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Abstract. This study separately investigates the impact of an enhanced sampling rate and reduced probe length on turbulent

measurements using the Vaisala WindCube v2.1 lidar profiler, in comparison to the commercially configured WindCube v2.1.

In the first experiment, a tailored lidar sampled four times faster than the standard setup. In the second experiment, a tailored

lidar employed a 15 m probe length, compared to the commercial configuration’s 23 m. The study offers a detailed analysis

of how these changes affect various aspects of wind measurement, including mean wind speed, standard deviation, velocity5

spectra, noise level, integral length scale, and dissipation rate. Increasing the sampling rate improves turbulence measurement

without affecting mean wind speed measurement. However, a slight reduction in data availability was observed compared to the

commercial configuration. Reducing the probe length results in higher standard deviation values compared to the commercial

configuration, but this comes at the expense of increased noise levels, making it unclear whether the higher standard deviations

are due to the energy of smaller eddies or noise. Additionally, the reduced probe length configuration exhibited a high bias10

in mean wind speed measurement and had a limited impact on other turbulence metrics. These findings suggest that the best

improvement for turbulence measurement with the WindCube lidar profiler is achieved through an increased sampling rate.

1 Introduction

Accurate turbulence data enables better understanding and control of wind flow patterns, optimizing the design, operation, and

maintenance of wind energy systems. Furthermore, turbulence measurement plays a pivotal role in addressing key challenges15

within the wind energy sector. It aids in enhancing the efficiency and safety of wind turbine operations, minimizing wear and

tear on vital components, and extending the lifespan of these costly assets. Additionally, improved turbulence measurement

can facilitate more precise wind resource assessments, aiding in site selection and the overall planning of wind energy projects.

In the wind energy sector, the utilization of wind lidar profiler technology has gained significant traction in recent years,

supplanting the traditional meteorological mast equipped with in-situ sensors like cup or sonic anemometers as the standard20

means of measuring key mean wind properties, such as speed and direction. Lidar profilers present compelling advantages,

including the potential for cost reduction compared to meteorological masts and the capacity to measure at similar or even

greater heights above the ground.
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Measurement methods used by lidar profiler are fundamentally different than those used by cup or sonic anemometers.

Anemometers provide an estimate of the wind speed across a volume of few cubic centimeters whereas lidars provide an25

average across a probe volume of up to several dozen cubic meters. Lidars can be categorized according to their emission

waveform, i.e., pulsed or continuous, and measuring technique, i.e., Doppler beam swinging (DBS) (Strauch et al., 1984) or

velocity-azimuth display (VAD) (Browning and Wexler, 1968).

However, lidar profilers have yet to garner widespread acceptance for turbulence measurement, which remains a focal point

of ongoing research. In contrast to turbulence data derived from reference instruments such as sonic anemometers, turbu-30

lence data derived from lidar profiler measurements suffer from systematic errors induced by, (i), the inter-beam effect, also

known as the cross-contamination effect, (ii), the intra-beam effect, i.e, the averaging effect of the probe volume, (iii), low

sampling rate and, (iv), noise. The inter-beam effect can lead to either underestimation or overestimation of turbulence metrics

(Kelberlau and Mann, 2020). This discrepancy arises from the modulation of energy associated with eddies characterized by

specific wavenumbers. The intra-beam effect is a consequence of the probe length, effectively acting as a low-pass filter. This35

phenomenon stems from the filtering out of eddies that fall beneath the size threshold set by the probe length, generating

underestimation of turbulence metrics.

Lidar profilers require several seconds to complete a full scanning circle, resulting in a low sampling rate that causes discrep-

ancies between turbulence measurements taken by anemometers and those by lidar profilers (e.g., Peña et al., 2009). Turbulent

motion scales can vary from milliseconds to hours and from centimeters to kilometers (e.g., Stull, 2000), but lidars are limited40

to measuring turbulent motions with timescales of seconds and spatial scales of tens of meters. However, wind turbine compo-

nents are influenced by various scales of turbulent structures, making it crucial to detect a broad range of smaller turbulence

scales.

The concept of measuring turbulence using remote sensing instruments has gradually evolved since the early works in radar

meteorology by Lhermitte (1962) and Browning and Wexler (1968). Lhermitte (1969) was the first to propose a method for45

inferring turbulence by analyzing the variance of radial velocity measurements through VAD scanning. Following this, Wilson

(1970) conducted pioneering experiments using a pulsed Doppler radar to detect turbulence within the convective boundary

layer (0.1-1.3 km). However, these early measurements were limited to turbulence scales larger than the pulse volume and

smaller than the scanning circle, and no validation against reference instruments was performed, questioning their reliability.

Kropfli (1986) expanded Wilson’s approach to capture turbulence scales larger than the scanning circle by integrating data50

from multiple scans. Although initially developed for Doppler radar, these methods were later adapted for Doppler lidar.

Eberhard et al. (1989) were the first to apply Wilson’s and Kropfli’s methods using lidar, and Gal-Chen et al. (1992) further

refined the technique with a different scanning configuration. Despite these advancements, the significant probe length (around

100 m) limited studies to the convective boundary layer due to considerable probe volume averaging, especially near the

ground. To address this limitation, research shifted towards understanding and mitigating probe volume averaging effects (e.g.,55

Smalikho et al., 2005; Mann et al., 2010; Branlard et al., 2013). Nowadays, modern lidar systems have reduced probe lengths

to about 30 m, but averaging effects still pose challenges for turbulence measurements in the surface layer where wind turbines

operate (e.g., Mann et al., 2009; Sjöholm et al., 2009; Sathe et al., 2011; Sathe and Mann, 2012).
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Considering the pivotal role of turbulence measurement in wind energy applications, the past decade has seen significant

advancements in the development and customization of wind lidar technology. Notably, a study by Sathe et al. (2015) proposed60

a novel six-beam method for measuring turbulence using a Vaisala pulsed lidar Windcube 200. This method involves capturing

line-of-sight (LOS) velocity fluctuations at five equally spaced azimuth angles along the base of a scanning cone and a sixth

measurement at the center of the scanning circle using a vertical beam at the same height. When compared to the traditional

VAD method, which often results in significant averaging effects on measured turbulence, the six-beam approach offers im-

proved accuracy. Specifically, the six-beam method was found to measure 85-101% of the reference turbulence indicated by65

a cup anemometer, whereas the VAD method measured only 66-87% of the reference turbulence, depending on atmospheric

stability and the wind field component.

The present paper aligns with this trajectory, as it delves into the specific advancements pertaining to the Vaisala WindCube

v2.1 lidar profiler. Two key modifications are explored: first, an augmentation of the sampling rate, and second, a reduction in

the probe length. These customizations are individually evaluated for their impact on the measurement of mean wind statistics70

such as the mea, wind speed and turbulent metrics such as the standard deviation of wind velocity, the velocity spectra, the

vertical integral length scale and the dissipation rate. The impact of noise on both modifications is also evaluated. Notably, this

study does not address the combined effects of both modifications.

2 Data and methods

2.1 Modifications to the WindCube v2.1 lidar system75

2.1.1 Increased sampling rate

The WindCube v2.1 lidar profiler employs a DBS technique for measuring wind speed. This technique involves the use of

an optical switch to alternately direct the lidar beam in the four cardinal directions (north, east, south, and west), each at an

inclination angle of 28° from the vertical. Subsequently, the beam is directed vertically upwards, providing measurements from

a total of five distinct positions (Fig. 1a). In its standard commercial configuration, the WindCube lidar collects data at each80

location in 1 second and steers the beam to the next location. This process completes a full DBS scan in 4 seconds, resulting in

a sampling rate of 0.25 Hz for LOS velocity and 1 Hz for wind speed.

These frequencies are well-suited to capture turbulent structures with dimensions of 100 m and beyond. However, it’s worth

noting that wind turbine components are affected by turbulent structures across various scales. As a result, it becomes essential

to increase the lidar profiler’s sampling rate to encompass a more comprehensive velocity spectrum, enabling the capture of85

turbulence structures at smaller scales that also impact wind turbine components.

In response to the demand for increased sampling rate, we have engineered a tailored iteration of the WindCube v2.1.

This enhanced version operates four times faster, providing a LOS velocity and wind speed sampling rate of 1 Hz and 4 Hz

respectively. This improvement was achieved by reducing the accumulation time for data collection from each beam by 70%, in
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Figure 1. Schematic illustration of inter and intra-beam filtering effects in WindCube v2.1 lidar profiler measurement process. The blue

cylinder represents a probe with dimensions matching the commercial lidar configuration.

conjunction with a corresponding 70% reduction in the number of transmitted pulses. Please note that specific details regarding90

the accumulation time and pulse count cannot be disclosed publicly.

The dataset used to assess the impact of the increased sampling rate on the measurement of turbulent fluctuations encom-

passes a 47-day period, split into 2256 30-min subsets, spanning two time intervals: from November 12 to November 25, 2021,

and from December 7, 2021, to January 10, 2022. During this campaign, lidar measurements were recorded at ten different

heights ranging from 40 to 200 m above ground level. This measurement campaign was conducted as part of the lidar test95

verification performance at the Janneby site, Germany, overseen by DNV-GL. The commercial lidar configuration and a proto-

type version with an enhanced sampling rate, positioned approximately 14 m apart, were tested against a meteorological mast

equipped with cup and sonic anemometers. Both configurations successfully passed the test. Please note that this paper does

not discuss the measurements obtained from the anemometers.

2.1.2 Reduced probe length100

The intra-beam filtering effect (Fig. 1) is a result of the probe length, which effectively acts as a low-pass filter by selectively

attenuating eddies smaller than the probe length. This phenomenon occurs because it filters out eddies smaller than the size

threshold defined by the probe length, denoted as ∆z (with units of length). The pulse length (with units of time), T , determines

the probe length, and in the case of the WindCube v2.1 lidar, multiple pulses are sent into the atmosphere. Each pulse occupies

a volume in the atmosphere at time t, defined by ∆z = cT/2, where c represents the speed of light (Fig. 2).105

In its standard commercial configuration, the WindCube v2.1 measures LOS velocity within a probe of approximately 23 m

(Fig. 1). This corresponds to a certain Transistor-Transistor Logic (TTL) pulse duration, the specific value of which cannot be
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Figure 2. Length, ∆z, of the probe is expressed as a function of pulse length, T , and speed of light, c.

publicly disclosed. The tailored version of the WindCube v2.1 lidar features a 50% reduction in pulse duration, leading to a

reduction in the probe length from 23 m to 15 m.

The dataset used to evaluate the impact of the reduced probe length on the measurement of turbulent fluctuations spans110

4 days, from May 31, 15:00 (UTC 0) to June 04, 15:00 (UTC 0), 2023, divided into 240 30-minute subsets. Throughout

this observational campaign, both the commercial and tailored lidar systems, separated by less than 1 m, collected data at

ten distinct heights, ranging from 40 m to 200 m above the lidar instruments. These measurements were conducted on the

experimental terrace, located atop the Vaisala office in Saclay, France. The commercial lidar was a "Golden Lidar", meaning it

is a reference lidar that has been verified against an IEC-compliant met mast by a third party.115

2.2 Evaluation metrics

Our investigation is centered around evaluating the impact of two key enhancements on the WindCube v2.1 lidar profiler:

(1) increasing the sampling rate and (2) reducing the probe length. We conduct two distinct measurement campaigns, each

focusing on a single enhancement at a time. To establish a baseline, we gather wind speed and turbulence measurements using

the commercially configured WindCube v2.1 system. These initial measurements serve as a reference point against which we120

can effectively assess the effects of the enhancements in both increased sampling rate and reduced probe length.

Our study commences by analyzing the effects of the lidar enhancements on the 10-minute average wind speed, U , and data

availability. Subsequently, we shift our focus to turbulence analysis, derived from 30-minute subsets of data.

2.2.1 Standard deviation

In this study, we focus on analyzing velocity fluctuations as the primary turbulence metric, quantified through the calculation125

of standard deviation. Assessing the standard deviation of wind velocity fluctuations is essential in wind energy applications.
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It offers insights into turbulence intensity, aids in estimating dynamic loads on turbine components, enhances power prediction

models, informs turbine control strategies, and supports site assessment for optimal wind farm development and operation.

The standard deviation of the mean velocity along and across the wind propagation, denoted as σu and σv respectively were

quantified in this study. To achieve this, we first rotate the velocity measured along the lidar’s x-axis, denoted as Vx and aligned130

with true North, such that the mean velocity along the y-axis, noted as Vy , becomes 0. The wind velocity along the x-axis is

then aligned with the 30-minute mean wind direction. The expressions for Vx and Vy are given by Eq. 1 and 2:

Vx =
b3− b1

2 sinϕ
(1)

Vy =
b4− b2

2 sinϕ
(2)

Here, ϕ = 28° represents the zenith angle, and bi denotes the LOS velocity measured by each beam i, with positive velocity135

directed towards the instrument.

Furthermore, we investigate the standard deviation, σ5, of the mean vertical velocity, through direct measurement of the

vertical component of the wind speed provided by beam 5.

2.2.2 Integral length scale

Understanding the integral length scale helps in quantifying the spatial extent of turbulence within a wind field. This informa-140

tion is essential for assessing the potential impact of turbulence on the performance and structural integrity of wind turbines.

Moreover, integral length scale data is often used as input for turbulence models employed in wind energy simulations. These

models help predict wind turbine loads, fatigue, and power output by accounting for the effects of turbulence on the flow field.

The 5-beam configuration of the WindCube v2.1 lidar enables the computation of the vertical integral length scale, denoted

as Lw, propagating along the horizontal flow trajectory, through direct measurements of the vertical velocity by beam 5.145

However, quantifying the along and across-wind integral length scales, i.e., Lu and Lv respectively, requires wind alignment

with one pair of opposite beams.

The integral length scale, Lj , associated with the direction j can be estimated by calculating the integral timescale, Λj . The

latter serves as a measure of the duration during which the largest eddies maintain correlation. For each 30-minute interval, Λj

is computed from a temporal autocorrelation function, Rjj(τ), integrated over time from τ = 0 to the first instance of Rjj = 0150

(e.g., Tritton, 2012). For the example of the vertical wind component, the integral timescale, Λw, is given by:

Λw =

τ [Rww(τ)=0]∫

τ=0

Rww(τ)dτ (3)

with the temporal autocorrelation function defined as:
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Rww(τ) =
R [b′5(t), b

′
5(t + τ)]

σ2
b5

(4)

where the prime denotes a fluctuation from the mean. The integral length scale, Lw, is estimated by invoking Taylor’s frozen155

turbulence hypothesis:

Lw = ΛwU (5)

2.2.3 Velocity spectra

Power spectral density of the velocity, i.e., the velocity spectra, provide valuable information about the distribution of turbulent

kinetic energy across different scales of motion within the wind flow. This understanding helps in characterizing turbulence160

and its effects on wind turbine performance and structural loads.

Velocity spectra were computed using Welch’s method (Welch, 1967). This method computes an estimate of the spectrum

by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the peri-

odograms. The Hann window with 50% overlap was applied to each segment to reduce spectral leakage and improve frequency

resolution. The 50% overlap is a reasonable trade off between accurately estimating the signal power, while not over counting165

any of the data.

Velocity spectra S5(f), of the LOS velocities measured by beam 5 were computed for each 30-min subsets. The spectra

were fitted by a parametric expression (Teunissen, 1980; Olesen et al., 1984; Tieleman, 1995) in the frequency domain f , to

which we add a component N5 associated with the power spectral density of noise of the LOS velocity measured by beam 5

(see section 2.2.4):170

S5(f) =
m

(1 +nf)β
+ N5 (6)

The coefficient m primarily controls the vertical scaling or amplitude of the spectum whereas n influences the rate at which

the function decays as f increases. The exponent β determined the shape of the spectrum.

2.2.4 Noise

Doppler noise is a critical factor in the spectral analysis of velocity time series. This type of noise arises from random fluctua-175

tions in the frequency of a signal due to the relative motion between the source and the observer. In the spectrum of a velocity

time series, Doppler noise typically manifests as a flattening of the spectrum at higher frequencies, indicating a white noise

characteristic that contributes equally across these frequencies (e.g., Thomson et al., 2012; Durgesh et al., 2014; Guerra and

Thomson, 2017; McMillan and Hay, 2017; Thiébaut et al., 2020a). At lower frequencies, the spectrum is usually dominated by

the actual signal, which may show a characteristic decay or specific features related to the physical process being measured,180

such as turbulence. As frequency increases, the influence of Doppler noise becomes more prominent, leading to a flattened

spectral region where the noise dominates.
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In Eq. 6, N5 represents the constant Doppler noise level, which contributes to the spectral flattening observed at higher

frequencies. This understanding is particularly important in the context of turbulence measurement, where accurately distin-

guishing between the actual turbulent signal and noise is crucial for comprehending the dynamics and energy distribution185

within a turbulent flow. Doppler noise can obscure the true signal at higher frequencies, complicating the analysis and po-

tentially leading to erroneous conclusions if not properly accounted for. Failure to account for this noise can result in an

overestimation of turbulence metrics such as the dissipation rate (Bodini et al., 2018). The variance of the noise depends on the

technical characteristics of the device measuring the velocity, such as Nyquist velocity, the signal spectral width, the number

of pulses and points per range gate, and the signal-to-noise ratio. Theoretical expressions for the variance of this noise can be190

derived and subsequently removed from the computed turbulence metrics to improve accuracy (O’Connor et al., 2010; Bodini

et al., 2018, 2019; Wildmann et al., 2019). However, the technical specifications of lidar profilers are no longer openly shared

with users, making it impossible to evaluate this noise theoretically. Therefore, it is necessary to determine this noise using a

spectral approach, such as the one presented in this paper.

2.2.5 Dissipation rate195

The dissipation rate, ε, quantifies the rate at which turbulent kinetic energy is converted into thermal energy within the atmo-

sphere. Measuring dissipation is crucial for validating atmospheric circulation models, which are essential for accurate wind

resource assessments. By providing detailed information about turbulence within the wind flow, the dissipation rate helps im-

prove the precision of these models. This leads to better predictions of wind patterns and energy potential, ultimately enhancing

the planning and optimization of wind farms.200

The characterization requires the identification of the inertial subrange of turbulence, i.e., the range of scales within a

turbulent flow where energy cascades from larger to smaller eddies without significant loss to viscosity. In the context of

three-dimensional turbulence, the spectrum, S(k), in the inertial subrange is often described by Kolmogorov’s -5/3 law and is

proportional to k−5/3, where k is the wavenumber, inversely proportional to the size of the eddies. This scaling indicates that

the energy density decreases with increasing wavenumber (or decreasing eddy size) in a predictable manner. The spectrum,205

S5(k), of the vertical velocity measured directly by beam 5 can be related to the dissipation rate as follows:

S5(k) = Cwε2/3k−5/3 + N̂5 (7)

with Cw = 0.69 is the universal Kolmogorov constant (Sreenivasan, 1995; Pope, 2000) and N̂5 the power spectral density of

noise in the wavenumber domain.

The transition wavelength λw between the inertial subrange and the outer scales can be expressed as a function of the integral210

scale Lw (Eq. 5) and the parameter µ:

λw =

[
5
3

√
µ2 +

6
5
µ + 1−

(
5
3
µ + 1

)]1/2µ
2π

Cw
Lw (8)

Where µ = 1.5 as proposed in several studies (e.g., Lothon et al., 2009; Tonttila et al., 2015; Bodini et al., 2018). These

values have been found to provide a good match to most of the observed spectra presented in these studies. Following the
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approach in Tonttila et al. (2015), one can estimate the timescale, tw, corresponding to this transition wavelength by dividing215

λw by the collocated wind speed, U . The transition frequency, fa, between the area of the outer scales of turbulence and the

inertial subrange, is then given by fa = 1/tw. Finally, the transition frequency, fb, between the inertial subrange and the noise-

dominated range is set to fb ≈ 0.8fN , where fN is the Nyquist frequency. This value of fb aligns with findings from other

studies that identify the noise-contaminated frequency domain in devices using the Doppler effect to measure flow velocity

(e.g., Frehlich, 2001; Bodini et al., 2018; Thiébaut et al., 2020b).220

From Eq. 7, one can deduce the dissipation rate by invoking Taylor’s ’frozen field hypothesis,’ which assumes that the

turbulence is in a steady state as it advects past the instrument, meaning it is neither developing nor decaying. Under this

assumption, one can transform spatial observations into temporal observation, using the relation f = Uk/2π. The dissipation

rate, ε, is thus given by (McMillan and Hay, 2017; Thiébaut et al., 2022):

ε =

(
C−1

w [S5(f)|fb

fa
−N5] f5/3

∣∣∣
fb

fa

(
2π

U

)5/3
)3/2

(9)225

This equation applies under the assumption that the inertial subrange follows the classic -5/3 slope. Computing the dissipation

rate from the vertical velocity measured directly by beam 5 of the WindCube v2.1 lidar involves a two-step process. The first

step is to determine the power spectral density of S5(f) between frequencies fa and fb. For this step, it is recommended to fit

the measured velocity spectrum using Eq. 6 with β = 5/3. However, it will be demonstrated in this paper that setting β to this

specific value has shown difficulties in accurately representing noise (see Section 3.3). Therefore, it is advisable to set N5 = 0230

for the computation of the mean power spectral density. In the second step, the power spectral density of noise, N5, is computed

by performing a second fitting where β is allowed to vary freely. This N5 is then subtracted from the mean spectral density of

S5(f) computed between fa and fb in the first step. This approach ensures that N5 accurately represents noise contributions

while allowing flexibility in β during the fitting process.

3 Results235

3.1 Data availability and mean wind speed

The first step when proposing enhancements to lidar technology is to evaluate their impact on data availability of the wind

vector. This evaluation was conducted at each measurement height for both enhancements proposed for the WindCube v2.1

lidar profiler. The reduction of probe length did not impact data availability, which remained close to 100% at each measurement

altitude for both the commercial and prototype configurations. However, increasing the sampling rate slightly affected data240

availability. The commercial configuration showed data availability ranging from 99.7% at the first measurement height to

93.2% at the last measurement height, whereas the prototype configuration showed data availability consistently lower by less

than 0.5%.

9

https://doi.org/10.5194/wes-2024-93
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



2 1 0 1 2 3 4
Relative error (%)

40

60

80

100

120

140

160

180

200
He

ig
ht

 (m
)

a

0.1 0.0 0.1 0.2
Bias (m/s)

40

60

80

100

120

140

160

180

200 b

Increased sampling rate Reduced probe length

Figure 3. Relative error (a) and bias (b) in mean wind speed measurements of the prototype lidars involving an increase in the sampling

rate (solid line) and a reduction in the probe length (dashed line), compared to the mean wind speed measured by a commercial lidar, which

serves as the reference measurement.

Next, the effectiveness of the prototype configurations was evaluated by testing their ability to measure wind speed aver-

aged over a 10-minute interval. To pass the "Best Practice" standard, a lidar profiler has to demonstrate mean wind speed245

measurements that differ by no more than ± 1% from the mean wind speed measured by a reference measurement, such as a

cup anemometer (International Electronical Commission, 2017). An absolute difference between 1% and 1.5% is considered

acceptable under the "Minimum Practice" standard. If the absolute difference exceeds 1.5%, the lidar cannot be certified for

mean wind speed measurement.

Here, the mean wind speed measured by the first prototype lidar involving an increase of sampling rate and the second250

prototype lidar involving a reduction of the probe length was compared to mean wind speed measured by a commercial

lidar serving as reference measurement. The mean relative error and the bias were calculated at each measurement height.

Fig. 3 illustrates that an increase in the sampling rate leads to a systematic underestimation of the mean wind speed. This

underestimation is nearly constant across different altitudes, averaging 1.3%, which corresponds to a bias of approximately 0.1

m/s. Conversely, reducing the probe length results in a systematic overestimation of the mean wind speed. This overestimation255

manifests in two distinct patterns: above 100 m, where the prototype lidar overestimates the mean wind speed by an average of

0.5%, and below 100 m, where a significant overestimation occurs, peaking at over 4% resulting in a bias of 0.2 m/s, observed

at the first measurement level, 40 m above the ground.

The bias in mean wind speed measurements associated with a reduced probe length is illustrated in Fig. 4. The goal is to

identify potential parameters that could influence this high bias at lower altitudes. Fig. 4a shows that wind speed does not260
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Figure 4. Bias variation in mean wind speed measurement: comparison by mean wind speed (a) and CNR (b).

influence the bias. Although the lowest wind speed at 40 m could explain the high bias (i.e., more than 0.4 m/s), this does not

hold, as similar mean wind speeds were measured at higher altitudes with less than half the bias. The carrier-to-noise ratio

(CNR), an output data of the lidar, was also investigated as a potential source of bias (Fig. 4b). Despite the significantly higher

bias at 40 m compared to that at 160 m, similar CNR values were recorded at both 40 m and 160 m above the ground.

3.2 Standard deviation265

Estimates of the standard deviation measured by the prototype lidars compared to those computed from the commercial lidars

are presented in Fig. 5. The regression analysis showed linear relationships with slopes ranging from 0.9 to 1.022 and positive

intercepts, all with R2 values consistently above 0.9. Both the mean and median of the standard deviations were systematically

higher for the increased sampling rate and reduced probe length configurations. Specifically, the mean standard deviation

of the along-wind, cross-wind, and vertical velocities for the increased sampling rate configuration was between 3.5% and270

6.3% higher than those from the commercial configuration (Fig. 5a). For the reduced probe length configuration, the mean

standard deviation was between 0.3% (for along-wind velocity) and 3.4% higher (Fig. 5b). Additionally, the interquartiles

of the standard deviation provided by the prototype configurations were consistently higher than those from the commercial

configuration, indicating greater variability and sensitivity in the measurements. Furthermore, the vertical evolution of the mean

standard deviation showed that both modifications resulted in higher standard deviations at each altitude, with the discrepancy275

from the commercial configuration increasing with height (Fig. 7). Notably, the gaps were more than twice as large at the

highest measurement altitude compared to the lowest.

3.3 Velocity spectra

The analysis of LOS velocities obtained from beam 5 involved computational fitting using a parametric expression (Eq. 6).

Various weighting schemes were systematically explored to enhance fitting accuracy and minimize errors relative to the mea-280

sured spectra. Assessing the fitting accuracy included comparing the variance, denoted as σ2
5 , obtained from the integrated

fitted spectra with the measured spectra, and calculating their absolute relative differences. Fig. 8 illustrates an example of the
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Figure 5. Standard deviation, σ, of the along (u), cross (v), and vertical (b5) velocity components computed from prototype lidar measure-

ments with increased sampling rate (panels a, b, c) and reduced probe length (panels d, e, f) compared to standard deviations derived from

commercial lidars measurements.
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Figure 6. Boxplots of the standard deviation of the vertical (σ5), along-wind (σu), and cross-wind (σv) velocities for the commercial (blue)

and prototype (orange) configurations. Panels (a) and (b) correspond to the studies on increased sampling rate and reduced probe length,

respectively. The medians are indicated by green lines, and the means are represented by red diamonds.

three weighting scheme applied to a measured spectrum. This iterative process was conducted across all lidar configurations,

yielding consistent results described hereafter.
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The fitted spectra closely matched in the low-frequency domain, approximately up to f = 0.1 Hz, but strong divergences285

were observed thereafter. The low frequencies weighted scheme produced a curve substantially below the measured spectra

at higher frequencies, whereas the unweighted scheme yielded a curve slightly above the measured spectra in this frequency

range. In contrast, the high frequencies weighted scheme provided a fit that closely matched the measured spectra across all

frequencies. The optimal weighting scheme, identified as the high-frequency weighted scheme, exhibited the lowest error.

For instance, when applied to the prototype lidar with an enhanced sampling rate, the mean variance was 0.232 m2/s2 for290

all integrated fitted spectra using the high-frequency weighted scheme, compared to 0.226 m2/s2 for all integrated measured

spectra. This results in an absolute error of 2.6%. Conversely, not employing any weighting during the fitting process resulted

in an absolute error between the mean variance nearly three higher, at 8.5%. Assigning weights to the low frequencies resulted
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Figure 7. Standard deviation, σ, of the along (u), cross (v), and vertical (b5) wind velocity components computed from prototype lidar

measurements with increased sampling rate (panels a, b, c) and reduced probe length (panels d, e, f) compared to standard deviations derived

from commercial lidars measurements.
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Figure 8. Individual LOS velocity spectrum (solid black) of the prototype lidar involving an increased sampling rate fitted with Eq. 6 with

three weighted schemes: unweighted fit (dashed green), low frequencies weighted fit (dashed red), and high frequencies weighted fit (dashed

blue).

Figure 9. Individual LOS velocity spectrum measured by the commercial lidar (blue curve) and prototype lidar (orange curve) with increased

sampling rate. The data is fitted using Eq. 6 with β = 19/3 (a) and β = 5/3 (b). The fit with β = 19/3 shows the smallest error.

in a mean absolute error exceeding six times that of the high-frequency weighted scheme, at 16.9%. Spectra derived from the

commercial configurations and the prototype configuration with a reduced probe length generated absolute errors that were295

found to be 15-20% higher than the error associated with the configuration using an increased sampling rate, regardless of the

weighting scheme used.

Theoretically, for fully developed turbulence, β in Eq. 6 should be equal to 5/3. After fitting the spectra using the optimal

weighting scheme, we sought instances where this exponent fell within the range of 5/3 ± 0.1. However, for any lidar configu-

ration, we could not achieve this condition. Instead, the median value of β for the experiment with increased sampling rate and300

reduced probe length was approximately 19/3 and 18/3 respectively, which is nearly four times the theoretical value. Examples

of fittings the same spectra with β = 19/3 and β = 5/3 are shown in Fig. 9.
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A general observation, particularly evident in this specific example, is that the fitting of spectra derived from the commercial

configuration measurements did not capture the flattened portion of the spectra characteristic of noise. Similar observations

were made for fittings applied to spectra from the prototype configuration with a reduced probe length (not shown). However,305

for the prototype lidar with an increased sampling rate (Fig. 9a), the flattened portion was clearly reproduced by the fitting.

Nonetheless, a general remark is that imposing β = 5/3 (Fig. 9b) for the fitting does not generally capture the noise portion

regardless of the lidar configuration.

For measurements performed by the prototype lidar with an enhanced sampling rate, imposing β = 5/3 during fitting with

the optimal scheme resulted in a mean variance of 0.235 m2/s2, which is 3.9% higher than the mean variance obtained from310

integrating the measured spectra. This compares to a 2.6% error when β was not imposed. A similar increase in error when

imposing β = 5/3, compared to not imposing it, was also observed in measurements from other lidar configurations.

3.4 Noise

The impact on noise level from modifying the WindCube lidar profiler technology, in terms of sampling rate and probe length,

has been evaluated by computing the interquartile ranges and mean. Fig. 10a shows that increasing the sampling rate signifi-315

cantly reduces both the interquartile ranges and the mean noise level compared to the commercial configuration. The prototype

configuration achieves a median noise level that is 2.3 times lower than the commercial version, while the mean noise level

is 4 times lower due to the high noise values within the upper 75% interquartile range. Conversely, reducing the probe length

increases the mean and interquartiles of noise level by a factor of 1.2.

3.5 Integral length scale320

A similar analysis was performed on the vertical integral length scale. Fig. 10b shows that reducing the probe length has

minimal impact on the computation of the integral length scale, with mean and median values differing by less than 1%

compared to the commercial configuration. However, the prototype configuration slightly reduces the upper 75% interquartile

range and above. Increasing the sampling rate, however, does affect the integral length scale computation. The prototype lidar

shows mean and median values that are 7% and 5% lower, respectively, than those given by the commercial configuration.325

Overall, all interquartile ranges were found to be lower with the prototype configuration.

3.6 Dissipation rate

Finally, the impact of modifying the WindCube lidar profiler technology on dissipation rate has been assessed. The dissipation

rate was derived from Eq. 9 using spectra fitted with β = 5/3 (Eq. 6). However, this equation is only valid when turbulence

is fully developed, i.e., when β is higher than 1 (e.g., Neuhaus et al., 2023). Example of individual spectra derived from the330

prototype configuration enhancing an increased sampling rate can be found in Fig. 11 for different values of β and thus different

turbulent regimes. Spectra with a β value lower than 1 were excluded from the analysis, resulting in the rejection of 3.4% and
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3.1% of the spectra for the experiments with increased sampling rate and reduced probe length, respectively. The rejected

spectra were associated with mean wind speed not exceeded 5.1 m/s.

The dissipation rate was computed by considering the power spectral density of noise, N5, resulting from fitting spectra with335

β as a free parameter, as fixing β = 5/3 often failed to properly identify the flat portion characteristic of noise in the spectra.

Neglecting the noise led to dissipation rate values that were, on average, 26% higher. Fig. 10c illustrates that increasing the
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Figure 10. Boxplots of the standard deviation of the spectral power density of noise level, N5 (a), vertical integral length scale, Lw (b), and

dissipation rate, ε (c), for the commercial (blue) and prototype (orange) configurations. The left-hand side of each figure shows results for

increased sampling rate, and the right-hand side shows results for reduced probe length.
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Figure 11. Individual LOS velocity spectra measured by beam 5 of the prototype lidar with an increased sampling rate for different turbulent

regimes associated with a β value (Eq. 6).

sampling rate resulted in a mean dissipation rate increase by a factor of 3.7 and a median increase by a factor of 4, while

reducing the probe length led to a mean dissipation rate increase by a factor of 1.2 and a median increase by a factor of 1.5.

4 Discussion340

4.1 Impact of increased sampling rate

The increased sampling rate in the modified lidar resulted in a systematic and slight reduction in data availability for the wind

vector and a slight underestimation of mean wind speed. The reduction in data availability cannot be conclusively attributed

to the increased sampling rate and, i.e., reduced accumulation time at each measurement position, as similar magnitudes of

reduction could be observed when comparing two commercial configurations. Moreover, although a very slight bias in mean345

wind speed was found to be relatively constant across different altitudes, it is a positive outcome that the increased sampling

rate does not significantly impact the measurement of mean wind speed.

In terms of turbulence measurement, the increased sampling rate configuration improved the overall accuracy of turbulence

metrics. The prototype configuration showed higher standard deviations for along-wind, cross-wind, and vertical wind veloc-

ities compared to the commercial configuration. This suggests a greater sensitivity to smaller-scale fluctuations, potentially350

providing a more detailed representation of turbulence.

Noise levels were significantly reduced with the increased sampling rate. This reduction in noise can be attributed to the

redistribution of noise along an extended frequency range, which allows for clearer differentiation between actual wind fluc-

tuations and measurement noise. A reduction in noise level can improve the reliability of detecting true turbulent fluctuations,
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thus enhancing the precision of turbulence measurements. The decrease in noise is a beneficial outcome, as it enhances the355

quality of the data collected, making it easier to distinguish between genuine turbulence and artifacts caused by noise.

The increased sampling rate also affected the integral length scale computation. The prototype lidar with an increased sam-

pling rate showed mean and median values for the integral length scale that were lower than those given by the commercial

configuration. The frequency associated with the integral length scale is linked to the peak of the energy spectrum or the

frequency at which a significant portion of the energy is contained. A too-low sampling rate might fail to identify this fre-360

quency, thereby missing the associated eddies. Consequently, for the commercial configuration, the integral length scale is

likely sometimes overestimated, as the real energy peak might not be captured, resulting in integral length scale values that

do not accurately represent the true turbulence scale. Increasing the sampling rate with the prototype configuration will reduce

the number of cases where this peak is not identified. However, it does not guarantee that the new sampling rate will always

capture the part of the spectrum with the most energy. Nonetheless, it is likely to provide values closer to reality compared to365

the commercial lidar configuration.

The increased sampling rate also demonstrated an improvement in fitting velocity spectra with a parametric expression. The

error, computed in terms of variance derived from the measured spectra and associated fitted spectra, was found to be up to

20% lower than that of the commercial configurations and the configuration with a reduced probe length. This improvement

directly impacts the calculation of the dissipation rate deduced from the fitted spectra. The dissipation rate computed from the370

configuration with the increased sampling rate was found to be up to four times higher than that derived from the commercial

configuration. This is because the prototype configuration captures an extended inertial subrange, resulting in more accurate

values of the dissipation rate.

4.2 Impact of reduced probe length

The reduced probe length did not impact the data availability of the wind vector but led to an overestimation of mean wind375

speed, with significant bias particularly pronounced at lower altitudes. This overestimation, which peaks at over 4% at 40 m

above the ground, indicates that while a shorter probe length may improve the resolution of smaller-scale eddies, it introduces

substantial inaccuracies in mean wind speed measurements. This bias does not correlate with wind speed or CNR, suggesting

that other factors related to probe length and measurement volume may be influencing these discrepancies.

In terms of turbulence measurement, the reduced probe length configuration also exhibited higher standard deviations,380

though to a lesser extent than the increased sampling rate configuration. This points to a potential improved sensitivity to

smaller eddies, but with the trade-off of introducing more noise into the measurements. The increased noise levels indicate

that while the shorter probe length might enhance the capture of smaller-scale fluctuations, it does so at the cost of increased

measurement noise, potentially complicating the interpretation of turbulence data.

However, the reduced probe length had minimal impact on the integral length scale, with mean and median values differing385

by less than 1% from the commercial configuration. This lack of impact is expected, as the probe length of the commercial lidar

is 23 m and that of the prototype lidar is 15 m, both of which are much smaller than the integral length scale of the turbulence

being measured. Consequently, the modification of the probe length does not affect the measurement of large eddies.
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Reducing the probe length was expected to enhance the representation of the inertial subrange, as the probe length of the

commercial and prototype configurations directly influences turbulence length scales within this range. However, it was found390

that, on average, the slope of the spectra, which is supposed to manifest the energy cascade of the inertial subrange, remained

similar for both configurations.

5 Conclusion

This study investigates potential modifications to the WindCube v2.1 lidar profiler - specifically, increased sampling rate and

reduced probe length - to enhance turbulence measurement. The findings offer a detailed analysis of how these changes impact395

various wind measurement aspects, including mean wind speed, standard deviation, velocity spectra, noise level, integral length

scale, and dissipation rate.

The prototype configuration, with an increased sampling rate, samples four times faster than the commercial configuration.

This enhancement improves turbulence measurement without affecting mean wind speed measurement. However, a slight

reduction in data availability was observed compared to the commercial configuration. Despite this, the reduction is minimal400

enough to allow for further exploration of increased sampling rates to enhance turbulence measurement. Nonetheless, the

potential for further increasing the sampling rate is very limited. The prototype configuration already involves a 70% reduction

in accumulation time at each LOS measurement position, and further reductions could significantly impact the accuracy of

mean wind statistics, which is the primary objective of wind lidar profiler.

The reduced probe length, which entails a 50% reduction in pulse duration compared to the commercial configuration, did405

not show similar improvements in turbulence measurement. While improvements in turbulent fluctuations were comparable

to those achieved with the increased sampling rate, they came at the expense of increased noise levels. This makes it unclear

whether the higher standard deviations are due to the energy of smaller eddies or noise. Moreover, the reduced probe length

configuration exhibited a high bias in mean wind speed measurement compared to the commercial configuration, which is a

significant issue for industrial-scale deployment. However, the data length for the reduced probe length experiment might be410

too short to draw definitive conclusions, necessitating a longer experiment for conclusive results.

Ideally, the optimal configuration for the WindCube lidar would involve both an increased sampling rate and a reduced

probe length, translating to reduced accumulation time with shorter pulse duration. Unfortunately, such a configuration would

likely result in poor data availability and questionable accuracy in mean wind statistics. Therefore, only one modification can

be effectively implemented in the WindCube lidar, with the increased sampling rate being the most promising for improving415

turbulence measurement without affecting mean wind speed measurement.
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