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Abstract.

Sizing
::::::
Optimal

::::::
sizing of Hybrid Power Plants (HPPs), which include wind power plants and battery energy systems, is es-

sential to capture trade offs among various technology mixes. To accurately represent these trade-offs, an Energy Management

System
::::::
prevent

:::::::
financial

::::::
losses

::::
from

::::::
under-

:::
or

:::::::::
over-sizing

:::::::
relative

::
to
::::

grid
::::::::::

connection
:::::::::
capacities.

::::::::
Accurate

::::::
sizing

:::::::
requires

::::::::::
high-fidelity

::::::
Energy

::::::::::::
Management

:::::::
Systems

:
(EMS) is introduced to model the operation of a battery when participating in5

any market
::
to

::::::
model

::::::
bidding

:::::::::
strategies

:::
and

::::::::::
operations

::
in

:::::::::
electricity

:::::::
markets, resulting in realistic

::::::
precise

:
operational rev-

enues and costs. However, traditional EMS models are computationally expensive to solve, a challenge that intensifies when

integrating these modelsinto sizing processes. This research paper aims to address the critical
:::
due

::
to

:::
the

::::::::::::
computational

::::::
burden

::
of

::::
such

:::::::
models,

:::::
sizing

::::::::::::
methodologies

:::::
often

:::::
resort

::
to

::::::::::
low-fidelity

::::
EMS

:::::::
models,

::::::
leading

::
to

:::::
faulty

::::::
sizing

::::::::::
evaluations.

::
To

:::::::
address

::
the

:
need for a computationally efficient , accurate, and comprehensive operational

:::
and

:::::::
accurate

:
model that enables quanti-10

tative assessment of HPPs. A novel methodology is introduced ,
:::

we
::::::::

evaluate
:::
the

::::::::
potential

::
of

::::::::
surrogate

:::::::
models

::
to

:::::::
replace

:
a
::::::::::
high-fidelity

:::::
EMS

:::::::::::
participating

::
in
::::

the
::::::::
day-ahead

:::::::::
electricity

::::::
market

:::
in

::::::::
Denmark

::::
with

::::::
perfect

:::::::::
forecasts.

:::::
Given

:::
the

:::::::
limited

:::::::
literature

:::
on

:::::::::
surrogates

::
of

:::::
EMS

::::::
models

:::
for

:::::::::::
utility-scale,

:::::::::::::
grid-connected

:::::
HPPs

::::
with

::::::::
batteries,

:::
we

:::::::
develop

:::
and

::::::::
compare

::::
four

:::::::
different

::::::::
surrogate

::::::
models

:
to approximate a state-of-the-art EMS modelfor HPPs involved in spot market power bidding. This

approach utilizes
:
.
:::
The

::::::::::::::
best-performing

::::::::
surrogate

:::::::
employs singular value decomposition for dimension

::::::::::::
dimensionality

:
reduc-15

tion and a feed-forward neural network as a regression. The accuracy of our methodology is evaluated showing a
:::
for

:::::::::
regression.

::::
This

::::::::
surrogate

:::::::
achieves

::
a
::::::::::
normalized root mean square error of 0.09 in predicting hourly operational time series

:::::
0.81%

:::
in

::::::::::::
approximating

:::::
yearly

::::::::
revenues. This method proves effective in accurately evaluating the operation of HPPs across various

geographical locations and hence on
::
in

:
multiple sizing problems. Furthermore, we utilized

:::::
utilize

:
the surrogate to evaluate

the profitability of several HPPs sizing
::::
HPP

::::
sizes, achieving a root mean square error of 0.010 on the profitability index. This20

shows
:
,
::::
with

::::::
values

::::::
ranging

:::::::
between

:::::
-0.13

:::
and

:::::
0.18.

::::
This

:::::::::::
demonstrates that the developed surrogate

:::::
model

:
is suitable for HPP

sizing for
:::::
under

:::
the given cost and financial assumptions.
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1 Introduction

As the renewable energy and storage industry has matured
::::::
matures, governmental incentives , that sustained

:::
that

::::::
sustain

:
this

rapid development ,
:::
have

:
started to shift. Initially sustained by government-supported feed-in tariffs, wind power plant

:::::
plants25

are transitioning to feed-in premiums or contracts for differences
::::::::::::::::::::
contracts-for-differences.

:::
As

:::::
noted

:::
by

:::::::::::::::::
Kitzing et al. (2024)

:
,
::::::::::::::::::::
contracts-for-differences

::::
have

:::::::
become

::::::::::
increasingly

:::::::::
significant

::
in

:::
the

:::::::::
European

::::::
market,

::::::::::
particularly

::::::::
following

:::
an

:::::::::
agreement

::::::
reached

::
in

::::
May

:::::
2024

:::::::
between

::
the

::::::::
European

:::::::::::
Commission,

:::
the

::::::::
European

::::::::::
Parliament,

:::
and

:::
the

:::::::
Council

:::::::::::::::::::::::::::::::
(Council of the European Union, 2024)

:
.
::::
This

::::::::
agreement

::::::::
mandates

::::
that

:::
the

::::::
support

:::
for

:::::::::
renewable

::::::::::
technologies

::
is

::::::::
provided

::::::
through

:::::::::
two-sided

::::::::::::::::::::
contracts-for-differences

::
or

:::::::::
equivalent

:::::::
schemes,

::::::::
applying

::
to

::::
both

::::
new

::::::::::
investments

::::
and

:::::::::
repowering. These support levels are now determined through30

competitive bidding procedures , Busch et al. (2023). Additionally, the power plants are also expected to maximize their values

::::
value

:
from energy markets such as

:::
the electricity spot market or balancing/reserve markets. This change exposes power plant

developers to the dynamics of the wholesale electricity market. In this evolving landscape, Battery Energy Storage Systems

(BESS)
:::::
Hybrid

::::::
Power

:::::
Plants

::::::
(HPPs)

::::
that

::::::
include

::::::
storage

::::::::::
technology are becoming valuable for wind power plants to establish

robust business cases.35

Despite the absence of a universal definition for Hybrid Power Plants (HPPs ) -
:::::
HPPs

::
—

:
highlighted by varying interpreta-

tions in the literature (Dykes et al., 2020; Long et al., 2022; Paska et al., 2009) -
::
—

:
for the purposes of this research, we define

renewable-based HPPs as power plants that combine several
:::::::::
generation technologies, including wind turbines , and possibly

energy storage, to produce electricity and other energy vectors. They operate from a single geographical location, with all

generated power being transmitted to the electrical grid via a unified point of grid connection.40

In the presence of a BESS, HPPs can use strategies such as market arbitrage
:
,
:
which involves buying and storing electricity

when market prices are low and selling it when prices are high. Additionally, the integration of energy storage is crucial for

smoothing power supply fluctuations, mitigating power curtailment, enabling HPPs to offer system servicesand reduce ,
::::
and

:::::::
reducing grid congestion (Das et al., 2019).

As HPPs transition to market-driven revenue models, new possibilities and challenges emerge for power plant developers45

and operators. They can strategically navigate energy markets, tailor their operations to demand fluctuations, and capitalize on

price differentials. Consequently, to optimally size an HPP and exploit its potential, it is crucial to consider detailed operational

:::::::::
optimizing

::::
their

:::::::::
operations

::::::::
becomes

:::::::
essential

:::
to

::::::::
capitalize

:::
on

::::::
market

:::::::::::
opportunities

::::
and

::::::
address

::::::::::
operational

::::::::::
challenges.

:::
An

::::
EMS

::::::
fulfills

:::
this

::::
role

:::
by

:::::::
devising

:::::::
optimal

::::::::::
operational strategies throughout the power plant’

:
’s lifetime. This role is fulfilled

by an Energy Management System (EMS). A comprehensive EMS takes into account the market structure in which the power50

plant operates, models the various technologies within the HPP , and aims to maximize profits through market biddings. The

importance of a realistic EMS becomes more apparent when a HPP includes a storage system, as it is necessary to optimize the

:::
For

::
an

::::
HPP

::::
with

::
a

:::::
BESS,

:::
the

:::::
EMS

::::::::
optimizes

:::
the

:
charge and discharge power of the battery,

:
given the available resources (i.e.,

wind speed, solar power), the battery’s capacity, available grid connection capacity,
:::
and

:::::
other

::::::::::
constraints.

::
In

::::::::
electricity

:::::::
trading,

::::::
various

:::::::
markets

:::::
allow

:::::
power

:::::
plant

::::::::
operators

::
to

:::
sell

::::
their

::::::
energy.

::::
The

::::
Spot

:::::::
Market

::::
(SM)

::
is

::::::::
currently

:::
the

::::
most

::::::::
lucrative

::::::
market55

:::::
where

::::::
power

::
is

:::::
traded

:::
for

::::::::::
immediate

:::::::
delivery.

::::::
Within

::::
the

::::
SM,

::::::::
operators

:::
can

::::::::::
participate

::
in

:::
the

:::::::::
day-ahead

:
and degradation

2



cost. Electricity markets often
:::::::::
hour-ahead

:::::::
markets.

:::::::::
Day-ahead

:::::::
bidding

:::::::::
establishes

::::::
hourly

::::::
prices

::
for

::::
the

::::::::
following

::::
day,

:::::
while

:::::::::
hour-ahead

:::::::
bidding

::::::
allows

:::
for

::::::::::
adjustments

:::::
based

:::
on

:::::::
updated

:::::::::
generation

::::::::
forecasts

::::
and

::::::
cleared

::::
SM

::::::
prices.

:::::
Since

:::::::::
electricity

::::::
markets

:
require power producers to bid in advance for the quantity

::
on

:::
the

:::::::
amount of electricity they will generateand sell.

These biddings are based on forecasting
:
,
::::
these

::::
bids

:::
rely

:::
on

:::::::
forecasts

:
of renewable energy generations as well as

::::::::
generation

::::
and60

market prices. However, when the
:
If
:
actual generation deviates from scheduled bids, financial penalties are incurred, accurate

forecasting can mitigate these penalties . Hence, EMS operates .
:::::::::::
Additionally,

:::
the

::::::::
balancing

::::::
market

:::::
(BM)

:::::
offers

:::::
HPPs

:::::::
another

::::::
revenue

:::::::
source,

::::::::
operating

::::::::
alongside

:::
the

::::
SM

::
to

::::::
handle

:::::::::::
discrepancies

:::::::
between

:::::::::
forecasted

::::
and

:::::
actual

:::::::
demand

::::
and

::::::
supply.

::::
The

:::
BM

::::::
allows

::::::::::
transmission

::::::
system

::::::::
operators

::
to
::::::
adjust

::
for

::::::::::
differences

::::::
arising

::::
from

:::
SM

::::
bids

::::
that

:::
are

:::::
based

::
on

::::::
earlier

:::::::
forecasts

::::
and

::
the

::::::::
real-time

:::::::::
conditions

:::::
closer

::
to

::::::::
delivery.

::::
This

::::::
market

:::
acts

::
in

::::
near

::::::::
real-time,

:::::::::
addressing

:::::::::
deviations

::::
from

:::::::::
scheduled

:::::::::
generation65

:::
and

::::::::
imposing

::::::::
penalties

::
as

:::::::::
necessary.

::::::::::::
Consequently,

::
an

:::::
EMS

::::
aims

:
to maximize profits , taking into account opportunities in

::
by

::::::::::
strategically

:
storing and selling electricity , as well as

:
in

:::::
both

:::
the

:::
SM

::::
and

::::
BM,

:::::
while

::::
also

:
minimizing imbalance costs

due to deviations from the scheduled energy bid. Consequently, numerous studies have approached EMS modeling as an

optimization problem. For instance, Das et al. (2020b) established a problem formulation for a wind-battery power plant based

on the
::::::::
scheduled

::::::
energy

:::::
bids.70

::
In

:::
the

::::
field

:::
of

::::::
hybrid

:::::::::
renewable

::::::
energy

:::::::
systems,

::::::::::
particularly

:::
in

::::::::::
microgrids,

:::
the

:::::::
dispatch

::::::::
problem

:::
has

:::::
been

::::::::::
extensively

::::::
studied,

::
as

:::::::::
evidenced

::
by

::::::::
numerous

::::::
review

::::::
articles

:::
on

::
the

:::::
topic

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Barbosa et al., 2024; Shivarama Krishna and Sathish Kumar, 2015; Fathima and Palanisamy, 2015)

:
.
::::::::
However,

:::
the

::::::
primary

:::::::
purpose

::
of

::::::::::
microgrids

:
is
:::
to

::::::
manage

::
or

::::::
follow

::::
load

:::::::
profiles

:::::
within

::
a

:::::::
network,

:::::::
whereas

:::::
HPPs

:::::::
operate

::
as

::::::
distinct

:::::::::
generation

:::::::
facilities

::::
with

:
a
::::::::::
connection

::
to

:::
the

:::::
power

::::
grid.

::::
This

::::::
unique

:::::::::
connection

::::::::::
emphasizes

:::
the

::::
role

::
of

:::::
HPPs

::
in

:::::
active

:::::
power

::::::::::
generation,

:::::
rather

::::
than

::::
load

:::::::::::
management

:::::
alone,

::::::
which

::::
calls

:::
for

::
a

::::::
distinct

:::::
EMS

:::::
model

:::::
such

::
as

:::
the

::::
ones

:::::::::
developed

:::
by75

::::::::::::::::::
Toubeau et al. (2021)

::
and

:::::::::::::::
Ding et al. (2016)

:
.

::::
EMS

::::::
models

::::
vary

::
in
::::::::::
complexity

:::
and

::::::::::::
computational

::::::::
demand,

:::
and

:::
for

:::
this

::::::
article,

:::
we

:::::::::
categorize

::::
them

::::
into

::::::::::
high-fidelity

:::::
(HF)

:::
and

::::::::::
low-fidelity

::::
(LF)

:::::::
models.

:::::::::::
High-fidelity

:::::
EMS

:::::::
models

::::::
provide

::::::::
detailed

:::
and

::::::::
accurate

::::::::::::
representations

:::
of

:::::
HPPs,

:::::::::
capturing

:::::::
intricate

::::::
system

:::::::::
dynamics,

::::::
precise

::::::::::
component

:::::::::
behaviors,

::::
and

:::::::::::
sophisticated

::::::
market

:::::::::::
interactions.

:::::
These

:::::::
models

::::::::::
incorporate

:::::::::
forecasting

:::
and

::::::::
real-time

:::::
data,

::::::::::::
comprehensive

::::::::::
operational

:::::::::
constraints,

::::
and

::::::::
optimize

::::::
bidding

::::::::
strategies

::
to
:::::::::

maximize
::::::
profits

::
in80

::::::::
electricity

:::::::
markets

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Taha et al., 2018; Zhu et al., 2024; Ochoa et al., 2022; Han and Hug, 2020; Li and Qiu, 2016; Abdeltawab and Mohamed, 2015; Yang et al., 2018; Huang et al., 2021b; Das et al., 2020a)

:
.
:::::
While

:::
HF

:::::
EMS

:::::::
models

:::::
offer

::::
high

::::::::
accuracy

::
in

:::::::::
estimating

::::::::::
operational

:::::::::::
performance

:::
and

::::::::
financial

:::::::::
outcomes,

::::
they

:::::::
require

::::::::
significant

::::::::::::
computational

::::::::
resources

::::
and

::::
time.

::::
For

:::::::
instance,

::::::::::::::::::
Huang et al. (2021b)

:::::::
develops

:
a
:::::::::
stochastic

::::::::::::::::
optimization-based

:::
HF

::::
EMS

::::::
where

::::::
solving

:::
the

:::::::
dispatch

:::
for

::::
one

:::::
week

::
of

::::::::
operation

:::::
takes

:::::::
between

::::
329

:::
and

:::::
2,991

::::::::
seconds,

:::::::::
depending

::
on

::::
the

::::::
chosen

::::::::::
optimization

::::::::
algorithm

::::::
among

:::
five

:::::::::
compared.

::::::::
Similarly,

::::::::::::::::
Li and Qiu (2016)

::::::
present

:
a
:::::::::::
deterministic

:::
HF

::::
EMS

::::::
model

:::
that

:::::::
requires85

::::
using

::
a
:::::::
monthly

::::
time

::::
step

::
to

::::::
reduce

::::::::
simulation

:::::
costs.

:

::
In

:::::::
contrast,

:::
LF

:::::
EMS

:::::::
models

:::::::
simplify

::::
the

::::::::::::
representation

::
of

:::::
HPP

:::::::::
operations

:::
by

:::::
using

:::::::::
aggregated

:::::::
system

:::::::
models,

:::::
basic

:::::::::
forecasting

:::::::
methods

:::
(or

:::::
none),

:::
and

:::::::::
simplified

::::::
market

::::::::::
participation

::::::::
strategies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(An et al., 2020; Luo et al., 2015; Cai et al., 2016a; Zhang et al., 2018, 2017)

:
.
::::
They

:::::::
reduce

::::::::::::
computational

:::::::
demand

:::
by

:::::::::
neglecting

:::::::
detailed

::::::::::
component

:::::::::
behaviors

:::
and

::::::::::
operational

::::::::::
constraints.

:::::::::
Although

:::
they

::::::
enable

:::::
rapid

::::::::::
simulations

::::
and

:::
are

::::::
easier

::
to

::::::::
integrate

::::
into

:::::::::::
optimization

::::::::::
frameworks,

:::::
their

::::::::::::::::
oversimplifications

::::
can

::::
lead90

::
to

::::::::::
inaccuracies

::
in
:::::::

revenue
::::

and
::::
cost

::::::::::
estimations,

::::::::::
potentially

:::::::
resulting

:::
in

::::::::::
sub-optimal

::
or

:::::::::
erroneous

:::::
sizing

:::::::::
decisions.

:::::
Table

::
1

3



:::::::
provides

::
an

::::::::
overview

::
of

:::
the

::::::::::
distinctions

:::::::
between

:::
HF

::::
and

:::
LF

::::
EMS

:::::::
models.

::::::::
Notably,

::::
there

::
is

:::
no

:::::::::
universally

:::::::
accepted

::::::::
standard

::
for

:::::::
defining

:::::
these

::::::::::::
classifications,

::
so

:::
the

:::::
table

:::::
serves

::
as

::
a
::::::::
guideline

:::::
based

::
on

::::
key

::::::::::::
characteristics

::::::
relevant

:::
to

:::
this

:::::
study.

:

:::
The

::::::::
trade-off

:::::::
between

::::::::::::
computational

::::::::
efficiency

::::
and

:::::
model

::::::::
accuracy

:::::::
presents

::
a

::::::::
significant

:::::::::
challenge

:::
for

:::
the

::::::
optimal

::::::
sizing

::
of

:::::
HPPs.

::
A
::::::

sizing
:::::::::::
optimization

::
of

:::
an

::::
HPP

:::::::
involves

::::::::::
maximizing

::
a
::::::::
financial

:::::
metric

:::
by

:::::::
varying

:::
the

:::::
wind

:::::
power

:::::
plant

::::::
rating,95

::::::
battery

::::::
energy,

::::
and

:::::
power

:::::::
ratings.

::::::::::
Calculating

:::
that

::::::::
financial

::::::
metric

:::::::
requires

::::::
solving

:::
an

:::::
EMS

:::::
model

:
for each potential HPP

configuration, resulting in considerable
:
.
::::::::::::
Consequently,

:::
HF

:::::
EMS

::::::
models

:::::
offer

::::::
precise

:::::::::::
assessments;

::::::::
however,

::::::
relying

::::::
solely

::
on

:::::
them

::
is

:::::::::
impractical

::::
due

::
to

::::
their

::::::::::
substantial computational demands. Indeed,

::::::::::
Conversely,

:::::
using

:::
LF

:::::
EMS

::::::
models

:::::::
reduces

:::::::::::
computational

:::::
time

:::
but

::::
risks

::::::::::::
compromising

:::
the

::::::::
financial

:::::::
viability

::
of

:
the combination of generation and storage technologies

introduce numerous time-dependent variables, complicating the optimization process for sizing an HPP. To illustrate this, we100

present a quantitative analysis of the required computational effort for optimal HPP sizing, based on an
::::::
project

:::
due

::
to

:::::::::
inaccurate

::::::::::
assessments.

:::
To

:::::::
illustrate

:::
the

::::::::::::
computational

::::::
burden

::
of

:::
an

:::
HF

:::::
EMS

::::::
model,

::
we

::::::::
evaluate

::
the

:::::::::::::
state-of-the-art EMS developed by

Zhu et al. (2022). This model will be further detailed in Section 2.1.

Table ?? illustrates why HPP
:::::::
requires

:::::
1,250

:::::::
minutes

::
to

::::
solve

:::
for

::
25

:::::
years

::
of

::::::::
operation

::::
(the

:::::::
assumed

:::::::
lifetime)

::
of
::
a
:::::
given

::::
HPP

::::
using

::
a
::::::::::
single-node

:::::
High

::::::::::
Performance

::::::::::
Computing

::::::
(HPC)

::::::
cluster,

:::::::
Sophia

:::::::::::::::::::::
(DTU HPC Cluster, 2019)

:
,
:::::
which

::::
has

::
32

::::::::
physical105

::::
cores

::
(2

::
×
::::::::::
sixteen-core

::::::
AMD

:::::
EPYC

::::::
7351)

:::
and

::::
128

:::
GB

::
of

:::::
RAM

::
(4

::::
GB

:::
per

::::
core,

::::::::::::
DDR4@2666

::::::
MHz).

:::::::::
Therefore,

::::
even

::
if

:::
we

::::
need

::
to

:::::::
evaluate

::::
only

:
a
::::

few
::::::
sizings

:::
for

:::
the

::::::::
optimizer

::
to

::::::::
converge,

:::
we

:::::::
require

:
a
:::::::::
substantial

:::::::
amount

::
of

::::
time

::
to

:::::
reach

:
a
::::::::
solution.

:::
For

:::::::
example,

:::::::::
evaluating

:::
10

::::::
sizings

::::
takes

::::::
12,500

::::::::
minutes,

::
or

::::::::::::
approximately

:::
208

::::::
hours.

:::::::::::
Additionally,

::
in

:::::::
previous

:::::
work

:::::::
familiar

::
to

:::
the

::::::
authors

::::::::::::::::
(Leon et al., 2024),

::
a
:::::
sizing

:::::::::::
optimization

:::
can

::::
take

:::
up

::
to

:::::::
several

:::::::
hundred

::::::::
iterations

::
to

::::::::
approach

:::::::::
optimality.

:::
In

:::
that

:::::
study,

:::
the

:::::::
authors

:::
use

::
a
::::::::::
low-fidelity

::::
EMS

::::::
model

::
to

:::::::
evaluate

::::
the

::::::::
operation

::
of

:::
an

::::
HPP

::::
over

::
its

:::::::
lifetime

:::
in

:
a
::::::
matter

::
of

:::
15110

:::::::
seconds.

::::
The

:::::::::
comparison

:::
of

:::
the

::::::::::
optimization

:::::
time

:
is
::::::

based
::
on

:::
the

:::::
same

::::::::::::
computational

:::::::::
resources.

:::::
Given

:::::
these

::::::::::::
computational

:::::::
benefits,

::::
HPP sizing optimization often relies on a simplified EMS representation. A complex EMS can extend the optimization

process to thousands of hours, making a simplified EMS a common approach to reduce computational time. Although this

approach may sacrifice some accuracy in predicted operational revenues, it is a common thread in numerous review studies

(Roy et al., 2022; Lian et al., 2019; Thirunavukkarasu et al., 2023) that examine HPP sizing methodologies. These studies reveal115

a predominant preference for simplified operational strategies in the
::
LF

::::
EMS

:::::::
models.

:::
For

::::::::
example,

:::::::::::::::
Leon et al. (2024)

:::::::
propose

:
a
:::::::::::
methodology

:::
for

:::::
sizing

:::::
HPPs

::
as

:
a
::::::
nested

:::::::::::
optimization

:::::::
problem,

:::::
using

:::
two

:::
LF

:::::
EMS

:::::::
models:

:
a
:::::::::
short-term

::::
EMS

::::::::::
formulated

::
as

:::::
linear

:::::::::::
programming

::::
and

:
a
::::::::
long-term

:::::::::
rule-based

::::::
EMS.

:::
The

:::::::::
short-term

:::::
EMS

:::::::
provides

::
a
:::::::
baseline

:::
for

:::::
daily

::::::
optimal

::::::::::
operations,

::::
while

:::
the

:::::::::
long-term

::::
EMS

::::::::
modifies

::::
these

:::::::::
operations

::
to

::::::
account

:::
for

::::::::::
degradation

::::::
effects

:::
and

:::::::
forecast

::::::::::
inaccuracies

::::
over

:::
the

::::::
plant’s

:::::::
lifetime.

::::::::
Similarly,

::
in

:
a
:::::
study

:::::
aimed

::
at

:::::::::
optimizing

:::
the

:::::
design

::::
and

:::::
layout

::
of

:
a
::::::
hybrid

:::::::::::::::
wind-solar-storage

:::::
plant,

:::::::::::::::::::::
Stanley and King (2022)120

:::::::
employs

:
a
::::::
simple

::::::
battery

:::::::
dispatch

:::::::
model,

:::::
where

:::
the

::::::
battery

::
is

::::
only

:::::::::
discharged

::
to
:::::

meet
::::::::
minimum

::::::
power

:::::::::::
requirements.

::::::
While

::::
using

:::
LF

:::::
EMS

::::::
models

::::
may

:::::
result

::
in

:::::::
reduced

::::::::
accuracy

::
in

:::::::
revenue

:::::::::
estimation,

::::
they

:::
are

::::::
widely

:::::::
adopted

::
in

::::
HPP

:
sizing process.

The methodologies are typically divided into deterministic and stochastic mathematical-based approaches, such as linear or

dynamic programming models, which are well-suited for handling differentiable and continuous objective functions. While

gradient-based numerical optimization has the advantage of guaranteeing local optimality, their applicability is limited to a125

subset of objective functions that are continuous and convex.
:::
due

::
to

::::::::::::
computational

:::::::::
efficiency.

::::::
Indeed,

:::::::
several

::::::
review

::::::
studies
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:::::::::
underscore

:::
the

:::::::::
prevalence

::
of

::
LF

:::::
EMS

::::::
models

::
in

:::::
sizing

::::::::::::
methodologies

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Roy et al., 2022; Lian et al., 2019; Thirunavukkarasu et al., 2023)

:
.

To evaluate the value of HPP, the Levelized Cost of Energy (LCoE) is traditionally used. However, to assess the various

potential revenue streams, metrics such as Net Present Value (NPV) (Dykes et al., 2020) or the NPV over CAPEX (Capital130

Expenditure), are more relevant. This is because storage inherently increases costs and thus the LCoE, even though it has

the potential to substantially increase revenue or profit.
:
It

::
is

::::::::::
challenging

::
to

:::::::
quantify

:::
the

::::::::
accuracy

::::
loss

:::::
when

:::::
using

:::
LF

:::::
EMS

::::::
instead

::
of

:::
HF

::::::
models.

::::::::
Research

::::::
studies

:::::
often

:::
test

:::::
EMS

::::::
models

::
on

::::::
varied

:::::::::::
configurations

:::
of

:::::
HPPs,

:::
and

::::
only

::
a

:::
few

:::::::
conduct

:::::
direct

::::::::::
comparative

:::::::
analyses

:::::
within

:::
the

:::::
same

:::::
setup,

::::::::
primarily

:::::::
focusing

::
on

:::::::::::
high-fidelity

::::
EMS

:::::::
models.

:::
For

:::::::
instance,

:::::::::::::::::
Ochoa et al. (2022)

:::::::
compare

::::
deep

::::::::::::
reinforcement

:::::::
learning

::::
with

::::
both

::::::::
stochastic

:::::::::::
optimization

:::
and

::::::
robust

::::::::::
optimization

:::
for

:::::::::::::::::
photovoltaic-battery

:::::
HPPs135

::::
using

:::::
U.S.

::::::
market

:::::
data,

::::::
finding

::::
that

:::::
deep

::::::::::::
reinforcement

:::::::
learning

:::::
offers

::::::::
superior

::::::::
economic

:::::::::::
performance

::::
and

:::::::::::
significantly

::::::
reduces

::::::::::::
computational

:::::
time

:::::::::
compared

::
to

:::
the

:::::
other

::::
two

:::::::
studied

::::::::
methods.

:::::::::
Similarly,

:::::::::::::::::
Han and Hug (2020)

:::::
report

:::::
that,

::
in

::
a

:::::::
one-year

:::::::::
simulation

::::::
using

:::::
Nord

::::
Pool

:::::
data,

:::
the

:::::::::::::
distributionally

::::::
robust

:::::::::::
optimization

::::::
model

::::::::
achieves

::::::
higher

:::::::
revenues

:::::
than

::::::::::
deterministic

::::::::::
forecasting

::::::::::
approaches.

::::::::::::::
Zhu et al. (2024)

:::::
further

:::::::
explore

:::
this

::
by

:::::::::
comparing

:::::
EMS

::::::
models

:::
that

::::::
utilize

::::::::::::
distributionally

:::::
robust

:::::::::::
optimization

::::
with

::::
those

:::::
based

:::
on

:::::::::::
deterministic

:::::::::::
optimization

:::
and

::::::::
stochastic

:::::::::::
optimization

:::
for

:::::::::::
wind-battery

:::::
hybrid

::::::
plants140

::
in

::::::
Nordic

:::::::::
day-ahead

:::::::
markets,

::::::
taking

::::::::
imbalance

::::::::::
settlements

::::
into

:::::::
account.

:::
By

::::::::
adjusting

:::
the

::::::::::
parameters

::
of

:::
the

:::::::::::::
distributionally

:::::
robust

:::::::::::
optimization

::::::
model,

::::
they

:::::::::::
demonstrate

::::
that

:::
the

::::::::
economic

:::::::::::
performance

:::::
ranks

:::::::
highest

:::
for

::::
this

::::::::
approach,

::::::::
followed

:::
by

:::::::::
risk-neutral

:::::::::
stochastic

:::::::::::
optimization,

::::
and

::::::
finally

:::::::::::
deterministic

::::::::::::
optimization.

::::
This

::::::::
approach

:::::::
enables

:::::
more

:::::::
resilient

::::::::
offering

::::::::
strategies,

::::::::
especially

::
in

:::::::
markets

::::
with

::::
high

:::::::
penalties

:::
for

::::::
energy

::::::::::
imbalances.

:::::::::::
Additionally,

::::::::::::::
Zhu et al. (2024)

:::::::
examine

:::
the

:::::::
accuracy

::
of

::::
total

:::::
profits

::::::
across

::::
three

:::
HF

:::::
EMS

::::::
models

::::
and

::::
show

::::
that

::::
even

::::::
within

::::
these

:::::::
models,

::::::
certain

::::::::::::
simplifications

::::::::::
commonly

:::::
found145

::
in

:::::::::
low-fidelity

::::::::::::
models—such

::
as

:::
the

::::
use

::
of

:::::::::::
deterministic

::::::::::::
forecasts—can

::::
lead

::
to

:::::::
revenue

:::::::::::
discrepancies

::
of

:::
up

::
to

::::
7.6%

:::::::::
compared

::
to

::
the

::::::::::::::
best-performing

:::::
model

:::::
(refer

::
to

:::::
Table

:
3
::
of

:::
the

:::::::::
referenced

::::::
paper).

:::::
Given

:::::
these

::::::::::::
considerations,

::::
this

::::
paper

::::::::
primarily

:::::::
focuses

::
on

:::::::
reducing

:::
the

::::::::::::
computational

:::::::
demand

::
of

:::::::::::
high-fidelity

::::
EMS

:::::::
models.

:

Computational Effort for Optimal Sizing of an HPP using a complex EMS from Zhu et al. (2022) Time required for one

sizing loop (sec) 10Iteration required to find refined solution 1,000 Time required to compute EMS output per HPP configuration150

(sec) 2,820 Total time to find the refined configuration (sec)28, 200,000 Time in hours 7,833

To overcome
::::::
address the computational challenges associated with implementing a realistic EMS for HPP sizing while main-

taining high accuracy, a promising approach involves the use of
:::::
using data-driven surrogate-based optimization a technique that

has shown promise in addressing
::::::::
modeling.

::::
This

::::::::
technique

:::::::::::
demonstrates

::::::::
potential

::
in

:::::::
tackling computationally intensive prob-

lems in other domains .
:::::
across

:::::::
various

:::::::
domains

::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 2021; Lin et al., 2023; Pang et al., 2023)

:
.
:::::
These

:::::::::::::
Reduced-Order155

::::::
Models

:::::::
(ROM)

:::
aim

:::
to

::::::
replace

::::::::::::::::
high-dimensional,

:::::::::::::::
resource-intensive

::::::::
problems

:::::
with

::::::
models

::::
that

:::
are

:::::::::::
significantly

:::::
faster

:::
to

:::::::
simulate

:::::
while

::::::::
accurately

::::::::::
representing

:::
the

:::::::
original

:::::::
solution

:::::::
behavior.

::
In
:::::::::
particular,

:::::::::::::::::::
Hesthaven et al. (2022)

:::::::
reviews

::
the

:::::::::::
development

::
of

::::::::
surrogates

:::
for

:::::::::::::
time-dependent

:::::::::
problems,

::::::::
including

::::
those

::::
with

::::::::
nonlinear

:::::::::
dynamics,

:::::
which

:::
are

:::
of

::::::
interest

::
in

:::
our

:::::
work.

::
In

::::
this

::::::
context,

::::::::::
data-driven

::::::::
surrogate

:::::::
models

:::::
stand

:::
out

::
as

:::::::::
promising

::::::::
solutions,

::::::
thanks

::
to
::::::

major
::::::::::::
advancements

::
in

:::::::
machine

::::::::
learning

:::::::
methods.

::::::
These

::::::
models

:::::
often

::::::
follow

::
an

::::::::::::
offline-online

::::::::
paradigm.

:::::::
During

:::
the

::::::
offline

:::::
phase,

::
a
:::::::
reduced

::::
basis

::
is
::::::::
extracted

:::::
from160

:
a
::::::::
collection

:::
of

::::::::::
high-fidelity

:::::::::
solutions;

:::
this

:::::::
reduced

:::::
basis

::
is

::::
then

::::
used

::
to
:::::

train
:::
the

::::::::
surrogate

::::::
model

::
by

::::::::::
optimizing

::::::
weights

:::
or
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:::::::::
coefficients

::::
that

::::::
capture

:::
the

::::::
system

:::::::::
dynamics.

::::::::
Although

::::
this

::::
step

:
is
::::::::::::::

computationally
::::::::
intensive,

::
it
::::
only

:::::
needs

::
to

:::
be

:::::::::
performed

::::
once.

:::
In

:::
the

:::::
online

::::::
phase,

:::
the

::::::::
surrogate

::::::
model

::::
uses

:::
the

:::::::::::
precomputed

:::::::
weights

::
to

:::::::
compute

::::
new

:::::::
outputs

::::::
almost

::::::::
instantly,

::::
with

:::::::
minimal

::::::::::::
computational

::::
cost.

::::
This

::::::::
paradigm

:::::::
enables

:::
the

::::::::
surrogate

:::::
model

:::
not

::::
only

::
to

:::::
learn

:::
the

:::::::
mapping

:::::
from

:::::
inputs

::
to

:::::::
outputs

:::
but

:::
also

:::
to

:::::::::
understand

:::::::::
underlying

:::::::
patterns

::::::
within

:::
the

:::::
input

::::
data,

:::::::
leading

::
to

:::::
faster

:::
and

:::::
more

:::::::
accurate

:::::::::::
simulations.

:::::::::
Numerous165

::::::::
successful

::::::::::::::
implementations

::
of

::::::::::
data-driven

::::::::
surrogate

::::::
models

:::::
exist

::
in

:::
the

::::::::
literature.

:
For instance, Zhang et al. (2021) trained a

deep reinforcement learning algorithm to derive the optimal control policy for the operation of
:::::::::::::::::::::::::
Hesthaven and Ubbiali (2018)

:::::::
develops

::
an

::::::
ROM

::::
using

::::::
Proper

::::::::::
Orthogonal

:::::::::::::
Decomposition

::::::
(POD)

::
to

::::::
extract

:
a
:::::::
reduced

:::::
basis

::::
from

::::::::::
high-fidelity

::::::::
solutions

::::
and

:::::::
employs

:::::::::
multi-layer

:::::::::
perceptron

:::::
neural

::::::::
networks

::
to

::::::::::
approximate

:::
the

::::::::::
coefficients

::
of

:::
the

::::::
reduced

::::::
model,

::::::::
although

::::::::::::::
time-dependency

:
is
:::
not

::::::::::
considered.

::::::::
Similarly,

::::::::::::::::::::::
Guo and Hesthaven (2019)

::::
uses

:
a
:::::
POD

::::::::
projection

:::
and

:::::
maps

:::
the

::::
time

:::
and

::::::::
parameter

::::::
values

::::
onto

:::
the170

::::::
reduced

:::::
basis

::::
using

::::::
tensor

:::::::
products

::
of

::::
two

:::::::
Gaussian

:::::::::::::
processes—one

:::
for

::::
time

:::
and

::::
one

::
for

::::::::::
parameters.

:::::::::::::::
Hess et al. (2023)

::::::
utilizes

a small-scale wind-solar-diesel-battery-reverse osmosis energy system. In a similar approach, ? developed a Kriging-based

surrogate model to substitute the computationally expensive objective functions. Consequently, the combined economic and

emission dispatch problem in large-scale power systems was efficiently solved with suitable accuracy. Furthermore, Pang et al. (2023)

employed a neural network surrogate model to replace the original fuel cost functions, reducing the execution time . This175

neural network was integrated with a data-driven bat algorithm that efficiently addressed the economic dispatch problemwithin

a comparatively shorter timeframe than other tested approaches. Despite the advancements in surrogate modeling for various

applications, there remains a gap for surrogate
::::
ROM

::::::::
approach

::
to

:::::::::
efficiently

::::::::
compute

:::
the

::::::::::::::
Rayleigh–Bénard

::::::
cavity

::::::::
problem,

:::::::::
integrating

:::::
POD,

:::::::
dynamic

:::::
mode

:::::::::::::
decomposition,

:::
and

::::::::
manifold

:::::::::::
interpolation

:::
for

:
a
::::::
robust

:::
and

::::::::::::::
computationally

:::::::
efficient

::::::
model.

::::::::
Departing

:::::
from

:::::
POD,

::::::::::::::::
Bhatt et al. (2023)

:::::::
employs

::::
deep

::::::::::::
auto-encoder

::::::::
networks

::
to

::::::::
compress

:::::::::::
high-fidelity

:::::::::
snapshots

::::::
before180

::::
using

:::::
these

::
in

:::::::::
forecasting

::::::::::::::::::
models—specifically,

::::
long

:::::::::
short-term

:::::::
memory

::::
and

:::::::
temporal

::::::::::::
convolutional

::::::::
networks

::
for

::::::::::
time-series

::::::::
forecasts,

:::
and

::::::::::::
convolutional

::::::
neural

::::::::
networks

:::
for

::::::
spatial

:::::::
feature

::::::::::::::::::::
extraction—significantly

::::::::
reducing

::::::::::::
computational

:::::
costs

:::
in

::::
both

:::
the

::::::
offline

:::
and

::::::
online

::::::
stages.

:::::
Most

::::::
ROMs

:::::
have

::::
been

:::::::
applied

::
to

:::::::::
problems

::::::::
described

:::
by

::::::
partial

:::::::::
differential

:::::::::
equations

::::
with

:::::
sharp

::::::::
gradients.

:::
In

:::::::
contrast,

::::
our

:::
aim

::
is
:::

to
:::::
apply

::::::
similar

:::::::::
techniques

:::
to

::::::::::
high-fidelity

:::::
EMS

:::::::
models

:::
for

:::::
HPPs.

:::::::::
Although

:::::::
surrogate

:::::::::
modeling

:::
has

::::::::
advanced

:::::
across

::::::::
multiple

:::::
fields,

:
a
::::
gap

:::::::
remains

::
in

:::::::::
developing

:
models tailored to EMS for utility-scale185

HPPsincorporating ,
::::::::::
particularly

:::::
those

:::
that

::::::::::
incorporate detailed operational strategies for market participation. This gap exists

not only due to the lack
::::::
scarcity

:
of existing applications of surrogate models for EMS in HPPs but also because of the complex-

ity involved in designing an accurate surrogate model based on a multitude of input and output time series. Utility-scale HPPs

require precise and reliable predictions to optimize performance and profitability, and the variability in market conditions and

operational constraints further complicates the creation of effective surrogate models. Additionally,
::::::::::
Additionally,

::::::::::
integrating190

the surrogate model needs to be integrated within a sizing evaluation framework
:::
adds

:::::::
another

::::
layer

::
of

::::::::::
complexity.

This article seeks to address the critical need for a computationally efficient, accurate, and comprehensive operational

model that enables quantitative
:::::::
evaluate

:::
the

:::::::
potential

::
of

::::::::::
data-driven

::::::::
surrogate

::::::
models

::
in

::::::::
reducing

:::
the

::::::::::::
computational

::::::
burden

::
of

::::::::::
high-fidelity

:::::
EMS

::::::
models,

:::::
while

:::::::::
preserving

:::
the

::::
high

::::::::
accuracy

::::::
needed

:::
for

::
a

::::::
reliable

:
assessment of HPPs. For that,

::
To

:::::::
achieve

:::
this,

:::
we

:::::::
develop

:
four surrogate models are used to approximate the outputs of the high-fidelity EMS. Two of which use a195

:::
HF

:::::
EMS.

:::
We

:::::
begin

:::
by

:::::::::
employing

::::
two

::::::
models

:::::
based

:::
on multivariate linear regressionto establish a baseline and two others
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are
:
,
:::::
which

:::::
serve

::
as

::::::::
baselines

:::
due

::
to
:::::

their
:::::::::
simplicity,

::::::::::::
interpretability,

::::
and

:::
low

::::::::::::
computational

:::::
cost.

::::::::::
Recognizing

::::
that

:::
the

:::::
EMS

::::::
exhibits

::::::::
complex

:::
and

::::::::
nonlinear

:::::::::
behaviors

:::
that

:::::
linear

:::::::
models

::::
may

:::
not

::::::
capture

::::::::::
adequately,

:::
we

::::
also

:::::::
develop

:::
two

:::::::
models based

on Neural networks
::::::::
Networks

:
(NNs). Thanks to the variety of the NN’s activation functions, the inherent non-linear behavior

of the high-fidelity EMScan be approximated. This paper builds on top the EMS
:::::
Neural

::::::::
networks,

::::::::::
particularly

::::::::::::
Feed-forward200

:::::
Neural

:::::::::
Networks

:::::::
(FNNs),

:::
are

:::::::
capable

:::
of

::::::::
modeling

:::::::
intricate

::::::::
nonlinear

:::::::::::
relationships

:::::::
through

:::::
their

::::::
layered

:::::::::::
architectures

::::
and

::::::::
nonlinear

::::::::
activation

:::::::::
functions.

::::
This

::::::
makes

:::::
them

:::::::::
well-suited

:::
for

:::::::::::::
approximating

:::
the

:::::::
inherent

::::::::
nonlinear

:::::::::
dynamics

::
of

:::
the

::::
HF

:::::
EMS.

::
By

:::::::::
leveraging

:::::
NNs,

:::
we

:::
can

::::::
capture

::::::::
complex

::::::
patterns

::::
and

::::::::::
interactions

:::::
within

:::
the

::::
data

:::
that

:::::
linear

:::::::
models

:::::
might

::::::::
overlook,

:::::::::
potentially

::::::::
achieving

::::::
higher

::::::::
accuracy

::
in

:::::::::
estimating

:::::::
outputs.

::::
The

::::::
choice

::
of

:::::
these

::::::::
surrogate

::::::
models

::::::
allows

:::
us

::
to

:::::::
explore

:::
the

::::::::
trade-offs

:::::::
between

::::::
model

:::::::::
complexity,

::::::::::::
computational

:::::::::
efficiency,

::::
and

::::::::
accuracy.

:::
By

:::::::::
comparing

:::
the

::::::::::
performance

:::
of

::::::::::
multivariate205

:::::
linear

::::::::
regression

::::::
models

::::
and

:::::
neural

::::::::
networks,

:::
we

:::::
assess

:::
the

:::::
extent

::
to
::::::
which

:::::::::::
incorporating

::::::::::
nonlinearity

::::::::
improves

:::
the

:::::::::
surrogate’s

:::::
ability

::
to

::::::::
replicate

:::
the

:::
HF

:::::
EMS

:::::::
outputs.

:::::::::::
Additionally,

::::
NNs

::::
have

::::::::::::
demonstrated

::::::
success

::
in
:::::::::

surrogate
::::::::
modeling

:::::
across

:::::::
various

::::
fields

::::
due

::
to

::::
their

::::::::
flexibility

::::
and

:::::::::
scalability,

::::::
making

:::::
them

:
a
:::::::::
promising

::::::::
candidate

:::
for

:::
this

::::::::::
application.

:::::::
Building

:::::
upon

:::
the

:::::
EMS model developed by Zhu et al. (2022), which will be

:
is
:
detailed in the following section. ,

::::
this

::::
paper

:::::
seeks

:::
to

::::::
answer

:::
the

::::::::
question:

::::
How

::::
can

::
we

::::::
enable

:::
the

::::::
sizing

::::::::
evaluation

:::
of

::::::::::
utility-scale

:::::
HPPs

:::::
based

:::
on

::
an

:::::::
accurate

::::
and210

:::::::::::::
computationally

:::::::
efficient

:::::
EMS

::::::
model?

:

The major contributions of this article are
:
as

:::::::
follows:

– Development of a fast and precise surrogate
:::::::
accurate

::::::::
surrogate

:::::
model

:
for a utility-scale HPP EMS model participating

in the spot market. The surrogate is based on a Feed-Forward Neural Network (FNN), harnessing the power of machine

learning to provide a reliable and efficient alternative to the computationally intensive EMS model.215

– Assessment
::::::::::::
Demonstration

:
of the surrogate’s ability to predict hourly operational time series on multiple sites across

::::::::::::
generalizability

::
in
::::::::
different

:::::::::::
geographical

:::::::
locations

::::::
within the same electricity market region.

– Integration of the developed surrogate within a framework to evaluate
::::
sizing

:::::::::
evaluation

:::::::::
framework

:::
to

::::::::
accurately

::::::
assess

the profitability of an HPP sizing with high accuracy
::::::
various

::::
HPP

::::::::::::
configurations.

The remainder of this paper is organized as follows. Section 2 introduces the :
:::::::
Section

:
2
:::
the

:::
HF EMS model that the surrogate220

is based on ,
::::::::
surrogates

:::
are

:::::
based

:::
on

::::
and the methodology devised for the surrogate modeling of the EMS, and .

:::::::
Section

::
3

:::::
details

:
the sizing evaluation framework for analyzing the profitability of an HPP

::::
using

:::
the

:::
HF

:::::
EMS

:::
and

:::
the

::::::::
surrogate

::::::
models.

Section 4 provides details on the
:::
case

:::::
study,

:::
the

:
data used to train and validate the surrogate as well as the cost model for the

sizing evaluation framework. While Section 5 provides
::::::
models,

:::::
while

:::::::
Section

:
5
:::::
offers

:
an in-depth analysis of the surrogate’s

accuracy
:::::::::::::
best-performing

::::::::
surrogate and its application.

::::
The

::::::::::
performance

:::
of

::
all

:::::::::
surrogates

::
is

:::::::
detailed

::
in

:::::::::
Appendix

::
A.

:
These225

results are put into perspective in Section 6 and summarized in Section 7.
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2 Methodology

In this section, we will start
::::
begin

:
by presenting the high-fidelity model that serves as the foundation for the surrogate models

,
::
in Section 2.1, followed by the methodology for developing the surrogate model

:::
four

::::::::
surrogate

::::::
models

:
in Section 2.2.

2.1 HPP Operation Model (EMS)230

The EMS model, on which the surrogate is built, is presented in this section. The EMS model is based on a study by Zhu et al.

(2022) that focused
::::::
focuses

:
on a co-located wind-battery HPP. This novel EMS model , was

::
is formulated to optimize market

participation within two sequential electricity markets: namely, the spot market (SM ) and the Balancing Market (BM), which

encompasses the
:::
SM

:::
and

:::
the

::::
BM,

:::::
which

::::::::::
encompass

:::
the regulatory periods of the Danish market structure. This state of the art

::::::::::::
state-of-the-art EMS has the advantage of considering :235

– Long-term operation of the HPP with comprehensive revenue streams
::::::
stream calculations.

– Grid capacity , as a practical constraint for the HPP.

– Possibility
:::
The

:::::::::
possibility of considering overplanting, which has been shown to increase the value of HPP

::::
HPPs.

In electricity trading, various markets enable power plant operators to sell their energy. The SM is currently the most lucrative

market where power is traded for immediate delivery. In the SM, power plant operators can bid on the day-ahead and hour-ahead240

markets. Day-ahead bidding determines hourly prices for the next day, while hour-ahead biddings allows for adjustments based

on updated generation forecasts and cleared SM prices. The BM, another potential source of revenues for HPPs, operates in

conjunction with the Spot Market (SM). The BM enables transmission system operators to adjust for discrepancies between

forecasted and actual demand and supply. These discrepancies arise from the predicted electricity supply that were forecasted

during the SM bidding process and the actual conditions closer to the delivery time. Hence, the BM acts in near real-time,245

penalizing deviations from scheduled generation. This
:::::::
However,

::::
this paper primarily focuses on the EMS’s role in Day-Ahead

(DA)
::::::::
day-ahead

:
SM participation. Additionally, our study considers the Danish market structure with a dispatch interval of

15 minutes. As in real power plants, the EMS
:::
SM

::::::
bidding

:::::::
process

::::
(also

:::::::
referred

::
to

:::
as

:::
SM

:::::::::::
optimization)

:
communicates with

a Power Management System (PMS)
:::::::::
Real-Time

::::
(RT)

:::::::
dispatch

:::::::::::
optimization. In this framework, the EMS

:::
SM

:::::::::::
optimization

provides energy set-points , based on weather and market forecast data to the PMS
:::
RT

:::::::
dispatch, which, in turnuses Real-Time250

(RT)
:
,
::::
uses

:::::::
real-time

:
measurement data to derive RT

:::::::
real-time

:
power values. RT

::::::::
Real-time measurements allow the calculation

of deviations and the applications
:::::::::
application

:
of penalties. The PMS is emulated as an active power control logic, as described

in Long et al. (2022). The inputs to the EMS
:::
SM

::::::::::
optimization

:
are time series forecasts of wind power and market prices, while

the PMS use
::
RT

:::::::
dispatch

::::
uses

:
the same input time series updated to RT measurements ,

:::
with

::::::::
real-time

::::::::::::
measurements for each

dispatch interval, as well as the bidding schedule generated from the EMS
:::
SM

:::::::::::
optimization. For clarity,

:::
the inputs and outputs255

of the EMS and PMS
:::
SM

::::::::::
optimization

::::
and

:::
RT

:::::::
dispatch are listed in Table 2.

:::
The

:::::::::
combined

::::::
models,

::::
SM

::::::::::
optimization

::::
and

:::
RT

:::::::
dispatch,

:::
are

:::::::
referred

::
to

::
as

::
a

::::::::::
high-fidelity

:::::
EMS

:::::
model

::
in

:::
this

::::::
paper.

While the EMS’s inputs
:::
SM

::::::::::::
optimization’s

::::
input

:
and output time series are based on hourly time steps, the PMS

::
RT

:::::::
dispatch’s

outputs and RT
::::::::
real-time input time series have a time step equal to the dispatch interval,

:
i.e., 15 min for the the

:::::::
minutes
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::
for

::::
the Danish market structure. Additionally, both models assume a given HPP configuration, also denoted

::::::
referred

::
to

:
as260

sizing parameters in this article. They
:::::
These

:
are defined as the wind power plant rated power

:::::
(PW ), the rated battery power

rating
::::
(BP ), battery energy capacity rating

:::::
(BE), and grid connection power capacity

:::::
(PG). Other battery parameterssuch as

the ,
:::::
such

::
as charge/discharge efficiency

:
, are assumed from Zhu et al. (2022).

Figure 1 illustrates the considered EMS workflow. EMS for Spot Market workflow. Adapted from Zhu et al. (2022)

The EMS itself is
:::
The

::::
EMS

:::::::
operates

:::::::
through

:
a
:::::::::
structured

::::
daily

::::::
cycle,

::::::::
beginning

::::
with

:::
the

:::::::::
forecasting

::::::
stage.

::
On

:::
the

::::::::
previous265

:::
day

:::::
(d-1),

:
a
:::::::
forecast

::
of
:::::

wind
:::::::::
generation

:::
and

::::
spot

::::::
market

::::::
prices

:::
for

:::
the

::::::::
following

:::
day

:::
(d)

::
is
::::::::
obtained.

:::::
Using

::::
this

::::
data,

:::
the

::::
SM

::::::::::
optimization

::
is

:::::::::
conducted

::
at

:::::
noon

::
on

::::
day

::::
d-1,

:::::::
aligning

::::
with

:::
the

:::::::::
day-ahead

::::::
market

:::::::
closure,

::
to
:::::::::

determine
:::
the

:::::::
optimal

::::::
hourly

:::::
power

:::::::
bidding

::
for

:::
the

:::::
HPP.

::::
This

:::::::::::
optimization

:
is
:
formulated as a Mixed Integer Linear Programming (MILP) model, executed

once daily, at the beginning of each day. It aims at maximizing the revenues throughout the time span of the inputs. The PMS

takes the form of
:::::::
problem,

::::::
aiming

::
to

::::::::
maximize

:::
the

::::::
plant’s

:::::::
revenue

:::::
across

:::
the

:::
day

:::
by

::::::::::
strategically

::::::
bidding

::::::
power

::
on

:::
the

::::
SM.

:::
On270

:::
day

::
d,

:::
the

:::
RT

:::::::
dispatch

:::::::::::
optimization

::
is

:::::::
executed

::
at
:::::::::
15-minute

:::::::
intervals

::::::::::
throughout

:::
the

::::
day.

::::
This

:::::
phase

::::::
focuses

:::
on

::::::::::
minimizing

:::::::::::
discrepancies

:::::::
between

:::
the

:::::
power

::::
that

::::
was

:::
bid

::
on

:::
the

::::
spot

::::::
market

::::
and

::
the

::::::
actual

::::::::
real-time

:::::::
available

::::::
power.

::::
The

:::
RT

:::::::
dispatch

::
is

:::::::
modeled

::
as a Mixed Integer Quadratic Programming (MIQP) model, executed at regular dispatch intervals. The PMS minimizes

the difference between the power bidding on the SM and the real-time available power
:::::::
problem,

:::::
which

:::::::::::
dynamically

::::::
adjusts

:::
the

:::::
HPP’s

::::::
output

::
to

:::::
meet

::::::
market

::::::::::::
commitments

::
as

::::::
closely

:::
as

::::::::
possible,

:::::::::
responding

:::
to

::::::::
variations

::
in
::::::::::

generation.
:::::::
Finally,

:::
the

::::
day275

::::::::
concludes

::::
with

:
a
:::::::::
settlement

::::::
process

:::
on

:::
day

::::
d+1,

::::::
where

:::
the

::::::::
outcomes

::
of

:::
the

::::
day’s

:::::::::
operations

:::
are

:::::::::
reconciled. The details of both

::
all models can be found in the referenced work.

EMS
Spot Market optimization

Electricity market &
TSO

Wind Power forecast

Market Prices forecast
Real-time
dispatchReal-time

power

Set-points

Market prices &
cleared volume

Day-Ahead 
energy plan

Forecast of
time series for

day d 

Spot market
optimization:
Hourly Power

bidding of day d 

12hd-1

Real-time dispatch
optimization. Every

dispatch interval: 15 min

d

... Settlement
of day d

d+1

...

Figure 1.
:::::::
Workflow

::
of
:::
HF

::::
EMS

::
of

:::
this

::::::
article,

:::::::
developed

:::
by

::::::::::::
Zhu et al. (2022)

The optimization models were solved using the solver of IBM Decision Optimisation
::::::::::
Optimization

:
Studio CPLEX through

the docplex python library (IBM, 2023)operating on the
::::::
Python

::::::
library

::::::::::
(IBM, 2023)

:
,
::::::::
operating

:::
on DTU’s high-performance

computing clusterSophia (?).280
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:
,
:::::
Sophia

::::::::::::::::::::::
(DTU HPC Cluster, 2019).

:
It was observed that for a given HPP configuration, 47 minutes were required to compute

the outputs for one year of operation
::
of

:::
the

:::
HF

::::
EMS

::::::
model. The underlying reason for this is due to the iterative and sequential

nature of the framework. For each day, the MILP optimization is solved first,
:
followed by the MIQP for each dispatch interval

(e.g.,
:
96 times a

:::
per day). While each iteration of the MILP and MIQP problems requires a minimal amount of time (less than

0.15 seconds), the frequency of these optimizations is substantial. Moreover, since each time step depends on the previous285

one, it is necessary to perform the optimization sequentially. Table 3 shows the number of decision variables and constraints

required to optimize for inputs spanning over one year. This highlights the substantial computational time that would be

required to optimize the sizing of a
::
an

:
HPP based on such an operational model.

While the combination of both models allows for a realistic representation of the operation of a
::
an

:
HPP, it has its own

limitations. These limitations are also carried over to the surrogate that is build
::::
built upon both models. No battery degradation290

model is considered in the optimization process. It is well known that lithium-ion batteries’ energy capacity degrade
:::::::
degrades

over time in a non-linear
::::::::
nonlinear

:
fashion (Xu et al., 2018), this

:::::
which directly impacts revenues as opportunities for energy

arbitrage are reduced. Additionally, as we are focusing
::::
focus

:
on demonstrating the potential of surrogate modeling for EMS of

HPP
::::
HPPs, perfect forecast data will be used. Finally, the balancing market will not be considered in this article and will be left

as a future works. The combined models, EMS and PMS, are referred to as a high-fidelity EMS model in this paper.
::
for

::::::
future295

:::::
work.

2.2 Surrogate Methodology

In this article, a surrogate model consists of several sub-components: data pre-processing, a regressor, and data post-processing.

The pre-processing consists of scalingthat ensures
:::::::
involves

::::::
scaling,

::::::
which

:::::::
ensures

::::
that all inputs contribute equally to the

model’s predictions and helps
::::::::::
estimations

:::
and

:::::::
supports

:
the surrogate’s convergence algorithm. The post-processing is applied300

in accordance with the pre-processing to interpret the results in their original scale. The regressor is the model tasked with

approximating the high-fidelity EMS. Section 2.2.1 details the inputs and outputs for training and evaluating the surrogate

models. Section 2.2.2 describes four surrogate models, differing in their data processing and regressor model
::::::
models. Sections

2.2.3 and 2.2.4 cover the training and validation of these models, respectively.

2.2.1 Surrogate Model’s Inputs and Outputs305

Regardless of the surrogate model being evaluated, all models aim to approximate the same output time series given the same

input data. Table 4 below lists the various input and output time series used to train and validate the surrogate.

The input time series of the surrogate match those of the EMS
:::
SM

:::::::::::
optimization, and its outputs align with the PMS

:::
RT

:::::::
dispatch’s outputs. In addition to the input time series, the regressor also considers three scalar parameters representing an

HPP, which helps
:::
help differentiate between various HPP configurations. They

:::::
These

:::::::::
parameters

:
are represented by equations310

1 to ??:
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PW /PG

BP /PG

BE/BP

Where PW is the rated power of the wind power plant, PG is the grid connection capacity, BP is the rated battery power, and315

BE is the rated energy capacity of the battery
:::
the

:::::
ratios

::::::::
PW /PG,

::::::::
BP /PG,

:::
and

::::::::
BE/BP .

2.2.2 Surrogate Models

Table 5 presents all surrogate models evaluated. Surrogate models tested Pre-processing Regressor Post-processing Normalization

Linear Reverse Normalization Normalization Reverse SVD SVD Reverse Normalization Normalization FNN Reverse Normalization

Normalization Reverse SVD SVD Reverse Normalization320

The first surrogate,
::
S1,

:
which serves as our benchmark, normalizes the input and output time series for each HPP configu-

ration and employs a multivariate linear regression to predict
:::::::
compute the normalized outputs from normalized inputs. Details

on the normalization process appear later on, in this section.

The second surrogate
:
,
:::
S2, incorporates a dimensionality reduction method known as Singular Value Decomposition (SVD),

as developed by Gene H. Golub (1996). After normalizing inputs and outputs, we apply SVD, a common tool in numerical325

analysis, particularly for dimensionality reduction. The specific use of this method is detailed in this section.

The third and fourth surrogate models
:::::::
Surrogate

:::::::
models

::
S3

::::
and

:::
S4 are similar to the first and second ones

::
S1

:::
and

:::
S2, but

they differ in their choice of regressors. Instead of employing a multivariate linear model, these models utilize a tuned FNN to

capture the non-linear relationships between inputs and outputs.

For all surrogate models, we apply data post-processing consistent with the pre-processing to ensure the output data is330

interpretable in its original scale.

For all surrogate models, we normalize the wind power generation time series (Wt) using the turbine’s rated power , and the

spot market price time series (SMt) by the maximum price, achieving a scaling between zero and one. Since the output time

series magnitudes depend on the sizing inputs, we use these parameters as the basis for normalization . This step refers to the

Normalization in Table 5. It is applied for each time series following these equations:335

Pt,norm
smHPP

:::
= Pt

smHPP
:::

/PG (1)

Pt,norm
sm,disdis

::
= Pt

sm,disdis
::

/BP (2)

Pt,norm
sm,chacha

::
= Pt

sm,chacha
::

/BP (3)

Pt,norm
sm,curtcurt

:::
= Pt

sm,curtcurt
:::

/(PW −PG) (4)
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In Equation (1) the power bidding on the SM is normalized by the grid capacity. Equations (2) and (3) normalized the battery340

charge and discharge profiles by the battery’s rated capacity, and Equation (4) normalized the curtailed power with respect to

the difference between wind power and grid capacity. A surrogate model, using only normalization for data processing, has five

input features: SMt, Wt, PW /PG, BP /PG, and BE/BP . It outputs four features: P sm
t , P sm,dis

t , P sm,cha
t , and P sm,curt

t .

We apply SVD method,
::
We

::::::
apply

:::
the

::::
SVD

:
as described in Zhu et al. (2010) , to derive the principal component matrices,

denoted as Z in the cited paper. This method is used independently for the matrices containing the input time series Min and345

the output time series Mout. The SVD is used
::::::
applied following the normalization described above and it is applied for the 2nd

:
is
::::
used

:::
for

::::::::
surrogate

:::::::
models

::
S2

:
and 4th surrogate models of Table 5

::
S4. Figure 2 illustrates the matrix Min, which includes all

:::::::::
normalized input time series for a single HPP configuration. Matrix M containing input time series, denoted Min

In this figure, the notation WHPPn

t,norm,d refers to the
:
:
:::
the

:
normalized wind power time series for day d and for the HPP

configuration n. Similarly, SMHPPn

t,norm,d refers to
:
,
:::::::::
WHPPn

t,norm,d,
::::
and the normalized SM prices for day d for the HPP configuration350

n.
::::::::::
SMHPPn

t,norm,d.
:

One HPP configuration = 365 Days

Tim
e steps in

one day

Figure 2.
:::::
Matrix

::
M
:::::::::

containing
::::
input

::::
time

:::::
series,

::::::
denoted

::::
Min.

:::::::::
WHPPn

t,norm,d :
is
:::
the

:::::::::
normalized

::::
wind

:::::
power

:::
time

:::::
series

:::
for

:::
day

:
d

::
and

:::
for

:::
the

:::
HPP

::::::::::
configuration

::
n.
::::::::::
SMHPPn

t,norm,d :
is
:::
the

:::::::::
normalized

:::
SM

::::
prices

As the high-fidelity EMS uses hourly time steps for forecasted wind power and SM prices, each of the input vector
::::::
vectors,

SMHPPn

t,norm,d and WHPPn

t,norm,d, is of shape (24,1). Hence, for a given HPP configuration, matrix Min from Figure 2 is of

shape (24 · 2,365).
:::
has

::
24

:::::
time

:::::
steps.

:
To expand this matrix for all HPP configurations, we concatenate horizontally (i.e.,

along the second dimension) each matrix Min corresponding to a
:
an

:
HPP configuration. We thus obtain a matrix of shape355

((24 · 2) ·N,365). Where N is the number of HPP configurations.

The output time series matrix
:
, Mout, is constructed in a similar fashion. However, unlike Min, this matrix contains fours

:::
four

:
time series, the ones defined in equation

::
Eq.

:
(1) to (4). Additionally,

::::
Note

::::
that these time series have a time step equal to

the dispatch interval
:
, e.g., 15 min. Thus, Mout will be of shape ((96 · 4) ·N,365).

:::::::
minutes.

After applying Singular Value Decomposition (SVD) to both matrices, Min and Mout, we extract their principal component360

matrices , Zin and Zout, and
:::
and truncate them to the desired level. As a result, we obtain two sets of matrices with different

truncation levels, denoted as rin and routrespectively. We use these truncated matrices for training and evaluating the regressor

models.
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:
,
::::::::::
respectively.

:::
The

:::::::::
truncation

::::
level

::
is

::::::
chosen

::
so

:::
that

:::
the

::::::::
explained

:::::::
variance

::
is

:::::
99%;

::
for

:::
the

:::::::::
definition,

:::
see

:::
Eq.

:
4
::
of

:::::::::::::::::::::
Freire and Ulrych (1988)

:
. Table 6 presents an overview of the features and samples of each data-processing method for input and output data spanning365

over a year.

From this table, we observe that the features of the SVD method are most likely higher than than the one
::::
those derived from

the normalization method (this depends on the truncation level). However, the number of samples are
:
is
:

substantially lower,

this
:::::
which

:
allows us to achieve a reduced representation of the data.

::::
Note

::::
that

:::
the

::::::::
surrogate

::::::
models

:::::
using

::::
only

::::::::::::
normalization

::
for

::::
data

:::::::::
processing

::::
(S1

:::
and

::::
S3)

::::
have

::::
five

::::
input

::::::::
features::

:::::
SMt,::::

Wt,:::::::::
PW /PG,

:::::::
BP /PG,

::::
and

::::::::
BE/BP .

::::
And

::::
they

::::::
output

::::
four370

:::::::
features:

::::::
PHPP
t ,

:::::
P dis
t ,

:::::
P cha
t ,

::::
and

::::::
P curt
t .

2.2.3 Surrogate Training

To train a surrogate model, a training dataset is defined based on a number of HPP configurations with distinct sizing param-

eters. The details of this dataset can be found in Section 4. More specifically, this training dataset is used to train the SVD

transformation and the two regressor models. Note that the normalization does not require a training. Two models are used to375

approximate the outputs of the high-fidelity EMS: a tuned FNN and
::::::
(models

:::
S3

:::
and

::::
S4)

:::
and

:
a multivariate linear regression

::::::
(models

:::
S1

:::
and

::::
S2). The latter is used as a baseline model to compare the accuracy of the neural networks.

The training of FNN with hidden layers
:::::
Since

:::
the

:::::::::
regressors

::::
used

::
in

:::
S1

:::
and

:::
S2

:::::
differ

:::::::::::
significantly

::::
from

:::::
those

::
in
:::

S3
::::
and

:::
S4,

::::
their

:::::::
training

::::::::
processes

::::
also

:::::
vary.

:::::::
Models

:::
S3

:::
and

:::
S4

::::
use

::
an

:::::
FNN;

::::::
hence,

::::
the

:::::::
training is done in two steps . Initially,

:::
and

::::::
applied

:::
for

:::::
each

::
of

::::::
models

:::
S3

::::
and

::
S4

:::::::::::
individually.

::::
The

:::
first

::::
step

:::::::
involves

:
a tuning process

:::
and is carried out using two380

hyperparameters
:
, shown in Table 7 below. Afterwards, the best-performing model from the tuning process is selected for a

more exhaustive training.

FNN grid search hyperparameter space Hyperparameter Range Step Layers 3,91 Neurons per layer 40,8020

Within this tuning process, it’s important to note that each layer can have a varying number of neurons within the provided

range. A Rectified Linear Unit (ReLu) activation function has been used for all hidden layers and , for the output layer, a385

linear activation function has been used. ReLu is an appropriate activation function for the data, particularly following the

normalization process, as all input and output time series become non-negative.

:::::::::
Afterwards,

::::
the

:::::::::::::
best-performing

::::::
model

:::::
from

:::
the

::::::
tuning

:::::::
process,

:::
for

::::
each

:::
of

::
S3

::::
and

:::
S4,

::
is
::::::::

selected
:::
for

:::::
more

:::::::::
exhaustive

:::::::
training.

::::
This

:::::::
two-step

::::::::
approach

::
is

::::::::
necessary

:::
to

::::::
reduce

:::
the

::::::::::::
computational

::::::
burden

:::::::::
introduced

::
by

:::
the

::::::
tuning

:::::::
process,

::
in

::::::
which

::::::
several

:::::::
hundred

:::
NN

::::::::::
architectures

:::
are

:::::::::
evaluated;

:::::::
however,

:::
the

::::
NNs

:::::
aren’t

::::::
trained

::::
until

::::
they

::::::::
converge.

:::::::
Instead,

::
the

::::::::::::::
best-performing390

:::::
model

::::
from

:::
the

::::::
tuning

::::::
process

::
is

:::::::
selected

:::
for

:::::
further

::::::::
training. To efficiently select the hyperparameters among the search space,

Hyperband by Li et al. (2018) , is used. Hyperband uses random sampling of hyperparameters to explore a wide range of set-

tings.

A NN is defined by its architecture, parameters, and hyperparameters. The architecture consists of layers, starting with the

input layer whose neuron count is determined by the dimensionality of the input data. This layer is followed by several hidden395

layerswith a given number of neurons and activation functions. These layers and neurons defines the network’s depth and

width, while the activation functions can introduce non-linearity into the model. The output layer has as many neurons as the
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variables in the output data. The interconnections between these layers defines the topology of the NN. The parameters of the

NN are the learnable weights and biases, which are determined in the training process. In contrast, the hyperparameters are

pre-defined settings that are not learned from the training data. These encompasses the number of hidden layers, neurons per400

layer and much more
:::
For

::::
both

:::::::
models

:::
S3

:::
and

:::
S4,

::
a
::::::::
Rectified

::::::
Linear

::::
Unit

:::::::
(ReLU)

::::::::
activation

::::::::
function

::
is

::::
used

:::
for

:::
all

::::::
hidden

:::::
layers,

::::
and

:::
for

:::
the

::::::
output

:::::
layer,

:
a
:::::
linear

:::::::::
activation

:::::::
function

::
is

:::::
used.

:::::
ReLU

::
is
:::
an

::::::::::
appropriate

::::::::
activation

:::::::
function

:::
for

:::
the

:::::
data,

:::::::::
particularly

:::::::::
following

:::
the

:::::::::::
normalization

:::::::
process,

:::
as

::
all

:::::
input

::::
and

:::::
output

::::
time

::::::
series

::::::
become

:::::::::::
non-negative. To train a

::
an NN,

at least 2
:::
two

:
settings need to be defined. First, a loss function, which is a metric that measure

::::::::
measures the error between

the training data and the model’s prediction -
:::::::::::
estimations—the mean squared error was

:
is
:
used. Second, an optimizer, which405

modifies the model’s weights and biases during the training process to minimize the loss function. Each optimizer has its own

set of hyperparameters. The Adam optimizer by Kingma and Ba (2017) was
::
is used with a learning rate of 10−4

The tuning process aims to evaluate several thousands of NN architectures. To avoid a computationally expensive process,

these NN aren’t trained until they converge. Instead, the best-performing model, from the tuning process, is selected for further

training.410

The tuning resulted
:
.
:::
The

::::::
tuning

:::::
results

:
in the architectures presented in Table B1 and B2 in AppendixB

:
.

The multi-variate linear regression is
::::::
Models

:::
S1

:::
and

:::
S2

:::
use

::::::::::
multivariate

:::::
linear

:::::::::
regression.

:::::
They

:::
are

:
trained using the same

dataset with the objective of minimizing the mean squared error
:
, using the same optimizer as for the FNN.

::::::
Models

:::
S1

:::
and

::
S2

:::
are

:::
not

::::::
subject

::
to
::::
any

::::::
tuning,

::
as

::::
there

:::
are

:::
no

::::::
hidden

:::::
layers

::
or

:::::::
neurons.

:
Similarly, the SVD transformations

were
::::
SVD

::::::::::::::
transformations

:::
are trained on the training dataset. The transformations were

::
are

:
trained separately for both input415

and output time series, resulting in two distinct transformations. The normalization requires no training.

2.2.4 Surrogate Validation

We aim to identify the surrogate model offering
:::
that

:::::
offers

:
the best compromise between training time, inference time, and

accuracy. First, we assess each surrogate’s accuracy on a validation dataset, which is separate from but defined similarly to the

training dataset. We measure the accuracy of each surrogate using the Root Mean Square Error (RMSE) between the predicted420

and actual
:::::::
estimated

::::::::
(ŷi,norm)

::::
and

:::::
actual

:::::::::
(yi,,norm) values for the normalized hourly time series

:::
and

:::
for

::
all

::::
data

::::::
points

::
in

:::
the

::::::::
validation

::::::
dataset

::::
(N ). The RMSE

::::::
(ϵRMS)

:
is computed as follows:

RMSEϵRMS
::::

=

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

√√√√ 1

N

N∑
i=1

(yi,norm − ŷi,norm)2

::::::::::::::::::::::::

(5)

Where:

yi is the true data, within the validation dataset425

ŷi is the predicted data, based on validation dataset inputs

N is the number of data points
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Since this RMSE takes into account all the
::
is

::::::::
calculated

::::::
across

:::
all output time series, it provides a holistic measure

:::::
broad

:::::::::
assessment

:
of the model’s accuracy,

:::::::
without

:::::::
specific

:::::::
insights

:::
into

:::::
each

::::::::
individual

::::::
series. We use this metric to compare the

performance of the surrogate models presented in Table 5. Additionally, we measure the training an
:::
and inference time of each430

model.

For the best-performing surrogate model,
:::::
among

:::::::
S1-S4, we further investigate the accuracy of each output time series

using RMSE for a deeper understanding of the model. Our focus then shifts to one specific output time series, the normalized

power output P sm
t,norm ::::::

PHPP
t,norm. This time series allows us to calculate the yearly revenues, which are required to compute the

Profitability Index (PI), the
::::::
enabling

:::
us

::
to

:::::::
evaluate

:::
the

::::::::::
profitability

:::
of

:
a
:::::
given

::::::
sizing,

:::
the

:
key application of our surrogate in435

this article.

To explore the methodology’s potential further, we assess the surrogate’s generalizability across various locations within the

western Danish price region, DK1. For
::
In this intra-generalizability analysis, we calculate the Normalized RMSE

::::
Root

:::::
Mean

::::::
Square

::::
Error

:
(NRMSE) of yearly revenues, defined as follows:

::
the

::::::
yearly

::::::::
revenues

::
to

::::::
assess

:::
the

:::::::
accuracy

:::
of

:::
the

:::::::::
surrogate’s

::::::::::::::
approximations.

::::::::::
Specifically,

:::
we

::::::::
compare

:::
the

::::::::::::
approximated440

:::::::
revenues

::::
(Π̂k)

:::::
with

:::
the

:::::
actual

:::::::
revenues

:::::
from

:::
the

:::
HF

:::::
EMS

::::
(Πk)

:::
for

::::
each

:::::
HPP

:::::::::::
configuration

:
k
::::::

across
:::
all

::::::::::::
configurations

::
in

:::
the

::::::
selected

:::
set

:::
K.

:::
To

::::::
express

:::
the

::::::
RMSE

::
as

::
a
::::::
relative

::::::::
measure,

:::
we

::::::::
normalize

::
it

::
by

::::::::
dividing

::
by

:::
the

::::::
median

:::
of

:::
the

:::::
yearly

::::::::
revenues

::
for

:::
all

:::::::
selected

::::
HPP

::::::::::::
configurations

::::::::::::
(Median(Π)),

:::
as

::::::::
computed

::
by

:::
the

:::
HF

::::::
EMS.

:::
The

::::::::
NRMSE

::::::::
(ϵNRMS)

:
is
:::::
given

:::
as:

:

NRMSEϵNRMS
::::::

=

√
1
K

∑K
k=1(Πk − Π̂k)2

Median(Π)
(6)

Where:445

K is the number of HPP configurations.

in the validation dataset.

Πk is the revenue of the kth HPP configuration,

based on true data.

Π̂k is the revenue of the kth HPP configuration,450

based on predicted data.

Median(Π) is the median revenue of all HPP

configurations, based on true data.

The revenues
:::
The

:::::::
revenue time series is extracted from either true/observed data (from the high-fidelity model) or predicted

:::::::::::
approximated (from the surrogate model) power time seriesas follows:455

Π=

T∑
i=t

P sm
t ·λsp

t ·∆t
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Where Π is the yearly revenue, ∆t the time step, and T ,
::::::::::
considering

:::
the

:::::::
dispatch

:::::::
interval

:::
∆t

:::
and

:
the total time steps within a

year.
:
,
::
T .

:

Π=

T∑
i=t

PHPP
t ·SMt ·∆t

:::::::::::::::::::::

(7)

3 Application: PI Evaluation460

To assess the business case of a
:
an

:
HPP, we can use financial metrics like Internal Rate of Return (IRR) and Net Present Value

(NPV). IRR calculates the HPP’s annual investment return, while NPV assesses its profitability in today’s value. However,

when an HPP isn’t profitable, resulting in a negative NPV, the IRR becomes undetermined. A more meaningful measure is the

Profitability Index (PI), calculated as NPV divided by the initial investment (CAPEX)
::::::::::::::
NPV/CAPEX . The PI indicates how

many dollars of present value benefit are generated per dollar of investment, offering a more intuitive understanding of the465

investment’s profitability. This metric allows for a direct comparison of the relative profitability of each project, regardless of

their absolute size. Additionally, when resources are limited, NPV/CAPEX
::::::::::::::
NPV/CAPEX

:
can aid in prioritizing projects.

Projects with higher PIs can be prioritized as they promise greater returns per unit of investment. A PI greater than 1 signifies

that the NPV of future cash flows exceeds the initial investment.
::::
Note

::::
that

:::::::::::
traditionally,

:::
for

:::::
power

::::::
plants

:::::
using

:::
one

::::
type

:::
of

::::::::
generation

::::::::::
technology,

:::
the

:::::::::
Levelized

::::
Cost

::
of

:::::::
Energy

::::::
(LCoE)

::
is
:::::
used

::
to

:::::::
evaluate

::::::::::
profitability.

:::::::::
However,

::
to

:::::
assess

:::
the

:::::::
various470

:::::::
potential

:::::::
revenue

:::::::
streams,

:::::::
metrics

::::
such

::
as

:::::
NPV

:::::::::::::::::
(Dykes et al., 2020)

:
or
::::

the
:::::::::::
NPV/CAPEX

:::
are

:::::
more

::::::::
relevant.

::::
This

::
is

:::::::
because

::::::
storage

::::::::
inherently

::::::::
increases

::::
costs

::::
and

::::
thus

::
the

::::::
LCoE,

::::
even

::::::
though

::
it

:::
has

:::
the

:::::::
potential

::
to

:::::::::::
substantially

:::::::
increase

::::::
revenue

::
or

::::::
profit.

To compute the PI, we require the NPV,
:
which in turn requires accurate yearly revenues and costs over the HPP’s lifetime,

aligning with the ideal framework shown in Figure 3a
:::
Fig.

::::
3(a). Yet, as discussed in the Introduction and Section 2.1, this475

method is computationally demanding. We instead use an alternative framework in Figure 3b
::::
Fig.

:::
3(b), utilizing the developed

surrogate. This surrogate replaces the high-fidelity EMS, significantly reducing computational time and making the frame-

work’s execution feasible. The accuracy of this framework, employing the surrogate model to evaluate the PI, is presented in

Section 5.4.

Sizing Inputs

High-Fidelity EMS

Operational Outputs

PI EvaluationOperational Inputs

Sizing Inputs Operational Outputs

PI EvaluationOperational Inputs

Surrogate

Pre-processing

Regressor

Post-processing

Figure 3. High-level sizing framework.
:::::

Left:
::::
Ideal

:::::
sizing

::::::::
evaluation

::::::::
framework

:::::
using

:::
the

::::::::::
High-Fidelity

:::::
EMS.

:::::
Right:

:::::::::
Developed

:::::
sizing

:::::::
evaluation

:::::::::
framework

::::
using

:
a
:::::::
surrogate

::
of
:::
the

:::::
EMS.

The PI
::::
varies

:::::::
between

:::::
each

:::::
sizing

:::::::::::
configuration

:::::::
(denoted

::
as

:::
x),

::::::::::
represented

::
by

:::::::::::::::
PG,PW ,BE ,BP .

:::
PI is calculated as follows:480
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PI =
NPV (x)

CAPEX(x)
(8)

Where:

x=[PG,PW ,BE ,BP ]

The financial model is based on the yearly cashflow
::::
cash

::::
flow

:
(CFy) and the discount rate after tax (rAT )as defined below:

:
,

:::::::::
throughout

:::
the

::::::
lifetime

:::
of

:::
the

:::::
power

:::::
plant

::
Y .

:
485

NPV =

Y∑
y

CFy

(1+ rAT )y

Where Y is the lifetime of the power plant. The cashflow
::::
cash

::::
flow is calculated based on yearly profits (Profity:::

Py) and

CAPEX.

CFy =

 Py for y > 0

−CAPEX for y = 0

It is important to highlight that the yearly profits are based on the revenues from the surrogate or the high-fidelity EMS (Πy),490

as well as, the Operational Expenditure (OPEXy), the tax rate (τtax), and the rAT .

ProfitP
: y = (Πy −OPEXy) · (1− τtax)

The cost model used to calculated the CAPEX and OPEX is define below:

CAPEX = Cw +Cb +Cel

OPEXy = Ow,y +Ob,y +Oel,y495

Cw = (WTcost +WTcivil) ·PW

Cb = Nbeq ·BE
cost ·BE +(BP

cost +BP
civil +BP

control) ·BP

Cel = (HPPBOS +PG
cost) ·PG +Landrent

Ow,y = WTOM
fixed,y ·PW +mean(AEP ) ·WTOM

variable,y

Ob,y = BE,OM
y ·BE500

Oel,y = 0

Where Cw, Cb, Cel are the CAPEX of the wind power plant, batteries and the balance of system. Similarly Ow,y , Ob,y , and

Oel,y are the yearly OPEX from the wind power plant, batteries, and balance of system. The WTcost and WTcivil are the wind

turbine’s cost and civil works in Euro/MW . Nbeq is the number of battery equivalent in today’s value. We will elaborate on
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this metric shortly. BE
cost is the battery energy cost per MWh while BP

cost, B
P
civil, B

P
control are the battery power cost, civil505

costs and control system costs per MW. HPPBOS and PG
cost are the shared Balance Of System (BOS) cost and grid connection

cost of the HPP. WTOM
fixed,y and WTOM

variable,y are the fixed and variable Operation and Maintenance (O&M) costs of the wind

turbine per year and per MW. mean(AEP ) is the mean Annual Energy Production (AEP) of the wind power plant. BE,OM
y is

the yearly O&M cost of the battery per MWh. In this study, we set a fixed lifetime for the battery (ib) as battery degradation

is not considered. Additionally, to address the decreasing costs of batteries over time, we employ the concept of equivalent510

number of present batteries (Nbeq). This method incorporates the annual battery price reduction rate (fb) and the designated

replacement year for each battery (yb(ib)).

Nbeq =

Nb−1∑
ib=0

(1− fb)
yb(ib)

::::::::
described

::
in

::::::::
Appendix

:::
C.

:
It should be noted that the calculation of NPV/CAPEX requires only the HPP power output time

series from either the high fidelity
::::::::::
high-fidelity model or the surrogate.515

4 Case Study

In Section 4.1, we will introduce the training and validation dataset. Following this, Section 4.2 will discuss
:::::::
discusses the data

related to the intra-generalizability analysis. Lastly, Section ?? will provide a detailed overview of
::
In

::::::::
Appendix

:::
C, the cost

model data specific to our application
:
is
:::::::::
presented,

:::
and

:::
the

::::::
related

::::
data

::
is

::::::::
provided

::
in

:::::
Table

::
D2

:::
of

::::::::
Appendix

::
D.

4.1 Training and Validation Dataset520

4.1.1 HPP configurations

As we rely on a surrogate to replace the high-fidelity EMS, we require a comprehensive dataset to train and validate this

surrogate. Therefore, a wide range of HPP configurations should
:::::
needs

::
to be covered. In addition, these configurations need to

::::
must be realistic and in line with industry practices. Table 8 summarize

:::::::::
summarizes

:
the parameter ranges.

::
For

::::
this

::::::
article,

:::
the

:::
grid

:::::::::
connection

::::::
varies

:::::::
between

::
50

:::::
MW

:::
and

:::
700

:::::
MW.525

For this article, the grid connection varies between 50 MW and 700 MW.

To ensure an equal distribution of all variables across the entire parameter space, the Latin Hypercube Sampling (LHS)

method, by Jin et al. (2005), was
::
is used to randomly select 250 sizing configurations. Of

:
,
::
of

:
which 200 HPP (80%) are

used to train the regressor and 50 HPP (20%) are used to evaluate the accuracy of the surrogate
:
, as detailed in Section 2.2.2.

Subsequently, the high-fidelity EMS was
:
is
:
solved using these configurations with the input time series presented in the section530

below.
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4.1.2 Input time series & WT technology

The input time series required for the high-fidelity model, mentioned in Table 2, are generated using two tools. Wind power

time series are simulated with the CorRES simulation tool (Murcia Leon et al., 2021; Koivisto et al., 2019). This tool is based on

meteorological reanalysis data from the Weather Research and Forecasting model. CorRES’ stochastic model (Koivisto et al.,535

2020b) was
:
is
:
integrated to add fluctuations,

:
resulting in wind power time series with 15 minute-level

:::::::::
15-minute resolution.

The simulation was
::
is based on meteorological data from the year 2012, with the assumption that the climate in 2030 remains

unchanged from 2012. CorRES requires specific inputsare required, including the HPP’s longitude, latitude, hub height of the

wind turbine, power curve, and the simulation period. The considered turbine is the Gamesa G80 with a rated power of 2MW

and a hub height of 100 meters.540

SM price time series for the 2030 electricity markets are obtained from the Balancing Tool Chain (BTC) (Kanellas et al.,

2020). BTC is built upon Balmorel, an open-source energy system model (Wiese et al., 2018) that simulates electricity market

operations, ranging from day-ahead to real-time dynamics for the northern central European region. Additionally, an investment

optimization is implemented to simulate a 2030 energy system scenario (Koivisto et al., 2020a). The wind generation and price

time series are presented in the figure below:545

Input time series for each HPP configuration

4.1.3 Output time series

For all 250 HPP configurations , and the above mentioned
:::
and

:::
the

:::::::::::::
aforementioned input time series, the high-fidelity model is

used to generate all output time series described in the Table 4. Out of these HPP configurations, 200 are used for training the

surrogate modeland the
:
,
:::
and

:::
the

:::::::::
remaining 50 others

:::
are used to validate the model.550

4.2 Intra-generalizability analysis Data

For the intra-generalizability analysis, we use the best surrogate model following the methodology described in Sections

::::::
Section

:
2.2. We then test the surrogate’s accuracy across four randomly chosen locations within the same market region,

labeled A to D. At each location, we randomly select 10 HPP configurations from the training dataset and another 10 from the

validation dataset. The coordinates of each location are listed in Table D1. Figure 4 a displays these locations, indicating the555

training location with an "X" and the evaluation sites for the HPPs.

As all locations are in the same market region, the SM price time series is the same for all locations. The weather data

for locations A-D were
::
is provided by CorRES

:
,
:
and the output time series per location and per HPP configuration were

:::
are

generated using the high-fidelity EMS model. This data is used to compare the performance of the surrogate trained on location

X and evaluated on locations A-D.560

The wind generation distribution across all locations are available in Figure 4b. From this figure, it is observed that location

C presents a different distribution than the other locations, notably with a lower average wind power . Meanwhile, locations

:
is
::::::::

available
::
in
::::

Fig.
::
4.
:::::

This
:::::
violin

::::
plot

::::::::
illustrates

:::
the

::::::::::
distribution

:::
of

:::::::::
normalized

:::::
wind

::::::
power

:::::::::
generation

::::::
across

:::
five

::::::::
different
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:::::::
locations

::::
(X, A, B, and D share similar distributions.

::
C,

:::
and

::::
D).

:::::
Each

:::::::::
half-violin

:::::::::
represents

:::
the

:::::::
density

::
of

:::::
wind

::::::
power

:::::::::::
measurements

::::
for

:
a
::::::::

location,
::::::::

showing
::::::
where

:::::
values

::::
are

:::::
most

:::::::::::
concentrated.

::::
The

:::::::::::
symmetrical

::::::
nature

::
of

:::::
each

:::::
violin

:::::
plot,565

::::
with

:::::::
mirrored

::::::
halves

:::
for

::::
each

::::::::
location,

::
is

:
a
:::::::
standard

:::::::
feature

::
of

:::::
violin

:::::
plots

:::
that

::::::
allows

:::
for

::
a

::::::
clearer

::::::::::
visualization

:::
of

:::
the

::::
data

::::::::::
distribution,

:::::
where

::::
each

::::
half

::::::::
represents

:::
the

:::::
same

::::::::::
distribution

::
of

::::
wind

::::::
power

::::::::::::
measurements.

::::
The

:::::
width

::
of

::::
each

:::::
violin

::::::::
indicates

::
the

::::::::
density:

:::::
wider

:::::::
sections

::::::
reflect

:::::
more

:::::::
frequent

:::::::::::
occurrences

::
of

:::::
those

::::::
power

::::::
levels,

:::::
while

::::::::
narrower

:::::::
sections

:::::::
suggest

::::
less

:::::::
common

::::::
values.

::::
The

:::
plot

::::
uses

::
a

:::::::::
logarithmic

:::::
scale

::
on

:::
the

::::::
y-axis,

:::::::
making

:
it
:::::::
possible

::
to

::::::::
visualize

::::::::
variations

::
in

::::::
power

:::::::::
generation

:::::
across

::
a

:::::
broad

:::::
range,

:::::
from

::::
very

::::
low

::
to

::::
high

::::::::
outputs.

:::::
Inside

::::
each

::::::
violin,

:::
the

:::::
black

::::
bar

:::::
marks

:::
the

:::::::::::
interquartile

::::::
range,

:::::
while570

::
the

::::::
white

:::
dot

::::::::
represents

::::
the

::::::
median

::
of

:::
the

:::::
wind

::::::
power

::::::::::::
measurements

:::
for

:::
that

::::::::
location.

::::
This

:::::::::::
combination

::::::
allows

:::
for

:
a
:::::
clear

:::::::::
comparison

:::
of

::::
both

:::
the

:::::
range

:::
and

::::::
central

:::::::::
tendencies

::
of

:::::
wind

:::::
power

::::::
output

:::::
across

::::::::
different

::::
sites.

:::
For

::::::::
example,

::
a

:::::::
location

::::
with

:
a
::::::::
narrower

:::
and

::::::
higher

::::::
median

::::::::::
distribution

:::::
might

:::::::::
experience

:::::
more

::::::::
consistent

::::
and

::::::
higher

::::
wind

::::::
power

:::::::::
generation

::::
(i.e.,

:::::::
location

:::
X),

:::::
while

:::
one

:::::
with

:
a
:::::::
broader

::::::::::
distribution

:::
and

::::::
lower

::::::
median

:::::
could

:::::
have

:::::
more

::::::::
variability

:::::
(i.e.,

:::::::
location

:::
C).

:::::::::
Locations

::
A,

:::
B,

:::
and

::
D

:::::
share

::::::
similar

::::::::::
distributions

::::::
where

::
the

::::::
shape

::
of

::::
these

:::::::::::
distributions

:::::::
suggests

::::
that

:::
low

::::::
power

:::::
output

::
is

:::::
more

::::::::
common,

::::
with575

::::::::
occasional

:::::
rises

::
to

:::::
higher

::::::
values.

:

Intra-generalizability data

Figure 4.
:::::::::::::::
Intra-generalizability

::::
data.

::::
Left:

::::::
location

::
of
::::::

trained
:::::::
surrogate

::::::
model,

::
X

::
(in

::::
red)

:::
and

:::::::
evaluated

:::::
model

::::::
(A-D).

:::::
Right:

:::::::::
normalized

::::
wind

:::::
power

::::::::
distribution

:::::
across

::
all

::::::::
locations.

::
A

::
log

::::
scale

::::
was

:::
used

::
to

:::::::
highlight

:::
the

:::::::
difference

:::::::
between

:::::::
locations.

4.3 Cost model Data

Table D2 presents a summary of the cost assumptions used in this article.

Cost assumptions Variable ValuerAT 6% τtax 22%WTcost EUR/MW457, 143 WTcivil EUR/MW185, 714 WTOM
fixed,y

EUR/MW/year9, 000 WTOM
variable,y EUR/MWh/year0.964 BE

cost EUR/MWh90, 000 BP
cost EUR/MW32, 000 BP

civil EUR/MW36,580
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000 BP
control EUR/MW9, 000 BE,OM

y EUR/MWh/year0 f_b 10% i_b, lifetime of battery years7 Y , lifetime of HPP 25

HPPBOS EUR/MW119,940 PG
cost EUR/MW50,000

As the battery’s lifetime is of 7 years, each HPP will require 3 batteries during its lifetime. Given a battery price reduction

of 10% per year, we obtain a number of battery equivalent (Nbeq)of 1.84.

5 Surrogate Results585

This Section
:::::
section

:
details the accuracy of the surrogate models and their

::::
best

::::::::
surrogate

:::::
model

::::
and

::
its

:
main application in

evaluating the Profitability Index (PI ) of Hybrid Power Plants (HPPs). We start by comparing the accuracy of each
::
PI

::
of

::::::
HPPs.

:::
The

::::::::::
comparison

::
of

::
all

::::::::
surrogate

:::::::
models

:
is
::::::::
provided

::
in

::::::::
Appendix

:::
A.

::::
After

::::::::::
introducing

:::
the

:::::
results

:::
of

::
the

:::::
most

:::::::
accurate surrogate

model in Section ??, followed by examining
:::
5.1,

::
we

::::::::
examine how the accuracy of the best surrogate model changes

:::
that

::::::
model

:::::
varies with different training dataset sizes in Section 5.2. Next, in Section 5.3, we assess the surrogate’s performance across590

various locations where it hasn’t been trained. Finally, Section 5.4 compares the PI accuracy when evaluated using both the

surrogate and the high-fidelity EMS. For all the results shown in this section, the validation dataset was used to evaluate the

accuracy of the surrogate model and the
::
its

:
application.

5.1
:::

Best
::::::::::
Performing

:
Surrogate ’s Accuracy for Hourly Operation

:::::
Model

The accuracy of the four models, presented
:::::::::::::
best-performing

::::::::
surrogate

::
is

:::
the

:::
one

:::::
titled

::
S4

:
in Table 5, can be found in Figure595

A1. The RMSE of all hourly output time series is used to compare the accuracy of all models. This RMSE provides a holistic

measure of the model’s accuracy. Moreover, the training and inference time were reported in Table A1.

From Figure A1, it is observed that the tuned NN outperforms the linear counterpart .
:::::
From

:::
Fig.

::::
A1,

::
we

:::::::
observe

:::
that

:::
all

:::::
tuned

::::
NNs

:::
(S3

:::
and

::::
S4)

:::::::::
outperform

::::
their

::::::
linear

::::::::::
counterparts

:::
(S1

::::
and

:::
S2)

:
in terms of accuracy. This result is expected as

:
to

::
a
::::::
certain

::::::
degree:

:::::
while the linear model cannot capture the inherent non-linearities

:::
may

:::
not

:::::
fully

::::::
capture

:::
the

:::::::::
non-linear

::::::::
dynamics of the600

high-fidelity model
:
,
:::
we

:::::::
selected

:
it
::
to

::::::
assess

:::
the

:::::
extent

::
to

:::::
which

::
a

::::::
simpler

::::::
model

:::
can

::::::::::
approximate

:::
the

:::::
EMS,

:::::
given

::::
that

:::::
many

::
of

::
the

::::
HF

::::
EMS

:::::::
model’s

:::::::::
constraints

:::
are

:::::
linear. Among the linear models, using the

:::::
model

::::
S2,

:::::
which

::::
uses

:
SVD in addition to the

normalizationslightly outperforms the linear model using only the normalization. However, for tuned NNs, the opposite is true.

Given the
::::::::::::
normalization,

:::::::
slightly

::::::::::
outperforms

::::::
model

:::
S1,

:::::
which

::::
uses

::::
only

:::::::::::::
normalization.

:::
The

::::::::::
application

::
of

:::::
SVD

:::::::::
effectively

:::::::
captures

:::
key

::::::
trends

::::::
within

:::
the

:
broad distribution of HPP configurations, the SVD effectively captures key trends,

::::::
thereby605

improving the accuracy of the linear model . Yet, when tuning comes into play, the NN
::
S2.

:::::::::
However,

::
we

:::::
don’t

:::::::
observe

::::::
similar

:::::
results

:::::
when

:::::::
looking

::
at

:::
the

:::::
tuned

::::::
models,

:::
S3

::::
and

:::
S4.

:::
The

::::
NN

::
of

:::::
model

:::
S3

:
can make better use of all the data (in the absence

of SVD ) rather than
::::
rather

::::
than

:::::
using

:
a reduced representation of it(when using the SVD)

:
,
::
as

::
in

:::::
model

:::
S4,

:
which explains the

difference between both tuned FNNs.

Validation RMSE by Data Processing Method: "Linear" for multivariate linear regression, "NN_tune" for tuned FNN610

(parameters in Table 7), "Norm" for Normalization only, and "SVD" for combined Normalization and SVD methods.
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Table A1 contrasts the time required to execute the workflow for each surrogate model. The pre-processing time considers

both training and validation datasets. However, the training time accounts only for the training dataset, while the inference time

reflect the inference on a single HPP configuration spanning one year of data.

Time Metrics of Surrogate Models Method Model Pre-proc. Train Time Inf. Time SVD Linear 7m 14m 0.02s SVD615

NN_Tuned 7m 5h 0.04s Normalization Linear 1.1m 14.4h 0.64s Normalization NN_Tuned 1.1m 7d 1.02s

There is a substantial difference between surrogates using the normalization only and the surrogates using the
::::
only

:::::::::::
normalization

:::
(S1

:::
and

::::
S3)

:::
and

:::::
those

:::::
using

:
SVD in addition to the normalization

:::::::::::
normalization

:::
(S2

::::
and

:::
S4). This difference is even more

exacerbated when looking at NN_Tuned: when using SVDthe NN
:::::::::
pronounced

:::::
when

:::::::::
comparing

::::
the

:::::
tuned

:::::
neural

::::::::
network

::::::
models:

::::::
model

:::
S4

::::
(with

:::::
SVD)

:
converges in 5 hourswhile it

:
,
:::::::
whereas

:::::
model

:::
S3

:::::::
(without

::::::
SVD) takes 7 days for the surrogate620

employing only a normalization. This
::
to

::::::::
converge.

::::
This

:::::::
disparity

:
is mainly due to the difference in training data

:::::::::::::
dimensionality,

as highlighted in Table 6.
:::
The

:::
use

::
of

:::::
SVD

::::::
reduces

:::
the

:::::::
number

::
of

:::::::
features,

::::::::::
simplifying

:::
the

::::::
model

:::
and

::::::::::
accelerating

:::
the

:::::::
training

::::::
process

::::
with

::::
very

::::
little

:::::::::::
compromise

::
on

::::::::
accuracy.

:

From both presented figure and
:::::
Based

::
on

:::
the

::::::
results

::::::::
presented

:::
in

::::
both

:::
the

:::::
figure

:::
and

:::
the

:
table, we conclude that the tuned

FNN using the SVD
:::::
neural

:::::::
network

:::::
using

:::::::::::
SVD—model

:::::
S4—provides the best compromises

:::::::::
compromise

:
between accuracy,625

training time
:
, and execution time.

To gain deeper insights into this surrogate’s performance
:::
the

:::::::::::
performance

::
of

::::::
model

:::
S4,

:
we investigated its capability to

predict each
::::::::::
approximate

::::
each

::::::::::
normalized

:
hourly output time series individually , for

:::::
across

:
all validation data. Figure 5

provides such an overview
::
an

:::::::
overview

:::
of

::::
these

::::::
results. From this figurewe observed

:
,
:::
we

::::::
observe

:
that the power output of the

HPP and the curtailed power are well predicted, however
:::::::
estimated

:::
by

:::
the

::::::::
surrogate

::::::
model.

::::::::
However,

:
the battery charge and630

discharge profiles are harder to predict
::::
more

::::::::::
challenging

::
to

:::::::
compute

:::::::::
accurately. To further understand these discrepancies, we

examine the predicted
::::::::
calculated

:
output time series for a given day , from the surrogate

:
, as well as the observed

::::::::::::
corresponding

output time series from the high fidelity
::::::::::
high-fidelity

:
model.

Figure 6 shows the difference between the the surrogate’s prediction and the ideal behavior, from the high-fidelity model.

Output time series for a given day, from the high-fidelity model (blue) and the surrogate (red). All time series are in635

MegaWatt.

::::::::::::
approximation

:::
and

:::
the

:::
HF

::::::
EMS’

:::::::
outputs. The surrogate captures well the daily trend

:::
well

:
across all time series. While it

accurately predicts
:::::::
estimates

:
the intra-day fluctuations for power bidding, it is less precise when predicting

:::::::::
estimating battery

charge and discharge power. This is due to the abrupt power fluctuations , in the high-fidelity model, that can be seen in Figure

6b and 6c
:
as

::::
seen

::
in

::::
Fig.

::::
6(b)

:::
and

::::
6(c). Additionally, as shown in Figure

:::
Fig.

:
6d, the surrogate occasionally struggles to forecast640

::::::::::
approximate

:
consistent zero values over an entire day—a challenge characteristic of FNNs. Nonetheless, these discrepancies

are minor, with predicted
::::::::
estimated

:
curtailed power fluctuating within a ±1.5 MW range instead of the expected steady 0 MW.

Such variances are negligible relative to the HPP’s export capacity, which can reach up to 700 MW.

The application presented in Section 3, requires only the HPP power output out of all the predicted
::::::::
calculated output time

series. That is why we want to further examine this output time series. Figure 7 a
:::
The

:::
left

:::::
panel

::
of

:::::
Fig.7 presents a hexbin plot645

that compares hourly predicted
::::::::
estimated, and normalized, HPP power outputs across all HPP configurations in the validation
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Figure 5. RMSE for each surrogate’s output time series across all validation HPP configurations. P_HPP_SM is
:::
For the power bidding on

the SM. P_cha_RT and P_dis_RT are the charging and discharging power
::::::

definition
:
of the battery

::::
each

::::::
variable,

::::
refer

::
to

:::
Eq. RES_RT_cur is

the curtailed power.
:
1
::
to

:
4

dataset
::::::::::
(PHPP

Surrogate). The hexagonal bins group nearby points
:::::::
(denoted

:::
as

:::::
count

::
in

::::
Fig.

::::
7(a))

:
and show the density of data

points within each bin. The value of the density
::::::
density

:::::
value is shown on the color bar, ;

:
the darker the color, the denser the

hexagon. A log scale is used for clarity. A one-to-one line, representing an ideal prediction
:
a
::::::
perfect

::::::
model, is also depicted for

comparison. The power bidding on the SM aligns closely with the observed values
::::::
(PHPP

EMS ).650

The PDF of errors , for the same data , is shown in Figure 7b
:
is
::::::
shown

:::
on

:::
the

:::::::::
right-hand

:::
side

:::
of

::::
Fig.

:
7. The histogram (in

blue) shows the frequency distribution of these errors, while the red line represents a Gaussian (normal) distribution fitted to

the data. The parameters of the Gaussian fit—mean (µ) and standard deviation (σ)—are shown in the legend and are both

approximately 0.00 and 0.07, respectively. The RMSE is also 0.07, indicating the typical magnitude of prediction
::::::::::
computation

errors.655

The mean (µ) being close
:::::
equal to zero suggests that the surrogate’s predictions

::::::::::
calculations are unbiased on average. The

Gaussian fit’s close alignment with the histogram suggests that the errors are distributed in a manner consistent with a normal

distribution, which often implies that the surrogate model’s residuals are well-behaved in a statistical sense.
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(a) (b)

(c) (d)

Figure 6.
:::::
Output

:::
time

:::::
series

:::
for

:
a
:::::
given

:::
day,

::::
from

:::
the

::::::::::
high-fidelity

:::::
model

:::::
(blue)

:::
and

:::
the

:::::::
surrogate

::::
(red).

:::
All

::::
time

:::::
series

::
are

::
in
:::::

MW.
:::
(a):

::::
power

::::::
output

:
of
:::

the
::::
HPP,

:::
(b):

::::::
battery

:::::
charge

:::::
profile,

:::
(c):

::::::
battery

:::::::
discharge

::::::
profile,

:::
(d):

:::::::
curtailed

::::
power

5.2 Surrogate Convergence to Training Dataset

The previous study has demonstrated the capacity of the NN to replicate the daily trends of the high-fidelity NN
::::
EMS. However,660

the chosen data was based on an arbitrarily high
::::
large

:
number of HPP configurations. Consequently, we sought to examine how

the NN’s accuracy varies with different dataset sizes. NNs were tuned using the SVD processing, with a training dataset
::::::
Several

::::::::
surrogates

:::::
were

::::::
trained

:::::
based

::
on

::::::
model

::
S4

::::
with

:::::::
varying

:::::::
training

::::::
dataset

:::::
sizes, ranging from 4 to 200 HPP configurations. The

validation dataset from the previous study is not modified to provide
:::::
ensure

:
a fair comparison. Results of these simulations

are illustrated in Figure
:::
Fig.

:
8. Interestingly, the RMSE seems to plateau when reaching a training dataset size of 110 HPP665

configurations. We also note that there is
:::
only

:
a marginal gain in accuracy between 50 and 100+ HPP configurations. This is

relevant to highlight as
::::::
because

:
it suggests potential reductions in the generated data

:::
data

:::::::::
generated by the high-fidelity EMS,

and, thereforeshorter training duration ,
::::::
shorter

:::::::
training

::::::::
durations

:
for the surrogate. As a reminder, each HPP configuration,

which spans over one year of data, requires 47 minutes to generate outputs using the high-fidelity EMS. It is also interesting

to compare the Normalized Root Mean Square Error (NRMSE) of yearly revenues, computed as per equation
:::
Eq. 6. The670
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Figure 7. Accuracy and error distribution of
:::::
model

::
S4

::
in

:::::::::::
approximating

:
hourly normalized Power Output

::::
power

:::::
output

::::
(see

:::
Eq.

::
1)

::
for

:::
all

:::
HPP

::::
from

:::
the

::::::::
validation

::::::
dataset.

:::
Left:

:::
the

::::::
hexbin

:::
plot,

:::::
group

:::::
nearby

:::::
points

:::
and

:::::
show

::
the

::::::
density

::
of

:::
data

:::::
points

:::::
within

::::
each

:::
bin,

::::
refer

::
to

:::
the

::::::
colorbar

:::
for

::
the

::::::
density

::
of

::::
each

:::
bin.

:::::
Right:

:::
PDF

::
of
:::::
error,

::
the

:::
red

:::
line

:::::::
indicates

:
a
:::::::
Gaussian

:::
fit,

:::
with

:::::::::
parameters

::::::
detailed

::
in

::
the

::::::
legend.

model trained with 200 HPP configurations has an NRMSE of 0.81%while the the ,
:::::
while

::::
the model trained with 32 HPP

configurations has an NRMSE of 1.0% across the entire validation dataset. Here again
:::::
Again, the difference between both

outcomes is marginal
:
,
:::::::::
suggesting

::::::
further

::::::::
reductions

::
in
:::::::
training

::::
time

::::
and

:::::
during

:::
the

::::
data

:::::::::
generation

:::::::
process.

5.3 Intra-generalizability Accuracy

In the section
:
n

:::
this

:::::::
section, we evaluate the surrogate ’s accuracy on

:::::::
accuracy

::
of

::::::
model

::
S4

::
at

:
four different locations (A to D).675

The selected surrogate is the tuned FNN using the SVD whose results were
::::::::
Surrogate

::
S4

::
is
:::
the

::::
one

:::::
whose

::::::
results

:::
are detailed

in Section ??
::
5.1. As a reminder, this surrogate is trained using weather data from location X and with a training dataset of 200

HPP configurations.
::
As

:
a
::::::::
reminder,

::::
this

::::::::
surrogate

::
is

::::::
trained

:::::
using

:::::::
weather

:::
data

:::::
from

:::::::
location

::
X

:::
and

::::
with

::
a
::::::
training

:::::::
dataset

::
of

:::
200

::::
HPP

:::::::::::::
configurations. We use the NRMSE of yearly revenues to measure the accuracy of the surrogate

:
at

::::
each

:::::::
location. This

was done on 10 randomly selected HPP configurations from the training dataset and 10 others from the validation dataset. All680

accuracy results are compared to the baselinee.g.
:
,
:::
i.e., using location X. The accuracy of the surrogate is illustrated in Figure

:::
Fig.

:
9.

The surrogate model’s NRMSE for predicting revenue demonstrates
:::::::::
computing

:::::::
revenue

:::::
shows

:
a marginal difference be-

tween training and validation datasets. Specifically, the NRMSE for the training dataset (location X) is 0.79%, compared to

0.81% for the validation dataset. When looking at location
:::::::
locations

:
A to D, the average NRMSE for the training dataset685
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Figure 8. Evolution of accuracy with increasing training dataset size. A fixed validation dataset, of 50 configurations, is used across all

simulations.

samples is 0.79% (aligning with the Train Baseline), whereas it is 1.3% for validation dataset samples. Notably, location D

shows the greatest discrepancy in NRMSE between training and validation samples. This variation may be attributed to the

combination of HPP configurations and distinct weather time series at location D, detailed in Figure 4b. Overeall
::
as

:::::::
detailed

::
in

:::
Fig.

::
4.

:::::::
Overall, despite location X’s distribution with two distinct peaks (around 0.08 and 0.1) that aren’t observed in other

locations, the surrogate’s performance remains consistent across all locations.690

5.4 PI Evaluation Accuracy

In this section, we evaluate the PI of several HPPs using the surrogate
::
S4

:::::::::
(presented

::
in

:::::::
Section

:::
5.1)

:
and the high-fidelity EMS

model. Both frameworks are described in Figure 3. In order to
::::
Fig.

::
3.

::
To

:
evaluate the accuracy of the PI computed with the

surrogate
:
, we use the same 50 HPP configurations , from the validation dataset , for both frameworks. The selected surrogate

is the tuned FNN using the SVD described in Section ??. Figure 10 shows the PI calculated using the high-fidelity EMS on the695

y-axis and the PI inferred using the surrogate on the x-axis for the corresponding HPP configuration.

The RMSE of PI across the validation dataset is of 0.010, which indicates
::::::::
indicating

:
the average magnitude of the errors

between the surrogatepredictions
:
’s

::::::::::
estimations and the high-fidelity EMS evaluations. The scatter plot shows that most of

the points are close to the line of perfect prediction
::::::::::
calculations (red line), with some scatter around it. Most of the points

are below the perfect line
:
, indicating that the surrogate is slightly overestimating

::::::
slightly

::::::::::::
overestimates the profitability of the700

HPP. However,
:
this tendency is reversed for higher NPV/CAPEX,

:::::
where

:
the surrogate provides

:
a conservative estimate of the
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Figure 9. Performance of surrogate
::
S4’s generalizability for different locations and for HPP configurations from different datasets. The

Baseline refers to location X, where the surrogate has been trained. Train Baseline and Val Baseline correspond to the NRMSE of Revenues

from the training dataset of location X (200 HPP configurations) and from the validation dataset (50 HPP configurations). Val refers to 10

HPP configurations randomly selected from the validation dataset
:
, while Train refers to 10 random HPP configurations from the training

dataset. Both Val and Train are evaluated on location
:::::::
locations A-D.

PI. Overall, the tight clustering of points around the red line suggests that the surrogate model is quite reliable for predicting

::::::
reliable

:::
for

:::::::::
computing the PI when compared to the high-fidelity EMS.

6 Discussion

This study aims to evaluate the potential of applying surrogate modeling in order to emulate the behavior of a complex EMS for705

a
::
an

:
HPP with bidding on the spot market.

::::
Given

:::
the

:::::::::
increasing

:::::::::
integration

::
of
:::::::::

renewable
::::::
energy

:::::::
systems

::
—

::::::::::
particularly

:::::
wind

:::::
power

:::
—

:::
this

:::::::
research

::::::::
provides

:
a
::::::::
practical

::::::::
approach

::
to

:::::::
optimize

:::::
HPP

:::::::::
operations,

::::::::
enabling

::::
more

:::::::
efficient

::::::
system

::::::::::
integration

:::
and

:::::::
financial

::::::::::
assessment.

:
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Figure 10. PI comparison based on surrogate inference and high-fidelity EMS evaluation for the validation dataset.

Our investigation highlights the importance of both pre- and post-processing of data with an appropriate choice of the sur-

rogate model. Among the options explored, the tuned FNN that utilizes SVD
::::::::
(surrogate

:::
S4)

:
emerged as the optimal balance.710

Indeed, Figure
:::
Fig.

:
A1 shows that the tuned NN using only a normalization

:::::::::::
normalization

:::::::::
(surrogate

:::
S3) is the most accurate,

while adding an SVD results in a
::::
SVD

:::::::::
(surrogate

:::
S4)

::::::
results

::
in

:
similar performance. Yet, when we look at the computational

time, as shown in Table A1, using the SVD
::::
SVD

::
(in

:::::::::
surrogates

:::
S2

:::
and

:::
S4)

:
significantly reduces the training duration. This dif-

ference is even more pronounced when the tuning time is considered: it requires five days to tune the NN using a normalization

:::::::::::
normalization

:::::::::
(surrogate

:::
S3), whereas it takes only 4.3 hours when an SVD

::::
SVD

:::::::::
(surrogate

:::
S4)

:
is used. This discrepancy is715

assigned
::::::::
attributed to the inherent capability of the SVD to extract a reduced order of data that contains meaningful coefficients

and daily temporal trends.

However, challenges persist, particularly in predicting
::::::::
estimating

:
battery charge and discharge profiles. As depicted in

Figures
:::
Fig.

:
5 and 6, this difficulty arises from the high fidelity

::::::::::
high-fidelity

:
model’s abrupt power output fluctuations and

the intrinsic non-linearity of these variables. For the
:
In

:::::::::
particular,

::::
Fig.

::::
6(c)

::::
and

:::
(d)

::::::::
highlight

:::
the

:::::::::
surrogate’s

:::::::::
limitations

:::
in720

::::::::
accurately

::::
and

::::::::::
consistently

:::::::::::
representing

:::
the

::::::::
battery’s

::::::
hourly

::::::::
operation.

:::
In

::::::
several

::::
time

::::::
steps,

:::
the

::::::
model

:::::
shows

:::
the

:::::::
battery

:::::::
charging

::::
and

::::::::::
discharging

:::::::::::::
simultaneously,

::::
and

::
at

:::::
times,

::::
the

::::::
charge

:::
and

:::::::::
discharge

:::::
power

::::
take

:::
on

::::::::
negative

::::::
values,

::::::
which

::
is

::::::::
physically

::::::::::
unrealistic.

:::::
These

::::::
issues

::::
stem

:::::
from

:::
the

::::::
nature

::
of

:::
the

:::::::::
regressor;

:::
the

:::::
FNN

::::::
cannot

:::::::::
inherently

::::::
capture

:::
the

::::::::
physical

:::::::::
constraints

:::
that

::::::
would

:::::::
typically

:::
be

:::::::
enforced

:::
by

:::::::
multiple

::::::::
equations.

:::::::::::
Specifically,

:::
the

::::
FNN

:::::
lacks

::::::
explicit

::::::::
equations

::
to

::::::
govern

:::
its

::::::
outputs.

:::::::::
However,

::
for

:::
the

:
purposes of this study, focusing primarily on the power output of the HPP is sufficient, as this is the725

only variable required in revenue calculation and subsequent profitability index
::
PI

:
evaluation. Additionally

:
, the power output

of the HPP is well predicted
::::::::
estimated, as shown in Figure 7b

::
the

::::
PDF

::::
plot

::
of

::::
Fig.

:
7: there is no bias,

:
and the standard deviation
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is very small. While this result only stands
::::
holds

:
for a surrogate trained with 200 HPP configurations,

:
it is still reasonable to

assume similar behavior for a surrogate trained with less
:::::
fewer data points. Indeed, Figure 8 demonstrate

:::
Fig.

::
8

:::::::::::
demonstrates

a marginal difference in accuracy between a surrogate trained with 200 HPP configurations and
:::
one

::::::
trained

::::
with 50 HPP con-730

figurations. Ultimately
:
, it is a trade off

:::::::
trade-off between training time and accuracy. In terms of intra-regional generalizability,

the accuracy across different locations is more consistent than between dataset types. This uniformity in accuracy , within each

dataset type , can be partly attributed to the region’s relatively homogeneous wind profiles, facilitated by its largely flat terrain.

A loss in accuracy is observed when unseen HPP configurations are used (e.g.
:
, validation dataset). Nonetheless, these results

demonstrate the surrogate’s ability in capturing
::
to

::::::
capture essential data trends (Figure

:::
Fig.

:
9). However, it is important to note735

that this study’s scope was confined to the DK1 market region, characterized by uniform wind profiles due to its flat terrain

(Figure 4b
:::
Fig.

:
4). The fast and accurate surrogate allows us to evaluate a

::
an

:
HPP’s profitability throughout its lifetime with

little computational burden. Indeed, the surrogate model is capable of evaluating the NPV/CAPEX for all 50 HPP configura-

tions of Figure 10 in a mere
::
in

::::
Fig.

::
10

::
in

:
25 seconds. In contrast, computing the same evaluations using the high-fidelity model

for each HPP configuration, with inputs spanning over a year, would take approximately 39 hours. However, it is important740

to understand the impact of the surrogate’s accuracy on the the PI. Figure 10 shows that the surrogate can be reliably used

if slight deviation of the order of magnitude of
::::::::
deviations

::
of

::::::
around

:
0.010

:
in
:::

the
:

PI are acceptable for the intended business

evaluation. In other words, the error on the predicted
::::::::
computed

:
NPV is around 1% of the CAPEX. It is also relevant to note

that not all HPP configurations are profitable, resulting in negative PIand ,
:
further supporting the use of NPV/CAPEX as an

evaluation metric. Hence,
:
the importance of optimization in the context of sizing of HPP

:::
HPP

::::::
sizing, which is enabled with the745

developed framework. However, a detailed exploration of the sizing optimizer is beyond the scope of this manuscript and will

be the subject of future investigations. It is important to emphasize that these findings are site-specific and heavily dependent

on the cost model employed, hence
:
;
:::::
hence,

:
they should not be generalized across different HPP sites.

There are certain limitations and future works worth acknowledging. For one, The
:::
the full capabilities of the high-fidelity

model has
:::
have

:
not been leveraged. While the EMS can consider a realisation

::::::::
realization

:
of the forecast error in both weather750

and market data, our initial approach prioritized a methodology using perfect forecast data. Nonetheless, this
:
is
:
a natural next

step
:
, where a sizing framework can be developed based on a surrogate that can handle the inherent uncertainties in weather and

market forecast errors. While our research was mainly focused on the spot market, currently the major source of revenues for

power plants, the market dynamics might shift. As the share of intermittent power plant
::::
plants

:
increases in the grid systemthat

:
,

:::::
which is becoming more decentralized, the balancing market is forecasted to become a considerable revenue stream. Thus, there755

is a pressing need for a more comprehensive surrogate considering operational strategies in both spot and balancing markets.

Moreover, a FNN has it’s own limitation
:::::::::
Moreover,

::
an

::::
FNN

::::
has

::
its

::::
own

:::::::::
limitations when it comes to time series representation,

as seen in the battery charge and discharge profiles on Figure
::
in

::::
Fig. 6. This highlights the importance of further exploring the

machine learning field. A promising avenue would be models that blend physical constraints, such as physics-informed neural

networks.
:::::::::::
Additionally,

::
to

:::::::
develop

:
a
:::::
more

:::::
robust

::::::
sizing

:::::::::::
methodology,

::
it

::
is

::::::::
necessary

::
to

:::::::
account

:::
for

::::::
various

:::::::
forecast

::::::::
scenarios760

::
for

:::::
wind

:::::::::
generation

:::
and

::::::
market

:::::
prices

::::::
within

:::
the

:::::
EMS.

::::
This

:::
can

::
be

::::::::
achieved

::::::
through

:::::::
methods

:::::
from

:::
the

::::
field

::
of

:::::::::::::
surrogate-based

::::::::::
optimization

:::::
under

::::::::::
uncertainty.

:::::
These

::::::::::::
considerations

::::
will

::
be

:::::::::
addressed

::
in

:::::
future

:::::
work.

:
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7 Conclusion

In this paper,
:
we have introduced a new methodology to accurately and efficiently approximate a state of the art EMS for HPP

::::::::::::
state-of-the-art

:::::
EMS

::
for

:::::
HPPs

:
involved in spot market power bidding. This model leverages singular value decomposition to765

extract temporal trends in the input , and utilizes FNN,
:::
and

:::::::
utilizes

::
an

:::::
FNN to represent the non-linear dynamics of the EMS.

This method has demonstrated over twice the accuracy of traditional multivariate linear regression models. A key innovation

of our study is the synergistic
::::::::
combined

:
use of SVD and FNN, a combination that represents a first

:::::
which

::::::::
represents

::
a
:::::
novel

:::::::
approach

:
in this field. This approach successfully replicates the annual revenues of an HPP with an NRMSE of 0.81% for

the best model. To fully demonstrate the capabilities of our surrogate model, we have integrated it into a sizing evaluation770

framework designed to calculate the Profitability Index (NPV/CAPEX
::::::::::::::
NPV/CAPEX) based on the technology mix rating

within the HPP. This framework not only enabled substantial computational savings—reducing processing time from 39 hours

to a mere 25 seconds compared to a high-fidelity model—but also maintained remarkable accuracy with
:::::::
achieved

:
an RMSE

of 0.010. Though our methodology may seem
::::::::
Although

:::
our

:::::::::::
methodology

::
is
:
straightforward, it is nonetheless powerful and

opens up new possibilities in the field of HPP sizing optimization
::
for

:::::::::
optimizing

:::::
HPP

:::::
sizing

::
in

:::
the

::::::
context

::
of

:::::::::
renewable

::::::
energy775

:::::::::
integration.

::::
This

:::::
study

::::::::::
emphasizes

:::
the

::::::::
relevance

::
of

::::::::
surrogate

::::::::
modeling

::
to
:::

the
:::::
wind

::::::
energy

:::::
field,

:::::
where

:::::::
efficient

::::
and

:::::::
accurate

::::
tools

:::
are

:::::::
essential

:::
for

:::::::::
navigating

:::
the

:::::::::
increasing

:::::::::
complexity

:::
of

::::::::
renewable

::::::
energy

:::::::
markets

::::
and

:::::::::
supporting

:::
the

::::::::
transition

::::::
toward

:::::::::
sustainable

::::::
energy

:::::::
systems.

Data availability. The weather and spot market price time series data are available on request from the corresponding author.
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Table 1.
:::::::::
Comparison

::
of

:::
HF

:::
and

:::
LF

::::
EMS

::::::
Models

:::::
Aspect

:::
HF

::::
EMS

::
LF

:::::
EMS

::::::::
Component

::::::::
modeling

::::::
Physical

::::::::::
modeling

:::::
per

::::::::::
component

::::::::
considering

::::
the

:::::::::
electrical,

::::::::::
mechanical,

:::::
and/or

::::::
thermal

::::::::
behaviors.

:::::::
Includes

:::::
battery

::::::::
degradation

:::::
model

:

::::::::
Simplified

::
or
::::::::::

aggregated
::::::

model,
:::::

linear

:::::::::::
approximations

::
or
::::::

average
::::::

values
::::
used

::
for

::::::::
component

::::::::::
performance

:::::
Market

:::::::::::::::
Participation

:::::::
Modeling

:::::::
Complex

:::::::
bidding

::::::::
strategies

:::
in

::::::
various

:::::::
electricity

::::::::
markets

:::
(day-aheadmarket,

including regulatory periods of the Danish

market structure. To account for the

uncertain nature of wind speed and market

prices, Crespo-Vazquez et al. (2018)

formulated a two-stage convex stochastic

programming framework that incorporates

stochastic variables for day-ahead prices,

balancing market prices, and power bidding

. Several other studies have contributed

to the field, formulating optimization

problems under stochastic conditions

(Abhinav and Pindoriya, 2021; Fang and Zhao, 2020; Huang et al., 2021a)

and deterministic scenarios

(Cai et al., 2016b). However, these

formulations typically assume a given

HPP configuration with fixed sizes for wind

turbines and battery capacity,optimizing the

system’s operation within these constraints.

Optimal sizing of an HPP, on the other

hand, requires variations in the sizes of

the wind turbines and battery energy

and power, presenting a more complex

challenge . Consequently, sizing an HPP

based on any comprehensive and realistic

EMS models involves running the EMS

optimization
:
,
:::::::
intraday,

::::::::
balancing),

::::::
includes

:::::
market

::::
rules

:::
and

:::::::::
regulations

::::
(i.e.,

::::::
dispatch

:::
and

:::::::::
settlement

:::::::::
intervals),

::::::
and/or

::::
grid

::::::::
compliance

::::::::::
requirements

:

::::::
Usually

::::::
focuses

:::
on

:::
one

::::::
market,

:::::::
ignoring

::::::::::
opportunities

:::
or

::::::::
penalties

:::::
from

:::::
other

::::::
markets

::::
Input

:::
data

:::
and

:::::::
Forecast

::::::
Varying

::::::::
resolution

::::::
(from

:::::::::
sub-hourly

::
to

::::::
hourly).

:::::::
Possible

:::::::::
combination

:::
of

::::::
forecast

:::
and

:::::::
real-time

:::
data

:::
Uses

:::::::
hourly

::::::::::
resolution.

:::::::::::
Deterministic

::::::
forecasts

::
or
::::::
perfect

::::::
forecast

::::::::::
Optimization

::::::::::
problem

::::::::
formulation

:

:::::::
Complex

::::::::::
formulations

:::
like:

:::::::::::
mixed-integer

::::
linear

:::::::::::
programming

::::::::
(MILP),

::::::::
nonlinear

::::::::::
programming

:::::::
(NLP),

:::::
or

:::::::::
stochastic

:::::::::
optimization

:

::::
None

:::::
e.g.

:::::::::::
rule-based,

::::
or
:::::::

linear

::::::::::
programming

:::::::::::
Computational

::::::
Demand

: ::::
High

::::::::::::
computational

:::::::
demand

:::::
due

:::
to

::::::
complex

:::::::::
modeling

:::::
and

:::::::::::
optimization,

:::::
leading

::
to

::::
long

::::::::
simulation

::::
times

:

:::
Low

:::::::::::
computational

:::::::
demand,

:::::::
allowing

:::
for

:::
fast

::::::::
simulations

:::
and

::::::::
scalability

:

:::::::
Accuracy

::::
High

:::
Low

:
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Table 2. Inputs and Outputs of EMS
::
SM

::::::::::
optimization and PMS

:::
RT

::::::
dispatch

:
from Zhu et al. (2022).RT stands for Real-Time.

Model Inputs Outputs

SM optimization

HPP configuration HPP power output schedule

Wind power forecast Battery charge/discharge power

SM price forecast Battery state of charge

RT dispatch

Same as EMS
:::
SM

:::::::::
optimization, and RT HPP power output

RT wind power RT battery charge/discharge power

Cleared SM prices RT battery state of charge

EMS
:::
SM

::::::::::
optimization power output schedule RT curtailed power

Table 3. Annual Computational Complexity of
:::
HF EMSand PMS

:
’
::::::
models

::
for

:::
one

::::
year

::
of

::::
input

:::
data

Model Design variables Constraints

EMS
:::
SM

::::::::::
optimization 289,445 350,765

PMS
::
RT

:::::::
dispatch 315,360 420,480

Table 4. Input and output time series of surrogate models

Variable Time step Time horizon

Input
SM price forecast: SMt

15 min 1 day
Wind power forecast: Wt

Output

HPP power output: P sm
t :::::

PHPP
t :

1 hour 1 day
Battery discharging power: P sm,dis

t :::
P dis
t :

Battery charging power: P sm,cha
t ::::

P cha
t

HPP curtailed power: P sm,curt
t :::::

P curt
t
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Table 5.
:::::::
Surrogate

::::::
models

:::::
tested

:::::
Model

:::::
Name

::::::::::::
Pre-processing

::::::::
Regressor

::::::::::::
Post-processing

::
S1

: :::::::::::
Normalization

:::::
Linear

::::::
Reverse

:::::::::::
Normalization

S2 :::::::::::
Normalization

Linear ::::::
Reverse

::::
SVD

::::
SVD

::::::
Reverse

:::::::::::
Normalization

::
S3

: :::::::::::
Normalization

::::
FNN

::::::
Reverse

:::::::::::
Normalization

S4 :::::::::::
Normalization

FNN ::::::
Reverse

::::
SVD

::::
SVD

::::::
Reverse

:::::::::::
Normalization

Table 6. Features and Samples of Data-processing methods

Data processing Normalization SVD

Inputs
Features 5 rin +3

Samples (24 · 2) · 365 ·N 365 ·N

Outputs
Features 4 rout

Samples (96 · 4) · 365 ·N 365 ·N

Table 7.
::::
FNN

:::
grid

:::::
search

::::::::::::
hyperparameter

:::::
space

:::::::::::::
Hyperparameter

:::::
Range

::::
Step

:::::
Layers

:
[
::
3,9]

:
1
:

::::::
Neurons

:::
per

::::
layer

:
[
::::
40,80]

::
20

Table 8. Sizing Parameters and Ranges

Sizing Parameter Range

PW /PG [-] [1, 2]

BP /PG [-] [0, 1]

BE/BP [h] [1, 8]
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Appendix A:
::::::::
Surrogate

:::::::
Models

:::::::::::
Comparison780

:::
The

::::::::
accuracy

::
of

:::
the

::::
four

:::::::
models,

::::::::
presented

::
in

:::::
Table

::
5,
::::
can

::
be

::::::
found

::
in

:::
Fig.

::::
A1.

::::
The

::::::
RMSE

::
of

:::
all

:::::::::
normalized

::::::
hourly

::::::
output

::::
time

:::::
series

:
is
::::
used

:::
to

:::::::
compare

:::
the

:::::::
accuracy

::
of

:::
the

:::::::
models.

:::::::::
Moreover,

:::
the

::::::
training

::::
and

::::::::
inference

::::
times

:::
are

:::::::
reported

::
in
:::::
Table

::::
A1.

Linear Tuned NNs
Surrogate Models
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d 
tim

e 
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0.20

0.09

S1 S3S2 S4

Norm
SVD

Figure A1.
:::::::
Validation

::::::
RMSE

::
by

::::
Data

::::::::
Surrogate

::::::
model:

::::::
"Norm"

:::
for

:::::
models

:::::
using

:
a
:::::::::::

normalization
::::
only,

:::
and

::::::
"SVD"

:::
for

::::::
models

::::
using

::
a

:::::::
combined

:::::::::::
normalization

:::
and

::::
SVD.

::::
Table

:::
A1

:::::::::
compares

:::
the

::::
time

::::::
needed

::
to

:::::::
execute

:::
the

:::::::::::
methodology

:::
for

::::
each

::::::::
surrogate

::::::
model.

::::
The

::::::::::::
pre-processing

::::::::::
(Pre-proc.)

::::
time

::::::::
considers

::::
both

:::::::
training

:::
and

:::::::::
validation

:::::::
datasets.

:::::::::
However,

:::
the

:::::::
training

::::
time

:::::
(Train

::::::
Time)

::::::::
accounts

::::
only

:::
for

:::
the

:::::::
training785

::::::
dataset,

:::::
while

:::
the

::::::::
inference

::::
time

::::
(Inf.

:::::
Time)

:::::::
reflects

::
the

::::::::
inference

:::
on

:
a
::::::
single

::::
HPP

:::::::::::
configuration

::::::::
spanning

:::
one

::::
year

::
of

::::
data.

:

Table A1.
::::
Time

:::::
Metrics

::
of
::::::::
Surrogate

::::::
Models

:::::
Model

:::::
Name

:::::::
Pre-proc.

::::
Train

:::::
Time

:::
Inf.

::::
Time

::
S1

: :::
1.1m

: ::::
14.4h

: ::::
0.64s

::
S2

: :::
7m

:::
14m

::::
0.02s

::
S3

: :::
1.1m

: ::
7d

: ::::
1.02s

::
S4

: :::
7m

::
5h

: ::::
0.04s
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Appendix B: FNN architecture

Tables with tuned FNN architecture.

Table B1. Architecture of tuned NN using SVD
::::

model
::
S4

Layers Neurons

Input Layer 17

Hidden Layer 1 80

Hidden Layer 2 60

Hidden Layer 3 80

Hidden Layer 4 80

Hidden Layer 5 80

Hidden Layer 6 80

Hidden Layer 7 60

Hidden Layer 8 80

Hidden Layer 9 80

Output Layer 125

Table B2. Place holder: Architecture of tuned NN using a normalization
:::::
model

::
S3

Layers Neurons

Input Layer 5

Hidden Layer 1 80

Hidden Layer 2 80

Hidden Layer 3 80

Hidden Layer 4 80

Output Layer 4

Appendix C:
::::
Cost

::::::
Model

:::
The

::::
cost

::::::
model

::
is

::::::::
described

::
in

::::
this

:::::::
section.

:::
The

::::::::
CAPEX

:::::::
depends

:::
on

::::
Cw,

:::
Cb,

::::
and

::::
Cel, :::::

which
:::
are

:::
the

::::::::
CAPEX

::
of

:::
the

:::::
wind790

:::::
power

:::::
plant,

::::::::
batteries,

::::
and

:::
the

:::::::
Balance

::
of

:::::::
System

::::::
(BOS).

:::::::::
Similarly,

:::
the

::::::
OPEX

::
is

:::
the

::::
sum

::
of

:::::
Ow,y ,

:::::
Ob,y ,

::::
and

:::::
Oel,y,

::::::
which

::
are

:::
the

::::::
yearly

::::::
OPEX

::::
from

:::
the

:::::
wind

:::::
power

:::::
plant,

::::::::
batteries,

::::
and

:::::
BOS.

:::
Cw::

is
::::::::::
proportional

:::
to

:::
the

::::
wind

::::::::
turbine’s

::::
cost

::::::::
(WTcost)
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:::
and

:::
the

::::
cost

::
of

:::::
civil

:::::
works

:::::::::
(WTcivil)::

in
::::::::::::
EUro/MW .

::::::::::
Meanwhile,

::::
Cel ::

is
::::::::::
proportional

:::
to

:
a
:::::::::::
combination

::
of

:::
the

:::::::
number

:::
of

::::::
battery

:::::::::
equivalents

::
in
:::::::

today’s
:::::
value

:::::::
(Nbeq),

:::
the

::::::
battery

::::::
energy

::::
cost

:::
per

::::::
MWh

:::::::
(BE

cost), :::
the

::::::
battery

::::::
power

::::
cost

:::::::
(BP

cost), ::::
civil

::::
costs

:::::::
(BP

civil),::::
and

::::::
control

::::::
system

::::
costs

:::::::::
(BP

control):::
per

:::::
MW.

:::
Cel:::::::

depends
::
on

:::
the

::::::
shared

:::::
BOS

:::
cost

::::::::
(CBOS),

:::
the

:::
grid

::::::::::
connection795

:::
cost

::
of

:::
the

:::::
HPP

::::::
(PG

cost),::::
and

:::
the

::::
cost

::
of

::::
land

::
in

::::::::::
Euro/km2

:::::::
(Lrent) :

.
:::
The

::::::
OPEX

::
of

:::
the

:::::
wind

:::::
power

:::::
plant

::
is

:::::::::
calculated

:::::
based

::
on

:::
the

::::
fixed

::::
and

:::::::
variable

::::::::
Operation

::::
and

:::::::::::
Maintenance

::::::
(O&M)

:::::
costs

::
of

:::
the

::::
wind

:::::::
turbine

:::
per

::::
year

:::
and

:::
per

::::
MW

::::::::::
(WTOM

fixed,y::::
and

::::::::::::
WTOM

variable,y),
::
as

::::
well

::
as

:::
the

:::::
mean

::::::
Annual

::::::
Energy

:::::::::
Production

::::::
(AEP)

::
of

:::
the

:::::
wind

:::::
power

::::
plant

::::::::::::::
(mean(AEP )).

::::::::::
Meanwhile,

:::
the

:::::::
battery’s

:::::
yearly

::::::
OPEX

::
is

::::::::::
proportional

::
to

:::
the

:::::
yearly

::::::
O&M

:::
cost

::
of

:::
the

::::::
battery

:::
per

:::::
MWh

:::::::::
(BE,OM

y ).
::::
The

::::::::
equations

:::
are

::
as

:::::::
follows:

800

CAPEX =
::::::::::

Cw +Cb +Cel
::::::::::::

OPEXy =
:::::::::

Ow,y +Ob,y +Oel,y
::::::::::::::::

Cw =
::::

(WTcost +WTcivil) ·PW

:::::::::::::::::::::

Cb =
::::

Nbeq ·BE
cost ·BE +(BP

cost +BP
civil +BP

control) ·BP

::::::::::::::::::::::::::::::::::::::::::

Cel =
::::

(CBOS +PG
cost) ·PG +Lrent

::::::::::::::::::::::::
805

Ow,y =
::::::

WTOM
fixed,y ·PW +mean(AEP ) ·WTOM

variable,y
::::::::::::::::::::::::::::::::::::::

Ob,y =
:::::

BE,OM
y ·BE

::::::::::

Oel,y =
::::::

0
:

::
In

:::
this

:::::
study,

:::
we

:::
set

::
a

::::
fixed

:::::::
lifetime

:::
for

:::
the

::::::
battery

::::
(ib)

::
as

::::::
battery

::::::::::
degradation

::
is

:::
not

::::::::::
considered.

:::::::::::
Additionally,

::
to

:::::::
address

:::
the

:::::::::
decreasing

::::
costs

:::
of

:::::::
batteries

::::
over

:::::
time,

:::
we

:::::::
employ

:::
the

:::::::
concept

::
of

:::
the

:::::::::
equivalent

:::::::
number

:::
of

::::::
present

::::::::
batteries

::::::
(Nbeq).

:::::
This810

::::::
method

::::::::::
incorporates

:::
the

::::::
annual

::::::
battery

:::::
price

::::::::
reduction

:::
rate

::::
(fb)

:::
and

:::
the

:::::::::
designated

::::::::::
replacement

::::
year

:::
for

::::
each

::::::
battery

:::::::
(yb(ib)).:

Nbeq =

Nb−1∑
ib=0

(1− fb)
yb(ib)

:::::::::::::::::::::

Appendix D: Data supplement

Table with the coordinates of each location used in the intra-generalizability study.

::::
Table

:::
D2

:::::::
presents

::
a
::::::::
summary

::
of

:::
the

::::
cost

::::::::::
assumptions

::::
used

::
in

::::
this

::::::
article.

::
As

:::
the

::::::::
battery’s

::::::
lifetime

::
is
:::::
seven

:::::
years,

:::::
each

::::
HPP815

:::
will

::::::
require

:::::
three

:::::::
batteries

::::::
during

::
its

:::::::
lifetime.

:::::
Given

::
a
::::::
battery

::::
price

::::::::
reduction

::
of

:::::
10%

:::
per

::::
year,

:::
we

:::::
obtain

::
an

:::::::::
equivalent

:::::::
number

::
of

:::::::
batteries

::::::
(Nbeq)

::
of

:::::
1.84.
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Table D1. Location Coordinates for the Generalizability study. Coordinates are shown in decimal degrees.

Location Latitude Longitude

X 57.0482 8.8876

A 56.383 8.6705

B 55.2908 8.6551

C 57.1852 9.9527

D 55.3088 10.4398

Table D2.
:::
Cost

:::::::::
assumptions

::::::
Variable

: ::::
Value

:::
rAT: :::

6%

:::
τtax: ::::

22%

::::::
WTcost:

[
:::::::::
MEUR/MW]

:::
0.46

:

::::::
WTcivil:

[
:::::::::
MEUR/MW]

:::
0.19

:

::::::::
WTOM

fixed,y:
[
:::::::::::::
MEUR/MW/year]

::::
9,000

::::::::::
WTOM

variable,y:
[
::::::::::::
EUR/MWh/year]

:::
0.97

:

::::
BE

cost:
[
:::::::::
EUR/MWh]

:::::
90,000

:

::::
BP

cost:
[
::::::::
EUR/MW]

:::::
32,000

:

:::::
BP

civil [
:::::::
EUR/MW]

:::::
36,000

:

:::::::
BP

control [
:::::::
EUR/MW]

::::
9,000

::::::
BE,OM

y :
[
::::::::::::
EUR/MWh/year]

:
0
:

:::
f_b

:::
10%

:

:::
i_b,

::::::
lifetime

::
of

:::::
battery

:
[
::::
years]

:
7
:

::
Y ,

::::::
lifetime

::
of

::::
HPP

::
25

:::::
CBOS [

:::::::::
MEUR/MW]

:::
0.12

:

::::
PG
cost:

[
:::::::::
MEUR/MW]

:::
0.05

:
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