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Abstract. The Proper Orthogonal Decomposition (POD) can be applied by combining several datasets, i.e. using data obtained 

from simulations with different governing parameters. The resulting global POD basis is intended to represent all flows within 

the parameter space, and the convergence and efficiency of such global POD bases are evaluated here for the case of wind 10 

turbine wake aerodynamics in large wind farms. The analysis shows that the global POD bases have better performance across 

the parameter space than the optimal POD basis computed from a single dataset.  The error associated with using a global basis 

across parameter space of reconstructions decreases and converges as more datasets are included, and there is a low sensitivity 

as to which datasets to include. It is also shown how this error is an order of magnitude smaller than the truncation error for 

100 modes. Finally, the global basis applied to the highly turbulent flow within a wind farm has the advantage of providing 15 

consistent physical interpretability.  

Keywords: Proper Orthogonal Decomposition, Global Basis, Reduced Order Modelling, Turbulence, Wind Turbine Wake 

Dynamics. 

1 Introduction 

The proper orthogonal decomposition (POD) is a classic data-driven method for decomposing fluctuations of turbulent flows 20 

into orthogonal modes, which provide an optimal linear decomposition in terms of the variance [Lumley (1967); Berkooz et 

al. (1993)]. POD has been applied on a vast range of different flow configurations, and the POD modes are typically used for 

one of two main applications. One, the modes can provide a physical interpretation of dominant coherent structures in complex 

turbulent flow, e.g. [Sirovich (1987), George (1988), Neumann and Wengle (2004), Meyer et al. (2007)]. Two, a truncated set 

of the modes can be used to construct reduced order models (ROMs), e.g. [Smith et al. (2005), Noack et al. (2011), Semaan et 25 

al. (2016), Taira et al. (2017)]. 

However, an optimal reconstruction in terms of variance might not always be the most desirable basis for creating ROMs. 

Alternative bases can for instance be derived by changing the norm to optimize other quantities instead of variance e.g. 

enthalpy, enstrophy, and dissipation [Colonius et al. (2002), Lee and Dowell (2020), Olesen et al. (2023)]. Emphasis can also 

be on the spectral content by performing POD in the frequency domain using Spectral POD [Sieber et al. (2016)] or the related 30 
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Dynamic Mode Decomposition [Schmid (2010)], which does not provide orthogonal bases. Furthermore, nonlinear bases can 

be formed using autoencoders, which constitute a nonlinear generalization of POD through an artificial neural network (ANN) 

[Hinton and Salakhutdinov (2006)]. Autoencoders are specifically designed to reduce the number of degrees of freedom 

required to describe a data set but might lack physical interpretability. 

Irrespective of the decomposition method, the resulting bases are typically applied to data from a single flow. However, in 35 

cases of parametric studies, efforts have been made to transition between different bases to cover different flow cases 

[Christensen. et al. (1999), Stankiewicz et al. (2017), Xiao et al. (2017)]. Conversely, recent developments [Andersen and 

Murcia Leon (2022), Andersen and Murcia Leon (2023), Fu et al. (2023), Nony et al. (2022), Buoso et al. (2022)] employ a 

single global basis constructed by applying POD on a combination of multiple flow cases. The global basis maintains the 

benefits of POD, namely orthogonality and physical interpretability. Using a global basis for constructing generic ROMs 40 

enables consistent physical analysis across different flow conditions using the same basis, and therefore holds the potential for 

constructing more robust POD models [Bergmann et al. (2009)] including diverse forms of interpolation across parameter 

space to predict unseen flow cases.  

In a previous work, Andersen and Murcia Leon (2022) qualitatively compared the resulting global POD to POD modes derived 

from individual flow cases. However, the efficiency of the global modes was not quantified. This article explores this aspect 45 

alongside the convergence of the global basis across the parameter space, which is expected in the POD formulation [Haasdonk 

(2013), Hesthaven et al. (2016)], and notions of how to select the datasets to create a global basis are also investigated in 

accordance to previous references [Haasdonk et al. (2011), Hesthaven et al. (2016), Quarteroni et al. (2016)]. The analysis 

uses a database of LES of wind turbine wake dynamics, which are particularly challenging as they are highly turbulent and 

include the vast range of turbulent scales in the atmosphere. Therefore, this work contributes by explicitly showcasing the 50 

advantages and characteristics of global basis in ROMs applied in a practical and complex scenario. 

2 Methodology 

2.1 Flow Solver and Turbine Modelling 

The LES database is the same as used for creating the predictive and stochastic reduced order model of wind turbine wakes 

[Andersen and Murcia Leon (2022)], where the simulations were generated using the incompressible finite volume flow solver 55 

EllipSys3D [Michelsen (1992), Michelsen (1994), Sørensen (1995)]. A third-order QUICK scheme is used for the convective 

terms, and a second-order implicit method is used for time stepping. The pressure correction equation is solved with an 

improved version of the SIMPLEC algorithm [Shen et al. (2003)] and pressure decoupling is avoided using the Rhie-Chow 

interpolation technique. Large Eddie Simulations (LES) applies a spatial filter on the Navier–Stokes equations, where the 

smaller scales are modeled through a sub-grid scale (SGS) model to achieve turbulence closure. The Deardorff SGS model is 60 

used [Deardorff (1980)]. 
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The turbines are modeled using the actuator disc method, which imposes body forces in the flow equations [Mikkelsen (2004)]. 

Initially, the velocities are passed from EllipSys3D to Flex5 [Øye (1996)], which computes the forces and deflections through 

a full aero-servo-elastic computation, and transfers these back to EllipSys3D [Sørensen et al. (2015), Hodgson et al. (2021)]. 

2.2 Simulation Setup 65 

The wind farm is simulated with 14 turbines aligned as shown in Fig.1. The computational domain is 192𝑅 × 20𝑅 × 20𝑅 in 

the streamwise, lateral, and vertical directions respectively. The grid is structured and has  3392 × 192 × 128 ≈ 83 × 106 

grid cells. The grid is equidistant from the inlet to the turbines and in the vicinity of the turbines, where it has a resolution of 

approximately 20 cells per blade radius. The grid is stretched towards the lateral, top, and outlet boundaries. 

The turbines are separated by 12R in the streamwise direction, and 20R in the lateral direction. Cyclic boundary conditions are 70 

imposed on the lateral boundaries to mimic an infinitely wide wind farm. The modeled turbine is the NM80 turbine, which has 

a radius of R= 40.04m, hub-height of 𝑧0= 80m, and rescaled rated wind speed of 𝑈𝑟𝑎𝑡𝑒𝑑= 14m/s with a corresponding rated 

power of 𝑃𝑟𝑎𝑡𝑒𝑑= 2.75MW [Aagaard Madsen et al. (2010)]. 

 

Figure 1: Simulation layout. 75 

 

The neutral atmospheric boundary layer (ABL) inflow to the farm is modeled in a prior precursor simulation [Andersen and 

Murcia Leon (2022)]. The initial precursor simulation has a roughness of 𝑧0= 0.05m and a friction velocity of 𝑢∗= 0.4545 m/s, 

which resulted in an average shear exponent of 𝛼 = 0.14. The rough-wall boundary layer can be rescaled to model different 

wind speeds [Castro (2007)]. 80 

The flow database is limited to the incoming flow at each rotor, which captures the wake dynamics. Therefore, the three 

velocity components are extracted in vertical planes of 2𝑅 × 2𝑅 located one radius upstream of each turbine to reduce the 

influence of turbine induction, see Fig. 1. This corresponds to a grid of 39 × 42 points in the y-z plane. The data is extracted 

every 0.1 seconds during 2 × 1017 time-steps, which is approximately 3.64 hours of simulated flow. 
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2.3 Parameter space and flow characteristics 85 

The database is designed to cover the majority of the operational range for this particular wind farm, and therefore the 

parameter space governing the turbulent wake flow. The most important parameter for wind turbine wakes is the thrust 

coefficient 𝐶𝑇 [van der Laan et al. (2020)]: 

𝐶𝑇 =
T

1

2
𝜌𝐴𝑈2

 ,            (1) 

Where 𝑇 is the turbine's thrust, 𝜌 is the air's density, 𝐴 is the rotor's area, and 𝑈 is the velocity. This coefficient is a relative 90 

measure of the force exerted by the turbine with respect to the momentum of the incoming wind. For low wind speeds, the 

turbine extracts as much energy as possible, and the thrust coefficient is typically around 0.8, which is considered high. 

Significantly higher values can result in flow reversal as the turbine enters propeller mode [Sørensen et al. (1998)]. For high 

wind speeds, the turbine typically pitches its blades to reduce power extraction and thrust force. 

Four simulations were performed for different average incoming wind speeds, which cover a significant range of operating 95 

thrust coefficients. A second parameter inherently present in a wind farm is the turbine number (TN). As the flow enters the 

wind farm, the incoming wind for the first turbine is atmospheric, but the second turbine operates in the wake of the first 

turbine. Further inside the wind farm, multiple wakes can be present concurrently. Wakes have a significant impact on the 

performance of wind farms, as the wind speed is lower and the turbulent intensity is higher causing a reduction in power 

production and increased fatigue loads on turbines operating in the wake [Vermeer et al. (2003); Porté-Agel et al. (2020)]. 100 

The parameter space covered by the database is visualized in Fig. 2, which shows the time-averaged CT of the wake-generating 

(i.e. upstream) turbine for the four different wind speeds (8 m/s, 12 m/s, 15 m/s, 20 m/s) as a function of the turbine number 

(2-14) for the turbines operating in the wake. CT is approximately constant for all turbines at 0.8 and 0.3 for U = 8m/s and U 

= 20m/s, respectively. Effectively, the operation of the individual turbines does not change despite the presence of the wake, 

which in the latter case is minimal due to the low CT. However, for U = 12-15 m/s there is a gradual transition in CT from the 105 

first turbines to the turbines further into the farm, where the operating condition have converged as there is a balance between 

extracted power and wake recovery [Calaf et al. (2010)].The fully-developed or “infinite” wind farm is typically reached after 

the first 5-6 wind turbines [Andersen et al. (2020)]. 

Figure 2 shows 52 different combinations for the four wind speeds (U) and 13 turbine numbers (TN). Each combination 

corresponds to an inflow data set to a given turbine, 𝐕(𝑦, 𝑧, 𝑡). 110 
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Figure 2: Parameter space from the Large Eddy Simulations. 𝐂𝐓 is shown for the upstream turbine for each mean wind 

speed in the simulation inlet and turbine number. 

 

2.4 Proper Orthogonal Decomposition 115 

Proper Orthogonal Decomposition (POD) is a classic technique for dynamic flow analysis, which decomposes a turbulent flow 

into modes of spatial variability. These modes are orthogonal and, given the norm used to perform the decomposition, optimal 

in terms of capturing the variance of the fluctuating flow [Lumley (1967); Berkooz et al. (1993)]. 

The velocity field (𝐕) is described as the sum of the mean flow (�̅�) and the fluctuating flow (𝐕′), as in Equation 2. 

𝐕(𝑦, 𝑧, 𝑡) =  �̅�(𝑦, 𝑧) + 𝐕′(𝑦, 𝑧, 𝑡) ,                  (2) 120 

POD is then applied to the three fluctuating velocity components of 𝐕′ (𝑢′, 𝑣′ and 𝑤′), where each time step is represented as 

a column vector, and Nt time steps are aggregated into a matrix 𝐌 = [𝐕𝟏
′ , … , 𝐕𝐍𝐭

′ ]. The auto-covariance of  𝐌 is computed: 

𝐑 = 𝐌𝐓𝐌, and the eigenvalue problem 𝐑𝐆 = 𝐆𝚲 is solved, where 𝚲 is a matrix of real and positive eigenvalues and  𝐆 is a 

matrix of orthonormal eigenvectors 𝐆 = [g1, … , 𝑔𝑁𝑡−1
]. The dimensionality has been reduced by 1 due to the extraction of the 

mean flow; and the orthonormality of the global modes is given using the standard inner product, 〈𝒂 ; 𝒃〉  = 𝑎𝑖𝑏𝑖, across all 125 

flow components: 〈𝒈𝒊 ; 𝒈𝒋〉 = 𝛿𝑖𝑗. Finally, the modes are organized according to the eigenvalue decay i.e., in descending order 

according to variance, representing the turbulent kinetic energy contribution of each mode. Collectively, all modes form a new 

set of basis functions spanning the data set. 

The original flow can be reconstructed by projecting the flow into each mode with a standard inner product, which results in 

its contribution as a function of time (𝜙𝑖). Subsequently, as shown in equation 3, the modes multiplied by their contribution 130 

over time can be summed to reconstruct the flow. 

𝐕′(𝑦, 𝑧, 𝑡) ≈  ∑ gi(𝑦, 𝑧)𝜙𝑖(𝑡)𝐾
𝑖=0  ,                  (3) 

An approximated reconstruction of the flow can be obtained by only including a limited number of modes (𝐾 ≤ 𝑁𝑡−1). 

https://doi.org/10.5194/wes-2024-81
Preprint. Discussion started: 16 July 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

2.5 Global POD basis 

POD is traditionally applied on an individual flow case, i.e. on a “local” data set in the parameter space. Therefore, applying 135 

POD on a single data set is referred to as a local POD basis in the present work. The local basis contains the modes, which 

optimally represent the variance of that particular data set. Conversely, a global POD basis is formed by including multiple 

data sets in the decomposition [Andersen and Murcia Leon (2022)]. 

The global basis can be computed by including 𝑞 different datasets, and adding NT snapshots from each flow data set to the 

matrix 𝐌 before applying POD: 140 

𝐌 = [𝐕𝟏,𝟏
′ , … , 𝐕𝟏,𝐍𝐭

′ , … , 𝐕𝐪,𝟏
′ , … , 𝑽𝒒,𝑵𝒕

′ ] ,               (4) 

Consequently, the global POD basis is sub-optimal at capturing the variance for a particular data set, but it is expected to 

provide a better representation across the entire parameter space. 

2.6 Convergence of global POD basis 

The expected sub-optimality of a global POD basis raises a number of central questions on the effectiveness relative to a local 145 

POD basis and on the required number and which datasets to include in the construction of a global POD basis. 

Here, the parameter space contains 52 datasets. This means that for any number of datasets 𝑘 composing a global base, there 

are (
52
𝑘

) possible global basis, so there are ∑ (
52
𝑘

)52
𝑘=1 = 4.5 × 1015 possible combinations to generate a global basis, which 

effectively excludes the option of evaluating all of them. Consequently, the global POD bases are constructed in an iterative 

manner, where the performance of a global basis is evaluated across all datasets in the parameter space. The dataset with the 150 

worst performance is added to the decomposition to gradually reduce the overall error and a new global POD basis is computed. 

The iterative procedure means that only 52 different combinations exist, as each data set can be chosen as the initial starting 

point. 

3. Results 

3.1 Flow cases 155 

The wake flows change considerably across the parameter space. Figure 3 shows the normalized average streamwise velocity 

and the turbulence intensity for the four corners of parameter space (Fig. 2). 
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          (a) Mean wind speed in streamwise direction.                                          (b) Turbulence Intensity. 

Figure 3: Mean streamwise wind speed and turbulence intensity of the flows in the four corners of the parameter space. 160 

The circle on each plot represents the rotor. 

 

Figure 3a shows a significantly larger deficit and a more circular wake when CT is high (U=8 m/s), and a less significant wake 

and more dominant shear profile from the atmospheric boundary layer when CT is low (U=20~m/s). Furthermore, the spatial 

gradients are less pronounced late in the wind farm (TN=14), which is a consequence of the increased mixing due to the 165 

presence of multiple wakes. Figure 3b shows the streamwise turbulence intensity (𝜎(𝑢′)/𝑈), which ranges from 12% up to 

23% with the largest values in flows with a high thrust coefficient. The highest turbulence intensity is located in the upper half 

of the domain, where more momentum is exchanged between the wake and the surrounding atmospheric flow. 

Figure 4 shows the streamwise velocity spectra taken at the rotor center for the four corners of the parameter space. This 

exemplifies how turbulent dynamics depend on both the thrust coefficient and turbine number. The total turbulent kinetic 170 

energy is larger for the high wind speed, as expected. The spectrums tend to shift at the low frequencies, particularly for high 

CT, as the largest turbulent length scales are broken down as they move through the wind farm [Andersen et al. (2017)]. 
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Figure 4: Fourier spectra of 𝐮′at hub height for the four corners of the parameter space. 

3.2 Global modes 175 

POD is applied to compute the local and global POD bases. Figure 5 shows the first eight local modes calculated with one 

dataset from the parameter space, 1P. The figure also shows eight global POD modes derived using 9 datasets, 9P. The local 

and global modes are clearly similar, and there is a general trend that the turbulent structures diminish in size for higher modes. 

However, these are not the first eight global POD modes, but rather the eight modes most qualitatively comparable to the first 

eight local POD modes. This is an important point of the global basis. The ordering of the individual modes might change. For 180 

instance, global mode 9P g7 is not shown as it qualitatively corresponds to local mode 1P g9, while global modes 9P g7 and 

9P g8 are more important over the parameter space. As shown by Andersen and Murcia Leon (2023), this means that the 

contribution of variance captured by each mode might change over the parameter space. The analysis is kept qualitative here, 

but a more quantitative comparison of the re-ordering and similarity of modes from different bases has been proposed by 

Olesen et al. (2024). 185 
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Figure 5: Streamwise component of the first modes using one and nine points from parameter space, 1P and 9P 

respectively. The circle on each mode represents the turbine rotor. 

 

3.3 Global modes convergence 190 

Although qualitatively comparable, the global basis must be both efficient and representative of the entire parameter space. A 

basis is evaluated against the full LES flow using a velocity error Evel defined in equations 5 and 6. The metric takes, for every 

velocity component, the average in space (y,z) of the ratio between the root mean square error of the velocity field and its 

standard deviation over time. The error is normalized by the standard deviation because it is a direct measure of the variance 

in the original flow. Subsequently, Evel corresponds to the norm of the errors from the three velocity components. This results 195 

in a single value for each point in the parameter space representing the total error of the reconstruction with respect to the 

original flow. 

The velocity error is shown in Figure 6a, where the top left figure corresponds to the local basis using one dataset of U = 8m/s 

and TN = 14, indicated by the white number. This basis is evaluated across the entire parameter space using 100 modes, i.e. 

the basis derived from the one dataset is applied on all flows. It reveals that the velocity error is largest at the first turbines for 200 

U = 8m/s. However, the velocity error is low for the high wind speed, which indicates an efficient reconstruction of very 

different flows. 

𝐸𝑢′ = mean𝑦,𝑧 [
√mean𝑡[𝑢LES

′ (𝑦,𝑧,𝑡)−𝑢POD
′ (𝑦,𝑧,𝑡)]

2

stdt[𝑢LES
′ (𝑦,𝑧,𝑡)]

] ,                            (5) 

𝐸vel = √𝐸𝑢′
2 + 𝐸𝑣′

2 + 𝐸𝑤′
2   ,                                                         (6) 
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 205 

(a) Velocity error fields in parameter space        (b) Basis error fields in parameter space 

Figure 6: Velocity error (𝐄𝐯𝐞𝐥) and basis error (𝐄𝐛𝐚𝐬𝐢𝐬) using 100 modes across the parameter space for basis including 

1, 4, and 9 datasets. 

 

The velocity error (Evel) corresponds to the total error with respect to LES, but this has two components: a truncation error 210 

due to the number of modes included, and a basis error Ebasis due to the use of a global basis, which is non-optimal basis 

locally. The basis error arises because a better basis is capable of reconstructing a larger portion of the flow with the same 

number of modes. Therefore, in order to isolate and quantify the basis error, the velocity error from the local POD bases 

(Evel−local POD) is subtracted from Evel, as shown in equation 7. 

𝐸basis = 𝐸vel − 𝐸vel−local POD ,                                                         (7) 215 

The basis error is shown in Fig. 6b. Contrarily to the velocity error Evel, the largest basis errors correspond to the low CT. 

Hence, the dataset for U = 20 m/s and TN = 2 with the largest basis error is added to improve the global basis. The same error 

estimates are computed with the updated global basis, and the procedure is iterated to reduce the overall error of the global 

basis. 
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Figure 6 shows the evolution of errors using four and nine datasets. The white numbers indicate the order of adding the different 220 

datasets to the global basis. The average errors are clearly reduced when more datasets are included. Additionally, the largest 

basis errors remain at low CT, and the difference of including one or four datasets is significantly larger than using four or nine 

datasets, which suggests convergence of the global basis. 

Figure 6 uses U=8 m/s and TN=14 as initial dataset for the iterative procedure. Table 1 shows five different starting points. 

The first four initial datasets correspond to the four corners of parameter space, and the fifth is a point in the middle of the 225 

domain. 

Coordinates 
Name 

A B C D E 

U [m/s] 8 20 8 20 15 

TN 2 2 14 14 5 

Table 1: Initial datasets from parameter space. 

 

Figure 7 shows the evolution of the average velocity error (Evel) across parameter space as a function of the number of datasets 

in the global basis for the five different initial conditions. As seen, all five initial conditions (A-E) yield the same trend of 230 

decreasing the mean velocity error as more datasets are included. On average the mean velocity error decreases 6% from one 

to nine datasets. It is noted how the influence of the starting point decreases as more datasets are included. For instance, with 

one dataset, the relative difference between the best and worst performing global basis is 3.9%, but with nine datasets it is 

reduced to 0.4%. Furthermore, after including three datasets, the iterations starting at points B and D (those which started at 

U= 20 m/s) contain the same datasets, which means that from that point they yield the same results. 235 

The examined bases A-E include 512 snapshots per dataset and the flow reconstruction was truncated at 100 modes. The 

horizontal lines in Fig. 7 indicate the average error when each flow in the parameter space is reconstructed with 100 modes of 

the corresponding local basis, computed using 512, 1024, and 2048 snapshots respectively. The performance of these bases 

depends on the number of snapshots before achieving convergence, and the number of independent snapshots is limited, at 

around 2048, by the span of a single dataset. On the other hand, a global basis can include more data because it is extracted 240 

from different datasets, i.e. different flows, which makes the snapshots independent. 
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Figure 7: Mean error 𝐄𝐯𝐞𝐥 across the parameter space using 100 modes vs the number of datasets included in the 

global basis. 

 245 

Consequently, global bases can be directly compared to local bases when computed with the same amount of data. Table 2 

compares the values of the horizontal lines in Fig. 7 (local bases error) with the average result from the curves A-E at the 

corresponding number of snapshots. As more datasets are included, the performance of the global bases gets closer to the 

theoretical minimum error of the local bases, where four datasets correspond to a relative difference in the error of 2.8% 

truncated at 100 modes. 250 

 

Total number of 

snapshots 
Local bases error 

Global bases Relative error 

difference Number of datasets Average error 

512 0.494 1 0.527 6.7% 

1024 0.477 2 0.499 4.6% 

2048 0.467 4 0.480 2.8% 

Table 2: Mean velocity error comparison between local bases and global bases (average of curves A-E) with the same 

total number of snapshots using 100 modes. 

 

For the dependence of the number of truncation modes, Fig. 8 shows the velocity error for two local and three global bases 255 

truncating at different numbers of modes. Overall, the error decreases as more modes are included. Here, it is also possible to 

compare the truncation error to the basis error. The basis error is approximately one order of magnitude smaller than the 

truncation error. For instance, using 100 modes, the error of the global basis using 1 dataset is 0.523, and the error of the best 

bases, i.e. local bases 2048, is 0.469, which is a relative difference of approximately 10%. 
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 260 

Figure 8: Mean error 𝐄𝐯𝐞𝐥  across the parameter space vs number of truncation modes. The global bases shown 

correspond to the starting point C from table 1. 

 

It is noteworthy, especially for a global basis with a low number of datasets, that the basis error increases as more modes are 

included for the number of modes plotted. This is attributed to the fact that each additional mode from the optimal basis adds 265 

more information to the flow than a mode from the sub-optimal base. However, any of these bases are capable of completely 

reconstructing the flow if all modes are included. Therefore, it is expected that as more modes are included, the optimal bases 

start to saturate, while the sub-optimal bases eventually will catch up and the basis error gap will reduce. 

3.4 Case study with stochasticity 

The physical and statistical implications of employing a global basis are investigated by applying it to the LES case of U = 270 

12m/s, where the turbines have an average CT= 0.71. The chosen global basis is generated based on four datasets shown in 

Fig. 6, which yield a basis error of 2.8%, see Table 2. Furthermore, the employed global basis does not contain information 

from this flow scenario. 

The analysis focuses on spectral statistics by utilizing the stochastic engine of PS-ROM Andersen and Murcia Leon (2022), 

but does not include the predictive part, i.e. the actual projected spectrums are used, similar to Andersen and Murcia Leon 275 

(2023). In all cases, the spectrum analyzed is of the streamwise velocity at the rotor's center. Two different spectra will be 

compared using the spectral error metric shown in equation 8: 

𝐸𝑆−𝑖,𝑗 ≡
∫(�̂�𝑖−�̂�𝑗)𝑑𝑓

∫ �̂�𝑗 𝑑𝑓
 ,                                                                      (8) 

where 𝐸𝑆 stands for error in the spectra, 𝑆𝑖 and 𝑆𝑗 are the two spectra to compare. �̂�𝑖 is 𝑆𝑖 filtered with a rolling mean using an 

averaging window varying logarithmically in size to smooth out higher frequencies. 280 
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The inherent stochastic variability is assessed by generating N=30 stochastic realizations and cross-comparing all realizations 

against themselves for a single flow case. This yields a total of (
𝑁
2

) = 435 spectral error samples. The distributions of 

stochastic errors are shown in Fig. 9. The red distributions are all centered around zero as the spectral error here measures the 

stochastic variability of the 30 realizations relative to themselves, i.e. how much can a single realization of a constructed flow 

scenario vary relative to numerous realizations of the same flow. The distributions tend to narrow further into the wind farm, 285 

which indicates how the deep farm flows become increasingly self-organized and governed by the wakes Andersen et al. 

(2017). 

This development can also be examined by comparing the spectral error between different flows, i.e. comparing 30 stochastic 

flow realizations at each turbine against the inflow to a specific turbine. Here, the last turbine (TN=14) is chosen to represent 

the fully-developed wind farm. The spectral error given by equation 8 is also used for this comparison, which yields 𝑁2 =290 

900  error samples if both flow cases have N=30 stochastic realizations. The corresponding errors are shown as green 

distributions in Fig. 9. The distributions for the first turbines are significantly offset with a negative error, but initially narrower 

than the stochastic distributions. Eventually, the green distributions gradually become centered around zero. Hence, the 

distributions of the stochastic spectral error and the spectral error relative to the 14th turbine can be compared directly to 

determine if there is a statistical difference between inflow to a given turbine relative to the last turbine. If the error distributions 295 

are reflections of each other, it implies that there is no statistical difference between the velocity spectra at the center of the 

domain between the turbine number in question and turbine number 14. This is particularly useful when trying to determine if 

the flow dynamics have reached the fully-developed wind farm conditions, where the statistical distributions no longer change 

as the turbine number increases Andersen et al. (2015). This is the case from approximately TN=9 forwards. 

 300 

Figure 9: Distributions of spectral errors for the streamwise velocity at the rotor's center related to the stochasticity 

and relative to turbine number 14 through the wind farm using 30 stochastic realizations and 100 global POD modes 

for the simulation case U=12 m/s. 
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The results from Fig. 9 are based on the comparison of streamwise velocity spectra at the rotor's center, but the contribution 305 

of individual modes to the different flow cases can also be compared. Figure 10 shows similar spectral error distributions for 

global modes 2, 5, 12, and 20. Modes 2 and 5 show a gradual evolution reminiscing of Fig. 9, where the distributions gradually 

become increasingly similar. Contrarily, higher modes, such as 12 and 20, present a more scattered behavior with lower errors 

and mean values varying between positive and negative for TN > 2. This suggests that the transition to a deep wind farm state 

is primarily dictated by changes in the first global modes, which are associated with the largest turbulent scales. This trend 310 

corroborates the findings of Andersen and Murcia Leon (2023), where it was clearly shown how different global modes are 

actuated for different locations in the wind farm. 

 

Figure 10: Distributions of spectral errors for four modes related to the stochasticity and relative to turbine number 

14 through the wind farm using 30 stochastic realizations for the simulation case U= 12m/s. 315 

 

4 Discussion 

Employing a global POD basis allows the use of the same modes for an entire parameter space but introduces the basis error 

in the flow reconstructions (equation 7). The basis error emerges because the global basis is not as efficient at reconstructing 

a particular flow as the local POD basis. However, it was shown that this error is reduced as more datasets are included on the 320 

global basis, and it is approximately one order of magnitude smaller than the truncation error for 100 modes. 

The convergence of the global POD basis as a function of the number of datasets has a parallel with the convergence of the 

local POD basis. A local POD basis converges when enough snapshots of the flow are included, so it contains information 

about all the dynamics that occur in the flow [Hekmati et al. (2011)]. Consequently, it is an optimal basis in terms of variance, 

and including more snapshots would not improve its performance. Similarly, for the global POD basis, as more datasets are 325 

added, more information on the dynamics of the flows across parameter space is included. On the limit, when sufficient 

information covering the parameter space has been supplied, including additional datasets with flow dynamics that have 

already been covered will not improve the performance of the basis. 
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The inclusion of more datasets in the global modes implied adding more data in total, as the number of snapshots per dataset 

was kept constant. A different approach is to keep the amount of snapshots constant, and hence include fewer snapshots per 330 

dataset; which would reduce the time to compute the modes that scales quadratically with the number of snapshots. This is an 

unexplored scenario, but it is speculated that it would only be useful as long as there are enough snapshots per dataset to 

generate an acceptable local POD basis with them, which would imply that there is enough information per dataset to capture 

its dynamics. 

The systematic process of including addition datasets is focussed on minimizing the basis error (equation 7) with respect to 335 

the local bases' performance. The iterative procedure particularly identifies adding more datasets with lowCT . However, 

additional datasets could be identified using alternative metric, e.g. the velocity error, which would prioritize adding datasets 

of low turbine numbers and high CT. Applying such alternative metrics, or even including arbitrary datasets scattered in the 

parameter space, also results in a reduction of the error as the number of datasets increases. 

Furthermore, it might be impractical to perform a detailed and systematic convergence study of the global basis for all 340 

applications. However, the present analysis also shows how the global basis is relatively insensitive to which datasets are used. 

It is therefore generally recommended to use datasets, which represent various key flow phenomena. Nevertheless, selecting 

key datasets apriori would typically require domain knowledge to identify key scenarios to model. 

Here, the global bases are used to model and analyze highly turbulent wind turbine wakes, but the use of global bases is 

expected to be generally applicable. The present work expands the parameter space to cover two dimensions compared to the 345 

single parameter in Andersen and Murcia Leon (2022), and there are no principal limits to the number of dimensions. However, 

it is speculated that if the same set of modes is used in an extremely large parameter space, their efficiency becomes 

considerably lower than the local POD modes at a given point in parameter space, and more modes would be required for the 

flow generation. 

Finally, the case study highlights a number of benefits of employing a global basis. The global basis enables detailed and 350 

quantifiable physical interpretation of how the flow changes within the parameter space, as also seen in Andersen and Murcia 

Leon (2023), where the modal statistics of a global POD basis applied on a full wind farm clearly reveal three main flow 

regimes of atmospheric inflow, single wake and multiple wakes. The expansion of the parameter space reveals new insights 

compared to Andersen and Murcia Leon (2022). For instance, it is clearly seen how the spectral error distributions converge 

further into the wind farm indicating when fully-developed wind farm flow conditions are achieved dynamically and how this 355 

is linked to the first few modes. The method also enables modelers to estimate both the impact and uncertainty of different 

realizations as well as different modes when generating synthetic turbulent flows. Additionally, the analysis also reveals how 

wind turbine wakes are relatively coherent flows, which can be covered by approximately 100 modes. Although, the 

consistently larger basis error for U= 20m/s also highlights how more modes are required to reduce the errors for more 

atmospheric flows, where the influence of the turbines is negligible. 360 
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5. Conclusions 

Global POD bases are shown to provide an efficient basis to represent an entire parameter space. This allows direct 

comparisons of the role of each mode in different flows, which facilitates dynamic analysis of the different flow cases 

throughout the parameter space. 365 

The performance of the global basis has an error with respect to the local POD basis. But it is one order of magnitude lower 

than the truncation error. And most importantly, it is significantly reduced and exhibits convergence towards the local POD 

basis as more datasets are included in the global basis. 

The selection of datasets to include is not necessarily crucial for producing an efficient global basis, especially when the basis 

error is compared to the truncation error of the flow reconstruction or the stochastic variability of flow realizations. However, 370 

including key features from the different flows across the parameter space is recommended. 
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