
Reply on RC1 – PDF Format  
• Detailed Comment 1:  

Figure 8 reports the output time series for the high-fidelity model and for the surrogate model. It 
can be seen on the figure that at t=0 h the charge power is positive and the discharge power is 
negative. One would expect the discharge power to be zero. Furthermore, the power output of the 
HPP is negative between t=2 and 4 h, assuming that the HPP is able to charge from the grid. These 
two points raise questions on the ability of the surrogate model to represent a valid storage model. 
Please expand the discussion of Figure 8 to include these considerations. 
  
Answer 1:  
The purpose of showing the time series in Figure 8 (now Figure 6) is to demonstrate the hourly 
performance of the surrogate. While the trends and fluctuations within the HPP output are well 
captured, the same cannot be said for the other time series. This highlights the ability of the 
surrogate to represent the HPP operation as a whole, but its inability to describe the hourly 
operation of each technology individually with high accuracy. These issues arise from the nature of 
the regressor; the FNN cannot inherently capture the physical constraints that multiple equations 
would typically enforce. Specifically, the FNN lacks explicit equations to govern its outputs. However, 
for this study, focusing primarily on the power output of the HPP is sufficient, as this is the only 
variable required in revenue calculation and subsequent profitability index evaluation. 
  
Changes in paper: 
Additional discussion is added in Section 6 to elaborate on that. l. 523-531 
“However, challenges persist, particularly in estimating battery charge and discharge profiles. As 
depicted in Fig. 5 and 6, this difficulty arises from the high-fidelity model's abrupt power output 
fluctuations and the intrinsic non-linearity of these variables. In particular, Fig. 6(c) and (d) highlight 
the surrogate's limitations in accurately and consistently representing the battery's hourly 
operation. In several time steps, the model shows the battery charging and discharging 
simultaneously, and at times, the charge and discharge power take on negative values, which is 
physically unrealistic. These issues stem from the nature of the regressor; the FNN cannot inherently 
capture the physical constraints that would typically be enforced by multiple equations. Specifically, 
the FNN lacks explicit equations to govern its outputs. However, for the purposes of this study, 
focusing primarily on the power output of the HPP is sufficient, as this is the only variable required 
in revenue calculation and subsequent PI evaluation.” 
  

• Detailed Comment 2:  
The story line of the paper focuses on the field of system integration of renewable energy and hybrid 
power plants. In order to fit better in the scope of Wind Energy Science, consider highlighting the 
relevance of this study for the field of wind energy in the introduction, discussion and conclusion of 
the manuscript. 
  
Answer:  
Additional text was added at the start of the introduction and discussion and at the end of the 
conclusion to highlight the study's relevance.  

 
• Detailed Comment 3: Motivation and research question: 

 
3.1:  
l. 37: “ The importance of a realistic EMS …” : it is unclear from the literature review what is the 
difference between a high- and low-fidelity model for the EMS. The manuscript provides an 



overview of different high-fidelity models used in the field but does not describe the low-fidelity 
ones. The following reference may be of interest in this context: 
Stanley, A. P. J., & King, J. (2022). Optimizing the physical design and layout of a resilient wind, solar, 
and storage hybrid power plant. Applied Energy, 317, 119139. 
https://doi.org/10.1016/j.apenergy.2022.119139 
  
Answer:  
To explain the differences between the High-Fidelity (HF) and LF (EMS), additional literature was 
added within the introduction (l. 59-77), and a new table was added: Table 1. Comparison of HF and 
LF EMS Models.  
 
“EMS models vary in complexity and computational demand, and for this article, we categorize them 
into high-fidelity (HF) and low-fidelity (LF) models. High-fidelity EMS models provide detailed and 
accurate representations of HPPs, capturing intricate system dynamics, precise component 
behaviors, and sophisticated market interactions. These models incorporate forecasting and real-
time data, comprehensive operational constraints, and optimize bidding strategies to maximize 
profits in electricity markets Taha et al., 2018; Zhu et al., 2024; Ochoa et al., 2022; Han and Hug, 
2020; Li and Qiu, 2016; Abdeltawab and Mohamed, 2015; Yang et al., 2018; Huang et al., 2021; Das 
et al., 2020. While HF EMS models offer high accuracy in estimating operational performance and 
financial outcomes, they require significant computational resources and time. For instance, Huand 
et al. (2021) develops a stochastic optimization-based HF EMS where solving the dispatch for one 
week of operation takes between 329 and 2,991 seconds, depending on the chosen optimization 
algorithm among five compared. Similarly, Li and Qiu (2016) present a deterministic HF EMS model 
that requires using a monthly time step to reduce simulation costs. 
 
In contrast, LF EMS models simplify the representation of HPP operations by using aggregated 
system models, basic forecasting methods (or none), and simplified market participation strategies  
(An et al., 2020; Luo et al., 2015; Cai et al., 2016; Zhang et al., 2018, 2017). They reduce 
computational demand by neglecting detailed component behaviors and operational constraints. 
Although they enable rapid simulations and are easier to integrate into optimization frameworks, 
their oversimplifications can lead to inaccuracies in revenue and cost estimations, potentially 
resulting in sub-optimal or erroneous sizing decisions. Table 1 provides an overview of the 
distinctions between HF and LF EMS models. Notably, there is no universally accepted standard for 
defining these classifications, so the table serves as a guideline based on key characteristics relevant 
to this study.” 

https://doi.org/10.1016/j.apenergy.2022.119139


 
3.2:  
Table 1 reports that 1000 “iterations [are] required to find [a] refined solution”. Please put this 
number in context with the literature. Is it characteristic of HPP sizing problems to require a large 
number of iterations to converge? 
  
Answer:  
The short answer is that from previous work that authors are familiar with (Leon et al., 2024), we 
need to evaluate hundreds of different sizes to reach an optimal sizing. 
  
Changes in Paper: 
The previous Table 1 is now removed and replaced with another table, Table 1. Comparison of HF 
and LF EMS Models. Instead, we provide more details on the sizing problem in the introduction l. 
78-100. 
 
“The trade-off between computational efficiency and model accuracy presents a significant 
challenge for the optimal sizing of HPPs. A sizing optimization of an HPP involves maximizing a 
financial metric by varying the wind power plant rating, battery energy, and power ratings. 
Calculating that financial metric requires solving an EMS model for each potential HPP configuration. 
Consequently, HF EMS models offer precise assessments; however, relying solely on them is 
impractical due to their substantial computational demands. Conversely, using LF EMS models 
reduces computational time but risks compromising the financial viability of the project due to 
inaccurate assessments. 
To illustrate the computational burden of an HF EMS model, we evaluate the state-of-the-art EMS 
developed by Zhu et al. (2022) This model requires 1,250 minutes to solve for 25 years of operation 
(the assumed lifetime) of a given HPP using a single-node High Performance Computing (HPC) 
cluster, Sophia (DTU HPC Cluster, 2019), which has 32 physical cores (2 × sixteen-core AMD EPYC 



7351) and 128 GB of RAM (4 GB per core, DDR4@2666 MHz). Therefore, even if we need to evaluate 
only a few sizings for the optimizer to converge, we require a substantial amount of time to reach a 
solution. For example, evaluating 10 sizings takes 12,500 minutes, or approximately 208 hours. 
Additionally, in previous work familiar to the authors Leon et al. 2024, a sizing optimization can take 
up to several hundred iterations to approach optimality. In that study, the authors use a low-fidelity 
EMS model to evaluate the operation of an HPP over its lifetime in a matter of 15 seconds. The 
comparison of the optimization time is based on the same computational resources. 
Given these computational benefits, HPP sizing optimization often relies on LF EMS models. For 
example, Leon et al. 2024 propose a methodology for sizing HPPs as a nested optimization problem, 
using two LF EMS models: a short-term EMS formulated as linear programming and a long-term 
rule-based EMS. The short-term EMS provides a baseline for daily optimal operations, while the 
long-term EMS modifies these operations to account for degradation effects and forecast 
inaccuracies over the plant's lifetime. Similarly, in a study aimed at optimizing the design and layout 
of a hybrid wind-solar-storage plant, Stanley and King (2022) employs a simple battery dispatch 
model, where the battery is only discharged to meet minimum power requirements. While using LF 
EMS models may result in reduced accuracy in revenue estimation, they are widely adopted in HPP 
sizing due to computational efficiency. Indeed, several review studies underscore the prevalence of 
LF EMS models in sizing methodologies (Roy et al., 2022; Lian et al., 2019; Thirunavukkarasu et al., 
2023) 
 
3.3:  
l. 59: “HPP sizing optimization often relies on a simplified EMS representation”: the introduction of 
the paper does not describe the problems associated with using a simplified or low-fidelity EMS 
model. As such, it is unclear why one would prefer a high-fidelity model in a context where 
computational cost is a problem. Please describe explicitly and quantitatively why a high-fidelity 
model is superior to a low-fidelity one. 
  
Answer:  
Although no studies directly compare HF and LF EMS models, it is evident that LF EMS models 
sacrifice accuracy due to simplifications in areas such as component modeling, market bidding 
strategies, and operational constraints. These simplifications can result in inaccurate power 
schedules, leading to revenue projections that may misrepresent the business case for a given HPP 
sizing. Quantifying the extent of deviation between low- and high-fidelity EMS models is beyond the 
scope of this paper; however, we are currently researching this topic. 
  
Nonetheless, Zhu et al. 2024 examined the accuracy of total profits across three HF EMS models, 
demonstrating that even among HF models, certain simplifications commonly found in LF models—
such as relying on deterministic forecasts—can lead to revenue discrepancies of up to 7.6% when 
compared to the best-performing model (refer to Table 3 of the paper). 
  
Although this provides some insight into the potential impact of LF EMS simplifications, a 
comprehensive study comparing HF and LF EMS models for HPPs is currently being conducted by 
colleagues in our research group. 

  
Changes in paper:  
A paragraph (l. 101-117) was added to explain the current state of the research on comparing HF 
and LF models.  
 
“It is challenging to quantify the accuracy loss when using LF EMS instead of HF models. Research 
studies often test EMS models on varied configurations of HPPs, and only a few conduct direct 
comparative analyses within the same setup, primarily focusing on high-fidelity EMS models. For 



instance, Ochoa et al (2022) compare deep reinforcement learning with both stochastic optimization 
and robust optimization for photovoltaic-battery HPPs using U.S. market data, finding that deep 
reinforcement learning offers superior economic performance and significantly reduces 
computational time compared to the other two studied methods. Similarly, Han and Hug (2020) 
report that, in a one-year simulation using Nord Pool data, the distributionally robust optimization 
model achieves higher revenues than deterministic forecasting approaches. Zhu et al. (2024) further 
explore this by comparing EMS models that utilize distributionally robust optimization with those 
based on deterministic optimization and stochastic optimization for wind-battery hybrid plants in 
Nordic day-ahead markets, taking imbalance settlements into account. By adjusting the parameters 
of the distributionally robust optimization model, they demonstrate that the economic performance 
ranks highest for this approach, followed by risk-neutral stochastic optimization, and finally 
deterministic optimization. This approach enables more resilient offering strategies, especially in 
markets with high penalties for energy imbalances. 
Additionally, Zhu et al. (2024) examine the accuracy of total profits across three HF EMS models and 
show that even within these models, certain simplifications commonly found in low-fidelity 
models—such as the use of deterministic forecasts—can lead to revenue discrepancies of up to 7.6% 
compared to the best-performing model (refer to Table 3 of the referenced paper). Given these 
considerations, this paper primarily focuses on reducing the computational demand of high-fidelity 
EMS models.” 
  
3.4:  
The list of major contributions is a good addition to the introduction. Consider writing explicitly the 
research question for the study. 

  
Answer:  
The research question was added before the list of contributions. l.162-164.  
 
“Building upon the EMS model developed by Zhu et al. (2022), which is detailed in the following 
section, this paper seeks to answer the question: How can we enable the sizing evaluation of utility-
scale HPPs based on an accurate and computationally efficient EMS model?” 

  
 

3.5: 
l. 100-101: “Integration of the developed surrogate within a framework to evaluate the profitability 
of an HPP sizing with high accuracy.”: this statement is convoluted. Consider combining it with the 
previous one, e.g.: “Assessment of the surrogate model’s ability to calculate … time series and 
profitability of the HPP …”  
  
Answer:  
As the three points are distinct, we would like to keep them separate. The wording was modified to 
make it more straightforward.  
  
Changes in Papers: 
The second and third points were reformulated (l.167-170). 
“ 
- Demonstration of the surrogate’s generalizability in different geographical locations within the 

same electricity market region. 
- Integration of the developed surrogate within a sizing evaluation framework to accurately 

assess the profitability of various HPP configurations. 
” 

  



  
• Detailed Comment 4: Methodology 

4.1:  
Two of which use a multivariate linear regression to establish a baseline and two others are based 
on Neural networks (NNs)”: please put in context the choice of surrogate models in the introduction. 
What are the strengths and weaknesses of these models? Have they been applied to models similar 
to HPP dispatch strategies? Can one expect them to perform well for this type of problem? Are there 
other surrogate models one could consider for HPP dispatch strategies? 
  
Answer: 
In the revised introduction, we have discussed data-driven surrogate models, showcasing successful 
applications of both regression models—ranging from linear to more complex Neural Networks 
(NNs). These models are often applied to solve problems involving partial differential equations 
where a large number of parameterized instances must be evaluated. In such cases, thousands of 
degrees of freedom are typically required to achieve accurate solutions, leading to significant 
computational demands, especially in scenarios requiring real-time simulations. 
This challenge is similar to our current problem, where the high-fidelity EMS model must be solved 
across hundreds of HPP sizing configurations. For each sizing, the EMS model operates at an order 
of magnitude involving hundreds of thousands of degrees of freedom, creating a substantial 
computational burden. Given that the use of surrogate models for EMS in grid-connected HPPs is 
largely unexplored in the literature, we examined a range of potential surrogate models. Our 
exploration includes simple approaches, such as linear regression, and more sophisticated models, 
like feedforward neural networks (FNNs), initially chosen based on their adaptability to our specific 
problem. 
The linear regression model serves a dual purpose: firstly, to assess if a linear approximation can 
capture the essential dynamics of our problem, and secondly, to provide a baseline against which 
we can measure the improvement in accuracy and computational cost when using more complex 
surrogate models. 
  
Changes in paper:  
Additional text was added: l.118-147 
 
“To address the computational challenges associated with implementing a realistic EMS for HPP 
sizing while maintaining high accuracy, a promising approach involves using data-driven surrogate-
based modeling. This technique demonstrates potential in tackling computationally intensive 
problems across various domains (Zhang et al., 2021; Lin et al., 2023; Pang et al., 2023). These 
Reduced-Order Models (ROM) aim to replace high-dimensional, resource-intensive problems with 
models that are significantly faster to simulate while accurately representing the original solution 
behavior. In particular, Hesthaven et al. (2022) reviews the development of surrogates for time-
dependent problems, including those with nonlinear dynamics, which are of interest in our work. In 
this context, data-driven surrogate models stand out as promising solutions, thanks to major 
advancements in machine learning methods. 
These models often follow an offline-online paradigm. During the offline phase, a reduced basis is 
extracted from a collection of high-fidelity solutions; this reduced basis is then used to train the 
surrogate model by optimizing weights or coefficients that capture the system dynamics. Although 
this step is computationally intensive, it only needs to be performed once. In the online phase, the 
surrogate model uses the precomputed weights to compute new outputs almost instantly, with 
minimal computational cost. This paradigm enables the surrogate model not only to learn the 
mapping from inputs to outputs but also to understand underlying patterns within the input data, 
leading to faster and more accurate simulations. 



Numerous successful implementations of data-driven surrogate models exist in the literature. For 
instance, Hesthaven and Ubbiali (2018) develops an ROM using Proper Orthogonal Decomposition 
(POD) to extract a reduced basis from high-fidelity solutions and employs multi-layer perceptron 
neural networks to approximate the coefficients of the reduced model, although time-dependency 
is not considered. Similarly, Guo and Hesthaven (2019) uses a POD projection and maps the time 
and parameter values onto the reduced basis using tensor products of two Gaussian processes—
one for time and one for parameters. Hess et al. (2023) utilizes a data-driven ROM approach to 
efficiently compute the Rayleigh–Bénard cavity problem, integrating POD, dynamic mode 
decomposition, and manifold interpolation for a robust and computationally efficient model. 
Departing from POD, Bhatt et al. (2023) employs deep auto-encoder networks to compress high-
fidelity snapshots before using these in forecasting models—specifically, long short-term memory 
and temporal convolutional networks for time-series forecasts, and convolutional neural networks 
for spatial feature extraction—significantly reducing computational costs in both the offline and 
online stages. 
Most ROMs have been applied to problems described by partial differential equations with sharp 
gradients. In contrast, our aim is to apply similar techniques to high-fidelity EMS models for HPPs. 
Although surrogate modeling has advanced across multiple fields, a gap remains in developing 
models tailored to EMS for utility-scale HPPs, particularly those that incorporate detailed 
operational strategies for market participation. This gap exists not only due to the scarcity of existing 
applications of surrogate models for EMS in HPPs but also because of the complexity involved in 
designing an accurate surrogate model based on a multitude of input and output time series. 
Additionally, integrating the surrogate model within a sizing evaluation framework adds another 
layer of complexity.” 
  
4.2:  
In the first part of section 5, the four surrogate models are compared. However, only one model is 
used for the rest of the results section. This leads to a lengthy result section, where the high impact 
results are more difficult to identify. Consider either (i) focusing on the best surrogate model in the 
entirety of section 5 and moving the comparison between linear and NN models in an appendix; or 
(ii) compare all four models for all relevant metrics. This second approach would help the reader 
have insight on the trade-off between accuracy and computational time. 
  
Answer:  
Thank you for the suggestion. We decided to go with the first option, and changes were made in 
Section 5 accordingly. 
  
Changes in paper:  
Figure 6 is now Figure A1, and Table 10 is now Table A1. 
Moved previously numbered Figure 6 (now Figure A1) and Table 10 (now Table A1) to Appendix A: 
Surrogate Models Comparison and the corresponding text. 
Only figures related to the best-performing surrogate models (S4) were kept in Section 5.  
  
4.3:  
The surrogate models are compared to each other, with the high-fidelity EMS as a reference. 
However, the results would be significantly strengthened if the comparison were to include a low-
fidelity model. For example, if the RMSE for the low-fidelity EMS was 10 times higher than the linear 
and NN models (Figure 6), this would provide an excellent motivation for the use of a surrogate. 
  
Answer:  
Thank you for the suggestion. While I agree that including a comparison with a low-fidelity EMS 
would provide additional context and further strengthen the results, the focus of this study is 



specifically on the use of surrogate models as a computationally efficient alternative to high-fidelity 
EMS. As Zhu et al. (2024) demonstrated, even minor simplifications typical of low-fidelity EMS can 
lead to significant revenue discrepancies, with observed differences reaching up to 7.6% compared 
to the most accurate high-fidelity model. This suggests that the discrepancy would be even greater 
with a low-fidelity EMS. 
  
Additionally, our colleagues' ongoing research explicitly addresses the comparison between high- 
and low-fidelity EMS models. While the insights from that work would be valuable here, 
incorporating it is beyond the current scope of this paper. Instead, this study focuses on evaluating 
the accuracy and computational benefits of surrogate models relative to high-fidelity EMS, as this 
comparison more directly aligns with the primary goals of the research. 
  
4.4: 
l. 208: “applied for the 2nd and 4th surrogate models”: consider introducing a name for each 
surrogate, instead of referring to their number in Table 5. The names should match the labels of the 
figures in the results section. 
  
Answer:  
The names of the surrogates have been changed to S1-S4, please refer to Table 5 for the definition 
of each model. Other changes in the text and figures have been applied.  
  
4.5:  
l. 407: “as the linear model cannot capture the inherent non-linearities of the high-fidelity model.”: 
why has a linear model been chosen? This statement suggests that the choice of methodology is not 
appropriate for the study. 
  
  
Answer:  
Thank you for pointing that out. I will revise the statement to clarify this aspect. 
In addition to the reasons mentioned earlier for selecting the linear regression model, we recognize 
that the EMS exhibits some non-linear behaviors. However, we also suspect these non-linearities 
are relatively mild, as most of the system's constraints are linear. Therefore, we included the linear 
regression model to evaluate its effectiveness in approximating the high-fidelity model. This 
approach allows us to establish a baseline and assess the extent to which a simple model can capture 
the EMS's behavior before moving on to more complex surrogate models. 
  
Changes in paper:  
Sentence added in l.428-430 
 
“This result is expected to a certain degree: while the linear model may not fully capture the non-
linear dynamics of the high-fidelity model, we selected it to assess the extent to which a simpler 
model can approximate the EMS, given that many of the HF EMS model’s constraints are linear.” 

  
• Detailed Comment 5: Literature review 

5.1:  
On the topic of energy markets and subsidies for renewable energy, consider referring to the 
following report: European University Institute: Robert Schuman Centre for Advanced Studies, 
Kitzing, L., Held, A., Gephart, M., Wagner, F., Anatolitis, V., & Klessmann, C. (2024). Contracts-for-
difference to support renewable energy technologies : considerations for design and 
implementation, European University Institute. https://data.europa.eu/doi/10.2870/379508 
  

https://data.europa.eu/doi/10.2870/379508


Answer:  
Thank you for the recommendation. The paper is now cited in the introduction, and additional 
context was added since the writing of this report, e.g., the Agreement of May 2024. l.20-24  
 
“As noted by Kitzing et al. (2024), contracts-for-differences have become increasingly significant in 
the European market, particularly following an agreement reached in May 2024 between the 
European Commission, the European Parliament, and the Council (Council of the European Union, 
2024). This agreement mandates that the support for renewable technologies is provided through 
two-sided contracts-for-differences or equivalent schemes, applying to both new investments and 
repowering.” 
  
5.2: 
The literature review would be strengthened by citing literature related to machine learning and 
data-driven methods. An overview of methods for modelling time-series would be a good addition 
to the paper. 
  
Answer:  
Additional literature on these topics has been added. l.118-147 
 
Please refer to answer 4.1 for the additional text.  
  
5.3:  
Consider including a short description of the advances done on hybrid power systems (e.g. for micro-
grids). This would help contextualize better the paper since the problem of storage sizing and 
dispatch strategy has been addressed in this field before, even though not in relation to electricity 
markets. 
  
Changes in paper: 
Additional context was added in l.53-58. 
 
“In the field of hybrid renewable energy systems, particularly in microgrids, the dispatch problem 
has been extensively studied, as evidenced by numerous review articles on the topic (Barbosa et al., 
2024; Shivarama Krishna and Sathish Kumar, 2015; Fathima and Palanisamy, 2015). However, the 
primary purpose of microgrids is to manage or follow load profiles within a network, whereas HPPs 
operate as distinct generation facilities with a connection to the power grid. This unique connection 
emphasizes the role of HPPs in active power generation, rather than load management alone, which 
calls for a distinct EMS model such as the ones developed by Toubeau et al. (2021) and Ding et al. 
(2016).” 
  
5.4: 
The literature review could be complemented by citing articles related to the field of bidding 
strategies. For example, the works by Pierre Pinson or Kenneth Bruninx may be of interest: 
Ding, H., Pinson, P., Hu, Z., & Song, Y. (2016). Integrated Bidding and Operating Strategies for 
Wind-Storage Systems. IEEE Transactions on Sustainable Energy, 7(1), 163–172.  
https://doi.org/10.1109/TSTE.2015.2472576 
Toubeau, J.-F., Bottieau, J., De Greeve, Z., Vallee, F., & Bruninx, K. (2021). Data-Driven Scheduling 
of Energy Storage in Day-Ahead Energy and Reserve Markets With Probabilistic Guarantees on 
Real-Time Delivery. IEEE Transactions on Power Systems, 36(4), 2815–2828. 
https://doi.org/10.1109/TPWRS.2020.3046710 
  
Answer:  

https://doi.org/10.1109/TSTE.2015.2472576
https://doi.org/10.1109/TPWRS.2020.3046710


Thank you for the suggestion. These papers have been cited.  
 
Changes in paper:  
Please refer to answer 5.3 for the additional text containing these citations.  
  

• Detailed Comment 6: Structure of the paper 
  

6.1: 
The last sentence of the first paragraph states that BESS are valuable to establish robust business 
cases. Then, the second paragraph discuss the definition of HPPs. In this case, the link between the 
two paragraph is not clear. Instead, consider introducing HPP in the first paragraph, and narrowing 
the focus of the study on HPP with storage systems. 
  
Answer: 
Both paragraphs were modified according to the comment: l. 27-36 
 
Changes in paper:  
 
“Hybrid Power Plants (HPPs) that include storage technology are becoming valuable to establish 
robust business cases. Despite the absence of a universal definition for HPPs — highlighted by 
varying interpretations in the literature (Dykes et al., 2020; Long et al., 2022; Paska et al., 2009) — 
for the purposes of this research, we define renewable-based HPPs as power plants that combine 
several generation technologies, including wind turbines and possibly energy storage, to produce 
electricity and other energy vectors. They operate from a single geographical location, with all 
generated power being transmitted to the electrical grid via a unified point of grid connection. In 
the presence of a BESS, HPPs can use strategies such as market arbitrage, which involves buying and 
storing electricity when market prices are low and selling it when prices are high. Additionally, the 
integration of energy storage is crucial for smoothing power supply fluctuations, mitigating power 
curtailment, enabling HPPs to offer system services, and reducing grid congestion (Das et al., 2019).” 
  
6.2:  
l. 68- 71: “To evaluate the value of HPP, …”: this paragraph discussing performance metrics for HPPs 
does not seem relevant in the introduction. Consider moving it in a later section describing the 
profitability index. 
  
Answer: 
Agreed. This sentence was integrated in Section 3 (l. 336-347), where financial metrics are discussed.  
 
Changes in paper:  
 
“To assess the business case of an HPP, we can use financial metrics like Internal Rate of Return (IRR) 
and Net Present Value (NPV). IRR calculates the HPP’s annual investment return, while NPV assesses 
its profitability in today’s value. However, when an HPP isn’t profitable, resulting in a negative NPV, 
the IRR becomes undetermined. A more meaningful measure is the Profitability Index (PI), 
calculated as N P V /CAP EX. The PI indicates how many dollars of present value benefit 
are generated per dollar of investment, offering a more intuitive understanding of the investment’s 
profitability. This metric allows for a direct comparison of the relative profitability of each project, 
regardless of their absolute size. Additionally, when resources are limited, NPV/CAPEX can aid in 
prioritizing projects. Projects with higher PIs can be prioritized as they promise greater returns per 
unit of investment. A PI greater than 1 signifies that the NPV of future cash flows exceeds the initial 
investment. Note that traditionally, for power plants using one type of generation technology, the 



Levelized Cost of Energy (LCoE) is used to evaluate profitability. However, to assess the various 
potential revenue streams, metrics such as NPV (Dykes345 
et al., 2020) or the NPV/CAPEX are more relevant. This is because storage inherently increases costs 
and thus the LCoE, even though it has the potential to substantially increase revenue or profit.” 
  
6.3 
l. 118-125: “In electricity trading …”: the description of the spot and balancing market does not help 
describing the methodology of the study. Consider moving this paragraph to the introduction. 
  
Answer:  
The paragraph was shortened and integrated in the introduction: l. 41-52. 
 
Changes in paper:  
“The Spot Market (SM) is currently the most lucrative market where power is traded for immediate 
delivery. Within the SM, operators can participate in the day-ahead and hour-ahead markets. Day-
ahead bidding establishes hourly prices for the following day, while hour-ahead 
bidding allows for adjustments based on updated generation forecasts and cleared SM prices. Since 
electricity markets require power producers to bid in advance on the amount of electricity they will 
generate, these bids rely on forecasts of renewable energy generation and market prices. If actual 
generation deviates from scheduled bids, financial penalties are incurred. Additionally, the 
balancing market (BM) offers HPPs another revenue source, operating alongside the SM to handle 
discrepancies between forecasted and actual demand and supply. The BM allows transmission 
system operators to adjust for differences arising from SM bids that are based on earlier forecasts 
and the real-time conditions closer to delivery. This market acts in near real-time, addressing 
deviations from scheduled generation and imposing penalties as necessary. Consequently, an EMS 
aims to maximize profits by strategically storing and selling electricity in both the SM and BM, while 
also minimizing imbalance costs due to deviations from scheduled energy bids.” 
  
6.4 
Consider restructuring section 2 and 3 into one section describing the metrics relevant to HPPs 
(including the description of the relevant time series, the EMS and the profitability index) and one 
section describing the surrogate models. 
  
Answer: 
After discussing this with most co-authors, the majority wished to keep the current structure.  
  
6.5 
l. 185-186 “Details on the normalization process appear later on” and l. 189 “The specific use of this 
method is detailed in this section”: instead of referring the reader to a later part of the paper, 
consider restructuring the subsection. 
Consider shortening the description of the normalization steps (l.194-205) and instead state that 
scaling is used for all time series. 
  
Answer:  
The subsection was slightly restructured, and the description was shortened as suggested. 

  
6.6 
l. 213-218: the description of the shapes of the matrices does not seem relevant for the study. 
Consider removing the associated sentences or moving them to an appendix. 
  
Answer 



These descriptions were removed. 
  
6.7 
Please restructure and shorten section 2.2.3. The text mixes general statements about training 
neural networks, mentions of the steps of the methodology (l. 235 and l. 255 “the best-performing 
model … is selected”) and descriptions of the training methodology. This makes the subsection 
difficult to follow. 
  
Answer: 
It seems there is some confusion. The selection of the best-performing model is part of the training 
process. This does not refer to selecting the best-performing model among the four types of 
surrogates, S1-S4; instead, this refers to one surrogate type, e.g., S3 or S4. In the tunning process, 
several hundred models are evaluated for a given type of surrogate (S3 or S4). These hundreds of 
models differ in the choice of hyperparameters. Among these, the best performing model is selected 
and further trained "till convergence." The training method described needs to be applied 
individually for surrogate types S3 and S4.  
A workflow example for model S3 would be as follows:  
Apply normalization to inputs and output --> define FNN architecture and hyperparameter search 
space --> Proceed with tuning --> Result: hundreds of FNN trained --> Get the most accurate FNN 
based on the defined loss function (MSE) --> Further train that model till convergence --> Result: 
model S3.  
  
The section was modified and shortened to make it more straightforward. 
  
Please let us know if we have misunderstood your comment. 
  
6.8 
Consider moving the description of the cost model to an appendix (l. 322-344)." 
  
Answer:  
The description of the cost model has now been moved to Appendix C: Cost Model. Moreover, the 
data related to the cost model has been moved; previously, Table 9, now Table D2, has been moved 
to Appendix D: Data Supplement. 
  

  
• Detailed Comment 7: Clarity and conciseness 
  

7.1 
l. 25 “power plants that combine several technologies”: please precise the type of technology. 
Consider using the terms “electricity generation and storage technologies”. 
  
Answer: 
The wording was changed to "combine several generation technologies, including wind turbines, 
and possibly energy storage": l.30-31 
  
7.2 
l. 32-35: “As HPPs transition to market-driven revenue models… throughout the power plant’s 
lifetime”: the start of this paragraph is vague. What are the “new possibilities and challenges” 
mentioned? What does  the expression “navigate energy markets” mean in the context of the study? 
What are the characteristics of a “detailed operational strategies”? 
  



Answer: 
A paragraph was added before explaining the meaning of market-driven models, i.e., CFD. The text 
was further modified to explain the opportunities, challenges, and detailed operational strategies. 
l. 37-52.  
 
Changes in paper:  
Please refer to answer 6.3 for the modified text.  
  
7.3 
l. 35 “Energy Management System”: please define the term, and highlight the difference between 
other types of “control” in the context of HPP. Consider stating the difference between EMS and 
adjacent terms such as bidding or dispatch strategies. 
  
Answer: 
A first definition of the EMS is given in the introduction l. 38-41 (please refer to answer 6.3 for the 
modified text). A more detailed definition is now given in Section 2.1 to clarify which EMS is used in 
this article. l. 188-197.  
 
Changes in paper 
l. 188-197: “ However, this paper primarily focuses on the EMS’s role in day-ahead SM  participation. 
Additionally, our study considers the Danish market structure with a dispatch interval of 15 minutes. 
As in real power plants, the SM bidding process (also referred to as SM optimization) communicates 
with a Real-Time (RT) dispatch optimization. In this framework, the SM optimization provides energy 
set-points based on weather and market forecast data to the RT dispatch, which, in turn, uses real-
time measurement data to derive real-time power values. Real-time measurements allow the 
calculation of deviations and the application of penalties. The inputs to the SM optimization are time 
series forecasts of wind power and market prices, while the RT dispatch uses the same input time 
series updated with real-time measurements for each dispatch interval, as well as the bidding 
schedule generated from the SM optimization. For clarity, the inputs and outputs of the SM 
optimization and RT dispatch are listed in Table 2. The combined models, SM optimization and RT 
dispatch, are referred to as a high-fidelity EMS model in this 
paper. “ 
  
7.4 
l. 95: “Development of a fast and precise surrogate”: the term “accurate” seems more pertinent in 
this context. 
  
Answer: 
The term was modified.  
  
7.5 
l. 98 “Assessment of the surrogate’s ability to predict hourly operational time series”: consider 
using the verb “compute”, “calculate”, “model” or “estimate” instead of “predict”, since the latter 
implies a focus on future (and unknown) data. 
  
Answer: 
Thank you for the suggestion. Similar changes were applied to the paper. 
  
7.6 



Please precise what the term “surrogate model” means in the context of the study. By itself, 
“surrogate” implies a simplified or approximation model, and does not refer to data-driven or 
machine learning methods specifically. 
  
Answer: 
Additional literature on data-driven surrogate models was added to the introduction to give context 
to the developed surrogate models. Additionally, the paragraph of section 2.2 gives a detailed 
definition of the term in this study.  
  
Changes in paper:  
For the context of surrogates please refer to l. 118-147. For the text please refer to answer 4.1.  
For the definition of section refer to l. 231-238:  
“In this article, a surrogate model consists of several sub-components: data pre-processing, a 
regressor, and data post-processing. The pre-processing involves scaling, which ensures that all 
inputs contribute equally to the model’s estimations and supports the surrogate’s convergence 
algorithm. The post-processing is applied in accordance with the pre-processing to interpret the 
results in their original scale. The regressor is the model tasked with approximating the high-fidelity 
EMS. Section 2.2.1 details the inputs and outputs for training and evaluating the surrogate models. 
Section 2.2.2 describes four surrogate models, differing in their data processing and regressor 
models. Sections 2.2.3 and 2.2.4 cover the training and validation of these models, respectively.”  
 
7.7 
l. 404: “This RMSE provides a holistic measure of the model’s accuracy”: why is the term “holistic” 
used here? Consider rephrasing. 
  
Answer: 
The sentence was changed to: "Since this RMSE is calculated across all output time series, it provides 
a broad assessment of the model's accuracy, without specific insights into each individual series." 
l.317-318. 
  
7.8 
l. 413: “Table 10 contrasts the time required to execute the workflow for each surrogate model” 
Consider rephrasing this sentence. 
  
Answer: 
The sentence was changed to: "Table A1 compares the time needed to execute the methodology 
for each surrogate model." l.584. 
  
7.9 
l. 426: “Figure 8 shows the difference between the surrogate’s prediction and the ideal behavior”: 
what does “ideal behavior” mean here? Consider rephrasing. 
  
Answer:  
The sentence was changed to: "Figure 6 shows the difference between the surrogate's 
approximation and the HF EMS' outputs" l. 451. 
  
7.10 
l. 537 “the synergistic use of SVD and FFN”: what does “synergistic” mean in the context of the 
study? Consider rephrasing. 
  
Answer: 



Changed to: "A key innovation of our study is the combined use of SVD and FNN, which represent a 
novel approach in this field." l. 570-571. 
  
7.11 
l. 542: “a mere 25 seconds” and “remarkable accuracy”: Please avoid subjective terminology and 
use neutral language instead." 
  
Answer: 
Removed these terminologies 
  

• Detailed Comment 8: Figures 

 8.1:  
What is the information conveyed by Figure 4? Consider removing it. 
  
Answer: 
The Figure is removed. 
  
8.2:  
Figure 5.b. : this representation of the wind distribution is unusual. A more standard representation 
as the probability distribution function would be more meaningful for the reader. 
  
Answer:  
The previously numbered Figure 5 is now Figure 4. 
Thank you for the feedback. Although the violin plot representation may be less conventional, it was 
chosen for its ability to convey detailed insights into the distribution of wind power across multiple 
locations within a single, compact visualization. Overlaid PDF plots were considered; however, they 
tended to appear cluttered, making it difficult for readers to extract meaningful information. 
Separate PDF plots for each location were also examined, but they would have required significantly 
more space. While a CDF plot was another option, its interpretation is less intuitive than the violin 
plot, especially for readers less familiar with cumulative distributions. To enhance clarity, we have 
included additional text ( l. 405-418) explaining how to interpret the violin plot, which should aid in 
understanding its unique presentation. 
 
Changes in paper: 
“The wind generation distribution across all locations is available in Fig. 4. This violin plot illustrates 
the distribution of normalized wind power generation across five different locations (X, A, B, C, and 
D). Each half-violin represents the density of wind power measurements for a location, showing 
where values are most concentrated. The symmetrical nature of each violin plot, with mirrored 
halves for each location, is a standard feature of violin plots that allows for a clearer visualization of 
the data distribution, where each half represents the same distribution of wind power 
measurements. The width of each violin indicates the density: wider sections reflect more frequent 
occurrences of those power levels, while narrower sections suggest less common values. The plot 
uses a logarithmic scale on the y-axis, making it possible to visualize variations in power generation 
across a broad range, from very low to high outputs. Inside each violin, the black bar marks the 
interquartile range, while the white dot represents the median of the wind power measurements 
for that location. This combination allows for a clear comparison of both the range and central 
tendencies of wind power output across different sites. For example, a location with a narrower and 
higher median distribution might experience more consistent and higher wind power generation 
(i.e., location X), while one with a broader distribution and lower median could have more variability 
(i.e., location C). Locations A, B, and D share similar distributions where the shape of these 



distributions suggests that low power output is more common, with occasional rises to higher 
values.”  
  
8.3: 
"Please follow the journal guidelines for the captions: https://www.wind-energy-
science.net/submission.html#figurestables " 
  
Answer:  
Figures were changed to comply with the guidelines.  
  
8.4: 
Consider using intelligible notation in the legend and labels when possible, instead of introducing 
the notation in the caption. For example, the labels of Figure 7 do not correspond to previously 
introduced notation. 
  
Answer:  
Note that Figure 7 is now Figure 5. 
The notations are now introduced in the texts and then used in the figures. The notations are now 
consistent among all figures, tables, and text.   
  
8.5: 
Figure 6,7 and 10: including the equation for the RMSE in the label seems unnecessary since the 
notation and equations is introduced in the main text. 
  
Answer:  
Figures were modified.  
Note that Figures 6, 7, and 10 are now A1, 5, and 8.  
  
8.6: 
Figure 8: Please indicate the unit on the figure labels. 
  
Answer:  
The units are now included. 
  
8.7: 
Figure 9: it is unclear why two figures are relevant here. Consider removing Figure 9 (a). 
  
Answer:  
Note that Figure 9 is now Figure 7.  
Figure 7(a) is shown because it is hard to visualize the extent of the scatter from the PDF plot shown 
in Figure 7(b). This scatter helps to understand the deviations from the HF EMS, as shown in Figure 
6 (previously Figure 8). 
  
8.8: 
l. 443: “The mean (μ) being close to zero suggests…”: Note that Figure 9(b) indicates that the mean 
is equal to zero. 
  
Answer:  
Text changed to avoid confusion: l. 468.  
“The mean (μ) being equal to zero suggests that the surrogate’s calculations are unbiased on 
average” 

https://www.wind-energy-science.net/submission.html#figurestables
https://www.wind-energy-science.net/submission.html#figurestables


  
 
8.7: 
Section 2.1.: a figure illustrating the EMS would be relevant to support its description in the text. 
For example, Figure 1 could be extended to describe the time schedule for bidding and dispatch 
decisions. 
  
Answer:  
Figure 1 was modified. Additional information was added to the bidding process. Additional text 
was added to explain further the bidding process of the EMS (l. 204-214). For clarity, throughout 
the article, the use of the acronym "EMS" was slightly changed: when applicable, "EMS" was 
modified to "SM optimization", referring to the bidding process happening at the day-ahead stage. 
The acronym "PMS" was removed entirely and replaced by Real-Time (RT) dispatch. The HF EMS 
combines both SM optimization and RT dispatch. 
 
Changes in paper:  
l. 204-214: “Figure 1 illustrates the considered EMS workflow. The EMS operates through a 
structured daily cycle, beginning with the forecasting stage. On the previous day (d-1), a forecast of 
wind generation and spot market prices for the following day (d) is obtained. Using this data, the 
SM optimization is conducted at noon on day d-1, aligning with the day-ahead market closure, to 
determine the optimal hourly power bidding for the HPP. This optimization is formulated as a Mixed 
Integer Linear Programming (MILP) problem, aiming to maximize the plant's revenue across the day 
by strategically bidding power on the SM. 
On day d, the RT dispatch optimization is executed at 15-minute intervals throughout the day. This 
phase focuses on minimizing discrepancies between the power that was bid on the spot market and 
the actual real-time available power. The RT dispatch is modeled as a Mixed Integer Quadratic 
Programming (MIQP) problem, which dynamically adjusts the HPP's output to meet market 
commitments as closely as possible, responding to variations in generation. 
Finally, the day concludes with a settlement process on day d+1, where the outcomes of the day's 
operations are reconciled. The details of all models can be found in the referenced work.” 
 
Figure 1:  

 
  
 
 
 
 



Detailed Comment 9: Equations 
  
9.1:  
For the presentation of the equations in the manuscript, consider introducing the relevant metrics 
and their notations before the equation. 
Consider adding a paragraph or a subsection to introduce the notation used in the paper, since there 
is a wide variety of symbols, subscripts and superscripts in the manuscript. 
l. 268-271: please introduce notation in a paragraph and not as a list. This comment applies to 
subsequent equations as well. 
  
Answer: 
Thank you for the feedback. The notations are now introduced in a paragraph before the equations.  
 
9.2:  
Equations 1 to 3 are not equations since they don’t include an equal sign. Consider giving each 
scalar parameters a name, a symbol and describe their meaning. 
  
Answer:  
Indeed, apologies for the oversight. They are now included in the paragraph instead.  
  
9.3: 
The notations “SM” (l.211) and “\lambda” (Eq. 10) are used to describe the price of electricity. 
Please use a consistent notation throughout the paper. 
  
Answer:  
Thank you for pointing it out, the notation SMt is now used throughout the paper. 
 
9.4:  
"Equation 8: consider introducing a specific symbol for the RMSE instead of using the 
abbreviation." 
  
Answer:  
The notation of RMSE was changed to εRMS and NRSME to εNRMS. 
  
Detailed comment 10:  
  
10.1: 
Please describe in the abstract that the study was conducted for participation on the day-ahead 
market and for Denmark. 
Please include in the abstract the assumption of perfect forecast. 
  
Answer: 
The additional information was added. 
 
 
10.3: 
“Sizing of Hybrid Power Plants (HPPs), which include wind power plants and battery energy 
systems, is essential to capture tradeoffs among various technology mixes”: please be more 
specific. 
  
Answer: 



The tradeoff mentioned is an economic tradeoff, that could lead to over- or under-sizing a HPP.  
  

Changes in paper:  
The reformulated first sentence of the abstract. 
“Optimal sizing of Hybrid Power Plants (HPPs), which include wind power plants and battery energy 
systems, is essential to prevent financial losses from under- or over-sizing relative to grid connection 
capacities” 
  
10.4: 
l. 4 “model the operation of a battery when participating in any market”: please be more specific 
about the market mentioned here. 
  
Answer 10.4:  
The term was changed to electricity market. Later in the abstract, we mention that the study focuses 
on the day-ahead market. 
  
10.5:  
l. 5: “Traditional EMS” : what does “Traditional” mean here? Consider rephrasing. 
  
Answer:  
Based on context, we have Replaced "Traditional EMS" with either High-fidelity EMS or LF EMS. 

  
• Minor comments 
  

All minor comments have been addressed, and changes have been made accordingly.  
 
Concerning the comment: 
"Be aware that Wind Energy Science guidelines state that grey-literature may only be cited if there 
are no alternatives. The international hybrid power plant conference is grey literature, due to its 
lack of peer-review: “Das, K., Hansen, A. D., Koivisto, M., and Sørensen, P. E.: Enhanced features of 
wind-based hybrid power plants, Proceedings of the 4th International Hybrid Power Systems 
Workshop, 2019.” 
" 
 
We have contacted the Workshop organizers and received the following reply:  
“That's partly correct, we only review the abstracts, in the short time between paper deadline and 
the workshop (about 4-6 weeks) we cannot completely review 180 papers. But those papers which 
are published in the IEEE Explorer should not be considered gray-literature as IEEE is running them 
though their quality check... also, in the last few years we published the proceedings in a digital data 
base, see https://digital-library.theiet.org/content/conferences/cp847, so if you mentioned the 
ISBN Number in the reference, it should qualify as a reference.  
  
However, we only started with the digital data base in 2021, but all older proceedings also have an 
ISBN number and the proceedings have been submitted to a number of University library in Europe, 
so papers could be found by interesting parties. The relevant reference for the 2019 workshop is: 
  
Proceedings 18th International Workshop on Large-Scale Integration of Wind Power into Power 
Systems as well as on Transmission Networks for Offshore Wind Plants 
Dublin, Ireland, 15-16 October 2019 
ISBN: 978-3-9820080-5-9” 

 

https://digital-library.theiet.org/content/conferences/cp847

