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Abstract. This study evaluates the impact of an enhanced sampling rate on turbulence measurements using the Vaisala

WindCube v2.1 lidar profiler. A prototype configuration, sampling four times faster than the commercial setup, was compared

to the commercial WindCube v2.1 with reference measurements provided by a 2D sonic anemometer mounted on a measurement

mast. Over the 47-day experiment, the prototype configuration showed performance similar to the commercial setup for

key performance indicators (KPIs) like slope and coefficient of determination of mean wind speed compared to reference5

measurements, with both configurations meeting "best practice" threshold. However, for mean wind speed differences, the

commercial configuration met the "best practice" level, while the prototype met the "minimum acceptance" criterion. Additionally,

the data availability of the prototype configuration was 0.5% lower than that of the commercial configuration. Moreover,

the increased sampling rate in the prototype lidar resulted in higher mean variance in instrumental noise compared to the

commercial configuration. Despite this limitation, the mean noise-corrected along-wind variance measured by the prototype10

lidar was approximately 7% higher than that of the commercial lidar, suggesting that the prototype might be better at capturing

additional turbulent energy by resolving smaller eddies. This effect was especially evident at higher wind speeds. Error metrics

for the noise-corrected along-wind standard deviation in the prototype lidar were approximately 25% lower than those of the

commercial configuration. However, the observed improvements of the prototype configuration in measuring turbulence fell

short of expectations due to inherent limitations in the measurement process within the probe, where spatial and temporal15

filtering effects constrain the detection of turbulence at certain scales.

1 Introduction

Accurate turbulence data enable better understanding and control of wind flow patterns, optimizing the design, operation, and

maintenance of wind energy systems. Furthermore, turbulence measurement plays a pivotal role in addressing key challenges

within the wind energy sector. It aids in enhancing the efficiency and safety of wind turbine operations, minimizing wear and20

tear on vital components, and extending the lifespan of these costly assets. Additionally, improved turbulence measurement

can facilitate more precise wind resource assessments, aiding in site selection and the overall planning of wind energy projects.

In the wind energy sector, the utilization of wind lidar profiler technology has gained significant traction in recent years,

supplanting the traditional meteorological mast equipped with in-situ sensors like cup or sonic anemometers as the standard
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means of measuring key mean wind properties, such as speed and direction. Wind lidar profilers present compelling advantages,25

including the potential for cost reduction compared to meteorological masts and the capacity to measure at similar or even

greater heights above the ground.

Wind lidars profilers can be categorized according to their emission waveform, i.e., pulsed or continuous, and measuring

technique, i.e., Doppler beam swinging (DBS) (Strauch et al., 1984) or velocity-azimuth display (VAD) (Browning and

Wexler, 1968). Measurement methods used by wind lidar profilers are fundamentally different from those used by cup or30

sonic anemometers. Anemometers estimate wind speed over a small volume of just a few cubic centimeters, whereas pulsed

lidar profilers provide an average over a cylindrical probe several dozen meters long with a cross-sectional diameter of less

than 1 cm (Fig. 1).

However, wind lidar profilers have yet to garner widespread acceptance for turbulence measurement, which remains a focal

point of ongoing research. In contrast to turbulence data derived from reference instruments such as sonic anemometers,35

turbulence data from lidar profiler measurements suffer from systematic errors induced by (i) the inter-beam effect, also known

as the cross-contamination effect, (ii) the intra-beam effect, i.e., the averaging effect of the probe volume (Fig. 1) and, (iii),

instrumental noise.

The inter-beam effect can result in either underestimation or overestimation of turbulence metrics, arising from the modulation

of energy associated with eddies of specific wavenumbers (Kelberlau and Mann, 2020). Any phase difference between the40
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Figure 1. A schematic illustration of inter- and intra-beam effects in the WindCube v2.1 lidar profiler measurement process. The blue

cylinder represents the probe volume, corresponding to the dimensions of the commercial lidar configuration. The positions of the five beams

are labeled as bi, where i ranges from 1 to 5. The inclination of the diverging beams (from beam 1 to beam 4) with respect to the vertical

z-axis is ϕ= 28◦. Beam 5 is aligned with the z-axis, while beams 1 and 3 are aligned with the x-axis, and beams 2 and 4 are aligned with

the y-axis in the coordinate system of the instrument, as stipulated by the manufacturer.
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horizontal and vertical components of an eddy significantly impacts the filtering of flow structures, potentially leading to both

amplification or attenuation of their measured turbulent energy (Theriault, 1986; Gargett et al., 2009).

The intra-beam effect generates underestimation of turbulence metrics. It arises from two anisotropic filtering processes: (1)

spatial filtering due to averaging over the probe volume and (2) temporal filtering caused by averaging over the beam’s pulse

accumulation time, ∆t, at a given measurement position. These two effects give rise to a transfer function, H , applied by the45

instrument on the signal measured within the probe. The transfer function includes a part due to time-averaging (the sinc term)

and a part due to space-averaging (the Gaussian term), such that (e.g., Kristensen et al., 2011):

|H|2(k) = sinc2
(
∆t

2
k ·U

)
exp

(
−
[
σ2
l (k ·b)2 +σ2

r(∥ k ∥2 −(k ·b)2)
])

(1)

Here, k is the turbulent structure wavevector, b is the beam pointing vector, U is the vector associated with the wind direction

of magnitude U , and σl and σr represent the Gaussian weighting factors in the along-beam and cross-beam directions,50

respectively.

From Eq. 1, it follows that wind field structures with wavelengths smaller than σl in the along-beam direction are attenuated,

as are those with wavelengths smaller than σr in the cross-beam direction. However, in the latter case, these structures are so

small that the filtering effect becomes negligible, as the cross-section of the probe is approximately 1 cm (Fig. 1). Ultimately,

assuming the Taylor frozen turbulence hypothesis, the wavevector domain that passes through the filter is defined by the55

intersection of two slices: one perpendicular to the direction of U, which preserves structures longer than π∆tU , and another

perpendicular to the direction of b, which retains structures longer than σl. All other structures are filtered out.

Pulsed lidar profilers require several seconds to complete a full scanning cycle resulting in a low sampling rate that causes

discrepancies between turbulence measurements taken by anemometers and those by lidar profilers (e.g., Peña et al., 2009).

While the sampling rate governs how quickly the lidar progresses through a scan cycle, it is directly influenced by pulse60

accumulation time. Consequently, even if the sampling rate is increased, pulse accumulation can still limit the ability of the lidar

to resolve small-scale turbulent structures. Since turbulent motion scales vary from milliseconds to hours and from centimeters

to kilometers (e.g., Stull, 2000), it is crucial to account for both temporal and spatial filtering effects when assessing lidar-based

turbulence measurements.

The concept of measuring turbulence using remote sensing instruments has gradually evolved since the early works in radar65

meteorology by Lhermitte (1962) and Browning and Wexler (1968). Lhermitte (1969) was the first to propose a method for

inferring turbulence by analyzing the variance of radial velocity measurements through VAD scanning. Following this, Wilson

(1970) conducted pioneering experiments using a pulsed Doppler radar to detect turbulence within the convective boundary

layer (0.1-1.3 km). However, these early measurements were limited to turbulence scales larger than the pulse volume and

smaller than the scanning circle, and no validation against reference instruments was performed, questioning their reliability.70

Kropfli (1986) expanded Wilson’s approach to capture turbulence scales larger than the scanning circle by integrating data

from multiple scans. Although initially developed for Doppler radar, these methods were later adapted for Doppler lidar.

Eberhard et al. (1989) were the first to apply Wilson’s and Kropfli’s methods using lidar, and Gal-Chen et al. (1992) further
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refined the technique with a different scanning configuration. Despite these advancements, the significant probe length (around

100 m) limited studies to the convective boundary layer due to considerable probe volume averaging, especially near the75

ground. To address this limitation, research shifted towards understanding and mitigating probe volume averaging effects (e.g.,

Smalikho et al., 2005; Mann et al., 2010; Branlard et al., 2013). Nowadays, modern lidar systems have reduced probe lengths

to about 30 m, but averaging effects still pose challenges for turbulence measurements in the surface layer where wind turbines

operate (e.g., Mann et al., 2009; Sjöholm et al., 2009; Sathe et al., 2011; Sathe and Mann, 2012).

The present paper delves into the specific advancements pertaining to the Vaisala WindCube v2.1 lidar profiler. A key80

modification is explored: an augmentation of the sampling rate, achieved by reducing the pulse accumulation time. This

customization is evaluated for its impact on the measurement of mean wind speed, data availability, and along-wind variance

and standard deviation. The impact of instrumental noise on this modification is also evaluated to demonstrate that the potential

improvement in turbulence estimates with the version featuring increased sampling rate is not due to noise.

2 Data and methods85

2.1 Prototype configuration with increased sampling rate

The WindCube v2.1 lidar is designed for general atmospheric measurements, such as mean wind speed and direction, requiring

a careful balance between temporal resolution, spatial resolution, and carrier-to-noise ratio (CNR). Its default sampling rate is

optimized to ensure high data quality and availability across varying altitudes and atmospheric conditions while maintaining

system efficiency and manageable data processing.90

The WindCube v2.1 employs the Doppler Beam Swinging (DBS) technique to measure wind speed. This method utilizes

an optical switch that sequentially directs the lidar beam toward four cardinal directions (0°, 90°, 180°, and 270° from True

North), each inclined at ϕ= 28◦ from the vertical. A fifth beam is directed vertically upwards, resulting in wind measurements

at five distinct positions (Fig. 1-2).

In its standard commercial configuration, the WindCube lidar collects data at each position for approximately ∆t= 0.895

seconds before switching to the next. Including transition times, a complete DBS scan is performed in 4 seconds, yielding

a line-of-sight (LOS) velocity sampling rate of 0.25 Hz. This sampling rate is well-suited for capturing turbulent structures

larger than 100 meters. However, wind turbine components experience loads from turbulence across a wide range of scales.

Increasing the sampling rate is crucial for broadening the velocity spectrum captured by the lidar, potentially enabling the

detection of smaller-scale turbulence that influences turbine performance.100

Theoretically, a higher sampling rate improves temporal resolution and extends the resolved turbulence frequency range.

However, for wind lidar profiler technology, this enhancement comes with trade-offs. The duty cycle, which represents the

proportion of time the lidar transmits pulses, decreases as sampling rate increases, potentially reducing signal strength. Moreover,

increasing the sampling rate requires a reduction in accumulation time, resulting in fewer pulses per sample and increasing

noise. The default WindCube v2.1 configuration balances these factors to maximize data reliability. It integrates a high number105

of pulses per measurement to enhance signal quality, making it well-suited for general wind resource assessment. However, its
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probe length of approximately 23 meters (Fig. 1) limits its ability to resolve small eddies compared to point sensors like sonic

anemometers.

In response to the demand for capturing the energy of smaller eddies, we developed a modified version of the WindCube v2.1

that operates four times faster, achieving a LOS velocity sampling rate of 1 Hz. This modification was achieved by reducing110

the accumulation time for data collection from each beam in conjunction with a reduction in the number of transmitted pulses.

The factor of 4 was chosen as a compromise between increasing temporal resolution and maintaining an acceptable CNR and

data availability. This choice is intended to keep wind measurements comparable to those from the commercial configuration

while enabling the investigation of smaller-scale turbulence. The actual impact on measurement performance will be assessed

in the study.115

2.2 Field measurement

2.2.1 Measurement site and data collection

The field measurement campaign was carried out by DNV-GL at the lidar validation test site in Janneby, Germany (Fig. 3). Due

to its flat terrain, the site features orography-undisturbed flow, which is suitable for the verification trials of lidar systems. The

site has relatively good exposure to largely undisturbed wind conditions, i.e., undisturbed winds from almost all sectors. The120

elevation of the site is a few meters above mean sea level, and the surface roughness is low due to the primarily agricultural

land use (Fig. 3a). Two wind turbines (WT N100 and WT N117 in Fig. 3a) are installed in the vicinity of the meteorological
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Figure 2. Top view of a WindCube v2.1 lidar showing the positions of its five beams. The x-axis is oriented from beam 3 towards beam 1,

the y-axis extends from beam 4 towards beam 2, and the vertical z-axis points upward along beam 5. The arrow indicates North. For the

present study, the primary x-axis of the lidars was oriented at -62° relative to North.

5



a

b

LiDAR test site

WT N100

DNV GL test site Janneby
Prototype Lidar

Pad 2

b

Met mast

Booms
150°/330°

Commercial Lidar

Guys 300°

Guys 180°

Pad 1

97 m
Sonic
anemo.

Janneby met. mast

Bird's view schematic of met.
mast and test site layout with
lidar test pads.

2.5 m

Image©Landsat/Copernicus

Image©2016 GeoBasis-DE/BKG

Beam 1 Beam 2

Beam 3

Beam 4

x

y

9.30°E 9.31°E 9.32°E 9.33°E 9.34°E 9.35°E

9.30°E 9.31°E 9.32°E 9.33°E 9.34°E 9.35°E

54.62°N

54.63°N

54.64°N

54.65°N

54.62°N

54.63°N

54.64°N

54.65°N

NW SEa

N

Figure 3. a: Test site location at Janneby, Germany. Black lines indicate the beam orientations for the commercial and prototype

configurations. The x and y axes of the instrument coordinate system (see Fig. 2) are marked with black arrows. b: Configuration of the

meteorological mast, showing the position of the sonic anemometer. NW and SE denote the north-west and south-east directions. The

schematic in panel b also provides a bird’s-eye view of the meteorological mast and test site layout, including the lidar test pads.

mast. The closest wind turbine is located 210 m from the mast. A few human constructions (houses, sheds), not exceeding 15

m in height, are located approximately 500 m southwest of the mast.

The meteorological mast is a 100 m, 3-fold guyed lattice tower with a constant face width of 0.4 m. It is equipped with125

six MEASNET-calibrated Thies First Class Advanced cup anemometers (No. 4.3352) and a Thies 2D sonic anemometer (No.

4.3830). However, only the Thies 2D sonic anemometer is used in this study to provide reference measurements of mean

wind speed and turbulence, as the cup anemometers data are not available. The mounting arrangements are consistent with the

currently valid IEC and IEA recommendations for the use of anemometry at meteorological masts. As shown in Fig. 3b, the

sonic anemometer is pointing towards 150° from True North and is mounted at 97 m above ground, which corresponds to the130

average hub height of modern land-based wind turbines. The sonic anemometer was set to record continuous horizontal wind

speed and direction at sampling rates of 4 Hz.

Adjacent to the measurement mast, both the commercial lidar configuration, and a prototype version with an enhanced

sampling rate were installed 3 m and 13 m apart the mast respectively. The prototype configuration was set to record the

LOS velocity four times faster than the commercial configuration, as described in Section 2.1. The lidar was aligned such that135

beams 1 and 3, which correspond to the x-axis (Fig. 2), were oriented at -62° from True North (Fig. 3). According to the
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manufacturer’s recommendation, the x-axis is the primary axis and should be oriented relative to North. Beams 2 and 4 are

fixed along the y-axis.

The field measurement campaign was conducted over two periods: from 12 to 25 November 2021, and from 07 December

2021 to 10 January 2022. These two measurement periods were combined to form a 47-day dataset. To facilitate a comparison140

of turbulence measurements, the sonic-derived wind dataset was resampled to match the sampling rate of the LOS velocities

measured by the prototype configuration. This ensures that similar turbulence time scales are captured when calculating and

comparing turbulence estimates. Therefore, the sonic anemometer measurements were resampled at 1 Hz.

The 47-day dataset was divided into 2256 subsets of 30-minute data records, with each subset containing 450 and 1800

measurement points for wind data acquired at sampling rates of 0.25 Hz and 1 Hz, respectively. The choice of a 30-minute145

window deviating from the standard 10-minute window typically used in the wind energy industry was informed by considerations

of reduction of random errors in turbulence measurements, as discussed by Lenschow et al. (1994).

2.3 Velocity spectra

Power spectral density of the velocity, i.e., the velocity spectra, provide valuable information about the distribution of turbulent

kinetic energy across different scales of motion within the wind flow. This understanding helps in characterizing turbulence150

and its effects on wind turbine performance and structural loads.

Velocity spectra were computed using Welch’s method (Welch, 1967). This method computes an estimate of the spectrum

by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the

periodograms. The Hann window with 50% overlap was applied to each segment to reduce spectral leakage and improve

frequency resolution. The 50% overlap is a reasonable trade off between accurately estimating the signal power, while not over155

counting any of the data.

Following the recommendations of Kelberlau and Mann (2020), turbulence velocity spectra computed from the lidar-derived

reconstructed velocity component should not be fitted to turbulence models. This is due to the inter-beam effect, which distorts

the spectra, rendering them physically meaningless. Therefore, such spectra were not considered in this study. The focus was

on velocity spectra Si(f) derived from the LOS velocities measured by beam i. The primary limitation in this approach is the160

intra-beam effect. Spectra were computed for each 30-minute subset of data.

The spectra, Si(f), were fitted by a parametric expression (Teunissen, 1980; Olesen et al., 1984; Tieleman, 1995) in the

frequency domain f , to which we add a component Ni associated with the power spectral density of instrumental noise of the

LOS velocity measured by beam i (see section 2.4):

Si(f) =
m

(1+nf)
β
+Ni (2)165

The coefficient m primarily controls the vertical scaling or amplitude of the spectum whereas n influences the rate at which

the function decays as f increases. The exponent β determined the shape of the spectrum.

Three different weighting schemes were considered: an unweighted scheme, a low-frequency weighted scheme with weights

proportional to the logarithm of the frequency, and a high-frequency weighted scheme with weights inversely proportional to
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the logarithm of the frequency. Assessing the fitting accuracy included comparing the variance obtained from the integrated170

fitted spectra with the measured spectra, and calculating their absolute relative differences.

2.4 Instrumental noise

Lidar measurements are inherently influenced by signal noise and potential variations in aerosol fall speeds, both of which

contribute additional terms to the observed variance. Assuming that all atmospheric flow contributions to the observed LOS

velocity variance within the considered short timescales are of a turbulent nature, the variance σ2
bi

of the LOS velocity measured175

by beam i, can be expressed as the sum of three independent terms (Doviak and Zrnic, 1993):

σ2
bi = σ2

pi
+σ2

ni
+σ2

di
(3)

Here, σ2
pi

represents the net contribution from atmospheric turbulence at scales measurable by the lidar (Brugger et al., 2016),

σ2
ni

denotes the variance associated with instrumental noise, and σ2
di

accounts for the variance caused by variations in aerosol

terminal fall speeds within the measurement volume. However, σ2
di

can typically be neglected, as particle fall speeds are180

generally less than 1 cm/s (e.g., Bodini et al., 2018). Noise will be identified through two different methods: a spectral approach

and an autocorrelation approach, as accurately identifying the variance of noise is critical to our study.

2.4.1 Spectral method

Instrumental noise is a critical factor in the spectral analysis of velocity time series. In the spectrum of a velocity time series,

this noise typically manifests as a flattening of the spectrum at higher frequencies, indicating a white noise characteristic that185

contributes equally across these frequencies (e.g., Thomson et al., 2012; Durgesh et al., 2014; Guerra and Thomson, 2017;

McMillan and Hay, 2017; Thiébaut et al., 2020). At lower frequencies, the spectrum is usually dominated by the actual signal,

which may show a characteristic decay or specific features related to the physical process being measured, such as turbulence.

As frequency increases, the influence of the instrumental noise becomes more prominent, leading to a flattened spectral region

where the noise dominates.190

In Eq. 2, Ni represents the constant power spectral density of noise, which contributes to the spectral flattening observed

at higher frequencies. The variance of the noise depends on the technical characteristics of the device measuring the velocity,

such as Nyquist velocity, the signal spectral width, the number of pulses and points per range gate, and the signal-to-noise

ratio. Theoretical expressions for the variance of this noise can be derived and subsequently removed from the computed

turbulence metrics to improve accuracy (Pearson et al., 2009; O’Connor et al., 2010; Bodini et al., 2018, 2019; Wildmann et al.,195

2019). However, the technical specifications of lidar profilers are no longer openly shared with users, making it impossible to

evaluate this noise theoretically. To address this, it is essential to evaluate the noise using an alternative method, such as the

spectral approach employed in this study. This approach is comparable to the method proposed by (e.g. Richard et al., 2013;

Durgesh et al., 2014). It enables the determination of the power spectral density of noise, Ni, associated with the LOS velocity

measured by beam i. Subsequently, the variance of the instrumental noise, σ2
ni

, can be derived by multiplying Ni by the Nyquist200
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frequency, fN , such as (e.g., McMillan and Hay, 2017):

σ2
ni

=NifN (4)

2.4.2 Autocorrelation function method

An alternative method for computing the variance of the instrumental noise involves the calculation of the auto-correlation

function (ACF) of the squared LOS velocity time series, as proposed by Lenschow et al. (2000). The ACF quantifies the205

similarity between a signal and its time-shifted versions across various time lags. This measure provides insight into how much

of the signal correlates with its past values, which is essential for distinguishing between the noise and signal components.

According to Lenschow et al. (2000), after calculating the ACF, the ACF values (excluding the first lag) are fitted to a

2/3 power-law function. This power-law model describes the decay of correlation over time, allowing for the extraction of a

coefficient that characterizes how the correlation diminishes as the time lag increases. From this power-law fit, the value of the210

ACF as the lag tends to zero is estimated by extrapolation of the fitted model. This value is associated with the signal variance.

Subsequently, the total variance of the signal is calculated. The instrumental noise variance, σ2
ni

, is then determined by

subtracting the signal variance, as derived from the fitted power-law model, from the total variance. This process enables

the separation of the signal and noise contributions to the overall variance. However, this method performs correctly only if

the range in which the turbulent cascade occurs is fully captured. This condition is not guaranteed with wind lidar profiler215

measurements, as the intra-beam effect disturbs the inertial range of turbulence where the cascade takes place.

2.5 Computation of the variance in instrument coordinates

The conventional method for computing variance and standard deviation (the square root of variance) from wind lidar profiler

measurements relies on deriving second-order statistics from the reconstructed instantaneous velocity components based on

LOS velocities. This approach inherently combines, at each time step, measurements taken at sampling points separated by220

several tens of meters, depending on the height level of interest. The assumption of instantaneous flow homogeneity (inter-beam

effect) introduces an uncertainty in the derived statistics, which is difficult to quantify and can lead to either an overestimation

or underestimation of the standard deviation, depending on the frequency and flow configuration. Additionally, this traditional

method is affected by both intra-beam filtering and instrumental noise. Crucially, because variance is computed from the

reconstructed instantaneous velocity components, it does not account for the noise-induced variance present in the LOS velocity225

time series which will result in overestimation of variance.

The combined influence of the inter-beam effect, intra-beam effect, and instrumental noise can result in variance estimates

derived from the traditional approach that may appear to align more closely with those derived from a sonic anemometer,

but for reasons unrelated to the actual turbulence characteristics. Consequently, the benefits of an increased sampling rate for

turbulence measurement using a lidar profiler cannot be accurately assessed with this approach.230

The variance method, as referred to in the studies (e.g., Stacey et al., 1999a, b; Lu and Lueck, 1999; Rippeth et al., 2002;

Guerra and Thomson, 2017; Thiébaut et al., 2022), offers an alternative to the traditional approach for computing variance. This
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method calculates the second-order statistics of the three velocity components by deriving them directly from the second-order

statistics of the LOS velocities. Unlike the traditional approach, the variance method is unaffected by the inter-beam effect.

However, it is still influenced by the intra-beam effect and instrumental noise. Notably, the impact of instrumental noise can be235

identified and removed. Hereafter, a hat notation is used to denote standard deviation or variance derived from this method.

The variance method enables the calculation of the variances, σ̂2
x and σ̂2

y of the velocity components ux and uy (in instrument

coordinates) as:

σ̂2
x =

1

2 sin2ϕ

(
σ2
p3

+σ2
p1

− 2 cos2ϕ σ2
p5

)
(5)

240

σ̂2
y =

1

2 sin2ϕ

(
σ2
p2

+σ2
p4

− 2 cos2ϕ σ2
p5

)
(6)

where σ2
pi

= σ2
bi

- σ2
ni

(Eq. 3), is the variance of the LOS velocity recorded by beam i, corrected for the variance of instrumental

noise.

In this paper, we restrict the application of the variance method to situations where the wind aligns with a single pair of

opposite beams (either pair 1-3 or pair 2-4) of the lidar profilers. This alignment condition was met in 17.1% of the cases. Under245

these conditions, it can be reasonably assumed that the covariance term, σ̂uv (where v represents the cross-wind velocity),

which corresponds to σ̂xy in this specific condition, is negligible (e.g., Newman et al., 2016). Specifically, when the wind

aligns with beams 1 and 3, we have σ̂2
u = σ̂2

x. Conversely, when the wind aligns with beams 2 and 4, it follows that σ̂2
u = σ̂2

y .

For brevity, we use σ̂2 in place of σ̂2
u hereafter. The standard deviation, σ̂, is then compared to the along-wind standard

deviation, σ, which is derived from sonic anemometer measurements.250

2.6 Key performance indicators and acceptance criteria

The first step of our analysis focuses on key performance indicators (KPIs), applied to mean wind statistics such as wind

speed, that are the mean differences, slope, or the coefficient of determination (R2) at reference heights corresponding to

sonic anemometer measurements. DNV-GL has defined acceptance criteria (ACs) as "best practice" and "minimum allowable

tolerances" These criteria, applied to wind speed, flag any KPIs outside the thresholds as "deviations". Table 1 summarizes the255

ACs established by DNV-GL, which are tested in this paper for the wind speed KPI.

Additionally, the paper addresses data availability. Data availability is defined as the ratio of valid data points returned by

the lidar to the maximum number of possible points that could be acquired during the test. To pass the test, DNV-GL set the

data availability threshold at 90%.

2.7 Error statistics metrics260

This paper focuses on turbulence measurements, specifically the standard deviation of wind velocity, obtained from both

the commercial and prototype lidars. These measurements are compared to the standard deviation provided by the reference

instrument; the sonic anemometer. To assess the accuracy and reliability of the lidar measurements, various error statistics
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are used. These include Root Mean Square Error (RMSE), which quantifies the average magnitude of errors; Mean Absolute

Error (MAE), which calculates the average absolute difference between predicted and observed values; bias, which represents265

the systematic error between the lidar and reference measurements; the coefficient of determination, R2, which indicates the

proportion of variance in the lidar measurements explained by the reference data; and relative error, which expresses the error

as a percentage of the reference measurement. Together, these statistical metrics provide a comprehensive evaluation of the

lidar’s performance in capturing turbulence characteristics relative to the reference instrument.

3 Results270

3.1 Mean wind speed and data availability

The first step in proposing enhancements to lidar technology is to evaluate their impact on mean wind speed measurements.

Fig. 4a illustrates that the mean vertical wind speed profiles measured by both configurations are closely aligned. However,

the difference between the mean wind speed measurements provided by the commercial configuration and the reference

measurement (black cross in Fig. 4) at the reference altitude is smaller, amounting to 0.98%, compared to a 1.41% difference for275

the prototype configuration. These results demonstrate that the commercial configuration closely matches the "best practice"

AC criterion for the difference in mean wind speed, while the prototype configuration, with a larger difference, only meets the

"minimum" criterion (Table 1 and Table 2).

Moreover, the commercial configuration exhibits data availability ranging from 99.5% at the lowest measurement height,

i.e., 40 m above the ground, to 93.0% at the highest, i.e., 200 m above the ground, with an overall vertical average availability280

Table 1. Acceptance criteria for KPI of mean wind speed in wind lidar profiler certification.

KPI - Wind speed Definition Best practice Minimum Deviation

Difference Percentage difference in mean wind speeds between lidar

and reference over the verification campaign, relative to the

campaign mean wind speed.

< 1% [1-1.5]% > 1.5%

Slope Slope from single-variable regression, constrained to pass

through the origin.

[0.98 – 1.02] [0.97 – 1.03] < 0.97 or > 1.03

R2 Correlation coefficient from single-variable regression. > 0.98 > 0.97 ≤ 0.97

Table 2. Acceptance criteria for KPI achievement applied on mean wind speed associated with the commercial and prototype configurations:

✓✓denotes "best practice" and ✓indicates "minimum" acceptance, as defined in Table 1.

Difference Slope R2 Data availability

Commercial configuration ✓✓ ✓✓ ✓✓ ✓✓

Prototype configuration ✓ ✓✓ ✓✓ ✓✓
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of 98.2% (Fig. 4b). Similarly, the prototype configuration follows this trend, with data availability decreasing with altitude. The

prototype achieves a vertical average availability of 97.7%, with a minimum of 92.3% recorded at the highest measurement

altitude. The prototype configuration consistently shows data availability that is, on average, 0.5% lower than the commercial

configuration at nearly all measurement altitudes. Both lidar configurations exceed the 90% data availability threshold set by

DNV-GL.285

Fig. 5 presents the linear regression of the 30-minute averaged wind speed measured by both lidar configurations in

comparison to the reference instrument. Both the commercial and prototype configurations match the "best practice" criteria,

with slope values of 1.0 and R2 values of 0.9847 for the commercial configuration. The prototype configuration shows values

that are 1% lower for the slope and almost similar R2, but these differences are minimal and still within the acceptable range

for "best practice."290

3.2 Impact of sampling rate on turbulence energy capture

The impact of increasing the sampling rate on turbulence measurement can initially be assessed using data from a sonic

anemometer, specifically through the computation of along-wind velocity spectra. Integrating these spectra provides the along-

wind variance, σ2. Fig. 6 illustrates the individual spectra and the mean spectrum averaged over the 47-day dataset in both
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Figure 4. Mean vertical profiles, averaged across the 47-day dataset, of wind speed (a), data availability (b), and standard deviation derived

from the variance method (c), measured using the commercial (solid blue curves) and prototype (dashed orange curves) configurations. The

black crosses represent the reference measurements from the sonic anemometer, and the grey dashed vertical line marks its position at 97 m

above ground.
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Figure 5. Scatter plots of the 30-minute averaged wind speed measurements over the 47-day campaign, comparing the commercial lidar (a)

and prototype lidar (b) with the reference sonic anemometer.

log-log and linear formats. The mean spectrum clearly follows the f−5/3 slope, confirming the presence of the energy cascade295

(Fig. 6a).

The linear representation (Fig. 6b) highlights that most of the energy, associated with larger eddies, is concentrated in the

frequency range from 0 to fNc
= 0.125Hz, corresponding to the Nyquist frequency of the LOS velocity in the commercial lidar

configuration. However, additional energy, associated with smaller eddies, exists within the range from fNc
to fNp

= 0.5Hz,

the latter being the Nyquist frequency of the prototype lidar configuration.300

To quantify this effect, the variance was computed by integrating the spectra over two frequency ranges. First, the integration

from 0 to fNc simulated the variance measurable by a sonic anemometer with a sampling rate equivalent to the commercial

lidar. This yielded a mean variance of 0.47m2/s2. Second, the integration from 0 to fNp simulated the variance measurable

with a sampling rate equivalent to the prototype lidar, resulting in a mean variance of 0.63m2/s2. This comparison indicates

that increasing the sampling rate by a factor of 4, relative to the commercial lidar configuration, could capture an additional305

34% of the energy associated with smaller eddies. However, this represents the maximum possible improvement, as it is derived

from measurements using a sonic anemometer, which is not affected by technical limitations such as the probe length of a wind

lidar profiler.

3.3 LOS velocity spectra

The determination of the instrumental noise from the spectral method involves computational fitting of the LOS velocity spectra310

using a parametric expression (Eq. 2). Three weighting schemes were systematically explored to enhance fitting accuracy and
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Figure 6. Individual spectra (light blue curves) and mean spectrum (orange curve) measured by the sonic anemometer over the 47-day

measurement campaign, presented in log-log (a) and linear (b) formats. Vertical black dashed lines indicate the Nyquist frequencies, fNc

and fNp , for the commercial and prototype lidar configurations respectively. The pink solid line in panel (a) shows the classic spectral slope

f−5/3.

minimize errors relative to the measured spectra. Fig. 7a illustrates an example of the three weighting scheme applied to a

measured spectrum. This iterative process was conducted across both lidar configurations, yielding consistent results described

hereafter.

The fitted spectra closely matched in the low-frequency domain, approximately up to f = 0.1 Hz, but strong divergences315

were observed thereafter. The low frequencies weighted scheme produced a curve substantially below the measured spectra

at higher frequencies, whereas the unweighted scheme yielded a curve slightly above the measured spectra in this frequency

range. In contrast, the high frequencies weighted scheme provided a fit that closely matched the measured spectra across all

frequencies and exhibited the lowest mean error. For instance, when applied to the prototype lidar, the mean variance was

0.2321 m2/s2 for all integrated fitted spectra using the high-frequency weighted scheme, compared to 0.2262 m2/s2 for all320

integrated measured spectra. This results in an absolute error of 2.6%. Conversely, not employing any weighting during the

fitting process resulted in an absolute error between the mean variance nearly three times higher, at 8.5%. Assigning weights

to the low frequencies resulted in a mean absolute error exceeding six times that of the high-frequency weighted scheme, at

16.9%. Thus, the high-frequency weighted scheme was chosen for the fitting. An example of this fitting applied to individual

LOS velocity spectra for both the commercial and prototype configurations is shown in Fig. 7b. This weighted scheme enabled325

the systematic identification of the plateau at higher frequencies, characteristic of white noise. Other weighting schemes did

not consistently exhibit this plateau, making it challenging to reliably determine the value of Ni.
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3.4 Instrumental noise

3.4.1 Comparison of the spectral and ACF methods

The spectral method yields a median variance that is 1.5 times higher than that of the ACF method for the commercial lidar330

and twice as high for the prototype lidar (Table 3). While this suggests differences in how each method characterizes noise,

the spectral method also results in a mean instrumental noise that is 30-40% lower than that of the ACF method, indicating

variations in the way noise is estimated. Moreover, the spread of mean values is notably narrower when using the spectral

method, particularly for the commercial lidar, where it is reduced by half compared to the ACF method. This suggests a

potential advantage in terms of consistency and stability. Given these observations, we used the spectral method to correct the335

measured variance, as it appeared to provide more stable estimates of instrumental noise.

3.4.2 Contribution of instrumental noise in the measured LOS velocity variances

This section evaluates, beam by beam, the impact of instrumental noise on the measured LOS velocity variances, which are

combined to derive the along-wind variance (Eqs. 5-6). The parametric expression (Eq. 2) used to fit the LOS velocity spectra

10 2 10 1

Frequency (Hz)

10 1

100

S
5
 (

m
2
.s

2
.H

z
1
)

Raw - Prototype lidar
Unweighted fit
Low frequencies weighted fit
High frequencies weighted fit

10 2 10 1

b

Frequency (Hz)

10 1

100

101

Raw - Com. lidar
Raw- Pro. lidar
Fit - Pro. lidar
Fit - Com. lidar

a

Figure 7. (a) Individual LOS velocity spectrum (solid black) of the prototype lidar fitted with Eq. 2 with three weighted schemes: unweighted

fit (dashed green), low frequencies weighted fit (dashed red), and high frequencies weighted fit (dashed blue). (b) Individual LOS velocity

spectrum measured by the commercial lidar (blue curve) and prototype lidar (orange curve) fitted with the high frequencies weighted scheme.

Table 3. Median and mean (± spread) variance of instrumental noise for commercial and prototype lidars, computed from the LOS velocity

measurements across all beams using spectral and ACF methods.

Commercial lidar Prototype lidar

Methods Spectral ACF Spectral ACF

Median (m2/s2) 0.0076 0.0050 0.0129 0.0081

Mean ± spread (m2/s2) 0.0108 ± 0.0102 0.0148 ± 0.0228 0.0181 ± 0.0175 0.0237 ± 0.0294
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method, measured by each beam i at scales observable by the commercial (dark gray) and prototype (light gray) lidar profilers. Dashed areas

represent the mean variance of instrumental noise, σ2
ni

. The averages were computed over the 47-day dataset.

Table 4. Error Statistics of the along-wind standard deviation derived from the variance method, corrected for instrumental noise, applied on

measurements collected by the commercial and prototype lidars in comparison to the reference sonic anemometer.

Bias (m/s) MAE (m/s) RMSE (m/s) R2 Relative Error (%)

Commercial lidar -0.0639 0.0886 0.1218 0.9138 7.8

Prototype lidar -0.0466 0.0678 0.0871 0.9574 5.7

measured by beam i enables the identification of the power spectral density of instrumental noise, Ni, and the derivation of340

the variances, σ2
ni

(Eq. 4). Fig. 8 compares the mean magnitude of σ2
ni

to the mean variance of the net contribution from

atmospheric turbulence, σ2
pi

, corrected for instrumental noise at scales observable by the commercial and prototype lidar

profilers.

The mean values of σ2
ni

, which are nearly identical across all beams, were found to be 0.0108 m2/s2 for the commercial

configuration (Table 3). A similar trend was observed for the prototype configuration, although the mean variance of instrumental345

noise was 68% higher, at 0.0181 m2/s2 (Table 3). Notably, the contribution of instrumental noise variance to the total variance,

σ2
bi

(Eq. 3), was found to be 4.8% and 7.4% for the commercial and prototype lidar configurations, respectively.

The mean variances, σ2
pi

were consistently higher for measurements obtained with the prototype configuration. Across all

beams, the mean value was 0.2288 m2/s2, which is 7.8% higher than the corresponding mean value for the commercial lidar

measurements.350
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3.5 Along-wind standard deviation

Fig. 9 presents scatter plots of the along-wind standard deviation, σ̂, derived from the variance method applied on measurements

of both lidar configurations compared to the standard deviation, σ, obtained from the reference sonic anemometer. The

prototype configuration demonstrates superior performance across all error metrics, with bias, MAE, and RMSE approximately

25% lower than those of the commercial configuration (Table 4). Additionally, the coefficient of determination is 5% higher.355

There is also a reduction in the relative error of the mean standard deviation, with the prototype configuration showing values

of 5.7% compared to 7.8% for the commercial configuration.

Fig. 10 presents bin-averaged estimates of σ̂ compared to estimates of σ (black curve) as a function of binned-averaged wind

speed. For all wind speeds, the standard deviation measured by the sonic anemometer consistently remains higher than that

derived from both lidar configurations. Below wind speed of 8 m/s, the standard deviation values from both lidar configurations360

closely match each other. Within this wind speed range, the standard deviation associated with the commercial lidar is 2.7%

higher than that from the prototype configuration. However, above this wind speed threshold, the standard deviation associated

with the prototype configuration increases more rapidly with wind speed compared to the commercial lidar. In this wind speed

range, the standard deviation associated with the prototype lidar is 13.0% higher than that associated with the commercial

configuration. For all wind speed ranges, the prototype lidar measurements exhibited a mean standard deviation and variance365

that were 2.9% and 7.2% higher, respectively, than those of the commercial configuration.
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Figure 9. Scatter plots of along-wind standard deviation, σ̂, derived from the variance method applied on measurements of the commercial

and prototype lidar configurations versus standard deviation, σ, derived from the reference sonic anemometer. The standard deviation

estimates are restricted to cases where wind direction was aligned with one pair of opposite beams.
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speed.

4 Discussion

When proposing an increase in sampling rate to capture smaller eddies and their associated energy through variance, it is

essential to assess the instrumental noise and its variance to ensure that the observed changes are due to physical phenomena

rather than noise. In this study, we estimate noise-induced variance using two distinct methods. For both lidar configurations,370

the mean variances of instrumental noise computed from two methods were found to be consistent with values obtained in

previous studies, such as the WindCube lidar analysis by Mann et al. (2009). This alignment reinforces confidence in our

estimates.

The increased sampling rate leads to higher instrumental noise compared to the commercial configuration, as expected, since

the noise variance is inversely proportional to the number of transmitted pulses (Pearson et al., 2009). In the prototype lidar,375

achieving a higher sampling rate required reducing the number of pulses leading to the elevated noise levels. The noise variance

was approximately 5% of the total variance for the commercial configuration and over 7% for the prototype configuration.

While the noise contribution is relatively low, it is not negligible, and its impact should be considered when calculating second-

order statistics of LOS velocities in pulsed wind lidar profilers.

Compared to estimates derived from the commercial lidar configuration, the error metrics (bias, MAE, RMSE) of the along-380

wind standard deviation estimates corrected for instrumental noise using the prototype lidar were notably lower. Additionally,

the mean along-wind variance measured by the prototype was higher, suggesting that the increased sampling rate allows

for improved detection of turbulent energy associated with smaller eddies. However, this observed improvement remains

significantly below the theoretical benefit expected from increasing the LOS sampling rate, as determined through sonic

anemometer measurements. The measurement volume of a sonic anemometer is effectively point-like, in comparison to the385
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much larger probe length of wind lidar profilers. The anemometer is in fact essentially free of the intra-beam effect, which

enables it to capture the wind signature of very small eddies.

One way to mitigate the impact of the intra-beam effect is by significantly reducing the probe length. A shorter probe length

would minimize spatial averaging, enhancing the resolution of high-frequency fluctuations in the wind field. However, this

reduction is likely to weaken the lidar echo strength, potentially increasing measurement errors. Therefore, a balance must be390

struck between improving resolution and maintaining signal quality.

The increased sampling rate of the prototype configuration could positively impact metrics such as turbulence intensity (TI),

which is a key factor due to its influence on structural loads and turbine lifespan. As demonstrated in Fig. 10, this effect is

expected to be more pronounced at higher wind speeds, such as at 15 m/s. At this wind speed, TI - referred to as TI15 - is used

in design turbulence calculations to define characteristic standard deviation bands, which are essential for classifying turbines395

according to wind turbulence, as outlined in IEC 61400-1.

Moreover, the increased sampling rate extends the LOS velocity spectra over the frequency domain. This is particularly

valuable for floating lidar systems, where measurements are used to derive TI through motion-compensation algorithms which

is an ongoing research topic (e.g., Kelberlau et al., 2020; Désert et al., 2021). The buoy’s motion generates energy spikes in

the LOS velocity spectra at frequencies corresponding to the wave periods, the buoy’s natural period, and their interactions400

(Thiébaut et al., 2024a). This introduces additional variance, σ2
mi

, which must be accounted for alongside the three other

variance terms that contribute to the total variance, σ2
bi

, measured by each beam i (Eq. 3). With a Nyquist frequency of fNc =

0.125 Hz, the commercial configuration can detect motion-induced variance for periods up to 8 seconds, while lower-period

motion remains undetectable. In contrast, the prototype configuration presented in this paper, with a Nyquist frequency of fNp

= 0.5 Hz, enables the detection of motion effects for periods as short as 2 seconds. Thus, the prototype configuration may offer405

an advantage in developing motion-compensation algorithms based on the variance method by improving the derivation of true

variance through LOS velocity spectra analysis.

The increased sampling rate resulted in a relatively slight 0.5% reduction in data availability compared to the commercial

configuration over the 47-day dataset. While this difference is minimal, it may become more noticeable over longer measurement

campaigns, which typically last over a year for wind site characterization. Following the measurement campaign presented in410

this paper, the prototype configuration was installed in December 2022 on Planier Island in the Mediterranean Sea, where

it remains operational. The wind characteristics derived from the full year of 2023 are presented in Thiébaut et al. (2024b),

including a detailed analysis of data availability. Encouragingly, up to 160 m above sea level, annual data availability exceeded

the 90% threshold considered best practice. Beyond this height, availability gradually declined, reaching below 70% at 220 m.

While this highlights an area for further optimization, the prototype lidar has already demonstrated strong performance at415

critical measurement heights.

Moreover, the prototype configuration performed comparably to the commercial setup in terms of mean wind characteristics.

While the commercial configuration met the "best practice" threshold for all key performance indicators (KPIs), the prototype

also achieved this standard, with the exception of mean wind speed differences, where it met the "minimum acceptance" level

within the best practice range. This result is promising, as it confirms that the prototype lidar meets industry standards while420

19



offering opportunities for further refinement. With continued development, the prototype lidar has the potential to further

enhance wind resource assessments and support the needs of modern wind energy projects.

5 Conclusions

This study highlights both the potential and challenges of enhancing the sampling rate in wind lidar systems, particularly for

turbulence measurements and the detection of energy from smaller eddies. The prototype lidar configuration, with its increased425

sampling rate, demonstrated advantages in capturing higher-frequency fluctuations in the wind field, leading to more accurate

along-wind variance estimates. By resolving smaller eddies, the prototype effectively captured additional turbulent energy that

the commercial configuration, with its lower sampling rate, could not detect. This improvement was especially pronounced at

higher wind speeds, where the prototype’s reduced minimum detectable eddy size provided significant benefits. However, the

theoretical gains expected from the increased sampling rate were not fully realized due to inherent measurement limitations430

within the probe, where spatial and temporal filtering effects constrain turbulence detection at certain scales.

The increased sampling rate also introduced some trade-offs, including elevated instrumental noise and a slight reduction

in data availability. Noise contributions to the total variances were non-negligible and required correction to ensure accurate

turbulence statistics. It is worth noting that a configuration similar to the prototype examined in this study could be achieved

with a commercial lidar, as manufacturers can program an increased sampling rate with relative ease. However, users should435

be aware that implementing such a modification would require validation against a meteorological mast to obtain certification,

which could add time and cost to deployment.

Another key consideration is balancing increased sampling rate with reduced probe length. Ideally, combining both enhancements

would yield the optimal configuration, improving both temporal and spatial resolution. In this study, the increased sampling rate

proved beneficial for turbulence measurements while maintaining acceptable accuracy for mean wind statistics. Meanwhile,440

the effects of reducing the probe length are currently under investigation. While further research is needed to determine its

feasibility in field applications, this approach holds promise for future advancements in wind lidar profiler performance.

Author contributions

MT identified the problematic, performed the analysis and drafted the paper. FD and FG reviewed the manuscript.

Data and code availability445

The data is owned by a private consortium with proprietary rights and confidentiality obligations, precluding its sharing

alongside this paper.

20



Acknowledgments

We would like to acknowledge the team at Vaisala, including Mathias Régnier, Loïc Mahe and Cristina Benzo, for their support

in providing and configuring the prototype lidar. We are deeply grateful to Louis Marié (Ifremer) for his valuable insights, which450

significantly contributed to improving the quality of this work.

Competiting interest

The authors declare that they have no conflict of interest.

Financial support

This work was made possible through the support of France Energies Marines and the French government, managed by the455

Agence Nationale de la Recherche under the Investissements d’Avenir program, with the reference ANR-10-IEED-0006-34.

This work was carried out in the framework of the POWSEIDOM project.

21



References

Bodini, N., Lundquist, J. K., and Newsom, R. K.: Estimation of turbulence dissipation rate and its variability from sonic anemometer and

wind Doppler lidar during the XPIA field campaign, Atmospheric Measurement Techniques, 11, 4291–4308, 2018.460

Bodini, N., Lundquist, J. K., Krishnamurthy, R., Pekour, M., Berg, L. K., and Choukulkar, A.: Spatial and temporal variability of turbulence

dissipation rate in complex terrain, Atmospheric Chemistry and Physics, 19, 4367–4382, 2019.

Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind

statistics from average spectrum of continuous-wave lidar, Atmospheric Measurement Techniques, 6, 1673–1683, 2013.

Browning, K. A. and Wexler, R.: The determination of kinematic properties of a wind field using Doppler radar, Journal of Applied465

meteorology and climatology, 7, 105–113, 1968.

Brugger, P., Träumner, K., and Jung, C.: Evaluation of a procedure to correct spatial averaging in turbulence statistics from a Doppler lidar

by comparing time series with an ultrasonic anemometer, Journal of Atmospheric and Oceanic Technology, 33, 2135–2144, 2016.

Doviak, R. J. and Zrnic, D. S.: Doppler Radar & Weather Observations, Courier Corporation, Courier Corporation, 1993.

Durgesh, V., Thomson, J., Richmond, M. C., and Polagye, B. L.: Noise correction of turbulent spectra obtained from acoustic doppler470

velocimeters, Flow Measurement and Instrumentation, 37, 29–41, 2014.

Désert, T., Knapp, G., and Aubrun, S.: Quantification and correction of wave-induced turbulence intensity bias for a floating lidar system,

Remote Sensing, 13, 2973, 2021.

Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar measurement of profiles of turbulence and momentum flux, Journal of

Atmospheric and Oceanic Technology, 6, 809–819, 1989.475

Gal-Chen, T., Xu, M., and Eberhard, W. L.: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler

lidar data, Journal of Geophysical Research: Atmospheres, 97, 18 409–18 423, 1992.

Gargett, A. E., Tejada-Martinez, A. E., and Grosch, C. E.: Measuring turbulent large-eddy structures with an ADCP. Part 2. Horizontal

velocity variance, 2009.

Guerra, M. and Thomson, J.: Turbulence Measurements from Five-Beam Acoustic Doppler Current Profilers, Journal of Atmospheric and480

Oceanic Technology, 34, 1267–1284, 2017.

Kelberlau, F. and Mann, J.: Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar, Wind Energy Science,

5, 519–541, 2020.

Kelberlau, F., Neshaug, V., Lønseth, L., Bracchi, T., and Mann, J.: Taking the motion out of floating lidar: Turbulence intensity estimates

with a continuous-wave wind lidar, Remote Sensing, 12, 898, 2020.485

Kristensen, L., Kirkegaard, P., and Mikkelsen, T.: Determining the velocity fine structure by a laser anemometer with fixed orientation,

Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 2011.

Kropfli, R. A.: Single Doppler radar measurements of turbulence profiles in the convective boundary layer, Journal of Atmospheric and

Oceanic Technology, 3, 305–314, 1986.

Lenschow, D. H., Mann, J., and Kristensen, L.: How long is long enough when measuring fluxes and other turbulence statistics?, Journal of490

Atmospheric and Oceanic Technology, 11, 661–673, 1994.

Lenschow, D. H., Wulfmeyer, V., and Senff, C.: Measuring second-through fourth-order moments in noisy data, Journal of Atmospheric and

Oceanic technology, 17, 1330–1347, 2000.

Lhermitte, R. M.: Note on wind variability with Doppler radar, Journal of Atmospheric Sciences, 19, 343–346, 1962.

22



Lhermitte, R. M.: Note on the observation of small-scale atmospheric turbulence by Doppler radar techniques, Radio Science, 4, 1241–1246,495

1969.

Lu, Y. and Lueck, R. G.: Using a broadband ADCP in a tidal channel. Part II: Turbulence, Journal of Atmospheric and Oceanic Technology,

16, 1568–1579, 1999.

Mann, J., Cariou, J.-P., Courtney, M. S., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelow, P., Sjoholm, M., and Enevoldsen, K.:

Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer, Meteorologische Zeitschrift, 18,500

135, 2009.

Mann, J., Peña, A., Bingöl, F., Wagner, R., and Courtney, M. S.: Lidar scanning of momentum flux in and above the atmospheric surface

layer, Journal of Atmospheric and Oceanic Technology, 27, 959–976, 2010.

McMillan, J. M. and Hay, A. E.: Spectral and structure function estimates of turbulence dissipation rates in a high-flow tidal channel using

broadband ADCPs, Journal of Atmospheric and Oceanic Technology, 34, 5–20, 2017.505

Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A., Chilson, P. B., and Muschinski, A.: Evaluation of three lidar scanning

strategies for turbulence measurements, Atmospheric Measurement Techniques, 9, 1993–2013, 2016.

Olesen, H. R., Larsen, S. E., and Højstrup, J.: Modelling velocity spectra in the lower part of the planetary boundary layer, Boundary-Layer

Meteorology, 29, 285–312, 1984.

O’Connor, E. J., Illingworth, A. J., Brooks, I. M., Westbrook, C. D., Hogan, R. J., Davies, F., and Brooks, B. J.: A method for estimating the510

turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ

measurements, Journal of atmospheric and oceanic technology, 27, 1652–1664, 2010.

Pearson, G., Davies, F., and Collier, C.: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer,

Journal of Atmospheric and Oceanic Technology, 26, 240–250, 2009.

Peña, A., Hasager, C. B., Gryning, S., Courtney, M., Antoniou, I., and Mikkelsen, T.: Offshore wind profiling using light detection and515

ranging measurements, Wind Energy, 12, 105–124, 2009.

Richard, J.-B., Thomson, J., Polagye, B., and Bard, J.: Method for identification of doppler noise levels in turbulent flow measurements

dedicated to tidal energy, International Journal of Marine Energy, 3, 52–64, 2013.

Rippeth, T. P., Williams, E., and Simpson, J. H.: Reynolds stress and turbulent energy production in a tidal channel, Journal of Physical

Oceanography, 32, 1242–1251, 2002.520

Sathe, A. and Mann, J.: Measurement of turbulence spectra using scanning pulsed wind lidars, Journal of Geophysical Research:

Atmospheres, 117, 2012.

Sathe, A., Mann, J., Gottschall, J., and Courtney, M. S.: Can wind lidars measure turbulence?, Journal of Atmospheric and Oceanic

Technology, 28, 853–868, 2011.

Sjöholm, M., Mikkelsen, T., Mann, J., Enevoldsen, K., and Courtney, M.: Spatial averaging-effects on turbulence measured by a continuous-525

wave coherent lidar, Meteorologische Zeitschrift (Berlin), 18, 2009.

Smalikho, I., Köpp, F., and Rahm, S.: Measurement of atmospheric turbulence by 2-µ m Doppler lidar, Journal of Atmospheric and Oceanic

Technology, 22, 1733–1747, 2005.

Stacey, M. T., Monismith, S. G., and Burau, J. R.: Measurements of Reynolds stress profiles in unstratified tidal flow, Journal of Geophysical

Research, 104, 10 935–10 949, 1999a.530

Stacey, M. T., Monismith, S. G., and Burau, J. R.: Observations of turbulence in a partially stratified estuary, Journal of Physical

Oceanography, 29, 1950–1970, publisher: American Meteorological Society, 1999b.

23



Strauch, R. G., Merritt, D. A., Moran, K. P., Earnshaw, K. B., and De Kamp, D. V.: The Colorado wind-profiling network, Journal of

Atmospheric and Oceanic Technology, 1, 37–49, 1984.

Stull, R. B.: Meteorology for scientists and engineers: a technical companion book with Ahrens’ Meteorology Today, 2000.535

Teunissen, H. W.: Structure of mean winds and turbulence in the planetary boundary layer over rural terrain, Boundary-Layer Meteorology,

19, 187–221, 1980.

Theriault, K.: Incoherent multibeam Doppler current profiler performance: Part II–Spatial response, IEEE journal of oceanic engineering,

11, 16–25, 1986.

Thiébaut, M., Filipot, J.-F., Maisondieu, C., Damblans, G., Duarte, R., Droniou, E., Chaplain, N., and Guillou, S.: A comprehensive540

assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves, Energy, 191, 116 550, 2020.

Thiébaut, M., Quillien, N., Maison, A., Gaborieau, H., Ruiz, N., MacKenzie, S., Connor, G., and Filipot, J.-F.: Investigating the flow dynamics

and turbulence at a tidal-stream energy site in a highly energetic estuary, Renewable Energy, 195, 252–262, 2022.

Thiébaut, M., Thebault, N., Le Boulluec, M., Damblans, G., Maisondieu, C., Benzo, C., and Guinot, F.: Experimental Evaluation of the

Motion-Induced Effects for Turbulent Fluctuations Measurement on Floating Lidar Systems, Remote Sensing, 16, 1337, 2024a.545

Thiébaut, M., Vonta, L., Benzo, C., and Guinot, F.: Characterization of the offshore wind dynamics for wind energy production in the Gulf

of Lion, Western Mediterranean Sea, Wind Energy and Engineering Research, 1, 100 002, 2024b.

Thomson, J., Polagye, B., Durgesh, V., and Richmond, M. C.: Measurements of turbulence at two tidal energy sites in Puget Sound, WA,

Oceanic Engineering, IEEE Journal of Oceanic Engineering, 37, 363–374, 2012.

Tieleman, H. W.: Universality of velocity spectra, Journal of Wind Engineering and Industrial Aerodynamics, 56, 55–69, 1995.550

Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified

periodograms, IEEE Transactions on audio and electroacoustics, 15, 70–73, 1967.

Wildmann, N., Bodini, N., Lundquist, J. K., Bariteau, L., and Wagner, J.: Estimation of turbulence dissipation rate from Doppler wind lidars

and in situ instrumentation for the Perdigão 2017 campaign, Atmospheric Measurement Techniques, 12, 6401–6423, 2019.

Wilson, D. A.: Doppler radar studies of boundary layer wind profile and turbulence in snow conditions, 1970.555

24


