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Abstract.

Wind energy has witnessed a staggering development race, resulting in higher torque density demands for the drivetrain in

general and the gearbox in particular. Accurate knowledge of the input torque and suitable models are essential to ensure

reliability, but neither of them is currently available in commercial wind turbines. The present study explores how a subspace

identification algorithm can be applied to fiber-optic strain sensors on a four-stage gearbox to obtain operational deflection5

shapes. An innovative measurement setup with 129 fiber-optic strain sensors has been installed on the outer surface of the ring

gears to research the deformations caused by the planet gear passage events. Operational deflection shapes have been identified

by applying the Multivariable Output-Error State-sPace (MOESP) subspace identification method to strain signals measured

on a serial production end-of-line test bench. These operational deflection shapes, driven by periodic excitations, account for

almost all the energy in the measured strain signals. Their contribution is controlled by the torque applied to the gearbox. From10

this contribution, a torque estimate for dynamic operating conditions has been derived. Accurate knowledge of the input torque

throughout the entire service life allows future improvements in assessing the remaining useful life of wind turbine gearboxes.

1 Introduction

The growth of wind energy in the last decades has been remarkable. The Global Wind Energy Council (GWEC) reported

93.6 GW of new wind energy capacity installed in 2021, 72.5 GW onshore and 21.1 GW offshore, bringing the worldwide15

cumulative wind power capacity to 837 GW (GWEC, 2023). That is a 3.5 times increase in the last 10 years from a global

capacity of 237.7 GW in 2011 and a staggering 35 times increase in 20 years from a total capacity of 23.9 GW in 2001

(IRENA, 2013). The projected market growth for the coming years and decades is even larger. In 2022, the International

Renewable Energy Agency (IRENA) and International Energy Agency (IEA) published a road map for the energy sector to

become net-zero by 2050, with the aim of limiting the rise in global temperatures to 1.5°C (IEA, 2023). According to this20

proposal, the annual capacity additions of wind energy should reach 390 GW by 2030, 310 GW onshore and 80 GW offshore.
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That means increasing the yearly installations more than four times compared to the ones recorded in 2021 and more than five

times compared to the average over the last three years (IEA, 2023).

To facilitate such rapid growth, the main focus of industry and academia has been lowering the levelized cost of energy from

wind (LCoE) (van Kuik et al., 2016). This push to lower the LCoE has resulted in a race from wind turbine manufacturers25

to increase the rotor diameter, power rating, and hub height of wind turbines. The evolution of size in offshore turbines has

been even more dramatic because they have less stringent logistic constraints (Musial et al., 2023). To illustrate the pace of

growth, the average values of wind turbines installed during the years 2011, 2016, and 2021 have been summarized in Table

1. Power rating, rotor diameter and hub heights were provided in the yearly cost of energy reviews (Tegen et al., 2012; Stehly

et al., 2012; Stehly and Duffy, 2022). The trend to increase power ratings, rotor diameter, and hub heights can be understood30

from a wind turbine’s fundamental power generation equation (Veers et al., 2019). The power produced by a wind turbine is

proportional to the air density, the power coefficient, the cubic exponent of the wind speed and the area swept by the rotor.

Increasing the hub height reduces the influence of surface friction on the wind conditions witnessed by the rotor, allowing

wind turbines to operate in higher-quality resource regimes where wind velocities are higher. There are several reasons for the

increase in the rotor diameter of wind turbines. Larger rotors capture more energy. The increase in energy captured by the rotor35

is bigger than the increase in overall turbine costs because blade lengths can be increased while many other costs remain fixed,

generally leading to lower LCoE in larger turbines. More powerful turbines allow fewer turbine installations for a given power

plant capacity, lower balance-of-system costs, and fewer moving parts, therefore enhancing the reliability of the wind plant. In

addition, increasing the size of the rotor relative to the generator rating allows for lowering the rated wind speed and operating

more frequently at full power, resulting in a higher capacity factor.40

If we assume a constant blade tip speed, torque will increase with the cube of the rotor diameter. From the yearly average

power rating and rotor diameter values provided by Tegen et al. (2012), Stehly et al. (2012) and Stehly and Duffy (2022) we

have estimated the associated rotor torque using the maximum tip speed figures provided in the yearly reviews, which are

80 m/s for onshore turbines and 90 m/s for offshore. These torque values have been added to Table 1, and show that the rotor

torque of the installed turbines has increased more than 3 times onshore and more than 3.3 times offshore in a time period of45

just 10 years. This rate of development is unprecedented in any other industry or engineering application and ensuring turbine

reliability remains a top priority (Veers et al., 2023).

Torque is the main sizing factor for the drivetrain and the gearbox. The drivetrain makes a large contribution to the capital

expenditure of the turbine and also affects other turbine costs because increasing the tower-top mass has an impact on the

main frame, tower, and foundation. The pressure to lower costs and the size constraints due to handling and logistic limitations50

have translated into higher torque density demands for wind turbine gearboxes. The torque density values in Table 1 have

been estimated using equivalent gearbox models for such power ratings and hub diameters (Gamesa Gearbox, 2023). The

increase in torque density witnessed in just a decade is enormous. Thanks to multiple technological innovations, torque densities

of 200 Nm/kg are now considered state-of-the-art from different gearbox manufacturers (ZF-Wind-Power, 2020; Winergy,

2020; Gamesa Gearbox, 2023). For such high torque ratings and torque density values, a trend has emerged in new gearbox55

architectures towards more planetary stages and more planets per stage. In wind turbines with a power rating of up to 2 MW, the
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Table 1. Average onshore wind turbine power rating, rotor diameter, and hub height.

Onshore Offshore

Year 2011 2016 2021 2011 2016 2021

Power rating (MW) 1.5 2.2 3.0 3.6 4.71 8.0

Rotor diameter (m) 82.5 108 127 107 128 159

Hub height (m) 80 84 95 90 93.7 102

Rotor torque (MNm) 0.77 1.46 2.38 2.14 3.35 7.07

Torque density (kg/Nm) 70 100 130 140 150 200

Power rating, rotor diameter and hub height data from (Tegen et al., 2012), (Stehly et al., 2012),

(Stehly and Duffy, 2022), input torque and torque density estimated by the authors.

most widely used gearbox architecture comprises a single planetary stage and two parallel gear stages (Oyague, 2011). In the

range from around 2 MW to 6 MW, gearboxes with two planetary stages and a single parallel stage have become mainstream.

For higher power ratings, gearboxes with three planetary stages are expected to become dominant. Due to the large number of

planets in the input stages and the limitations in outer diameter, the space available for planet bearings has decreased to a point60

where journal bearings have to be adopted because there is not enough space for roller element bearings (Nejad et al., 2022).

Overall, gearbox complexity is increasing in the pursuit of lighter designs, while maintaining gearbox reliability is manda-

tory to ensure low operational expenses. Two key factors are essential to achieve successful designs. On one hand, accurate

knowledge of the loading conditions throughout the complete service life of the gearbox is crucial. On the other, accurate

models are required to predict its performance and maintenance requirements. Unfortunately, sensors that provide detailed65

load measurements of the turbine during commercial operation are not generally available (Dykes et al., 2019). It is possible

to estimate the input gearbox torque from the electric currents in the generator, but normally, this information is only available

through the SCADA, and it cannot capture the torque fluctuations caused by the dynamic wind turbine operation, especially

in damaging events like emergency brake events (Egeling et al., 2018). Even in normal operation, relatively large errors are

expected when using generator currents because the power losses in the generator and the gearbox vary with torque and other70

operating conditions and are generally unknown.

As a consequence, a direct measurement of the actual torque is needed. The traditional method to measure torque, based

on strain gauges on the rotating shaft, is considered impractical for commercial wind turbines due to the expensive nature

of the equipment required and not suitable for long-term applications (Perišić et al., 2015). The need for novel sensing tech-

nologies and measurement techniques that facilitate a fleet-wide implementation of torque measurements has resulted in great75

research interest. Zhang et al. (2018) explored alternative direct measuring techniques and discussed the associated technical

and economic difficulties. An alternative direct measurement method, based on deformation measurements on the outer surface

of the first stage ring gear of the gearbox, was proposed by the authors of this work (Gutierrez Santiago et al., 2022). Other

researchers have focused on indirect techniques or the so-called virtual sensors where a model of the system is combined with

data from sensors in other locations of the turbine to obtain estimated data of the input torque (Perišić et al., 2015; Azzam et al.,80
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2021; Cappelle et al., 2021; Mehlan et al., 2023; Mora et al., 2023). These virtual sensing approaches require accurate wind

turbine and drivetrain models but the complexity of current designs exceeds modeling capabilities (Veers et al., 2023). Costly

experimental evaluation is needed to achieve the desired degree of confidence (Bucher and Ewins, 2001). Data-driven modeling

techniques, also referred to as system identification in the systems and controls community, provide a framework to estimate

models of dynamical systems when the accuracy of physical models derived from first principles is unsatisfactory. System85

identification is well-established in mechanical structures (Al-Khazali and Askari, 2012), where it is more widely referred to as

experimental modal analysis (EMA). EMA relies on measuring a controlled applied force, either with an instrumented impact

tool or a shaker, to identify frequency response functions and modal parameters from the system response. However, in the case

of large structures, it is difficult to excite the system with enough energy to produce measurable outputs. Operational modal

analysis (OMA) is an alternative output-only approach that overcomes the difficulty of exciting the system by relying on ambi-90

ent broadband excitation. There is a trend to replace EMA with OMA because in OMA the excitation and boundary conditions

of the system are those seen in operation and are deemed more representative of the structure’s real use in service (Hermans

and van der Auweraer, 1999). In the specific case of rotating machinery like wind turbine gearboxes, several factors impede

using OMA (Ozbek et al., 2013). Most notably, the input excitation is unknown and may not adequately excite all modes of

interest (Thibault et al., 2012), and the premise of having a white noise excitation in the frequency range of interest is violated95

because periodical loads due to rotating elements act on the system and typically dominate the system response (Di Lorenzo

et al., 2017-01-01). Research interest in overcoming these difficulties has increased recently, and many different algorithms

have been proposed. Van Vondelen et al. reviewed the main algorithms used for wind turbines and classified them using nine

suitability criteria (van Vondelen et al., 2022). These criteria included the accuracy of the algorithms, the ability to distinguish

closely spaced modes, computational complexity, and the ability to handle periodic stationary and non-stationary excitation100

or harmonics. When structural modes and harmonics are widely separated and when the rotor speed is constant over time,

harmonics are identified by the OMA algorithms as artificial modes with zero damping.

The main contributions of this paper are:

– We develop and describe a novel measurement setup for a wind turbine gearbox comprising 129 fiber-optic strain sensors

installed and distributed around the ring gears of the three planetary stages, and we present the results of measurements105

performed in a serial end-of-line test bench.

– We apply the multivariable output-error state space method (MOESP) to identify the periodic modes, referred to as

operational deflection shapes, which has enabled quantifying the unknown periodic excitations and has been found to

provide an estimation of the input torque of the gearbox.

Accurate knowledge of the input torque throughout the entire service life is paramount to assessing the consumed fatigue110

life of the gearbox, and tracking operational deflection shapes recursively over time can potentially be used as an indicator

for fault detection. The remainder of the paper is structured as follows. In Section 2, the chosen identification framework is

motivated, and the key definitions and formulation are provided. In Section 3, we describe the measurement setup and the test

wind turbine gearbox together with the experimental conditions. In Section 4, the key findings of using subspace identification
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on strain signals are described, and finally, Section 5 draws the main conclusions of this work, and recommendations are given115

for future work.

2 Formulation of subspace system identification method

This section describes the theoretical formulation used to identify operational deflection shapes from strain data collected by

fiber-optic sensors. Starting from the state-space representation used, we justify how the periodic inputs can be modeled within

the system matrix, leading to a stochastic identification problem. Once the system matrices describing the dynamic behavior120

have been estimated, up to a similarity transformation, we show how the state and output measurements can be reconstructed

using a Kalman filter.

We assume that the system to be identified is a finite-dimensional, linear, time-invariant system, subject to measurement

and process noise, that has been sampled at t= τk, where τ is the time step and k is an integer, with a general discrete-time

state-space representation given by:125

xk+1 = Axk +Buk +wk, (1)

yk = Cxk +Duk + vk, (2)

where xk ∈ Rn, uk ∈ Rnu ,wk ∈ Rn, yk ∈ Rny , vk ∈ Rny , are the state, input signal, process noise, the output signal, and the

measurement noise, respectively (Verhaegen and Verdult, 2007). The assumption of a linear time-invariant system is considered

valid when the gearbox operates close to rated torque conditions. Under these operating conditions, contact patterns in the130

gear flanks are fully developed, and non-linear effects like backlash or material properties related to the torque reaction arm

elastomers are not expected to play a role. The matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu are the system,

control, sensor, and output matrices, respectively. The system dimension or order of the system is n, and the dimension of the

output vector yk is the number of measured response signals ny .

Operational modal analysis relies on ambient broadband excitation and assumes this excitation is random white noise in135

the frequency range of interest. In this case no deterministic input is considered (i.e., uk = 0), which leads to the so-called

stochastic realization problem. In wind turbine gearboxes, and rotating machinery in general, this premise is severely violated

because the periodic action of shafts and gears dominates the system response. Gres et al. showed that it is possible to extend the

stochastic realization to OMA under (unknown) periodic excitations (Greś et al., 2021) by modeling the effect of a deterministic

periodic force as a sum of a finite number of h sinusoidal frequency components such that u(t) has the shape:140

u(t) =

h∑
i=1

ai sin(ωit+ϕi), (3)

where ai,ωi,ϕi ∈ R are the unknown amplitude, frequency, and phase of the ith periodic input component. These components

can become part of a combined state vector to eliminate the periodic input component from Eqs. (1)-(2). The following periodic
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state vector can be defined:

xper(t) =



a1 sin(ω1t+ϕ1)

a1 cos(ω1t+ϕ1)

a2 sin(ω21t+ϕ2)

a2 cos(ω2t+ϕ2)
...

ah sin(ωht+ϕh)

ah cos(ωht+ϕh)



∈ R2h, (4)145

which enables the state-space model in Eqs. (1)-(2) to be rewritten as a combined state space model without the periodic input

u(t) as:

 xk+1

xper
k+1

 =

 A AB

0 Aper

 xk

xper
k

+

 wk

0

 , (5)

yk =
[
C Cper

] xk

xper
k

+ vk. (6)

The matrices A and C are the original system or structural matrices, and the matrices Aper and Cper correspond to the periodic150

unknown inputs. The matrix AB is a mapping from the periodic states at time index k into the system or structural states at

time index k+1. Due to the upper right block structure of the state matrix, the eigenvalues of the combined system are the

combined set of eigenvalues of Asys and of Aper. While the eigenvectors of the combined state matrix regarding the structural

part become
[
ΦT

i 0
]T

, the resulting mode shapes are Ψi. For a full derivation, the interested readers are referred to Greś

et al. (2021). This approach has been successfully applied to an operational offshore wind turbine and shown to provide accurate155

estimates of the first three tower bending modes (van Vondelen et al., 2023). The unknown periodic excitations in Eqs. (1)-(2)

can become part of a combined state vector yielding an equivalent state space realization shown in Eqs. (5)-(6) without the

periodic input u(t). Defining the extended system matrix Ā as:

Ā=

 A AB

0 Aper

 . (7)

Assuming the system admits an innovation state space representation (Verhaegen and Verdult, 2007), we can rewrite Eqs. (5)-160

(6) as:

x̄k+1 = Āx̄k + K̄ek, (8)

yk = C̄x̄k + ek, (9)

where the innovation signal ek is assumed to be an ergodic white-noise sequence and the matrix K̄ is the Kalman gain.
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This extended system matrix Ā is composed of A the original or structural system matrix. combines the periodic and165

structural modes which, due to the upper right block structure, can be distinguished because the eigenvalues of the periodic part

correspond to undamped modes on the unit circle. The objective of system identification is to estimate the matrices Ā and C̄, up

to a similarity transformation, using only the output measurement yk. For the present study, the subspace method Multivariable

Output-Error State-sPace (MOESP) was chosen because it has been shown to provide asymptotically unbiased estimates of

model parameters as long as the system input has adequate persistency of excitation (Verhaegen and Dewilde, 1992) and the170

RQ factorization enables a computationally efficient implementation. Furthermore, using instrumental variables it is possible

to deal with process and measurement noise. The full description and proofs of the algorithm are given in Verhaegen and

Verdult (2007) and the implementation shown in this paper was accomplished using the LTI System Identification toolbox for

Matlab® (Houtzager, 2012). The user must define three key parameters when realizing the MOESP algorithm:

1. N : the number of samples for each of the signals.175

2. s: the number of block rows, used to construct the Hankel matrices.

3. n: the model order.

The matrices ĀT and C̄T are the estimates, up to a similarity transformation of Ā and C̄. That is, ĀT has the same eigenvalues

as the matrix Ā and the system (ĀT , C̄T ) has the same input-output behavior as the original system (Ā, C̄). These linear

transformations are given by: T−1ĀT , C̄T and T−1K̄ with T ∈ Rn×n. The transformed state is such that x̄= Tx. With a180

suitable transformation matrix, it is possible to transform the system (AT ,CT ) into the so-called modal form with a diagonal

state-transition form or combine complex-conjugate pole pairs to form a real, “block-diagonal” system in which ĀM has two-

by-two real matrices along its diagonal. The dynamics of the system are completely characterized by the eigenvalues (poles)

and the observed parts of the eigenvectors (mode shapes) of the ĀM matrix. The eigenvalue decomposition of ĀM is given by:

ĀM = [Φ] [Λ] [Φ]
−1

. (10)185

For oscillatory systems, the λi are complex. The pole locations govern the system response. Poles inside the unit circle,

|λi|< 1, give stable and convergent responses and are also called damped modes. Poles outside the unit circle, |λi|> 1 have

unstable responses. When a pole is on the unit circle, |λi|= 1, the system exhibits a sustained oscillation (lossless), referred to

as undamped. In this case, the state variable xi oscillates sinusoidally at some frequency ωi, whereλi = ejωiT .

The observed parts of the ith system eigenvector {ϕi} is the mode shape {Ψi} at the sensor locations given by:190

{Ψi}=
[
C̄M

]
{Φi}. (11)

Both the state and the output measurements can be reconstructed using the so-called one-step-ahead predictor using the

identified system and output matrices in modal form (ĀM , C̄M ) and the transformed Kalman filter (K̄M ):

x̂k+1 = (ĀM − K̄M C̄M )x̂k + K̄Myk, (12)
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195

ŷk = C̄M x̂k, (13)

where x̂k+1 is the predicted state at time index k+1 and ŷk denotes the predicted measurement vector for time index k.

As a means of cross-validation, different datasets were used for identification and for validation. As a quality measure, we

have used the variance-accounted-for (VAF), which gives a measure of how well the linear model predicts the variability of the

output signal. The VAF is defined for each individual sensor signal and is expressed as:200

V AFs =

(
1− Var(ys − ŷs)

Var(ys)

)
× 100%, (14)

where ŷs is the output predicted by the identified model for the sth sensor, ys is the actual measurement for the sth sensor,

and Var denotes the variance.

3 EXPERIMENTAL SETUP

This section describes the experimental setup used for the present study. First, the main characteristics of the gearbox used for205

identification are described. Then, details of the fiber-optic strain sensors used and their location on the outer surface of the

ring gears are shown. Lastly, the test bench used and the specifications of the tests performed for identification and validation

are presented.

3.1 Gearbox description

The wind turbine gearbox used for the present study is a four-stage gearbox manufactured by Gamesa Gearbox with a reference210

torque of 8 MNm. It is considered a suitable example of the gearbox architecture expected to dominate the high-end power

ratings, see Sec. 1. The gearbox has a configuration comprised of three planetary stages followed by a parallel helical gear

stage, which provides a total gear ratio of 179.576. Figure 1 shows the arrangement of all the stages in the gearbox with the

rotor on the left side of the picture. For clarity, only the first stage ring gear has been fully drawn. The first input stage is a

planetary stage with seven planets and has a ring gear with an outer diameter of 2107 mm. The first stage sun is connected215

with a spline to the second stage planet carrier that contains six planets. The outer diameter of the second stage ring gear is

1790 mm. The third stage has five planets and a ring gear with an outer diameter of 1428 mm. The total weight of the gearbox

is approximately 38950 kg, which yields a torque density of 205 Nm/kg. The first and second-stage planets are supported by

journal bearings instead of roller element bearings due to the space constraints created by the very large number of planets. The

known excitation frequencies can be computed using the rotational speed and the number of teeth of the gears. The rotational220

frequencies of the planet carriers, the planet passing frequencies of each stage, and the gear mesh frequencies have been

summarized in Table 2. These frequencies correspond to the nominal speed of 8.35 rpm in the first stage planet carrier, which

is the low-speed or input shaft.
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Figure 1. 3D Representation of the tested gearbox with fiber-optic strain sensors on the outer surface of the first stage ring gear. Adaptation

of figure from Gamesa Gearbox (https://www.gamesagearbox.com/wind-technology/).

3.2 Fiber-optic strain sensors

Three arrays of fiber-optic strain sensors based on fiber Bragg gratings (FBGs) were wrapped around the planetary stage ring225

gears. The sensor placement was designed taking into account the insights gained in Gutierrez Santiago et al. (2022), which

demonstrated that because the rims are relatively thin significant strains can be measured on the outer surface of the ring gears.

In total, 12 optical fibers were installed on the test gearbox, four on each ring gear. A number of grooves were machined

on the external diameter of the ring gears, in the middle section relative width of the gear between the rotor and generator

side faces, to facilitate the installation process and protect the sensors during assembly and testing. Machining the grooves by230

turning provided a smooth finish that guaranteed an adequate bonding between the fiber and the ring gear. Figure 2 shows the

detailed location of the 42 strain sensors distributed on the outer perimeter of the first stage ring gear. The number of sensors

was defined as a multiple of the planets, equally spaced around the perimeter, to ensure that the mesh events caused by the

seven planets could be detected synchronously by the strain sensors. The labels of the strain sensors have been colour-coded

to represent in which fiber the FBG was accommodated. The spacing between FGBs within each fiber was designed so that all235
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Table 2. Rotational and gear mesh frequencies of the gearbox at nominal speed.

Acronym Description Frequency (Hz) Order of LSS

PC1 Rotational frequency of first planet carrier 0.1392 1

7xPC1 Planet passing frequency of first stage 0.9748 7

PC2 Rotational frequency of second planet carrier 0.4603 3.3056

6xPC2 Planet passing frequency of second stage 2.7619 19.8334

PC3 Rotational frequency of third planet carrier 1.7169 12.3288

5xPC3 Planet passing frequency of third stage 8.5843 61.6441

HSIS Rotational frequency of high-speed gear wheel 7.5542 54.2468

HSS Rotational frequency of high-speed gear pinion 25.0070 179.5758

GMF1 First stage gear mesh frequency 11.5583 83

GMF2 Second stage gear mesh frequency 46.4922 333.8614

GMF3 Third stage gear mesh frequency 145.9335 1047.9504

GMF4 Fourth stage gear mesh frequency 725.2035 5207.6966

fibers cover the complete perimeter of the ring. This was done to prevent losing a portion of the ring gear in case of damage to a

fiber. However, all the fibers survived the complete measurement campaign satisfactorily, including assembly and disassembly

operations. Sensor placement on the second and third stage ring gears is shown in Figures 3 and 4, respectively. The fiber

optical sensors were supplied and installed by the company Sensing360 B.V. (sensing360.com). For a detailed description

of the measurement principle and properties of fiber-optic strain sensors based on FBGs, the interested reader is referred to240

previous work by Gutierrez Santiago et al. (2022).

In each of the planetary stages, in addition to the fiber-optic strain sensors, inductive displacement sensors were installed to

provide a pulse once-per-revolution of the planet carrier. The purpose of these sensors was to know the planet carrier’s relative

position to the strain sensors to identify which planet is responsible for the strain peaks observed in the strain signals. The

relative position of the target and the inductive sensor or pick-up are shown in Figures 2 to 4. During the experiments, torque245

measurements from torque transducers installed in the high-speed shaft coupling of the test bench were logged synchronously

with the fiber-optic strain data and the tachometer signals of all 3 stages.

3.3 Test specification

The tests presented in this study were performed on an end-of-line test bench at the assembly factory of Gamesa Gearbox

(Siemens Gamesa Renewable Energy) in Lerma, Spain. The standard IEC 61400-4 (2012) sets the design requirements for250

wind turbine gearboxes and establishes a mandatory requirement to perform a loaded end-of-line test for all gearbox units

before their installation in a wind turbine. This test is also referred to as the run-in or gearbox conditioning test. The purpose

is twofold: on the one hand, it serves as a conditioning test for bearings and gears because the gearbox is loaded progressively

10



Figure 2. Sensor placement on the first stage ring gear.

Figure 3. Sensor placement on the second stage ring gear. Figure 4. Sensor placement on the third stage ring gear.

up to nominal torque; on the other, it provides a means for quality control. Typically, gearbox manufacturers employ a back-

to-back arrangement for end-of-line testing where two gearboxes are connected through the low-speed shaft (LSS). Figure 7255
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Figure 5. All three ring gears with machined grooves ready for

sensor installation.

Figure 6. Detail of fiber-optic sensors installed on the third stage

ring gear.

shows the layout of the back-to-back arrangement used for the experiments with the test gearbox, presented in Sec. 3.1, on

the left side. An electric motor provides the driving motion to the high-speed shaft (HSS) of one gearbox, and the other motor

acts as a generator, providing the braking torque at the HSS of the second gearbox. The rated power of the test bench electric

motors is 11.5 MW which enabled testing the gearbox above its nominal torque. Although the test bench is designed to recreate

the working conditions of the gearbox as close as possible to the wind turbine, in back-to-back test benches, torque is the only260

controlled input load excitation, and it is designed not to apply bending moments to the gearbox. The mechanical interfaces

at the LSS and HSS of the gearbox are different from the wind turbine, and it is not possible to reproduce the rotor inertia

in the test bench. Despite these differences, we consider the back-to-back test bench results representative of the behavior of

the gearbox in a wind turbine. Specially taking into account that these gearboxes are designed for operation in wind turbine

drivetrains with a four-point mount suspension.265

The instrumented gearbox completed a standard end-of-line test, composed of six stationary load stages under nominal

speed. Once stable thermal conditions had been reached, signals from the fiber-optic strain sensors were logged at each of the

run-in load stages to perform system identification. After the run-in, several design validation tests were performed, and these

tests were used to collect more strain data to evaluate the state and output estimation procedures. In particular, a test to validate

the structural models of the gearbox, comprised of 22 stationary torque conditions from 5% to 110% of its nominal value, was270

used to evaluate the effect of torque on the identified operational deflection shapes. Finally, different tests with dynamically

changing torque were performed to quantify the contribution of the identified deflection shapes in a dynamic manner.
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Figure 7. Test gearbox on the left side of the back-to-back test bench used for end-of-line testing of wind turbine gearboxes with a maximum

power capacity of 11.5 MW.

4 Identification of operational deflection shapes

This section describes the key findings obtained when performing system identification on the strain signals logged during

experiments performed on a serial production end-of-line test bench.275

4.1 Identification using signals from all stages

The system identification framework presented in Section 2 was initailly applied to all available signals from the three ring

gears together. Figure 8 shows a time trace of two strain sensors from each stage from a test performed with rated stationary

speed and torque conditions. As can be seen, each stage has a different rotational speed, and the time interval between strain

peaks corresponds to the planet passing frequencies defined in Table 2. Within each stage, the strain signals of two sensors are280

shown in Figure 8. The deformation peaks caused by the mesh forces as the planets pass close to the measurement points on

the ring gears occur at different times because the sensors are at different angular positions. For clarity, only two sensors from

each ring gear have been plotted in Fig. 8 but there are 42 strain signals available in the first stage, 42 in the second stage and

45 in the third stage. The location of all sensor are shown in Figures 2, 3 and 4.

Several data preprocessing steps were performed on the raw signals logged by the optical interrogators. First, the sampling285

frequency was down-sampled for a more efficient numerical implementation. Generally, the sample rate should be up to about

ten times the bandwidth of interest to avoid the effects of aliasing and, simultaneously, limit the amount of high-frequency noise
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Figure 8. Raw strain signals logged from the first and third sensors of each planetary stage. The angular location of the sensor R1S01, R1S03,

R2S01, R2S03, R3S01 and R3S03 is shown in Figures 2, 3 and 4.

that contaminates the measurements (Verhaegen and Verdult, 2007). The optical interrogators used to acquire the signals during

testing provided a sampling frequency of 2000 Hz in the first stage and 2500 Hz in the second and third stages. Considering the

known excitation frequencies present during gearbox operation, see Table 2, different downsampled frequencies from 45 Hz290

to 250 Hz were tested. The difference between resampling, interpolation, and decimation on the identified parameters was

found to be negligible. Therefore, resampling with an embedded antialiasing filter was chosen as the downsampling method.

Measurements used for identification were logged once the gearbox had reached thermal stability. Thus, the influence of

temperature variations on the FOS signals was minimized. Nevertheless, a detrending step was added to ensure that the signals

fed to the identification algorithm only resulted from the strain caused by the planet gear passage events. All signals were295
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normalized using their standard deviation to have unit variance. As a last preprocessing step, a hamming window was applied

to the training data sequences because it was found to reduce the variance of the identified models.

As described in Sec. 2, from sequences of discrete-time data samples of the measured signals, three parameters need to

be defined to execute the MOESP algorithm. These parameters are the number of samples N , the number of block rows s,

and the system order n. Using fiber-optic strain signals from the total of 129 sensors (42 from the first stage, 42 from the300

second and 45 from the third) different options for N , s, and n were explored. The integer s should be chosen to be about 2-3

times the maximum expected model order (Verhaegen and Verdult, 2007). The experiment duration, number of samples N ,

should usually be at least about ten times the length of the slowest time constant of the system to ensure that the low-frequency

behavior of the process is captured. Therefore, a trade-off between sample frequency and measurement duration must be made

that is dictated by storage and/or processing limitations regarding the number of data points. After exploring different down-305

sampled frequencies between 45 and 250 Hz, a frequency of 62.5Hz was selected. This selection was based on identified

frequencies and the signal reconstructions obtained using the one-step ahead predictor Eq. 13. Figure 9 shows the discrete-

time representation of the pole locations of the identified models using N = 17500 samples per signal, s= 64 block rows and

n= 20 a model order equivalent to 10 oscillatory modes. All identified poles are on the unit circle, which is expected from

the periodic behavior. The corresponding frequencies associated with the identified poles are shown in Table 3. All identified310

frequencies match with known excitation frequencies. A description of the acronyms used to name the frequencies can be found

in Table 2. The term operational deflection shapes (ODS) has been chosen for the observed part of the identified eigenvectors

because they are caused by periodic excitations and not a structural property of the gearbox. These deflection shapes identified

when using all strain signals together only influence one ring gear at a time. To illustrate this, the three mode shapes related

to the planet passing frequencies of each stage are shown in Figure 10. For example, in the case of the mode associated with315

the planet passing of the first stage, with an identified frequency of 0.9750 Hz, the deformations of this mode shape in the

second and third stages are negligible. This means there is very little cross-stage excitation, which is positive and one of the

design objectives. Considering these results, it was decided to apply the identification algorithm on strain data from each stage

individually.

4.2 Identification using signals from the first planetary stage320

Using data from the same test, with rated torque and speed conditions shown in Figure 8, the system identification procedure

was repeated with the strain signals from the first stage ring gear only. The same preprocessing steps detailed in Section 4.1

were applied. Ten different down-sampled frequencies (45.45, 50.00, 55.55, 62.50, 71.43, 83.33, 100.00, 125.00, 166.67, and

250.00 Hz) were tested to explore the effect of resampling on the identified models using a baseline setting of s= 32 block

rows and n= 20 model order. The number of samples was chosen to cover the same training time, defined as 256 s, in all325

sampling frequencies. The different identified models were evaluated based on their identified frequencies (eigenvalues) and

how well newly measured data from validation tests could be reconstructed using the identified operational deflection shapes.

As in the case of all stages, the difference between identified frequencies using different sampling frequencies was found

to be small. Again, all identified poles were on top of the unit circle, corresponding to undamped modes. To evaluate the
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Figure 9. Pole locations (eigenvalues) of the identified model

using measurement signals from all three stages, discrete-time

representation (N = 17500, s= 64, n= 20).

Table 3. Identified frequencies using signals from all three

stages, description of acronyms can be found in Table 2.

Mode Frequency (Hz) Order of LSS Acronym

1 0.9748 7.0000 7xPC1

2 1.9496 13.9999 2x7xPC1

3 2.7618 19.8327 6xPC2

4 2.9244 21.0000 3x7xPC1

5 5.5234 39.6634 2x6xPC2

6 8.2861 59.5023 3x6xPC2

7 8.5844 61.6445 5xPC3

8 11.0466 79.3258 4x6xPC2

9 17.1688 123.2890 2x5xPC3

10 25.7532 184.9335 3x5xPC3

accuracy of the reconstructed outputs, data for validation was acquired using the same experimental conditions as for training330

the models: applying stationary rated torque and speed and waiting for temperatures across the gearbox to stabilize. With

the identified systems matrices, the system’s state and output signals can be reconstructed using Eq. 12. The Kalman filter

was not considered for model validation because the intention is to evaluate how the identified system matrices represent the

measured signals. In this case, the system’s behavior is modeled as an autonomous system oscillating from a non-zero initial

condition which can derived from Eq. 13. As the identified damping coefficients are close to zero, the modules of the state335

show little variation throughout the duration of the validation datasets. Figure 12 shows a comparison of the measured signal

from sensor R1S01 (first sensor of first stage ring gear) against the reconstructed output using identified models with three

different sampling frequencies. Very high variance accounted for (VAF) values were obtained with the reconstructed outputs.

The highest average VAF was 99.68% obtained for a sampling frequency of 62.5 Hz and the lowest value was 98.40% for the

case of 250 Hz. For this reason, 62.5 Hz was used as a sampling frequency to search for suitable s and n parameters. Table 4340

shows the average VAFs obtained for different combinations of s block rows and n model orders. The VAF value presented

is the average of the 42 sensors. Increasing the model order and the number of block rows improved the fit between the

reconstructed and measured signals, an average VAF value of 99.00% was already achieved with s= 32 and n= 10. This VAF

could be increased up to 99.90% when further increasing s and n to s= 128 and n= 32. As with other practical applications

of system identification (Hermans and van der Auweraer, 1999), we did not observe a big gap in VAFs from one model order to345

the next. Table 5 shows the frequencies of the 10 deflection shapes identified using s= 128 and n= 20. Up to n= 18, all the
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Figure 10. Identified operation deflection shapes using measurement signals from all three stages. Each shape is defined by two conjugate

vectors with a size equal to the number of sensors; the real part is shown in green, and the imaginary part is shown in orange.

deflection shapes correspond to multiples of the planet passing frequency (seven times the carrier rotational frequency), and for

larger model orders, the planet carrier rotational frequency is also identified. Figure 11 shows the deflection shapes associated

with the planet passing frequency and the first two integer multiples or harmonics. Due to the given spatial resolution (42

sensors around the ring gear), it is not possible to represent higher frequency mode shapes accurately as they provoke a spatial350

aliasing effect. This, however, does not affect the output reconstruction of individual sensors as long as the sampling frequency

is high enough for the identified modes.

The reconstructed output signals shown in Figures 12 were computed using the system matrices only, finding the initial state

conditions and assuming the system behaves like an autonomous system. We can improve the state estimation using Eq.13

with the Kalman filter. This allows the analysis of strain measurements from tests with variable torque. The states associated355

with each mode shape convey the contribution of each mode to the measured strain signals. For the validation test performed

using stationary rated torque and speed, the average modulus values of the states associated with the operational deflection

shapes are shown in Table 5. The system matrix was transformed into diagonal form, with the eigenvalues in the diagonal. As
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Table 4. VAF of stage 1 strain measurements and reconstructions with a sampling frequency of 62.5 Hz and 16000 samples.

VAF (%) n= 2 n= 6 n= 10 n= 14 n= 18 n= 20 n= 24 n= 32

s= 8 3.04 26.67 - - - - - -

s= 16 60.02 69.66 98.83 98.99 - - - -

s= 32 72.42 97.49 99.00 99.39 99.34 99.69 99.71 -

s= 48 72.40 89.02 99.08 99.32 99.44 99.64 99.65 99.73

s= 64 72.55 97.50 99.33 99.44 99.62 99.69 99.73 99.75

s= 96 72.55 97.50 99.33 99.45 99.53 99.71 99.76 99.77

s= 128 72.55 97.50 99.34 99.43 99.59 99.78 99.83 99.90

Table 5. Identified frequencies measurement signals from 1st stage using s= 128 and n= 20 (10 modes).

Frequency (Hz) Order of LSS Description State module

1 0.1407 1.0108 PC1 81.52

2 0.9748 7.0000 7xPC1 2181.44

3 1.9496 14.0000 2x7xPC1 1117.53

4 2.9244 20.9999 3x7xPC1 624.14

5 3.8992 27.9999 4x7xPC1 313.85

6 4.8739 34.9993 5x7xPC1 149.58

7 5.8487 41.9997 6x7xPC1 89.13

8 6.8233 48.9984 7x7xPC1 73.23

9 7.7983 55.9998 8x7xPC1 75.66

10 8.7731 62.9998 9x7xPC1 74.51

described in Sec. 2 these eigenvalues are complex numbers and for oscillatory systems come in conjugate pairs. Therefore, two

states, which are also conjugate imaginary numbers, are associated with pair of eigenvalues. From these values, we can infer360

that the contribution of the first deflection shape, which is related to the rotation of the planet carrier, is relatively small. The

second deflection shape, created by the passing of the planets at seven times planet carrier frequency, is the most dominant

mode shape, and its higher harmonics have a descending contribution.

4.3 Effect of torque on identified models and state variables

Once a model has been identified using suitable training data, that is, the operational deflection shapes and their frequencies365

have been found, the associated states can be computed using the one-step-ahead predictor, Eq. 12. When the state variables are

computed for tests with stationary torque conditions, the modulus of the state remains almost constant and only exhibits small

changes. These small changes are also evident in the test bench torque signals and in the peak values of the fiber-optic strain
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Figure 11. Deflection shapes from the first three harmonics of the planet passing frequency using measurement signals from the first stage.

Each shape is defined by two conjugate vectors, the real part is shown in green and the imaginary part is shown in orange.

signals, see Figure 8. In Figure 13, an animation of the strains reconstructed using only the first three operational deflection

shapes associated with the passing of the planets is shown. To evaluate the effect of torque on the identified deflection shapes, a370

test comprised of 22 stationary torque conditions from 5% to 110% of its nominal value was performed. This test was originally

intended to validate the structural models of the gearbox. Once stability in torque and speed was reached, data was recorded

for 240 s for each torque condition. Torque data from two test bench torque sensors installed in the high-speed shafts (HSS)

was logged synchronously with the fiber-optic strain data. From these two sensors, the torque at the low-speed shaft (LSS)

was estimated as the average value of both high-speed shafts multiplied by the gear ratio. This assumes that the gear losses are375

equal in both gearboxes, which is not exactly true because the two gearboxes tested were not identical, and the torque level in

the gearbox acting as a reducer is slightly higher, but it is considered a good approximation to evaluate the effect of torque.

The 22 data recordings at different torques were used to identify operational deflection shapes. Figure 14 shows the deflection

shapes of the mode corresponding to the planet passing frequency of the first stage (seven times the rotational frequency of

the carrier) from 55% to 100% of the nominal torque. When the system matrix is transformed into diagonal form, as described380

in Sec. 2, each mode {ϕi} comes in conjugate pairs of imaginary numbers. For clarity, only the real component of the mode

shape is shown in a linear format, and the magnitudes have been normalized using the norm of the deflection shape at nominal

torque. The shapes are very similar, with only very slight differences observed when the torque drops below 65% of nominal

torque. The gearbox is designed to operate in near-rated torque conditions where the gear microgeometry has been optimized.
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Figure 12. Output reconstruction of strain signal R1S01 using models identified with different sampling frequencies.

This observation led to evaluating the relationship between the contribution of mode shapes identified at nominal torque385

conditions for the 22 load stages. Using the identified ODS at nominal torque, the corresponding states were computed for the

data recordings at different toques. When using the diagonal form, the state variables are also conjugate imaginary numbers.

The modulus or absolute value of the state variables for each test against torque is shown Figure 15. The modulus or absolute

value of the states associated with the first deflection shape doesn’t exhibit any relationship with torque. However, all the states

associated with the planet passing frequency and its harmonics show a very strong relationship with torque. A polynomial fit390

was computed between the module of the state and torque, which can be used to estimate torque from a known state value.

To demonstrate this we performed a test with 6 torque levels. In Figure 16, the torque estimation from the test bench torque

sensors is compared to the torque estimation using the state variable associated with the planet passing of the first stage. As

can be seen, the torque estimate using the planet passing mode closely follows the behavior of the torque estimate from the test
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Figure 13. Simulated strains on the first stage ring gear associated with the first three planet passing modes, animation of a planet carrier

revolution can be accessed in supplementary video file.

bench torque sensors with a similar pattern. As mentioned before, the torque sensors are placed in the HSS of both gearboxes395

in the back-to-back arrangement, and a comparison with a direct measurement in the input LSS is suggested to further evaluate

the accuracy of the new estimation method.
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Figure 14. Operational deflection shapes (real part) using datasets at different torque levels for identification.
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Figure 15. Average modulus of states associated with each ODS against low-speed shaft torque (from test bench sensors).
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Figure 16. Torque estimation from identified ODS vs test bench torque sensors for a test with dynamic torque conditions.
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5 Conclusions

This article presents a novel measurement setup of 129 fiber-optic strain sensors distributed around the three ring gears of a

modern wind turbine gearbox. The subspace identification multivariable output-error state space method (MOESP) has been400

applied to experiments performed on a serial production end-of-line test bench and found to provide consistent estimates. Using

signals from tests with stationary torque and speed conditions, all identified eigenvalues and eigenvectors correspond to periodic

excitations related to shaft rotations, planet passing, and gear mesh frequencies. When performing system identification on data

from all three stages, the identified deflection shapes have been found to cover only one stage at a time. Therefore, no cross-

excitation between stages was observed, which is in line with one of the design intents to minimize cross-stage interactions.405

Therefore, it can be concluded that the identification algorithm can be applied to strain data from each stage individually.

For each planetary stage, the effect of the different identification parameters that can be chosen in the MOESP algorithm

has been explored. Measurements from model validation tests, with the same torque and speed conditions as the ones used for

identification or training, have been used to evaluate the identified frequencies and mode shapes. The variance accounted for

(VAF) between the validation measurements and the reconstructed outputs, simulating the system’s behavior as an autonomous410

system oscillating from a non-zero initial condition, has been used as a metric. For the signals of the first stage ring gear,

average VAF values above 99% were achieved between the signals measured in the validation tests and the reconstructed

signals for suitable combinations of s block rows and n model order. Therefore, the identified deflection shapes can reproduce

the behavior of the gearbox accurately, and the contribution of the periodic excitations accounts for almost all the energy in the

measured strain signals. The effect of torque on the identified deflection shapes has been studied, and no noticeable differences415

in the planet passing mode shapes were observed for torques above 65% of the nominal value. For strain recordings from

tests with dynamically changing torque conditions, the contribution of the periodic modes has been quantified through the

states associated with the operational deflection shapes identified at nominal torque. The contribution of the deflection shapes

produced by the passing of planets is controlled by the amount of input torque applied to the gearbox. Using this contribution

an estimate of the input torque has been demonstrated for dynamic operating conditions.420

Accurate knowledge of the input torque is critical to ensuring the reliability of wind turbine gearboxes. Measuring the input

torque throughout the service history of every gearbox in a fleet would enable an improved assessment of the consumed fatigue

life. This is important because the loading conditions are site-specific, and allowing an individual evaluation of each gearbox

can lead to a better understanding of current gearbox failure modes. The system identification framework presented in this

article can be applied recursively to track the operational deflection shapes over time. This is proposed for fault detection in425

the planetary stage components. Three avenues are suggested for future work. First, it is recommended that the accuracy of the

torque estimate produced by the strain measurements on the outer surface of the ring gear be quantified against a conventional

direct measurement in the input shaft. When assessing the accuracy, the effects of non-torque loads, i.e., axial forces and

bending moments, should be explored. Second, we suggest researching different sensor configurations and loading conditions

that can excite the structural modes. Finally, it is suggested that the fault detection capabilities of trending the operational430
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deflection shapes be investigated. Ideally by seeding known faults in components of the planetary stages and evaluating their

impact on the identified mode shapes.

Code and data availability. Due to confidentiality agreements with research collaborators, the raw data and the software code used to pro-

duce the results shown in this publication can only be made available to researchers subject to a non-disclosure agreement. Details of the

data and how to request access are available from the 4TU.ResearchData repository at https://doi.org/10.4121/.435

Appendix A

A1 Identification using signals from the second and third planetary stages

The same identification exercise presented in Sec. 4.2 was performed for the strain signals acquired for the second and third

stages. Using the same approach as for the first stage, first, a suitable sampling frequency was selected and then the effect of

the identification parameters s,n and N were explored. For the second stage, a sampling frequency of 208.33 Hz was found440

to give satisfactory identification results. Table A1 shows the frequencies associated with the deflection shapes using s= 128

and n= 20. In this case, all identified frequencies correspond to the planet passing frequency, six times the carrier rotational

frequency, and its harmonics. The first three identified mode shapes of the second stage are shown in Figure A1, and an

animation of the reconstructed strain signals using these deflection shapes is shown in Figure A2. In this case, due to the higher

frequency and frames-per-second of the animation had to be reduced and could not match the identified frequencies. For the445

third stage, a sampling frequency of 625 Hz was chosen, and the identified frequencies are shown in Table A2. In this case,

using s= 128 and n= 20, the first nine identified frequencies correspond to the planet passing harmonics (third stage has five

planets). The last identified frequency corresponds to twice the gear mesh frequency of the second stage. The second stage ring

gear drives the third stage planet carrier. However, the contribution of this mode is very small. The first three identified mode

shapes of the third stage are shown in Figure A3, and an animation of the strains reconstructed using these deflection shapes is450

shown in Figure A4. Again, the allowable frames-per-second could not match the identified frequencies and the speed of the

animation had to be reduced.
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Table A1. Identified frequencies using measurement signals

from the 2nd stage with s= 128 and n= 20 (10 modes).

Frequency (Hz) Order of LSS Description

1 2.7619 19.8330 6xPC2

2 5.5238 39.6661 2x6xPC2

3 8.2856 59.4992 3x6xPC2

4 11.0475 79.3322 4x6xPC2

5 13.8094 99.1653 5x6xPC2

6 16.5712 118.9983 6x6xPC2

7 19.3331 138.8314 7x6xPC2

8 22.0950 158.6643 8x6xPC2

9 24.8581 178.5060 9x6xPC2

10 27.6304 198.4140 10x6xPC2

Table A2. Identified frequencies using measurement signals

from the 3rd stage with s= 128 and n= 20 (10 modes)..

Frequency (Hz) Order of LSS Description

1 8.5844 61.6445 5xPC3

2 17.1688 123.2892 2x5xPC3

3 25.7531 184.9337 3x5xPC3

4 34.3375 246.5780 4x5xPC3

5 42.9218 308.2222 5x5xPC3

6 51.5062 369.8665 6x5xPC3

7 60.0901 431.5077 7x5xPC3

8 68.6750 493.1560 8x5xPC3

9 77.2774 554.9303 9x5xPC3

10 91.8262 659.4054 2xGMF2

Figure A1. Deflection shapes from the first three harmonics of the planet passing frequency using measurement signals from the second

stage. Each shape is defined by two conjugate vectors, the real part is shown in green and the imaginary part is shown in orange.
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Figure A2. Simulated strains on the second stage ring gear associated with the first three planet passing modes, animation of a planet carrier

revolution can be accessed in supplementary video file.

Figure A3. Deflection shapes from the first three harmonics of the planet passing frequency using measurement signals from the third stage.

Each shape is defined by two conjugate vectors, the real part is shown in green and the imaginary part is shown in orange.
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Figure A4. Simulated strains on the third stage ring gear associated with the first three planet passing modes, animation of a planet carrier

revolution can be accessed in supplementary video file.
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