
S1 Problem settings
We consider a resolution cell of the lidar. The origin of the coordinate frame is located at the
center of the resolution cell. The mean wind U is blowing in the x direction, with strength
U . The beam pointing vector is b, and assumed uniform over the sampling volume (the beam
divergence is neglected). The weighting in the along-beam direction is Gaussian with width
σl, and Gaussian in the cross-beam direction with width σr. The instrument averages for ∆t
seconds every Tb seconds. The instantaneous wind velocity is v(x, t). According to the frozen-
turbulence hypothesis, v(x, t) = v(x−Ut).
Altogether, output sample number n can be expressed as:

vn =
1

∆t

∫∫∫ ∫ nTb+∆t/2

nTb−∆t/2

b · v(x, t)W (x) dx dt (S1)

=
b

∆t(2π)3/2σlσ2
r

·
∫∫∫ ∫ nTb+∆t/2

nTb−∆t/2

v(x, t)e
− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dt (S2)

Our aim is to compute the transfer function of the filtering effect induced by the instrument
acquisition timing and geometry. What is the size of the flow structures that are adequately
sampled by the instrument? In this contribution we consider only the filtering effect of averaging
over the sampling volume and interval. A more in-depth study definitely should consider the
effect of measurement noise caused by physical effects such as detector noise, speckle noise, or
backscattering material concentration variations within the sampling volume. Consideration of
these effects would require a lot of information from the instrument manufacturer and is left for
future work.

We introduce the spatial Fourier transform of the wind velocity

v(x, t) =
1

(2π)3

∫∫∫
eik·(x−Ut)v̂(k)dk. (S3)

An ideal instrument providing perfectly pointwise and instantaneous measurements of the wind
velocity at the sampling volume center would provide:

videaln =
b

(2π)3
·
∫∫∫

v̂(k)e−ik·UnTbdk. (S4)

Due to the finite sampling volume size and finite observation interval, however, the real instru-
ment provides

vn =
b

∆t(2π)9/2σlσ2
r

·
∫∫∫

v̂(k)e−ik·UnTb

∫∫∫ ∫ ∆t/2

−∆t/2

eik·(x−Ut)e
− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dt dk.

(S5)

This can be seen as the result of the action on the true velocity field of a spectral-domain filtering
operator

vn =
b

(2π)3
·
∫∫∫

v̂(k)e−ik·UnTb H(k) dk, (S6)

with transfer function

H(k) =
1

∆t(2π)3/2σlσ2
r

∫∫∫ ∫ ∆t/2

−∆t/2

eik·(x−Ut)e
− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dt. (S7)
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S2 Evaluation of the transfer function
The temporal windowing effect is easily computed.

H(k) =
1

∆t(2π)3/2σlσ2
r

∫∫∫
eik·xe

− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dk

∫ ∆t/2

−∆t/2

e−ik·Utdt (S8)

=
1

∆t(2π)3/2σlσ2
r

∫∫∫
eik·xe

− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dk

[
eik·Ut

ik ·U

]∆t/2

−∆t/2

(S9)

=
1

(2π)3/2σlσ2
r

sinc

(
∆t

2
k ·U

)∫∫∫
eik·xe

− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx dk (S10)

The spatial filtering effect requires the computation of a Gaussian integral over 3-dimensional
space. The eigenvectors and eigenvalues of the matrix characterizing the weighting pattern, M,
are known to be b, with eigenvalue σ2

l , and any pair of vectors orthogonal to b, with eigenvalues
σ2
r . The computation then proceeds as follows:

W (k) =

∫∫∫
eik·xe

− (x·b)2

2σ2
l

− ∥x∥2−(x·b)2

2σ2
r dx (S11)

=

∫∫∫
eik·xe−

xTMx
2 dx (S12)

=

∫∫∫
e−

xTMx−2ik·x
2 dx (S13)

=

∫∫∫
e−

(x−iM−1k)TM(x−iM−1k)+kTM−1k
2 dx (S14)

= e−
kTM−1k

2

∫∫∫
e−

(x−iM−1k)TM(x−iM−1k)
2 dx (S15)

= e−
kTM−1k

2

∫∫∫
e−

xTMx
2 dx (S16)

= (2π)3/2
√

| det(M)|e−
kTM−1k

2 . (S17)

The final result is obtained as

H(k) = sinc

(
∆t

2
k ·U

)
e−

σ2
l (k·b)2+σ2

r (∥k∥
2−(k·b)2)

2 , (S18)

and the squared modulus of the transfer function is

|H|2(k) = sinc2
(
∆t

2
k ·U

)
e−[σ

2
l (k·b)

2+σ2
r(∥k∥2−(k·b)2)] (S19)

S3 Discussion
A number of comments are in order at this point:

• The measurement value is the result of a space-time filtering of the wind velocity field
projection along the measurement direction.

• The transfer function includes a part due to time-averaging (the sinc2 term) and a part due
to space-averaging (the Gaussian kernel).
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• The time-filtering effect is anisotropic, and the “master direction” is the direction pointed
by U. The structures in the wind field that have a wavelength smaller than π∆tU in the
along-wind direction are filtered out.

• The space-filtering effect due to the weighting by the beam is also anisotropic. There
the “master direction” is set by the beam pointing vector. Inspection of the Gaussian
kernel reveals that structures in the wind field that have a wavelength smaller than σl in
the along-beam direction are attenuated, and that so are structures that have a wavelength
smaller than σr in the cross-beam direction. But such structures would be so small that
this filtering effect is in fact inconsequential.

• Overall, the effective transfer function is thus:

|H|2(k) = sinc2
(
∆t

2
k ·U

)
e−σ2

l (k·b)
2

. (S20)

• Finally, the wavevector domain that is unaffected by the filter is the intersection of a slice
perpendicular to the direction of U, keeping the structures that are longer than π∆tU , and
a slice perpendicular to the direction of b, with all the structures that are longer than σl.

- Plots of the different factors are shown below in Fig. S1.
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Figure S1: Transfer function factors in the case of a LIDAR averaging during 1 s, pointing at
28° angle from zenith in the plane of a 10m · s−1 wind, with a bin length of 20m and a beam
radius of 1 cm. Top row, left: transfer function contribution associated to the time-averaging.
top row, right: transfer function factor associated to the along-beam filtering effect. Bottom
row, left: transfer function contribution associated to the cross-beam filtering effect (see very
different color scale). Bottom row, right: complete transfer function.
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