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Abstract. Wind turbine wake aerodynamics affect turbine production and loads, but are highly turbulent and therefore complex 

to model. Proper Orthogonal Decomposition (POD) has often been applied for reduced order models (ROMs), as POD yields 

an orthogonal basis optimal in terms of capturing the turbulent kinetic energy content. POD is typically used to understand 10 

flow physics and reconstruct a specific flow case. However, Andersen and Murcia Leon (2022) proposed a ROM for predicting 

wind turbine wake aerodynamics by applying POD on multiple flow cases with different governing parameters to derive a 

global basis intended to represent all flows within the parameter space. This article evaluates the convergence and efficiency 

of global POD bases covering multiple cases of wind turbine wake aerodynamics in large wind farms. The analysis shows that 

the global POD bases have better performance across the parameter space than the optimal POD basis computed from a single 15 

dataset. The error associated with using a global basis across the parameter space of reconstructions decreases and converges 

as the dataset is expanded with more flow cases, and there is a low sensitivity as to which datasets to include. It is also shown 

how this error is an order of magnitude smaller than the truncation error for 100 modes. Finally, the global basis has the 

advantage of providing consistent physical interpretability of the highly turbulent flow within wind farms. 

Keywords: Proper Orthogonal Decomposition, Global Basis, Reduced Order Modelling, Turbulence, Wind Turbine Wake 20 

Dynamics. 

1 Introduction 

The proper orthogonal decomposition (POD) is a classic data-driven method for decomposing fluctuations of turbulent flows 

into orthogonal modes, which provide an optimal linear decomposition in terms of the variance [Lumley (1967); Berkooz et 

al. (1993)]. POD has been applied on a vast range of flow scenarios, and the POD modes are typically used for one of two 25 

main applications. One, the modes can provide a physical interpretation of dominant coherent structures in complex turbulent 

flow, e.g. [Sirovich (1987), George (1988), Neumann and Wengle (2004), Meyer et al. (2007)]. Two, a truncated set of the 

modes can be used to construct reduced order models (ROMs), e.g. [Smith et al. (2005), Noack et al. (2011), Semaan et al. 

(2016), Taira et al. (2017)]. 
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However, an optimal reconstruction in terms of variance might not always be the most desirable basis for creating ROMs. 30 

Alternative bases can for instance be derived by changing the norm to optimize other quantities instead of variance e.g. 

enthalpy, enstrophy, and dissipation [Colonius et al. (2002), Lee and Dowell (2020), Olesen et al. (2023)]. Emphasis can also 

be on the spectral content by performing POD in the frequency domain using Spectral POD [Sieber et al. (2016)] or the related 

Dynamic Mode Decomposition [Schmid (2010)], which does not provide orthogonal bases. Furthermore, nonlinear bases can 

be formed using autoencoders, which constitute a nonlinear generalization of POD through an artificial neural network (ANN) 35 

[Hinton and Salakhutdinov (2006), Vinuesa and Brunton (2022)]. Autoencoders are specifically designed to reduce the number 

of degrees of freedom required to describe a data set but might lack physical interpretability. 

Irrespective of the decomposition method, the resulting bases are typically applied to data from a single flow case, which 

corresponds to a single point in parameter space. A single flow case would in the present content correspond to the inflow to 

a particular wind turbine in a wind farm operating at a single CT value [Andersen et al. (2014), Debnath et al. (2017), Bastine 40 

et al. (2018), Hamilton et al. (2018)]. However, efforts have been made to transition between different bases to cover different 

flow cases in parametric studies [Christensen. et al. (1999), Stankiewicz et al. (2017), Xiao et al. (2017)]. Conversely, recent 

developments [Andersen and Murcia Leon (2022), Fu et al. (2023), Nony et al. (2022), Buoso et al. (2022)] employ a single 

global basis constructed by applying POD on a combination of multiple flow cases. The global basis maintains the benefits of 

POD, namely orthogonality and physical interpretability [VerHulst and Meneveau (2014), Andersen et al. (2017), De Cillis et 45 

al (2021)]. Using a global basis for constructing generic ROMs enables consistent physical analysis across different flow 

conditions using the same basis, and therefore holds the potential for constructing more robust POD models [Bergmann et al. 

(2009)] including diverse forms of interpolation across parameter space to predict unseen flow cases.  

Previously, Andersen and Murcia Leon (2022) qualitatively compared the resulting global POD modes to local POD modes 

derived from individual flow cases, but the efficiency of these bases was not compared. This article quantifies the efficiency 50 

of the global POD modes in reconstructing wind turbine wake aerodynamics compared to a local basis for a single flow case. 

Furthermore, a global POD basis is expected to converge as more flow cases are added [Haasdonk (2013), Hesthaven et al. 

(2016)], but the selection of which flow cases to include to ensure fast convergence is uncertain. Here, the convergence of the 

global basis is investigated in accordance with previous studies [Haasdonk et al. (2011), Hesthaven et al. (2016), Quarteroni 

et al. (2016)]. The analysis uses a database of Large Eddy Simulations (LES) of wind turbine wake dynamics, which are 55 

particularly challenging as they are highly turbulent and include the vast range of turbulent scales in the atmosphere. Therefore, 

this work contributes by explicitly showcasing the advantages and characteristics of global bases in ROMs applied in a 

practical, yet complex scenario. 
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2 Methodology 

2.1 Flow Solver and Turbine Modelling 60 

The LES database is the same as used for creating the predictive and stochastic reduced order model of wind turbine wakes 

[Andersen and Murcia Leon (2022)], where the simulations were generated using the incompressible finite volume flow solver 

EllipSys3D [Michelsen (1992), Michelsen (1994), Sørensen (1995)]. A third-order QUICK scheme is used for the convective 

terms, and a second-order implicit method is used for time stepping. The pressure correction equation is solved with an 

improved version of the SIMPLEC algorithm [Shen et al. (2003)] and pressure decoupling is avoided using the Rhie-Chow 65 

interpolation technique. LES applies a spatial filter on the Navier–Stokes equations, where the smaller scales are modeled 

through a sub-grid scale (SGS) model to achieve turbulence closure. The Deardorff SGS model is used [Deardorff (1980)]. 

The turbines are modeled using the actuator disc (AD) method, which imposes body forces in the flow equations [Mikkelsen 

(2004)]. Initially, the velocities are passed from EllipSys3D to Flex5 [Øye (1996)], which computes the forces and deflections 

through a full aero-servo-elastic computation, and transfers these back to EllipSys3D [Sørensen et al. (2015), Hodgson et al. 70 

(2021)]. The turbines modeling does not include the effects of the nacelle or tower, but this only has a minor influence on the 

wake-generating thrust [Zhale and Sørensen (2008)]. 

2.2 Simulation Setup 

The wind farm is simulated with 14 turbines aligned as shown in Fig.1. The computational domain is 192𝑅 × 20𝑅 × 20𝑅 in 

the streamwise, lateral, and vertical directions respectively. The grid is structured and has  3392 × 192 × 128 ≈ 83 × 106 75 

grid cells. The grid is equidistant from the inlet to the turbines and in the vicinity of the turbines, where it expands ±4𝑅 on 

each side of the turbine center, as well as 4𝑅 vertically. This equidistant region has a resolution of approximately 20 cells per 

blade radius, which is highly resolved for AD simulations [Hodgson et al. (2023)]. The grid is stretched towards the lateral, 

top, and outlet boundaries. 

The turbines are separated by 12R in the streamwise direction, and 20R in the lateral direction. Cyclic boundary conditions are 80 

imposed on the lateral boundaries to mimic an infinitely wide wind farm. The modeled turbine is the NM80 turbine, which has 

a radius of R= 40.04m, hub-height of 𝑧0= 80m, and rescaled rated wind speed of 𝑈𝑟𝑎𝑡𝑒𝑑= 14m/s with a corresponding rated 

power of 𝑃𝑟𝑎𝑡𝑒𝑑= 2.75MW [Aagaard Madsen et al. (2010)]. 
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Figure 1: Simulation layout. 85 

 

The neutral atmospheric boundary layer (ABL) inflow to the farm is modeled in a prior precursor simulation [Andersen and 

Murcia Leon (2022)]. The initial precursor simulation has a roughness of 𝑧0= 0.05m and a friction velocity of 𝑢∗= 0.4545 m/s, 

which resulted in an average shear exponent of 𝛼 = 0.14. The rough-wall boundary layer can be rescaled to model different 

wind speeds [Castro (2007)]. 90 

The flow database consists of vertical planes of inflow to each rotor, which captures the wake aerodynamics generated by the 

upstream wind turbine(s). Therefore, the three velocity components are extracted in vertical planes of 2𝑅 × 2𝑅 located one 

radius upstream of each turbine to reduce the turbine-specific influence of induction [Troldborg and Meyer Fosting (2017)], 

see Fig. 1. This corresponds to a grid of 39 × 42 points in the y-z plane. The time step is 0.1 seconds for simulations with 

𝑈 = 8, 12, 15 𝑚/𝑠, and 0.05 seconds for 𝑈 = 20 𝑚/𝑠. The data is extracted every 0.1 seconds during 217 time-steps, which 95 

is approximately 3.64 hours of simulated flow. 

2.3 Parameter space and flow characteristics 

The database is designed to cover the majority of the operational range for this particular wind farm, and therefore the 

parameter space governing the turbulent wake flow. The most important parameter for wind turbine wakes is the thrust 

coefficient 𝐶𝑇 [van der Laan et al. (2020)]: 100 

𝐶𝑇 =
T

1

2
𝜌𝐴𝑈2

 ,            (1) 

Where 𝑇 is the turbine's thrust, 𝜌 is the air's density, 𝐴 is the rotor's area, and 𝑈 is a representative velocity, typically the mean 

freestream axial velocity. This coefficient is a relative measure of the force exerted by the turbine with respect to the momentum 

of the incoming wind. For low wind speeds, the turbine extracts as much energy as possible, and the thrust coefficient is 

typically around 0.8, which is considered high. Significantly higher values can result in flow reversal as the turbine enters 105 

propeller mode [Sørensen et al. (1998)]. For high wind speeds, the turbine typically pitches its blades to reduce power 

extraction and thrust force. 

Four simulations were performed for different average incoming wind speeds, which cover a significant range of operating 

thrust coefficients. A second parameter inherently present in a wind farm is the turbine number (TN). As the flow enters the 

wind farm, the incoming wind for the first turbine is undisturbed, but the second turbine operates in the wake of the first 110 

turbine. Further inside the wind farm, multiple wakes can be present concurrently. Wakes have a significant impact on the 

performance of wind farms, as the wind speed is lower and the turbulent intensity is higher causing a reduction in power 

production and increased fatigue loads on turbines operating in the wake [Vermeer et al. (2003); Porté-Agel et al. (2020)]. 

The parameter space covered by the database is visualized in Fig. 2. It consists of two parameters: turbine number (2-14) of 

turbines operating in wake conditions, and four wind speeds at hub height for the front turbine (8, 12, 15, and 20 m/s). 115 
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Combined, these parameters are associated with a time-averaged CT of the upstream wind turbine, which generates the wake. 

CT is higher for low wind speeds until the turbine starts pitching, and it is approximately constant at 0.8 and 0.3 for the cases 

of 𝑈 =8 m/s and 𝑈 =20 m/s, respectively. However, for 𝑈 = 12-15m/s there is a gradual transition in CT from the first turbine 

to the turbines further into the farm, where the flow has achieved a balance between extracted power and wake recovery [Calaf 

et al. (2010)]. The fully-developed or “infinite” wind farm is typically reached after the first 5-6 wind turbines [Andersen et 120 

al. (2020)]. 

In total, Figure 2 shows 52 different combinations of the four wind speeds (U) and 13 turbine numbers (TN). Where each 

combination corresponds to a data set of inflow to a given turbine, 𝐕(𝑦, 𝑧, 𝑡). 

 

Figure 2: Parameter space from the Large Eddy Simulations. 𝐂𝐓 is shown for the upstream turbine for each mean wind 125 

speed in the simulation inlet and turbine number. 

 

2.4 Proper Orthogonal Decomposition 

Proper Orthogonal Decomposition (POD) is a classic technique for dynamic flow analysis, which decomposes a turbulent flow 

into modes of spatial variability. These modes are orthogonal and, given the norm used to perform the decomposition, optimal 130 

in terms of capturing the variance of the fluctuating flow [Lumley (1967); Berkooz et al. (1993)]. 

The velocity field (𝐕) is described as the sum of the mean flow (𝐕̅) and the fluctuating flow (𝐕′), as in Equation 2. 

𝐕(𝑦, 𝑧, 𝑡) =  𝐕̅(𝑦, 𝑧) + 𝐕′(𝑦, 𝑧, 𝑡) ,                  (2) 

POD is then applied to the three fluctuating velocity components of 𝐕′ (𝑢′, 𝑣′ and 𝑤′), where each time step is represented as 

a column vector, and Nt time steps are aggregated into a matrix 𝐌 = [𝐕𝟏
′ , … , 𝐕𝐍𝐭

′ ]. The auto-covariance of  𝐌 is computed: 135 

𝐑 = 𝐌𝐓𝐌, and the eigenvalue problem 𝐑𝐆 = 𝐆𝚲 is solved, where 𝚲 is a matrix of real and positive eigenvalues and  𝐆 is a 

matrix of orthonormal eigenvectors 𝐆 = [g1, … , 𝑔𝑁𝑡−1
]. The dimensionality has been reduced by 1 due to the extraction of the 

mean flow; and the orthonormality of the global modes is given using the standard inner product, 〈𝒂 ; 𝒃〉  = 𝑎𝑖𝑏𝑖, across all 

flow components: 〈𝒈𝒊 ; 𝒈𝒋〉 = 𝛿𝑖𝑗. Finally, the modes are organized according to the eigenvalue decay i.e., in descending order 
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according to variance, representing the turbulent kinetic energy contribution of each mode. Collectively, all modes form a new 140 

set of basis functions spanning the data set. 

The original flow can be reconstructed by projecting the flow into each mode with a standard inner product, which results in 

its contribution as a function of time (𝜙𝑖). Subsequently, as shown in equation 3, the modes multiplied by their contribution 

over time can be summed to reconstruct the flow. 

𝐕′(𝑦, 𝑧, 𝑡) ≈  ∑ gi(𝑦, 𝑧)𝜙𝑖(𝑡)𝐾
𝑖=0  ,                  (3) 145 

An approximated reconstruction of the flow can be obtained by only including a limited number of modes (𝐾 ≤ 𝑁𝑡−1). 

2.5 Global POD basis 

POD is traditionally applied on an individual flow case, i.e. on a “local” data set in the parameter space. Therefore, applying 

POD on a single data set is referred to as a local POD basis in the present work. The local basis contains the modes, which 

optimally represent the variance of that particular data set. Conversely, a global POD basis is formed by including multiple 150 

data sets in the decomposition [Andersen and Murcia Leon (2022)]. 

The global basis can be computed by including 𝑞 different datasets, and adding NT snapshots from each flow data set to the 

matrix 𝐌 before applying POD: 

𝐌 = [𝐕𝟏,𝟏
′ , … , 𝐕𝟏,𝐍𝐭

′ , … , 𝐕𝐪,𝟏
′ , … , 𝑽𝒒,𝑵𝒕

′ ] ,               (4) 

Consequently, the global POD basis is sub-optimal at capturing the variance for a particular data set, but it is expected to 155 

provide a better representation across the entire parameter space. 

2.6 Convergence of global POD basis 

The expected sub-optimality of a global POD basis raises a number of central questions on the effectiveness relative to a local 

POD basis and on the required number and which datasets to include in the construction of a global POD basis. 

Here, the parameter space contains 52 datasets. This means that for any number of datasets 𝑘 composing a global base, there 160 

are (
52
𝑘

) possible global basis, so there are ∑ (
52
𝑘

)52
𝑘=1 = 4.5 × 1015 possible combinations to generate a global basis, which 

effectively excludes the option of evaluating all of them. Consequently, the global POD bases are constructed in an iterative 

manner. First, a POD basis is based on a single dataset (one flow case in the parameter space), and its performance is evaluated 

across all flow cases of the parameter space. Secondly, a new flow case is added to form a new global basis. The new global 

basis is again evaluated across all flow cases before a new dataset can be added. In each iteration, the dataset added to the 165 

decomposition is the one with the worst performance to maximize the reduction of the overall error. The iterative procedure 

means that only 52 different combinations exist, as each data set can be chosen as the initial starting point. 
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3. Results 

3.1 Flow cases 

The wake flows change considerably across the parameter space. Figure 3 shows the normalized average streamwise velocity 170 

and the turbulence intensity for the four corners of parameter space (Fig. 2). 

 

          (a) Mean wind speed in streamwise direction.                                          (b) Turbulence Intensity. 

Figure 3: Mean streamwise wind speed and turbulence intensity of the flows in the four corners of the parameter space. 

The circle on each plot represents the rotor. 175 

 

Figure 3a shows a significantly larger deficit and a more circular wake when CT is high (U=8 m/s), and a less significant wake 

and more dominant shear profile from the atmospheric boundary layer when CT is low (U=20~m/s). Furthermore, the spatial 

gradients are less pronounced late in the wind farm (TN=14), which is a consequence of the increased mixing due to the 

presence of multiple wakes. Figure 3b shows the streamwise turbulence intensity (𝜎(𝑢′)/𝑈), which ranges from 12% up to 180 

23% with the largest values in flows with a high thrust coefficient. The highest turbulence intensity is located in the upper half 

of the domain, where more momentum is exchanged between the wake and the surrounding atmospheric flow. 

Figure 4 shows the streamwise velocity spectra taken at the rotor center for the four corners of the parameter space. This 

exemplifies how turbulent dynamics depend on both the thrust coefficient and turbine number. The total turbulent kinetic 

energy is larger for the high wind speed, as expected. The spectra tend to shift at the low frequencies, particularly for high CT, 185 

as the largest turbulent length scales are broken down as they move through the wind farm [Andersen et al. (2017)]. 
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Figure 4: Fourier spectra of 𝐮′at hub height for the four corners of the parameter space. 

3.2 Global modes 

POD is applied to compute the local and global POD bases. Figure 5 shows the first eight local modes calculated with one 190 

dataset from the parameter space, 1P. The figure also shows eight global POD modes derived using 9 datasets, 9P. The local 

and global modes are clearly similar, and are therefore capable of capturing the same coherent structures. However, the 

ordering of individual modes might change as they cover an increasingly large parameter space. This is an important point of 

the global basis. For instance, global mode 9P g7 is not shown as it qualitatively corresponds to local mode 1P g9, while global 

modes 9P g7 and 9P g8 are more important over the parameter space. As shown by Andersen and Murcia Leon (2023), this 195 

means that the contribution of variance captured by each mode might change over the parameter space. 

 

Figure 5: Streamwise component of the first modes using one and nine points from parameter space, 1P and 9P 

respectively. The circle on each mode represents the turbine rotor. 

 200 
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Although the local and global modes are qualitatively comparable, the global basis must be both efficient and representative 

of the entire parameter space. Figure 6 shows instantaneous flow fields for all velocity fluctuations 𝑈′, 𝑉′, and 𝑊′ for LES and 

reconstructions using the first eight modes of P1 and P9 for flow case 𝑈 = 20 𝑚/𝑠 and the 5th wind turbine, corresponding to 

the bases visualized in Figure 5. The filtering effect of POD is clearly seen in the reconstructions for both P1 and P9 and for 

all velocity components as the details of the LES are not reconstructed with only eight modes. However, the overall structures 205 

of the reconstructed flow fields are comparable, particularly for the streamwise fluctuations 𝑈′ . The region of positive 

fluctuations in 𝑉′ is larger in P1, while P9 has a larger region in positive fluctuations of 𝑊′. The figure also shows the 

difference in the instantaneous fluctuations from LES and the two reconstructions. The error fields are very comparable 

between the two reconstructions with only minor differences and it is difficult to qualitatively assess that P1 is significantly 

better than P9. 210 

 

Figure 6: Flow fields of LES, reconstruction using P1 and P9 as well as error computed as the difference between LES 

and the reconstructed flows using 8 modes for the 5th turbine and U = 20m/s. The top row shows streamwise velocity 

fluctuations 𝑼′, the center row shows lateral velocity fluctuations 𝑽′, and the bottom row shows vertical velocity 

fluctuations 𝑾′. 215 

3.3 Global modes convergence 

In order to quantify the efficiency, a given basis is evaluated against the full LES flow using a velocity error Evel defined in 

equations 5 and 6. The metric takes, for every velocity component, the average in space (y,z) of the ratio between the root 

mean square error of the velocity field and its standard deviation over time. The error is normalized by the standard deviation 

because it is a direct measure of the variance in the original flow. Subsequently, Evel corresponds to the norm of the errors 220 

from the three velocity components. This results in a single value for each point in the parameter space representing the total 

error of the reconstruction with respect to the original flow. 

The velocity error is shown in Figure 7a, where the top left figure corresponds to the local basis using one dataset of U = 8m/s 

and TN = 14, indicated by the white number. This basis is evaluated across the entire parameter space using 100 modes, i.e. 

the basis derived from the one dataset is applied on all flows. It reveals that the velocity error is largest at the first turbines for 225 
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U = 8m/s. However, the error of the reconstructed flow compared to the LES is low for the high wind speed. Hence, the global 

basis provides efficient reconstruction for significantly different flow cases. 

𝐸𝑢′ = mean𝑦,𝑧 [
√mean𝑡[𝑢LES

′ (𝑦,𝑧,𝑡)−𝑢POD
′ (𝑦,𝑧,𝑡)]

2

stdt[𝑢LES
′ (𝑦,𝑧,𝑡)]

] ,                            (5) 

𝐸vel = √𝐸𝑢′
2 + 𝐸𝑣′

2 + 𝐸𝑤′
2   ,                                                         (6) 

 230 

(a) Velocity error fields in parameter space        (b) Basis error fields in parameter space 

Figure 7: Velocity error (𝐄𝐯𝐞𝐥) and basis error (𝐄𝐛𝐚𝐬𝐢𝐬) using 100 modes across the parameter space for basis including 

1, 4, and 9 datasets. 

 

The velocity error (Evel) corresponds to the total error with respect to LES, but this has two components: a truncation error 235 

due to the number of modes included, and a basis error Ebasis due to the use of a global basis, which is non-optimal basis 

locally. The basis error arises because the global basis is sub-optimal compared to the local basis, which in principle is capable 
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of reconstructing a larger portion of the flow with the same number of modes. Therefore, in order to isolate and quan4tify the 

basis error, the velocity error from the local POD bases (Evel−local POD) is subtracted from Evel, as shown in equation 7. 

𝐸basis = 𝐸vel − 𝐸vel−local POD ,                                                         (7) 240 

The basis error is shown in Fig. 7b. Contrarily to the velocity error Evel, the largest basis errors correspond to the low CT. 

Hence, the dataset for U = 20 m/s and TN = 2 with the largest basis error is added to improve the global basis. The same error 

estimates are computed with the updated global basis, and the procedure is iterated to reduce the overall error of the global 

basis. 

Figure 7 shows the evolution of errors using four and nine datasets. The white numbers indicate the order of adding the different 245 

datasets to the global basis. The average errors are clearly reduced when more datasets are included. Additionally, the largest 

basis errors remain at low CT, and the difference of including one or four datasets is significantly larger than using four or nine 

datasets, which suggests convergence of the global basis. 

Figure 7 uses U=8 m/s and TN=14 as initial dataset for the iterative procedure. Table 1 shows five different starting points. 

The first four initial datasets correspond to the four corners of parameter space, and the fifth is a point in the middle of the 250 

domain. 

Coordinates 
Name 

A B C D E 

U [m/s] 8 20 8 20 15 

TN 2 2 14 14 5 

Table 1: Initial datasets from parameter space. 

 

Figure 8 shows the evolution of the average velocity error (Evel) across parameter space as a function of the number of datasets 

in the global basis for the five different initial conditions. As seen, all five initial conditions (A-E) yield the same trend of 255 

decreasing the mean velocity error as more datasets are included. On average the mean velocity error decreases 6% from one 

to nine datasets. Effectively, the choice of the initial dataset increasingly loses importance as more datasets are included. For 

instance, with one dataset, the relative difference between the best and worst performing global basis is 3.9%, but with nine 

datasets it is reduced to 0.4%. Furthermore, after including three datasets, the iterations starting at points B and D (those which 

started at U= 20 m/s) contain the same datasets, which means that from that point they yield the same results. 260 

The examined bases A-E include 512 snapshots per dataset and the flow reconstruction was truncated at 100 modes. The 

horizontal lines in Fig. 8 indicate the average error when each flow in the parameter space is reconstructed with 100 modes of 

the corresponding local basis, computed using 512, 1024, and 2048 snapshots respectively. The performance of these bases 

depends on the number of snapshots before achieving convergence, and the number of independent snapshots is limited, at 

around 2048, by the span of a single dataset. Independence is here based on snapshots being separated according to the integral 265 
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length scales. On the other hand, a global basis can include more data because it is extracted from different datasets, i.e. 

different flows, which makes the snapshots independent. 

 

Figure 8: Mean error 𝐄𝐯𝐞𝐥 across the parameter space using 100 modes vs the number of datasets included in the 

global basis. 270 

 

Consequently, global bases can be directly compared to local bases when computed with the same amount of data. Table 2 

compares the values of the horizontal lines in Fig. 8 (local bases error) with the average result from the curves A-E at the 

corresponding number of snapshots. As more datasets are included, the performance of the global bases gets closer to the 

theoretical minimum error of the local bases, where four datasets correspond to a relative difference in the error of 2.8% 275 

truncated at 100 modes. 

 

Total number of 

snapshots 
Local bases error 

Global bases Relative error 

difference Number of datasets Average error 

512 0.494 1 0.527 6.7% 

1024 0.477 2 0.499 4.6% 

2048 0.467 4 0.480 2.8% 

Table 2: Mean velocity error comparison between local bases and global bases (average of curves A-E) with the same 

total number of snapshots using 100 modes. 

 280 

For the dependence of the number of truncation modes, Fig. 9 shows the velocity error for two local and three global bases 

truncating at different numbers of modes. Overall, the error decreases as more modes are included. Here, it is also possible to 

compare the truncation error to the basis error. The basis error is approximately one order of magnitude smaller than the 



13 

 

truncation error. For instance, using 100 modes, the error of the global basis using 1 dataset is 0.523, and the error of the best 

bases, i.e. local bases 2048, is 0.469, which is a relative difference of approximately 10%. 285 

 

Figure 9: Mean error 𝐄𝐯𝐞𝐥  across the parameter space vs number of truncation modes. The global bases shown 

correspond to the starting point C from table 1. 

 

It is noteworthy, especially for a global basis with a low number of datasets, that the basis error increases as more modes are 290 

included for the number of modes plotted. This is attributed to the fact that each additional mode from the optimal basis adds 

more information to the flow than a mode from the sub-optimal base. However, any of these bases are capable of completely 

reconstructing the flow if all modes are included. Therefore, it is expected that as more modes are included, the optimal bases 

start to saturate, while the sub-optimal bases eventually will catch up and the basis error gap will reduce. 

3.4 Case study with stochasticity 295 

The physical and statistical implications of employing a global basis are investigated using the stochastic engine PS-ROM. 

The chosen global basis is generated based on four datasets shown in Fig. 7, which yield a basis error of 2.8%, see Table 2. 

The global basis is tested on the unseen flow case of 𝑈 = 12 𝑚/𝑠, i.e. the employed global basis does not contain information 

from this flow scenario. 

The inherent stochastic variability is assessed by generating 𝑁 = 30  stochastic realizations and cross-comparing all 300 

realizations against themselves for a single flow case. This yields a total of (
𝑁
2

) = 435 stochastic flow realizations. 

A general spectral error metric 𝐸𝑆 of two spectrums is defined in equation 8: 

𝐸𝑆−𝑖,𝑗 ≡
∫(𝑆̂𝑖−𝑆̂𝑗)𝑑𝑓

∫ 𝑆̂𝑗 𝑑𝑓
 ,                                                                      (8) 
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where 𝑆𝑖 and 𝑆𝑗 are the two spectrums to compare. 𝑆̂𝑖 is 𝑆𝑖 filtered with a rolling mean using an averaging window varying 

logarithmically in size to smooth out higher frequencies. 305 

The spectral error is utilized in two ways, where the analysis is shown for the streamwise velocity at hub height.  

First, the variability of the 30 stochastic realizations is estimated to provide stochastic error distributions, as shown in Fig. 10 

for each turbine. The red distributions are all centered around zero and show the stochastic variability of the 30 realizations 

relative to themselves, i.e. how much can a single realization of a constructed flow scenario vary relative to numerous 

realizations of the same flow. The distributions tend to narrow further into the wind farm, which indicates how the deep farm 310 

flows become increasingly self-organized and governed by the wakes [Andersen et al. (2017)]. 

Second, the development can also be examined by comparing the spectral error between different flows, i.e. comparing 30 

stochastic flow realizations at each turbine against the inflow to a specific turbine. Here, the last turbine (TN=14) is chosen to 

represent the fully-developed wind farm. The spectral error given by equation 8 is also used for this comparison, which yields 

𝑁2 = 900 error samples since both flow cases have N=30 stochastic realizations. The corresponding errors are shown as green 315 

distributions in Fig. 10. The distributions for the first turbines are significantly offset with a negative error, but initially 

narrower than the stochastic distributions in red. Eventually, the green distributions gradually become centered around zero. 

Hence, the distributions of the stochastic spectral error and the spectral error relative to the 14th turbine can be compared 

directly to determine if there is a statistical difference between inflow to a given turbine relative to the last turbine. If the error 

distributions are reflections of each other, it implies that there is no statistical difference between the velocity spectra at the 320 

center of the domain between the turbine number in question and turbine number 14. This is particularly useful when trying to 

determine if the flow dynamics have reached the fully-developed wind farm conditions, where the statistical distributions no 

longer change as the turbine number increases [Andersen et al. (2015)]. This is the case from approximately TN=9 forwards. 

 

Figure 10: Distributions of spectral errors for the streamwise velocity at the rotor's center related to the stochasticity 325 

and relative to turbine number 14 through the wind farm using 30 stochastic realizations and 100 global POD modes 

for the simulation case U=12 m/s. 
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The contribution of individual modes to the different flow cases can also be compared. Figure 11 shows similar spectral error 

distributions for global modes 2, 5, 12, and 20. Modes 2 and 5 show a gradual evolution reminiscing of Fig. 10, where the 330 

distributions gradually become increasingly similar. Contrarily, higher modes, such as 12 and 20, present a more scattered 

behavior with lower errors and mean values varying between positive and negative for TN > 2. This suggests that the transition 

to a deep wind farm state is primarily dictated by changes in the first global modes, which are associated with the largest 

turbulent scales. This trend corroborates the findings of Andersen and Murcia Leon (2023), where it was clearly shown how 

different global modes are actuated for different locations in the wind farm to capture different flow scenarios. 335 

 

Figure 11: Distributions of spectral errors for four modes related to the stochasticity and relative to turbine number 

14 through the wind farm using 30 stochastic realizations for the simulation case U= 12m/s. 

 

4 Discussion 340 

Employing a global POD basis allows the use of the same modes for an entire parameter space but introduces the basis error 

in the flow reconstructions (equation 7). The basis error emerges because the global basis is not as efficient at reconstructing 

a particular flow as the local POD basis. However, it was shown that this error is reduced as more datasets are included in the 

global basis, and it is approximately one order of magnitude smaller than the truncation error for 100 modes. 

The convergence of the global POD basis as a function of the number of datasets has a parallel with the convergence of the 345 

local POD basis. A local POD basis converges when enough snapshots of the flow are included, so it contains information 

about all the dynamics that occur in the flow [Hekmati et al. (2011)]. Consequently, it is an optimal basis in terms of variance, 

and including more snapshots would not improve its performance. Similarly, for the global POD basis, as more datasets are 

added, more information on the dynamics of the flows across parameter space is included. On the limit, when sufficient 

information covering the parameter space has been supplied, including additional datasets with flow dynamics that have 350 

already been covered will not improve the performance of the basis. 
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The inclusion of more datasets in the global basis implied adding more data in total, as the number of snapshots per dataset 

was kept constant. An alternative would be to keep the amount of snapshots constant, and hence include fewer snapshots per 

dataset; which would reduce the time to compute the modes that scales quadratically with the number of snapshots. This is an 

unexplored scenario, but it is speculated that it would only be useful as long as there are enough snapshots per dataset to 355 

generate an acceptable local POD basis with them, which would imply that there is enough information per dataset to capture 

its dynamics. 

The systematic process of including addition datasets is focused on minimizing the basis error (equation 7) with respect to the 

local bases' performance. The iterative procedure particularly identifies adding more datasets with lowCT. However, additional 

datasets could be identified using alternative metric, e.g. the velocity error, which would prioritize adding datasets of low 360 

turbine numbers and high CT. Applying such alternative metrics, or simply selecting datasets arbitrarily in the parameter space, 

also results in a reduction of the error as the number of datasets increases and therefore the global basis will eventually converge 

on multiple error metrics. However, it might be impractical to perform a detailed and systematic convergence study of the 

global basis for all applications. Yet, the present analysis shows how global bases are relatively insensitive to which datasets 

are used. It is therefore generally recommended to select multiple datasets, which represent various key flow phenomena. 365 

Selection of datasets apriori would typically require domain knowledge to identify key scenarios with different physics. 

Furthermore, the case study highlights a number of benefits of employing a global basis. The global basis enables detailed and 

quantifiable physical interpretation of how the flow changes within the parameter space, as also seen in Andersen and Murcia 

Leon (2023), where the modal statistics of a global POD basis applied on a full wind farm clearly reveal three main flow 

regimes of atmospheric inflow, single wake and multiple wakes. The expansion of the parameter space reveals new insights 370 

compared to Andersen and Murcia Leon (2022). For instance, it is clearly seen how the spectral error distributions converge 

further into the wind farm indicating when fully-developed wind farm flow conditions are achieved dynamically and how this 

is linked to the first few modes. The method also enables modelers to estimate both the impact and uncertainty of different 

realizations as well as different modes when generating synthetic turbulent flows. Additionally, the analysis reveals how wind 

turbine wakes are relatively coherent flows, which can be covered by approximately 100 modes. Although, the consistently 375 

larger basis error for U= 20m/s also highlights how more modes are required to reduce the errors for undisturbed atmospheric 

flows, where the influence of the turbines is negligible. 

Finally, the global bases are used to model and analyze highly turbulent wind turbine wakes and the present work expands the 

parameter space to cover two dimensions compared to the single parameter in Andersen and Murcia Leon (2022). In principle, 

there are no limits to the number of dimensions. However, it is speculated that the efficiency of global bases will significantly 380 

decrease if the parameter space covers multiple dimensions with very different flow cases. If so, more modes would be required 

for the flow generation. However, the efficiency and convergence of the linear global POD bases also gives promises that it is 

possible to utilize nonlinear dimensional reduction techniques, such as autoencoders, to increase efficiency further, i.e. reduce 

the number of modes required. Therefore, global bases are expected to be generally applicable for dimensional reduction within 

fluid dynamics. 385 
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5. Conclusions 

Global POD bases are shown to provide an efficient basis to capture wind turbine wake aerodynamics for a parameter space 

covering all wake-affected turbines during different operating conditions.  

The performance of the global basis has a basis error with respect to the local POD basis. But the error is one order of magnitude 390 

lower than the truncation error, so it could be mitigated by adding a few additional modes. And most importantly, the error is 

significantly reduced and exhibits convergence towards the local POD basis as more datasets are included in the global basis. 

The efficiency of global bases is shown to be rather insensitive to the selection of datasets to include, especially when the basis 

error is compared to the truncation error of the flow reconstruction or the stochastic variability of flow realizations. However, 

including key features from the different flows across the parameter space is recommended. 395 

Furthermore, global bases allow direct comparisons of the role of each mode in different flows, and therefore identification of 

how the dynamics of different flow cases change throughout the parameter space. For instance, the first modes contribute 

govern the gradual changes in wake aerodynamics further into the farm, while higher modes provide comparable variability 

for the wake aerodynamics, irrespective of location in the wind farm. 

The efficiency of global basis is here exemplified on a LES database of long rows of wind turbines for different operating 400 

conditions, and the coherent wake structures might be particularly beneficial for the efficiency of the global bases to be utilized 

for the development of reduced order models. However, the results are expected to be generally applicable to other flow 

scenarios, where dimensional reduction methods are utilized. 
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