuracy over previous models that used a site-specific 𝛼𝛼 (Crippa et al., 2021). However, the model still relies on how 𝛼𝛼 varies 

around a known specific 𝛼𝛼0 for a given location or a predetermined constant value. Overall, there is no rule-of-thumb formulation 
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for 𝛼𝛼 that always best accounts for all of the factors that contribute to variability in 𝛼𝛼. In our power law estimates below (Sect. 5), 195 

we use an 𝛼𝛼 value of 0.10 as suggested for the offshore environment (Bañuelos-Ruedas et al., 2011). 

In addition, the power law has shown inconsistency when used for estimates of wind energy potential. Power law 

extrapolation using 𝛼𝛼 = 1/7 underestimated wind power potential by approximately 40% (Sisterson et al., 1983). In general, 

differences in wind energy production estimates when using a power law versus measured energy production may be up to 35% 

(Werapun et al., 2017). Global median absolute percentage error in onshore wind turbine capacity factor estimations are as large 200 

as 36.9% when using 𝛼𝛼 = 0.14 and 5.5% when using mean power law exponents (Jung et al., 2021). As such, more accurate 

methods of vertically extrapolating wind speeds are critical for accurate representation of wind energy production. 

 

4 Random Forest Regression (RFR) Model Training 

Random forest regression (RFR) is a machine learning algorithm that takes an ensemble average of the predictions from 205 

its members, decision trees, to make one final prediction for each set of input data (Breiman, 2001). Each decision tree is trained 

on a bootstrapped subset (sampling with replacement) of the full training set and each decision within the tree is made only 

considering a random subset of the input parameters (i.e., “features”) at each split to add variability to the structures of the trees. 

Both of these model architecture choices add “randomness” to the model. Each split is made by choosing the optimal value of one 

of the features available at that “branch” such that the data in that branch is split into two new branches, each with the smallest 210 

possible within-group variance. This process is continued until the branch contains a number of observations less than or equal to 

the hyperparameter (set by the user) for the minimum number of samples required to be at a branch node. Once this minimum 

sample size is reached the branch is termed a “leaf” and is no longer split. We use the RandomForestRegressor function from the 

scikit-learn Python library for this analysis. By training each decision tree in the RFR on diverse subsets of the data and then 

averaging their predictions, it both increases accuracy and reduces overfitting. 215 

The RFR model is trained to estimate wind speed profiles from 40 m to 200 m at 20 m intervals. We chose to develop a 

single model to predict the entire profile to reduce the computation time needed, as compared to training different models for every 

height, but found identical performance in both cases. Inputs considered in the model for prediction are “surface” (10 m) wind 

speed (w10), surface wind direction (𝜃𝜃), surface air temperature (T), sea surface temperature (SST), surface pressure, hour of day, 

time of year, and the difference between T and SST (T) from the five lidar stations described above. The time of year was calculated 220 

as an index for the number of 10 minute intervals (the training data resolution) in a year starting January 1, 00:00:00 and ending 

December 31, 23:50:00. As the stations do not directly have 10 m wind speed available, w10 was interpolated using the power law 

with 𝛼𝛼 calculated using the wind shear between the surface buoy wind speed and the next lowest height available (20 m for Hudson 

stations, 40 m for Morro Bay and Humboldt).The cyclical features (wind direction, hour of day, and time of year) were decomposed 

into sine and cosine components to preserve their cyclical nature (i.e., to ensure 11 p.m. is equally close to 10 p.m. as it is to 225 

midnight) consistent with the treatment of such variables in previous RFR studies (e.g., Sharp et al., 2022). Only time and surface 

variables are considered as inputs in our model, but other studies (Liu et al., 2023; Bodini and Optis, 2020a; Baquero et al., 2022) 

included variables at several heights as inputs in their models. While inputs at other heights could further improve our model, these 

inputs would be unrealistic for implementation on a gridded wind profile product as no gridded products exist containing observed 

wind speeds or other variables at those heights. Additionally, the training data does not contain any profile data other than the wind 230 

speeds (and wind direction at the Hudson stations only). The inclusion of other surface variables like friction velocity, the Charnock 

coefficient, and sensible heat flux have proved to be important features (Liu et al., 2023) and could potentially improve the model 

further, but these data are not available at the training stations used in this analysis. 
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 A cross validation method in which each station was held out as a validation set for a model trained using the other 

stations, hereafter leave-one-station-out cross validation (LOSOCV), was implemented during the model training to avoid 235 

overfitting to the training stations, consistent with previous studies (Bodini and Optis, 2020a; 2020b). In this LOSOCV approach, 

five different RFR models were constructed and each time a different one of the five training/validation lidar sites was not included 

in the training dataset. After training an RFR on the other four sites’ data, the input data from the validation site for that model was 

run through the RFR to assess its performance relative to the observed wind profiles at that location. The goal of this approach is 

to ensure that each model has no prior knowledge of wind profiles at its respective validation site. While the three Hudson stations 240 

may be close enough to one another that some prior knowledge of wind profiles in the area may be known in validating on those 

stations, the California stations are 631 km apart so it is unlikely that there is prior knowledge of the wind profiles at either station 

within the model when validating on those stations.  

It is important to optimize the input variables selected for the model by removing features that have a negative or negligible 

effect on the model’s accuracy upon inclusion. This will maximize the model’s accuracy while minimizing the computation time. 245 

To decide which features are important to keep, only features that clearly decrease the errors of the model at all locations are 

included. Initially, five leave-one-station-out RFR models with all 11 features were trained, each with the intention of validating 

performance at a hold-out station and assessing overall feature importances. Average values for feature importance across all five 

models were evaluated during feature selection (Fig. 2). Both w10 and 𝛥𝛥T had substantially higher feature importances than the 

other variables so they were immediately selected for inclusion in the final model. While the other features had much smaller 250 

feature importances, a forward sequential feature selection process was used to determine if any of the remaining variables further 

minimized model errors. This process is important as significant cross-correlations between the variables may not be reflected in 

the feature importances. Additional models were created using w10, 𝛥𝛥T, and one of the remaining features considered one at a 

time. Both the sine and cosine components of cyclical features were considered as one feature in this process. These model outputs 

were then compared to the ones that only used w10 and 𝛥𝛥T as inputs. If a model with three features showed smaller errors compared 255 

to the errors of the model with two features, that would indicate the additional feature was worth including in the final model. This 

process was done recursively to identify all the features that improved the model. However, no other feature further reduced the 

errors over all stations (not shown here) so the final model only uses w10 and 𝛥𝛥T as inputs. 

 
Figure 2: Average feature importance (over the five leave-one-station-out models) of the input variables considered for the random 260 

forest regression model. 
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Once w10 and 𝛥𝛥T were chosen as features for the RFR model, the hyperparameters for the model were tuned. The process 

included tuning three hyperparameters: the number of features considered at each split, the minimum number of observations on 

each leaf, and the number of trees in the model (nTrees). The number of features to consider at each split could only be one or two 265 

as there are only two features in the final model. An essential part of the random forest is that not all features should be considered 

at each split to prevent the individual underlying decision trees from becoming too similar, which would remove "randomness" 

from the random forest (Breiman, 2001). Therefore, only one feature was considered for each split in our model. The minimum 

number of allowed observations on a given leaf is critical to tune because if it is too small it will increase the depth of the trees, 

increasing the computation time and storage size of the model, while potentially also overfitting the training data. If this 270 

hyperparameter is too large, it can result in an overly smoothed model that does not represent all the complexity of the training 

data. The number of trees in the model was tuned to minimize error in the model and avoid underfitting by averaging over too few 

trees. The optimal values for these two hyperparameters were determined by analyzing the out-of-bag error (OOB), which 

corresponds to the average error when all the training observations not included in the bootstrapped subsample used to train a given 

tree are run through that tree for a pseudo-validation. Minimum leaf size values of 10, 15, 20, 30, 40, and 50 were evaluated for 275 

values of nTrees ranging from 20 to 2000 trees incrementing by 20 trees up to 100, followed by increments of 100 trees thereafter. 

A minimum leaf size of 30 minimized the error and is therefore chosen as the final hyperparameter value. We chose to use nTrees 

= 1000 trees as this is just above the nTrees value where the OOB error stabilizes and any additional trees would yield no further 

decrease in error while simply increasing computation time. These values were optimal for all five leave-one-station-out RFR 

models, which shows that these hyperparameters are not dependent on the locations of the training data. 280 

After selecting the best features and tuning the hyperparameters for our model using our cross-validation process, we 

trained a final “optimal” RFR model on all five training/validation stations. This allowed us to use as much data as possible in the 

model in order to improve its accuracy and generalizability. This approach is consistent with other RFR-generated products (e.g., 

Sharp et al., 2022). 

 285 

5 Extrapolation Model Performance on Training/Validation Data 

5.1 All wind conditions 

Four metrics were employed to assess the skill of our RFR model relative to the conventional physics-based models for 

wind profile extrapolation in all wind conditions: bias, root mean squared error (RMSE), median absolute error (MAE), and 

interquartile range of the absolute error (IQR AE). These metrics are obtained by comparing the observed lidar wind speeds and a 290 

given model’s wind speed predictions (predicted − observed) at every height for each station. Bias is used to determine whether or 

not the RFR overpredicts or underpredicts on average, RMSE and MAE are used to give estimates of the typical magnitude of the 

error with MAE being more robust and less sensitive to outliers, and IQR AE determines a spread of the errors around the MAE. 

For each station and height, these metrics were computed on the validation data from each LOSOCV split for the "optimal" RFR 

(with w10 and 𝛥𝛥T as features and the tuned hyperparameter values) and the “basic” RFR (with all 11 original features and no 295 

hyperparameter tuning), as well as for the neutral logarithmic law and the power law using 𝛼𝛼 = 0.1 that were applied to all the data 

(Fig. 3). For the RFR models, the errors are calculated using the LOSOCV approach discussed previously, ensuring the errors are 

calculated from a model with no prior knowledge of the wind conditions at the given validation site so as to best represent the 

model’s generalization error. 

For the majority of the lidar sites, the optimal LOSOCV RFR shows the smallest bias for all heights (Fig. 3a–e). The 300 

optimal LOSOCV RFR has negligible bias throughout the profiles at Hudson North and Hudson South with maximum values of 

0.07 m s-1 and 0.21 m s-1, respectively. At the other sites, the bias increases in magnitude with height, increasing from 0.26 m s-1 
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to 0.60 m s-1 at Hudson South West, from −0.10 m s-1 to 0.61 m s-1 at Morro Bay, and from −0.02 m s-1 to −0.59 m s-1 at Humboldt. 

The power law at Hudson South West and logarithmic law at Morro Bay are the only two scenarios where the conventional models 

show substantially lower biases than the RFR models, ranging from 0.20 m s-1 to −0.01 m s-1 over 40–200 m. While other models 305 

may be slightly less biased at some heights for specific stations (Fig. 3), the optimal RFR has the lowest overall average bias (0.22 

m s-1) for all heights and stations followed by the basic RFR (0.25 m s-1) and power law (0.25 m s-1). The neutral logarithmic law 

has a larger overall average bias of 0.42 m s-1. In addition, the optimal LOSOCV RFR has substantially lower bias at 200 m than 

the basic RFR at Morro Bay (0.25 m s-1 less) and Humboldt (0.18 m s-1 less). 

 Both the optimal and basic LOSOCV RFRs greatly outperform the power and logarithmic laws in the other metrics, 310 

except at Morro Bay where the difference in performance is less consistent. The optimal RFR has RMSE values increasing with 

height from 0.41 m s-1 to 1.44 m s-1 at Hudson North, 0.43 m s-1 to 1.55 m s-1 at Hudson South, 0.48 m s-1 to 1.74 m s-1 at Hudson 

South West, 0.34 m s-1 to 1.99 m s-1 at Morro Bay, and 0.57 m s-1 to 2.33 m s-1 at Humboldt (Fig. 3f–j). The average RMSE for 

each station’s profile is lower for the optimal RFR than for the neutral log law at four sites, decreasing by 48.18% at Hudson North, 

48.19% at Hudson South, 44.17% at Hudson South West, and 27.00% at Humboldt. The average percent decrease in RMSE at 315 

Morro Bay has more variability starting from 20.13% at 40 m and decreasing to −4.77% at 200 m, with the neutral log law 

producing lower RMSEs at heights of 180 m and above. Compared to the power law, the optimal RFR decreases the profile-

average RMSE by 49.20% at Hudson North, 48.37% at Hudson South, 43.98% at Hudson South West, 20.77% at Humboldt, and 

17.09% at Morro Bay. Overall, the optimal RFR has lower RMSEs than the power law at every location and height and at nearly 

every location/height compared to the log law. 320 

When compared to the basic RFR, the optimal RFR has slightly higher RMSEs for most heights at the three Hudson 

stations, but lower or equivalent RMSEs for all heights at Morro Bay and Humboldt. These differences in RMSE for stations where 

the basic RFR has lower RMSEs than the optimal RFR range between 0.05 m s-1 and 0.13 m s-1 at Hudson North, 0.06 m s-1 and 

0.17 m s-1 at Hudson South, and 0.01 m s-1 and 0.08 m s-1 at Hudson South West. For stations where the optimal RFR has lower 

RMSEs than the basic RFR, the differences range between 0 m s-1 and 0.24 m s-1 at Morro Bay and −0.01 m s-1 and 0.22 m s-1 at 325 

Humboldt. While the basic RFR has slightly lower RMSEs at the Hudson stations, the optimal RFR outperformed the basic RFR 

in both bias and RMSE at both Humboldt and Morro Bay. Despite the slightly better RMSE for the basic RFR at the Hudson 

stations, it is unclear whether this is only the case due to the stations being close enough to one another that the additional feature 

variables may decrease errors in a more localized model. As a higher number of features is less desirable and the optimal model 

outperformed the basic model at Humboldt and Morro Bay more than the basic model outperformed the optimal model at the 330 

Hudson stations, we deem that the tradeoff of decreasing the number of features while also lowering errors at Humboldt and Morro 

Bay is worth the slight increase in overall RMSE at the Hudson stations. 

 Similarly to RMSE, both RFR models greatly reduced the MAEs compared to the neutral log and power laws (Fig. 3k–

o). The optimal RFR has MAE values increasing with height from 0.18 m s-1 to 0.56 m s-1 at Hudson North, 0.18 m s-1 to 0.54 m 

s-1 at Hudson South, 0.29 m s-1 to 0.84 m s-1 at Hudson South West, 0.21 m s-1 to 0.84 m s-1 at Morro Bay, and 0.27 m s-1 to 1.12 335 

m s-1 at Humboldt. This corresponds to a profile-average percent decrease in MAE from the neutral log law of 63.17% at Hudson 

North, 65.25% at Hudson South, 42.18% at Hudson South West, 21.83% at Morro Bay, and 28.57% at Humboldt. Compared to 

the power law, the optimal RFR decreases MAE by 72.96% at Hudson North, 74.3% at Hudson South, 55.08% at Hudson South 

West, 51.39% at Morro Bay, and 28.2% at Humboldt. Overall, the optimal RFR has lower MAE at every location and height than 

the power and neutral log law, except for at 40 m for Morro Bay where the neutral log law marginally beats the optimal RFR. 340 

Similarly to RMSE, for MAE the basic RFR slightly outperforms the optimal RFR at the Hudson stations, whereas the optimal 

RFR matches or outperforms the basic RFR at Morro Bay and Humboldt. The basic RFR has lower MAEs than the optimal RFR 
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with a difference ranging between 0.02 m s-1 and 0.06 m s-1 at Hudson North, 0.02 m s-1 and 0.05 m s-1 at Hudson South, and 0.04 

m s-1 and 0.11 m s-1 at Hudson South West. The optimal RFR has lower overall MAEs than the basic RFR with a difference ranging 

between −0.02 m s-1 and 0.16 m s-1 at Morro Bay and −0.02 m s-1 and 0.13 m s-1 at Humboldt. As above, we still deem the tradeoff 345 

of slightly worse performance at the Hudson stations for less bias and higher accuracy at Morro Bay and Humboldt worthwhile.  

The IQR AE values (Fig. 3p–t) are more similar across all profiles at each of the stations with the basic LOSOCV RFRs 

having the lowest average values at Hudson North (0.63 m s-1), Hudson South (0.66 m s-1), and Hudson South West (0.96 m s-1), 

the neutral log law having the lowest average values at Morro Bay (0.67 m s-1), and the optimal LOSOCV RFR having the lowest 

average IQR AE at Humboldt (1.05 m s-1). Overall, the spread of differences is lower for the RFRs at all stations other than Morro 350 

Bay, showing that the RFRs have less variability in their errors than the conventional methods. 

 

 
Figure 3: Bias (a–e), root mean squared error (RMSE; f–j), median absolute error (MAE; k–o), and interquartile range of the 

absolute error (IQR AE; p–t) profiles at each station for the optimal LOSOCV RFR, basic LOSOCV RFR, neutral log law, and 355 

power law models. All plots have units of m s-1. 

 

5.2 High Shear Events and Low-Level Jets 

As high vertical wind shear events and LLJs both play important roles in wind energy production and load on wind farms 

(Borvarán, Peña, and Gandoin, 2020; Gadde and Stevens, 2021; Doosttalab et al., 2021), it is important to accurately model these 360 
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phenomena. In this section, we evaluate the performance of the RFR on both LLJs and high shear events and compare with the 

performance of the conventional models. It is important to note that while LLJs can have a maximum anywhere within the first 

1000 m, our training data only reaches to 200 m. Thus, only LLJs with a maximum below 200 m are identified in this analysis.  

While the structures of these phenomena are known and can often be distinguished visually (Fig. 4), an exact rigorous 

physical criterion to identify these profiles is somewhat elusive. For the purpose of this study, they will be defined in part following 365 

the definition used by Debnath et al. (2021) where the 90th percentile in vertical wind speed gradient (𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

 = 0.035 m s-1 m-1) was 

used as a threshold for high shear at the Hudson North and Hudson South buoys. While they considered the gradient only between 

heights within the rotor layer of a turbine (40–160 m), we will consider all heights in our analysis as we are interested in model 

performance at all heights. For this analysis, LLJs are defined as profiles with a nose (height of wind gradient inversion) below 

200 m, 𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

 > 0.035 m s-1 m-1 where 𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

 is the vertical wind speed gradient between 10 m and the nose, and a decrease in wind speed 370 

from the nose to the top of the profile that is greater than both 1.5 m s-1 and 10% of the maximum wind speed (Fig. 4f–j). A high 

shear event is defined as a profile not already classified as an LLJ and where 𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

 > 0.035 m s-1 m-1 with 𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

 calculated as the gradient 

between 10 m and 200 m (Fig. 4k–o). Any profile that does not fit these criteria are grouped together as “normal” profiles for this 

analysis (Fig. 4a–e).  

Though these LLJ and high shear event definitions may not capture every single profile of these phenomena, they capture 375 

the majority and the model errors for each profile type will be representative. Normal profiles account for 82–94% of the data at 

all training/validation stations, LLJs account for 1–4% of the data at all training/validation stations, and high wind shear profiles 

account for 8–10% of the data at the Hudson stations, 2% of the data at Morro Bay, and 16% of the data at Humboldt (Fig. 4). The 

previous error analysis was then repeated separately for each of the three profile types (Fig. 5–7). 

 All models’ performance on the normal profiles is relatively similar to the performance of the models on the full dataset, 380 

which is not surprising since the normal profiles comprise > 82% of the data at each site (Fig. 5). For normal profiles, both RFRs 

still generally outperform the other methods at all stations and heights. Only at Humboldt is the optimal RFR bias less for the 

normal profiles than for all the profiles combined.  
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 385 
Figure 4: Mean wind speed profiles (m s-1) for normal profiles (a–e), low-level jets (f–j), and high shear events (k–o) at each 

station. Percentages correspond to the percent of total observations at each station in each group. 

 
Figure 5: Same as Fig. 3, except metrics only for normal profiles. 
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 390 
Figure 6: Same as Fig. 3, except metrics only for profiles with high shear events. 
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Figure 7: Same as Fig. 3, except metrics only for profiles with low-level jets. 

 395 

For high shear events, both RFRs vastly outperform the neutral log and power laws (Fig. 6). Compared to the neutral log 

law, the optimal RFR had an average reduction across all stations and heights of 0.6 m s-1 (26.57%) in bias, 2.48 m s-1 (53.62%) in 

RMSE, and 2.64 m s-1 (64.4%) in MAE. Compared to the power law, the optimal RFR had an average reduction of 0.64 m s-1 

(28.93%) in bias, 1.97 m s-1 (46.96%) in RMSE, and 2.08 m s-1 (55.76%) in MAE. However, while the optimal RFR outperforms 

basic RFR when considering all data, the basic RFR seems to either slightly outperform or match the optimal RFR when looking 400 

exclusively at high wind shear events. The basic RFR has an average reduction across all stations and heights of 0.14 m s-1 (19.3%) 

in bias, 0.20 m s-1 (14.56%) in RMSE, and 0.19 m s-1 (21.76%) in MAE. This suggests that the other predictors that did not improve 

the model trained/validated on the full profile dataset could potentially increase the accuracy of a model trained specifically to 

predict high wind shear profiles. As the overall errors of the optimal RFR are lower than the basic RFR and significantly less inputs 

are needed, the optimal RFR is still preferable for our purposes. However, training a separate high wind shear model with additional 405 

features should be considered if those events are of specific interest or are known to dominate regional wind patterns. 

For profiles with LLJs, the RFRs generally outperform the other methods below and at wind turbine hub heights, but 

perform worse at higher heights, especially above 140–160 m (Fig. 7). At 100 m, the optimal RFR has an average reduction across 

all stations of 2.09 m s-1 (82.18%) in bias, 1.24 m s-1 (39.20%) in RMSE, and 1.27 m s-1 (50.10%) in MAE compared to the neutral 

log law. However, at 200 m, the neutral log law has a reduction of 2.46 m s-1 (83.48%) in bias, 1.49 m s-1 (39.55%) in RMSE, and 410 

a 1.49 m s-1 (51.52%) reduction in MAE compared to the optimal RFR. Similarly, at 100 m the optimal RFR has an average 

reduction across all stations of 1.7 m s-1 (79.19%) in bias, 0.92 m s-1 (31.88%) in RMSE, and 0.88 m s-1 (41.08%) in MAE compared 

to the power law, whereas at 200 m, the power law has an average reduction of 2.37 m s-1 (81.92%) in bias, 1.45 m s-1 (38.97%) 
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in RMSE, and 1.44 m s-1 (49.36%) in MAE compared to the optimal RFR. It is clear that while the RFR models properly predict 

the initial high shear up to turbine hub heights where the conventional methods fail, the current implementation of the RFR models 415 

do not have the ability to capture the wind speed gradient inversion above the peak of the LLJs. Conversely, the neutral log and 

power laws both do not capture the initial high shear of LLJs or the inversion and as a result, only predict the wind speeds above 

the jet with higher accuracy. As such, the RFR models are preferred for computing wind speeds at hub heights, but may still fall 

short in energy assessment for LLJs with an inversion layer below 200 m, as determining rotor equivalent wind speeds requires 

accurate measurements at all heights within the rotor layer of a turbine. Similarly to high shear events, the basic RFR seems to 420 

outperform the optimal RFR slightly on profiles with LLJs, which suggests that training a separate RFR on only the LLJ profiles 

with additional inputs could increase the accuracy of the RFR for these profiles. This is not done here with our existing NBSv2.0 

dataset as it would be impossible to know a priori whether the RFR trained on the normal, high shear, or LLJ profiles should be 

used to estimate the wind profile at a given location when we try to apply the RFR to the NBSv2.0 data to produce our gridded 

wind profile product.  425 

Investigating the distribution of w10 and 𝛥𝛥T values for each group of profiles (normal, LLJ, high shear) shows the model’s 

capability to accurately reproduce normal and high wind shear profiles, but only the lower part of the LLJ profiles. After running 

the w10 and 𝛥𝛥T values from the training data back through the final “optimal” RF, we can use the definitions above to classify the 

predicted profiles and compare those group assignments to those of the observed full profiles across the feature space (Fig. 8). 

Many high shear events have a combination of high w10 and strongly positive 𝛥𝛥T that is never observed in normal and LLJ 430 

profiles. As such, it is encouraging that the RFR model always produces a high shear profile when fed a sufficiently large w10 (> 

~7 m s-1) and positive 𝛥𝛥T (> ~1°C). Observed LLJ and high shear profiles rarely have 𝛥𝛥T < −1°C so it is also encouraging that all 

profiles produced by the RFR using 𝛥𝛥T values in this range were normal profiles. However, there is no clear region in the feature 

space for the model to always predict an LLJ as the LLJ region of the feature space always coincides with that of the normal and/or 

high shear groups. This combined with the relatively low amount of LLJ observations compared to normal and high shear profiles 435 

may explain why the RFR is not correctly predicting LLJs as the model cannot differentiate them from other profiles with only the 

given features. For the inversion in an LLJ to be captured, a more complex model and/or other inputs are needed. 
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Figure 8: Air-sea temperature difference (𝛥𝛥T, °C) and 10 m wind speed (w10, m s-1) for a) normal, b) low-level jet, and c) high 440 

shear profiles, grouped based on the observed profiles. Wind speed gradients (𝑑𝑑𝑢𝑢
𝑑𝑑𝑧𝑧

) based on the RFR estimate of each profile are 

shown. The gradient for normal and high shear profiles is calculated between the surface and top of the profiles, while the gradient 

for LLJs is calculated between the surface and height of maximum wind speed. 

 

6 Extrapolation Model Performance on Test Data 445 

6.1 Comparison with Independent Lidar Station Data 

The ASOW-4 and ASOW-6 lidar stations were not used during the training and validation of the optimal RFR model and 

can therefore be used as a completely independent test dataset to assess the ability of that model to perform on unseen data (i.e., to 

“generalize”) and to generate initial uncertainties on the RFR-based estimates. The w10 and 𝛥𝛥T values from all profiles at both 

stations are extrapolated to full wind profiles from 40–200 m separately by the power law, neutral log law, and optimal RFR models 450 

and then compared to the observed profiles. The performance of the RFR at stations ASOW-4 and ASOW-6 is comparable to the 

performance at the five training/validation stations, suggesting the model can perform similarly well at locations it was not trained 

on (Fig. 9 and 10). 

The ASOW stations are of particular interest as they contain higher percentages of LLJs and high shear events than any 

of the training/validation stations (except Humboldt): 5.70% (LLJ) and 14.54% (high shear) at ASOW-4 and 4.43% (LLJ) and 455 

15.58% (high shear) at ASOW-6. 16.05% of profiles at Humboldt were high shear. Together, the LLJ and high shear profiles 

account for ~20% of the data at the ASOW stations, showing that accurately predicting these profiles is important for robust 

resource assessment at certain locations.  

At both ASOW-4 and ASOW-6, the RFR shows considerable improvement over both the neutral log and power laws. For 

ASOW-4, the RFR outperforms the other models in all heights for every profile type, except for having larger errors at 180 and 460 

200 m for LLJs where the RFR failed to capture the wind speed gradient inversion (Table 2, Fig. 9), consistent with the above 

analysis. At ASOW-6, the RFR still outperforms the conventional methods overall, but is shown to have a bias comparable to the 

power law and an MAE comparable to the neutral log law for normal profiles in addition to the higher errors at 180 and 200 m for 

LLJ profiles (Table 3, Fig. 10). However, this is not due to a decline in the RFR’s performance. Instead, the bias and MAE of the 

RFR for normal profiles at ASOW-6 is comparable to those of the conventional methods as the other methods have increased 465 

accuracy at this station compared to at ASOW-4. As such, even when the neutral log and power laws are predicting skillfully at 

the given stations, they are still only comparable to the RFR and do not ever substantially outperform the RFR, except for at the 

highest heights of the LLJ profiles. In addition, the conventional methods never once have performance anywhere comparable to 

that of the RFR on high shear profiles and at turbine hub heights of LLJ profiles. This shows that the RFR still overall has increased 

performance over conventional methods at locations independent of training and validation. The error metrics at these two 470 

independent test stations also provide initial estimates of the uncertainty on the RFR-based estimates at other locations independent 

of training and validation. For example, at the typical wind turbine hub height (100 m) the RMSE at other independent locations 

is likely around 1.4 m s-1 (ASOW-4) to 1.8 m s-1 (ASOW-6). 
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 475 

 𝛥𝛥Bias 𝛥𝛥RMSE 𝛥𝛥MAE 𝛥𝛥IQR AE 

RFR−Log (Overall) −1.06 (−71.16%) −1.04 (−41.66%) −0.33 (−29.5%) −1.42 (−48.10%) 

RFR−Power 
(Overall) 

−0.79 (−64.85%) −0.87 (−37.61%) −0.32 (−28.66) −1.14 (−42.80%) 

RFR−Log (Normal) −0.70 (−79.88%) −0.61 (−35.29%) −0.13 (−16.52%) −0.72 (−37.50%) 

RFR−Power 
(Normal) 

−0.45 (−71.71%) −0.50 (−31.15%) −0.21 (−24.84%) −0.53 (−30.36%) 

RFR−Log (LLJ) −1.25 (−59.4%) −1.00 (−34.29%) −0.77 (−35.67%) −1.10 (−32.82%) 

RFR−Power (LLJ) −0.99 (−53.67%) −0.81 (−29.74%) −0.60 (−30.2%) −0.83 (−27.09%) 

RFR−Log (High 
Shear) 

−2.52 (−54.83%) −2.26 (−47.77%) −2.50 (−55.69%) −2.28 (−44.01%) 

RFR−Power (High 
Shear) 

−2.17 (−51.13%) −1.93 (−43.89%) −2.15 (−51.96%) −1.97 (−40.36%) 

Table 2: Average change in bias, RMSE, MAE, and IQR AE for the optimal RFR compared to conventional methods for different 

profile types at ASOW-4. Units are in m s-1. 
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Figure 9: Bias (a–d), root mean squared error (RMSE; e–h), median absolute error (MAE; i–l), and interquartile range of the 480 

absolute error (IQR AE; m–p) profiles at the ASOW-4 station for the optimal RFR, neutral log law, and power law models. All 

plots have units of m s-1. 

 𝛥𝛥Bias 𝛥𝛥RMSE 𝛥𝛥MAE 𝛥𝛥IQR AE 

RFR−Log (Overall) −0.76 (−50.42%) −0.96 (−34.54%) −0.04 (−4.70%) −1.05 (−37.98%) 

RFR−Power (Overall) −0.43 (−36.48%) −0.79 (−30.33%) −0.12 (−11.66%) −0.78 (−31.34%) 

RFR−Log (Normal) −0.26 (−37.80%) −0.31 (−19.63%) 0.05 (7.87%) −0.20 (−12.64%) 

RFR−Power (Normal) 0.06 (17.27%) −0.23 (−15.53%) −0.07 (−8.26%) −0.07 (−5.12%) 

RFR−Log (LLJ) −1.48 (−61.87%) −1.16 (−36.56%) −0.83 (−36.51%) −1.48 (−38.71%) 

RFR−Power (LLJ) −1.22 (−57.29%) −0.97 (−32.51%) −0.67 (−31.78%) −1.23 (−34.45%) 

RFR−Log (High Shear) −2.93 (−53.56%) −2.36 (−40.86%) −2.93 (−55.90%) −2.81 (−42.69%) 

RFR−Power (High 
Shear) 

−2.52 (−49.86%) −1.98 (−36.74%) −2.55 (−52.50%) −2.41 (−39.10%) 

Table 3: Same as Table 2 but for ASOW-6. 

 
Figure 10: Same as Fig. 9, but metrics now for ASOW-6 station. 485 
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6.2 Comparison with NREL profiles 

 NREL NOW-23 wind speed profiles from 2019 at six offshore locations around the US coasts are used to further assess 

how well the RFR model can perform at stations that it was not trained on (locations provided in Fig. 11). These stations are 

representative of a number of different important oceanic regions around the coastal US. For this comparison, the RFR-estimated 

profiles are generated using the w10 and 𝛥𝛥T from the NOW-23 dataset. This will allow us to directly compare our RFR-estimated 490 

wind profiles with NOW-23’s WRF-based output to evaluate differences between the extrapolation methods.  

To assess the performance of the RFR at these stations, the full profiles from the NOW-23 dataset are used as the 

“observed” profiles for the error analysis. For most of the stations, the consistent positive bias demonstrates that the RFR 

consistently overestimates the wind speed at all heights, relative to the NOW-23 profiles (Fig. 12a–f). At station 5 the RFR 

underestimates the wind speeds from the ground to 140 m and then increasingly overestimates wind speeds from 140 to 200 m. 495 

This bias throughout the profile remains within ±1 m s-1. The RMSE for all 6 stations remains below 1 m s-1 up to turbine hub 

heights (with exception of station 5), beyond which the RMSEs continue increasing but never go beyond 2 m s-1 (Fig. 12 g–l). The 

MAEs never exceed 1 m s-1 and IQR AEs never exceed 1.5 m s-1 (Fig. 12 m–x). Overall, when the RFR model uses w10 and 𝛥𝛥T 

values from NOW-23 to predict wind speed profiles at six different offshore locations than where the model training data were 

collected, it does not greatly affect the model’s accuracy and the statistics are similar to what was previously seen with lidar stations 500 

comparisons (Fig. 3, 9, and 10). This shows that our model can perform skillfully around the coasts of the contiguous US, including 

regions not included in the training data, such as the Gulf of Mexico, Pacific Northwest, and central East Coast. To our knowledge, 

no previous studies have shown that an RFR model can successfully extrapolate wind speeds at locations far from the training data. 

 

 505 
Figure 11: Locations of the six NREL stations used for independent testing of the RFR model. 
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Figure 12: Bias (a–f), root mean squared error (RMSE; g–l), median absolute error (MAE; m–r), and interquartile range of the 

absolute error (IQR AE; s–x) profiles at each of the six NOW-23 stations for the profiles extrapolated by the RFR vs. the “observed” 510 

profiles from NOW-23. All plots have units of m s-1. 

 

7 Application of RFR to NBSv2.0 and Uncertainty Quantification 

Once the optimal RFR has been trained, validated, and tested, we apply this model to the NBSv2.0 w10 data and ERA5 

𝛥𝛥T values at 6-hourly resolution over 1987–2022 to generate a long-term wind speed profile product from 20 to 200 m (as well as 515 

the surface value at 10 m) on a 0.25° grid named NOAAOffshoreWindProfiles (NOSP). As the RFR only provides estimation 

between 40 to 200 m, these profiles are extended down to 20 m using the power law to interpolate between the 10 m (from 

NBSv2.0) and 40 m (from NOSP) wind speeds. The NOSP will be archived for public access. Seasonal climatological wind speeds 

are calculated from the NOSP 6-hourly data at three heights (20, 100, and 200 m) to highlight some of the variability that can be 

resolved with this product (Fig. 13). Long term mean wind speeds are highest over the subpolar North Atlantic and North Pacific 520 

oceans in all seasons and at all heights, with wind speeds increasing with height over these regions. While the wind speeds over 

most of the domain shown decrease in the boreal summer, winds over the California Current System (CCS) are stronger in these 

months (consistent with Huyer, 1983), especially at 100 and 200 m. Other than in the CCS region, wind speeds at turbine hub 

heights over our domain of interest reach a maximum in boreal winter.  
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 525 
Figure 13: 1987–2022 seasonal climatologies for NOSP extrapolated wind profiles (m s-1) at 20 (a–d), 100 (e–h), and 200 m (i–l). 

DJF = December, January, February. MAM = March, April, May. JJA = June, July, August. SON = September, October, 

November. 

 

The inherent problem of trying to estimate the uncertainties of the NOSP wind profiles by using the NOW-23 profiles is 530 

that although the NOW-23 profiles can be considered as “reference” or “true” values for the comparison, they still have errors as 

well. Therefore, any statistics for the NOSP profiles will need to be relative to how much error is in the reference profiles. The 

error in the NOW-23 profiles can originate from many sources including the NWP model (WRF) uncertainties/errors related to the 

boundary conditions, parametric uncertainty of the model, and errors in input parameters that go into the WRF model, etc. Bodini 

et al. (2024) quantifies this uncertainty in the NWP model in terms of bias, centered RMSE, standard deviation and correlation 535 

coefficient with respect to both independent lidar as well as NDBC buoy data. 

To estimate the error in our product despite these issues, the triple collocation (TC) method is employed. In the TC error 

analysis, three or more mutually independent datasets can be used to estimate the RMSEs (relative to the unknown "ground truth”) 

of each dataset with good accuracy (McColl et al., 2014; Saha et al., 2020). The basic assumption in this three-way analysis is that 

it considers a linear error mode given by Eq. (5), where Xi (with i = 1,2,3) are collocated measurement systems linearly related to 540 

the true value of t with 𝜀𝜀𝑖𝑖 as additive random errors, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 as ordinary least-square intercept and slope, respectively, and we 

estimate the RMSE of 𝜀𝜀𝑖𝑖 denoted by 𝜎𝜎𝜀𝜀𝑖𝑖  . 

𝑋𝑋𝑖𝑖  = 𝛼𝛼𝑖𝑖𝑡𝑡 + 𝛽𝛽𝑖𝑖  + 𝜀𝜀𝑖𝑖 ,            (5) 

Another assumption is that all three datasets are mutually uncorrelated (< 𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 > = 0) and that they are also uncorrelated 

with the “true” value, t (< 𝑡𝑡𝜀𝜀𝑖𝑖 > =  0). McColl et al. (2014) provides an Extended Triple Collocation (ETC) method to estimate 545 

the RMSEs for each data along with their sensitivities to the “true” wind speeds. In the case of three datasets with independent 

errors the RMSEs can be derived using Eq. (6) (Saha et al., 2020) where 𝜎𝜎ε is the RMSE and each Q represents the variance 

between the two datasets indicated in the subscript: 
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 550 
Figure 14: Comparisons in the residual space between a) ERA5 and NOSP, b) NOSP and NOW-23, and c) ERA5 and NOW-23 

where the third dataset in each case is used to anchor (i.e., common difference) the two datasets being compared (all in m s-1). Each 

0.5 ⨉ 0.5 m s-1 bin is colored by the number of matchups in that bin. The solid line represents the linear regression fit and the 

dashed line is the 1:1 line. 

 555 

Given the interest in the wind energy sector and the limited availability of independent wind speed datasets, we do this 

ETC analysis at 100 m only. The three datasets used for this analysis are the NOSP, NOW-23, and ERA5 from 2015 to 2019 at 6-

hourly resolution. Initial implementation of Eq. (5) resulted in negative variances, which suggested at least two of the datasets were 

actually correlated, thereby disregarding one of the key assumptions of the ETC method. To identify which datasets were 

correlated, three bivariate density (i.e., joint probability) plots in their residual space are generated where two products are 560 

compared each time while the third dataset acts as an anchor (common difference) at all of the matchup locations (Fig. 14). With 

NOW-23 data as the anchor, the R2 between ERA5 and NOSP is ~0.006 while with ERA5 as anchor, the R2 between NOSP and 

NOW-23 is ~0.113. When NOSP is the anchor, ERA5 and NOW-23 show a very high correlation (R2 ≈ 0.62, Pearson correlation 

coefficient value of ~0.8, and p-value of 0.0). Therefore, it is evident that NOSP is independent from the other two datasets, despite 

those estimates using 𝛥𝛥T from ERA5, while ERA5 and NOW-23 are highly correlated. This is likely because the WRF model used 565 

to develop the NOW-23 product is initialized and forced at the boundaries with ERA5 data (Rybchuk et al., 2021; Draxl et al., 

2021 and Draxl et al., 2015). 

Gonzalez-Gambau et al. (2020) provides a new formulation for triple collocation (Correlated Triple Collocation; CTC), 

for such cases where two out of the three datasets are error-correlated. CTC assumes that the errors between datasets 1 and 2 are 

correlated, with covariance < 𝜀𝜀1𝜀𝜀2 > ≠ 0, however they are completely uncorrelated with the error of the third dataset, i.e., <570 

𝜀𝜀1𝜀𝜀3 > = 0 and < 𝜀𝜀2𝜀𝜀3 > = 0. For such cases using CTC, RMSEs are given by: 

𝜎𝜎𝜀𝜀 =  �
�𝑣𝑣2𝑄𝑄11′ + 𝑄𝑄22′ − 𝑄𝑄23′

�𝑢𝑢2𝑄𝑄11′ + 𝑄𝑄22′ − 𝑄𝑄23′

�𝑄𝑄33 − 𝑄𝑄23′
� ,           (7) 
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where 𝑢𝑢 and 𝑣𝑣 can be expressed in terms of the variances as 𝑢𝑢 = 𝑄𝑄22−𝑄𝑄12
𝑄𝑄11+𝑄𝑄22−2𝑄𝑄12

 and 𝑣𝑣 = 𝑄𝑄11−𝑄𝑄12
𝑄𝑄11+𝑄𝑄22−2𝑄𝑄12

, with 𝑄𝑄11′ = 𝑄𝑄11 + 𝑄𝑄22 −

2𝑄𝑄12 , 𝑄𝑄22′ = 𝑢𝑢2𝑄𝑄11 + 𝑣𝑣2𝑄𝑄22 + 2𝑢𝑢𝑣𝑣𝑄𝑄12, and 𝑄𝑄23′ = 𝑢𝑢𝑄𝑄12 + 𝑣𝑣𝑄𝑄23. For detailed derivation please refer to appendix A.3 of 575 

Gonzalez-Gambau et al. (2020).  

 
Figure 15: Correlated triple collocation RMSE estimates (m s-1) around the coastal regions of the contiguous US and Hawai’i for 

the NOSP (a–b), ERA5 (c–d), and NOW-23 datasets (e–f).  

 580 

Using the CTC formulation, the RMSEs are estimated at each grid point where all three datasets were collocated around 

the contiguous US and Hawai’i (Fig. 15). The number of triple collocations (matchups) that are used to estimate these RMSEs are 

~56 million, this corresponds to five years of collocated data between the three products. RMSEs are lowest for NOSP (~0.01–2 

m s-1) followed by ERA5 (~0.17–3.5 m s-1) then NOW-23 (~0.65–4.2 m s-1). These RMSEs for NOSP are comparable to the 

RMSEs calculated above at the two test lidar stations (1.4–1.8 m s-1), indicating that the error metrics at those stations were a 585 

reasonable estimation of the RFR’s ability to generalize to unseen data. All three products have especially high RMSEs southwest 

of Hawai’i coinciding with the unique wind wake found in this region (Xie et al., 2001)  

We divided the analysis region further into seven coastal regions of interest for the offshore wind energy sector and 

calculated regional-scale RMSEs using the matchups in each region. These seven regions are the North Atlantic Coast (NAC), Mid 

Atlantic Coast (MAC), South Atlantic Coast (SAC), Pacific Northwest (PNW), Gulf of Mexico (GoM), Offshore California (OC), 590 

and Hawaiian Coast (HC) (see Fig. 1 in Bodini et al., 2024). The number of matchups between the three datasets at 100 m varies 

substantially around the coasts of the contiguous US and Hawai’i (between ~4 to ~13 million; Table 4) due to the varying size of 

each region. In all seven regions, NOSP has lower RMSEs (~0.2–1.1 m/s) than the other products (~1.5–3.5 m/s for both the ERA-

5 and NOW-23 data) (Table 4).  

Bodini et al., (2024) uses a comprehensive approach of comparing the 20 years of NOW-23 wind speed data at 140 m 595 

with winds extrapolated using a machine learning based model output and reports an uncertainty of below 3 m s-1 across the 

considered regions. However, the current analysis shows that in regions like the NAC, MAC, and PNW at 100 m the uncertainties 

in NOW-23 wind speeds exceed 3 m s-1 and it is plausible that the RMSEs could be even higher for higher hub heights. 
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 600 

Region RMSEs Total Number 
of Matchups at 

100 m 

 NOSP ERA5 NOW-23  

NAC 1.11 2.14 3.35 4,148,672 

MAC 0.93 2.31 3.16 4,397,008 

SAC 0.98 1.90 2.15 10,956,000 

PNW 0.29 2.41 3.10 5,375,744 

GoM 1.10 1.49 1.67 13,337,104 

OC 0.71 2.24 2.37 6,303,352 

HC 0.45 1.51 1.76 11,752,136 

Table 4: RMSEs for all three products (NOSP, ERA5, and NOW-23) and number of triple matchups at 100 m for the seven different 

regions (North Atlantic Coast (NAC), Mid Atlantic Coast (MAC), South Atlantic Coast (SAC), Pacific Northwest (PNW), Gulf of 

Mexico (GoM), California Coast (OC), and Hawaiian Coast (HC)) in the coastal US. 

 

8 Conclusions 605 

Conventional methods for wind speed profile extrapolation such as the logarithmic and power laws have limitations and 

greatly underestimate wind power production in many applications. As such, there is a need for new methods of wind speed 

extrapolation, which led to the use of machine learning for this problem in the past decade. This study focused on building a 

machine learning model (RFR) to predict wind speed profiles (from 40 m to 200 m above the ocean’s surface) around the coastal 

regions of the contiguous US and Hawai’i using a gridded satellite-based surface wind speed product (NBSv2.0) as input. This 610 

study shows that the RFR algorithm outperforms and is more consistent than the logarithmic and power laws at five lidar stations 

off the coasts of New York and California when validating using LOSOCV. In addition, the final RFR model requires less input 

variables (w10 and 𝛥𝛥T) than the other methods to predict vertical wind profiles. The RFR model especially outperforms traditional 

methods when extrapolating the wind speeds at wind turbine hub heights under conditions of high vertical shear and LLJs. The 

only condition where the RFR model did not perform well was above the peak of LLJs as it fails to predict the wind speed gradient 615 

inversions that take place there. 

Independent testing of the RFR model using two additional lidar buoys (from the ASOW project) confirms the RFR 

model’s high performance at locations independent of the model’s training and its ability to accurately predict profiles with high 

wind shear. While conventional methods can sometimes approach the accuracy of the RFR for normal profiles, their performance 

is much less consistent and never significantly better than the RFR across all of the error metrics. In addition, the ability of the 620 

RFR to accurately predict high wind shear makes the model much more useful for wind energy applications than the conventional 

methods that fail to replicate the high shear. Further independent comparison against profiles from NOW-23 demonstrated the 

robustness of the RFR as the accuracy of the model does not deteriorate when used to extrapolate wind speeds at locations far from 

the training sites in New York and California, with errors at the various testing locations (off the Gulf, East, Washington State, and 

Southern California coasts) resembling those of the training sites. 625 
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 Since the training, validation, testing demonstrated that the RFR model can robustly predict wind speeds for the offshore 

regions of the contiguous US and Hawai’i, it could then be confidently applied to NBSv2.0 6-hourly 0.25°-gridded data to produce 

40 m to 200 m wind profiles at this resolution (known as the NOSP). These profile estimates were then extended down to 20 m by 

applying the power law model between the 10 m (from NBSv2.0) and 40 m (from NOSP) wind speeds. 

Lastly, a correlated triple collocation analysis was performed using the NOSP, ERA5, and NOW-23 outputs at 100 m to 630 

estimate errors associated with each dataset relative to an unknown ground truth. Across the entire region tested, NOSP consistently 

had the smallest estimated errors. These results show both the advantages of using satellite-based data over reanalysis and of 

implementing machine learning versus NWP models for this application. 

Since we have demonstrated that the RFR model can robustly predict wind speeds during most conditions found over the 

coastal regions of the contiguous US and Hawai’i, future work will continue to improve this model. This includes investigating 635 

the use of machine learning for wind extrapolation over larger regions and potentially exploring the use of more complex models. 

In addition, our RFR model currently lacks the capacity to predict the wind speed gradient inversion of an LLJ, so further research 

could include identifying other input variables that would be better able to predict these features in an LLJ wind speed profile. 

Despite these limitations, the RFR model introduced here greatly improves on the conventional methods for extrapolating wind 

profiles, particularly over large regions simultaneously. In the future, the NOSP product will be updated to the present and will be 640 

produced on a near-real time basis.  

 

Code Availability: A package consisting of code involved in developing the model is being pushed to the NOAA/NCEI internal 

GitLab for code review. Subsequently, the package and the related documentation will be released for the public through the NCEI 

archive access.  645 

 

Data availability: The long-term data ranging from 1987–present (the NOAA/NCEI Offshore Seawinds Profiles (NOSP) product), 

will be archived at NOAA/NCEI and will be served for public use. The NOAA Blended Seawinds surface wind speeds product is 

available for download at https://oceanwatch.noaa.gov/cwn/products/noaa-ncei-blended-seawinds-nbs-v2.html. NREL NOW-23 

data is available at https://registry.opendata.aws/nrel-pds-wtk/. ERA-5 reanalysis is available at 650 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.adbb2d47. Data from lidar stations used in training and validation 

are available from the following sites: ASOW-4 (https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-

4_wind.html, https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-4_timeseries.html), ASOW-6 

(https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-6_wind.html, 

https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-6_timeseries.html), NYSERDA Hudson stations 655 

(https://oswbuoysny.resourcepanorama.dnv.com/), Humboldt and Morro Bay (https://a2e.energy.gov/project/buoy/data). 
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