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Abstract.

Model predictive control (MPC) for wind turbines offers several interesting advantages over simpler techniques, as for

example the direct optimization of a goal function, the inclusion of constraints, non-linear coupled dynamics, and wind preview

(when available). To enable real-time execution, MPC uses a reduced order model (ROM) that approximates the dynamics of

the controlled system using only a limited number of degrees of freedom. As a result, the accuracy of the ROM is often the5

main limit to the performance of MPC. To address this problem, an adaptive controller-internal model can reduce plant-model

mismatches, potentially leading to improved performance.

This work proposes an adaptive economic nonlinear MPC (ENMPC) for wind turbines. The controller maximizes profit by

optimally balancing fatigue damage cost with revenue due to power generation. The cyclic fatigue cost is formulated directly

within the controller using the novel parametric online rainflow counting (PORFC) approach. PORFC provides a rigorous10

continuous expression of the discontinuous cyclic fatigue cost using time-varying parameters. Adaptivity is obtained by a

controller-internal grey-box model that combines reduced order physical dynamics with data-driven correction terms. These

are implemented via a neural network that is trained offline. Additionally, system state and disturbance estimators are included

in the closed-loop controller.

The improvement in state predictions due to model adaptation is first assessed and compared with respect to the non-adapted15

baseline ROM in open loop. The performance of the adaptive ENMPC and the impact of a reduced plant-model mismatch is

then assessed in closed loop for a reference multi-MW onshore wind turbine in a realistic simulation environment. Results

show that the adaptive ENMPC yields higher economic profits at significantly lower pitch and torque travels, compared to

the baseline non-adaptive ENMPC. While the enhanced closed-loop performance and economic gains of the proposed model

adaptation are significant, they come at the cost of a slight increase in the computational burden of the controller.20

1 Introduction

Wind turbine operation and control have recently shifted from the traditional goal of power maximization to more economically

driven goals. In this new paradigm, turbines are operated with damage awareness in mind (Barradas-Berglind and Wisniewski,

2016; Gros and Schild, 2017; Loew et al., 2019; Anand et al., 2022; Loew et al., 2023). This shift is driven by the impact of

fatigue damage, which shortens the operational life of turbines and increases operation and maintenance (O&M) costs. In fact,25

these factors are critical to the economic profitability of operators of wind energy assets (Canet et al., 2021; Stehly et al., 2020).
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One widely used method for developing economic controllers for wind turbines is model predictive control (MPC) (Rawlings

et al., 2017). MPC optimizes control actions over the short-term future by predicting system behavior, and then solving an

economic optimization problem based on these predictions (Rawlings et al., 2012). When considering wind energy systems,

an economic optimization should balance the conflicting objectives of maximizing revenue from power generation and of30

minimizing the cost of fatigue-related damage. Additionally, a controller should always guarantee that the system operates

within feasible limits. The effectiveness of the controller ultimately depends on the quality of the solution of this constrained

optimization, which essentially relies – not only on the economic model – but also on the quality of predictions of the controller-

internal model.

The existing literature on the economic control of wind turbines using MPC is based on two main approaches for estimating35

cyclic fatigue: indirect and direct methods. The indirect approach uses a proxy for fatigue (Barradas-Berglind and Wisniewski,

2016; Gros and Schild, 2017). This method is convenient because it avoids the use of cycle counting that, because of its

branching nature, introduces discontinuities in the calculations (Loew et al., 2021). As a result, with the indirect approach

gradient-based methods can be used to solve the optimization problem. However, this also means that fatigue is only approxi-

matively taken into account through a proxy quantity, which might not always provide for accurate results. The direct approach,40

on the other hand, estimates fatigue explicitly using online cycle counting directly within the MPC framework (Loew et al.,

2020b; Anand et al., 2022). This method, termed parametric online rainflow counting (PORFC), is relatively new and was first

introduced in our previous work Loew et al. (2020a). It has since been applied in its fundamental form in various contexts,

including wind turbine fatigue control (Loew et al., 2020b), battery cyclic aging control (Loew et al., 2021), and control of

grid-connected wind-battery hybrid systems (Anand et al., 2021, 2022). To the authors’ knowledge, PORFC is the only ap-45

proach that allows for the rigorous treatment of fatigue, as it was design to produce the same results on receding horizons that

would be obtained by cycle counting the whole response time history a posteriori (Loew et al., 2020a).

In both approaches mentioned above, the controller relies on an internal model of the wind turbine to predict its behavior over

the MPC horizon. However, due to computational constraints, the internal representation of the system response is typically

obtained through a reduced order model (ROM). ROMs approximate the system dynamics using a limited number of degrees50

of freedom (DOFs), enabling the real-time execution of the controller. The accuracy of these predictions plays a crucial role

in the performance of the controller. A closer match between the predicted and actual wind turbine dynamics allows for the

controller to make more precise decisions when optimizing the objective function, while at the same time ensuring compliance

with system constraints. In fact, the degree of model mismatch not only affects optimality, but may also impacts the ability of

the closed-loop system to operate strictly within admissible or desired limits.55

One way to address model mismatches is by using state observers and estimators (Anand et al., 2022; Loew and Bottasso,

2022), where measurements of the response of the wind turbine from previous time steps are used to estimate and adjust

the initialization of the controller for the next step. However, the effectiveness of this approach is limited when estimates are

obtained from underlying models of scarce accuracy.
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A more compelling alternative is to adapt the internal model dynamics of the controller, either by using measured operational60

data or synthetic results from models of sufficiently high fidelity that can accurately represent the plant behavior. One of the

aims of this paper is to develop practical methods for enabling adaptivity in wind turbine ROMs.

Data-driven adaptation can be implemented online, offline, or in a hybrid manner, each of these options offering distinct

trade-offs in terms of advantages, challenges, and practical applicability to economic control. Online adaptation allows for

quickly adjusting model behavior in real time based on observed plant response. However, for industrial applications, it is65

difficult to imagine how one could guarantee the correct learning of model corrections, and how such a system could be

demonstrated to be always safe and certifiable in practice. In contrast, offline adaptation allows for the systematic integration

of data, enabling a rigorous verification and validation of any learned correction terms prior to their deployment in the field.

A rigorous offline verification and validation opens the door to the certification of adaptive controllers, which must meet strict

standards in terms of performance, safety, and reliability before deployment in real-world operations.70

In the context of economic MPC, offline model adaptation can be achieved in several ways: by adjusting the parameters of

the ROM (Schreiber et al., 2020), or by incorporating a correction term into the ROM or MPC optimization function (Bottasso

et al., 2006; Collet et al., 2021; Soloperto et al., 2022), or by a combination of both methods. Since a ROM captures only some

aspects of the behavior of the plant, the sole tuning of its parameters is often insufficient and might actually lead to nonphysical

values of the parameters. Instead, data can be leveraged to learn and incorporate missing physics into the internal model of the75

controller. This is indeed the approach followed here.

The key contribution of this work is the development of a novel economic nonlinear model predictive controller (ENMPC)

with offline-adaptive capabilities enabled by data-learned ROM corrections. The controller maximizes profit by balancing two

competing factors: revenue from power generation and costs associated with fatigue damage of the turbine components. The

cost of cyclic damage is formulated using the novel PORFC approach, which performs online rainflow analysis over the stress80

history and its future predictions to generate time-varying parameters. These parameters are then used to obtain a continuous

expression of the discontinuous fatigue cost, which is incorporated into the MPC optimization. The controller-internal model is

a grey-box that combines reduced order physical dynamics with offline-computed correction terms. These terms are formulated

as neural networks trained on high-resolution measured or synthetic data of the wind turbine. Their objective is to reduce model

mismatch, thereby improving online closed-loop performance. The profit formulation used here does not explicitly incorporate85

the effects of fatigue on component reliability and O&M costs, simply because of a lack of data and appropriate models linking

loads with failure rates, instead representing fatigue-related costs solely through the amortization of the overall component

cost, as discussed in TotalControl (2022).

The paper is structured as follows. Section 2 introduces the proposed model adaptation approach. It describes both the

simplified wind turbine model used as internal ROM, and the data-driven modeling of the correction term. Section 3 provides90

a detailed formulation of the ENMPC, discussing various aspects of the underlying optimization problem. This section also

describes the state and wind speed estimators, which provide initial conditions and disturbance predictions for the ENMPC.

Section 4 presents and discusses the results from a case study. The analysis begins with an open-loop assessment of the

model adaptation approach, followed by a closed-loop evaluation of its impact on economic performance, actuator usage, and
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computational burden. Additionally, this section examines the benefits of the proposed model adaptation under different wind95

input and preview scenarios. Section 5 summarizes the key findings of this work and outlines potential directions for future

research.

2 Model adaptation

The proposed model adaptation approach enhances the ROM dynamics by introducing a data-driven correction function,

∆FROM(·). This function is designed to compensate for the mismatch between the ROM and the actual wind turbine behavior.100

The adapted model dynamics, denoted as FROMaug(·), can be expressed as

ẋ(t) = FROM(x(t),u(t),d(t)) +∆FROM(x(t),u(t),d(t),p) , (1)

where FROM(·) represents the original nonlinear ROM dynamics. By incorporating ∆FROM(·), the adapted model more accu-

rately captures the behavior of the plant. Here, x(t), u(t), and d(t) represent the continuous system states, control variables,

and external disturbances, respectively. The correction ∆FROM depends on these same quantities, but also on free parameters105

p that are learnt based on data.

2.1 Reduced order model

A simplified wind turbine model with only three degrees of freedom (drivetrain angular speed, and tower fore-aft and side-side

deflections) is considered to represent the ROM dynamics FROM(·). The incident wind Vw induces an aerodynamic torque TQ

about the rotor axis and an aerodynamic force FT along it. The aerodynamic torque directly excites the drivetrain rotational110

dynamics

Jrω̇ = TQ−Tg , (2)

ignoring mechanical losses, where Jr, ω, and Tg represent the rotor moment of inertia, rotor speed, and generator torque

referred to the low-speed shaft, respectively. The aerodynamic force FT , coupled with the drive-train dynamics, excites oscil-

lations in the tower. These can be quantified by using the tower-top deflection in the fore-aft direction dTFA , having dynamics115

d̈TFA =
1
f1

(FTFA − f2ḋTFA − f3dTFA) , (3)

and the tower-top deflection in the side-side direction dTSS , having dynamics

d̈TSS =
1
s1

(FTSS − s2ḋTSS − s3dTSS − s4Tg) . (4)

These result in cyclic stresses σFA(t) and σSS(t), respectively, at tower base. Here, FTFA and FTSS represent the rotor or-120

thogonal (thrust) and rotor in-plane (side-side force) components of the aerodynamic force FT , whereas f1−3 and s1−4
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are model parameters. The aerodynamic torque TQ(ω,βb,(Vw − ḋTFA)), and force components FTFA(ω,βb,(Vw − ḋTFA)) and

FTSS(ω,βb,(Vw − ḋTFA)) introduce non-linearities in the model.

The turbine model has two control variables: the commanded generator torque Tgc, and the commanded blade pitch angle

βc. The dynamics of the generator is given as125

Ṫg =
1
g1

(Tgc−Tg) , (5)

where coefficient g1 represents the time-constant of the first-order dynamic model. The pitch dynamics is modeled as

β̈b =−b1β̇b−b2(βb−βc) . (6)

Here, βb represents the effective collective blade pitch angle and the coefficients b1−2 are model parameters representing

properties of the pitch system.130

The reduced-order wind turbine model consists of eight system states,

x = (ω, dTFA , ḋTFA , dTSS , ḋTSS , βb, β̇b, Tg) , (7)

and two control input variables

u = (βc,Tgc) . (8)

The wind speed Vw is considered as a disturbance input to the model, i.e.135

d = (Vw) . (9)

2.2 Data-driven correction

With advancements in computing technologies, machine learning techniques – including supervised and unsupervised learn-

ing – have become highly effective for a wide range of data-driven system identification tasks. A key advantage of supervised

learning over unsupervised learning is its access to both input states and their corresponding target states during training. This140

allows the model to generalize and predict system behavior for previously unseen input combinations. A particularly effective

approach for supervised learning in this context is based on the training of a neural network (NN). NNs can approximate arbi-

trarily complex functions while also providing gradients, making them especially well-suited for integration within an optimal

control framework.

In this work, the NN is designed to establish a static mapping from inputs to outputs. The structure of an NN consists145

of multiple hidden layers and a single output layer, where each layer contains a certain number of neurons. These neurons

are defined by weights, biases, and activation functions. Within a given layer, input data is first processed by applying the

corresponding weights and biases to each neuron. The transformed data is then passed on to the next layer based on the

selected activation function. The choice of activation function plays a crucial role in shaping how information flows through

the network.150
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A feed-forward NN with one hidden layer and one output layer is considered in this work. The static mapping of the input

features xNN to the output features yNN for the considered NN can be written as

yNN = f act
y (WT

y f act
h (WT

h xNN +bh) +by) . (10)

Here, W, b, and f act(·) represent the weights, biases, and activation functions, respectively, where the subscript h denotes the

hidden layer and the subscript y denotes the output layer.155

Before training the NN, the generated dataset is split into training and testing sets. Moreover, every feature in the input and

the target set is normalized by subtracting the minimum of the feature vector from the feature vector itself, and then dividing

the result by the range (difference of maximum and minimum), i.e.:

yNN =
yNN−ymin

NN

ymax
NN −ymin

NN
. (11)

Furthermore, the normalized datasets are shuffled to reduce the possible clustering of conditions that might create biases. After160

pre-processing the training set, the parameters of the NN,

p = (Wh,bh,Wy,by) , (12)

are computed using the Levenberg-Marquardt algorithm to minimize the sum of squares of error between the predicted output

and target output.

The accuracy of NN predictions heavily depends on the quality of its training process, which requires a comprehensive165

dataset of inputs and corresponding target outputs. Here data is obtained using a high-fidelity simulation model, using both

standard measurements and estimates derived from them. Figure 1 illustrates the proposed approach of acquiring input and

target data for NN training, where the solid blue circles represent the plant states xPlant
i at a given time instant i. To generate

training data, the ROM is initialized with each Plant state sample, setting xROM
i = xPlant

i . The ROM then predicts the next state

xROM
i+1 , based on the applied control inputs uPlant

i and the influence of external disturbance dPlant
i .170

The corresponding error between the derivatives of the ROM model and the plant,

ei+1 = ẋPlant
i+1 − ẋROM

i+1 , (13)

constitutes the target dataset. The derivatives are calculated using the current state xPlant
i at time ti and corresponding next states

xPlant
i+1 and xROM

i+1 at time ti+1 via finite differences, i.e. (xi+1−xi)/(ti+1− ti). The set of the current states, control inputs, and

disturbances applied to the plant, constitute the input dataset (xPlant
i ,uPlant

i ,dPlant
i ) for the ith time sample. This simple temporal175

discretization, although of limited numerical accuracy, is deemed sufficient for the present application, where modeling errors

are typically larger than the numerical ones.

3 ENMPC formulation

The ENMPC is formulated based on the augmented internal model ROMaug, as expressed by Eq. (1), to predict the system

states over a short future horizon Thorizon. The discretization of time-continuous variables is performed over control time steps180
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Figure 1. Data acquisition for model adaptation.

Nu in the prediction horizon. The duration of one control interval can thus be denoted as Tctrl = Thorizon/Nu. These predictions

are used to calculate optimal control variables by optimizing a desired realistic and meaningful economic objective function

(here chosen as profit, with the goal of balancing revenue and costs). Moreover, the controller should keep the plant states and

applied inputs within feasible ranges, which are specified as optimization constraints.

The proposed ENMPC optimization problem can be formulated as185

min
u,ξ

−(JPower
generation)

2 + (JFA
tower fatigue)

2 + (JSS
tower fatigue)

2 +

t0+Thorizon∫

t0

(W ξ
1 ξ2

1 + W ξ
2 ξ2

2)dt , (14a)

subject to

ẋ = FROMaug(x,u,d,p) , (14b)

xc ≤ xc ≤ xc , (14c)190

u≤ u≤ u , (14d)

ξ ≤ ξ ≤ ξ , (14e)

and195

Ṫg ≤ Ṫg ≤ Ṫg . (14f)
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The optimization variables are the control variables u = (βc,Tgc) and the slack variables ξ = (ξ1, ξ2). The purpose of introduc-

ing slack variables is to achieve recursive feasibility of the MPC optimization problem in the presence of model uncertainties

and system perturbations (S. Gros, 2013). Hence, in the present formulation, the state variable ω and the wind turbine electrical

power output200

Pgen = ηgen ωTg (15)

are augmented using the bounded slack variables ξ1 and ξ2, respectively, where ηgen denotes the drivetrain conversion effi-

ciency. This approach is used because ω, despite the smoothing effect provided by the large rotor inertia, is subject to wind

perturbations and model errors that affect the economic MPC problem (S. Gros, 2013). The modified set of states xc can be

expressed as205

xc = (ω + ξ1, dTFA , ḋTFA , dTSS , ḋTSS , βb, β̇b, Tg, ηgen ωTg + ξ2) . (16)

3.1 Optimization objective

The optimization objective aims to maximize the generated profit by balancing the revenue accrued from wind power generation

and cost incurred due to fatigue damage. The cost of fatigue damage should be expressed by appropriate models, which will

differ depending on the component; for example, it is reasonable to assume that the effects of cyclic loading on a pitch bearing210

will in general be very different from the ones on a gearbox. Here, for the lack of specific models and relevant data, we simply

consider the tower as an exemplary component that is often fatigue critical. It is clear that this is only an academic example,

and more realistic scenarios could be readily developed by using the same methodology for multiple components, by using

dedicated component-specific cost models.

The wind power generation is maximized by considering the aerodynamic power capture215

JPower
generation = wP

tend∫

t0

(ωTQ(ω,βb,(Vw − ḋTFA)))dt , (17)

where wP denotes the revenue rate for providing electricity to the grid. It should be noted that even though revenue is accrued

based on the overall electrical power generation, in this work the aerodynamic power is maximized. This is to avoid the greedy

extraction of rotor kinetic energy by MPC (referred to as “turnpike effect” in S. Gros (2013)).

The tower cyclic fatigue damage is minimized by a direct penalization of fatigue via the PORFC approach. The PORFC220

algorithm uses a pre-processing step to identify fatigue cycles for a given set of stress samples σ, and splits the respective

cyclic fatigue damages over the contributing samples. The output of the pre-processing step is the PORFC mean parameters

σPORFC
m,c and PORFC weight parameters σPORFC

w,c (Loew et al., 2021).

A Python script to extract the PORFC parameters for a given set of stress trajectories is shared with this work (Anand and

Bottasso, 2025). This allows for a detailed understanding of the novel formulation and its adaptability and usage for economic225

MPC. The script performs standard rainflow counting to identify cycle characteristics and extract PORFC parameters. These

parameters are then used to reformulate the cycle amplitudes and weights over stress samples in a continuous manner.
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The cost of tower fatigue damage JFA
tower fatigue, due to tower root fore-aft cyclic stress σFA, is formulated as

JFA
tower fatigue =

1
Tctrl

tend∫

t0

2∑

c=1

JPORFC
c,σFA

(σFA, σPORFC
FAm,c, σPORFC

FAw,c )dt , (18a)

230

JPORFC
c,σFA

= σPORFC
FAw,c amσm

FAeq,c , (18b)

σFAeq,c = |σFA−σPORFC
FAm,c|

Rm

Rm−σFAm,c
. (18c)

Here, am denotes the capital cost of the component and is determined from the initial capital expenditure of the machine (see

also Loew et al. (2023) for details), Rm denotes the ultimate tensile strength of the material, and m represent the positive235

exponent derived from the material S-N characteristic.

The tower cyclic fatigue damage JSS
tower fatigue, due to tower root side-side cyclic stress σSS, is formulated in a similar manner.

Although the optimization objective, shown in Eq. (14a), separately considers the costs of tower fore-aft and side-side

fatigue, the final evaluation is based on the projected total cost. In addition to the fact that fore-aft and side-side components

depend on wind direction, which is not constant, this also ensures that any potential increase or decrease in tower side-side stress240

oscillations, resulting from control actions aimed at minimizing tower fore-aft stress (and vice-versa), is properly accounted

for.

To obtain the cost of cyclic fatigue damage for each projection at a given azimuth direction, the following steps are taken.

First, rainflow counting is performed on the projected stress trajectory. Then, the Goodman equation is applied for mean stress

correction. The damage cost of each stress cycle is determined using the S-N curve of the material of the tower and the245

component cost. Finally, the Miner-Palmgren algorithm is used to sum the costs of individual cycles and obtain the total cost

(refer to Loew et al. (2023) for a detailed formulation).

This approach – here illustrated for the tower – is readily generalized to other components. Once cyclic fatigue is assessed

on each prediction horizon for each component of interest, a dedicated model could provide failure rates and/or maintenance

activities resulting from such loading, in turn generating the associated costs, which would be included in the optimization250

merit function.

3.2 Optimization constraints

The ENMPC optimization problem is subjected to the system dynamics of the augmented plant model ROMaug(·), as shown

in Eq. (14b), to the inequality constraints on modified system states, as shown in Eq. (14c), and to the box constraints on

control and slack variables, as shown in Eq. (14d) and Eq. (14e). Furthermore, the rate of change of generator torque Ṫg is also255

subjected to an inequality constraint, as shown in Eq. (14f), to reduce the torque travel as well as the fatigue in the wind turbine

drive-train.
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3.3 State estimator

The controller-internal model is initialized using the currently measured initial states x0. However, not all system states of the

internal model can actually be measured directly on the plant using standard on-board sensors. For instance, both the tower-top260

deflection and velocity states (dTFA , ḋTFA ,dTSS , ḋTSS ) for ROM and ROMaug can not be measured directly on a real turbine. Only

the rotor speed ω, the blade pitch angle βb, and the tower-top accelerations d̈TFA and d̈TSS can be measured by onboard sensors,

whereas the remaining states need to be estimated using measured quantities. Furthermore, as the controller-internal model is

only a reduced representation of the plant, the initial values measured directly on the plant may not be suitable for initializing

the ENMPC. As a consequence, a state estimator is additionally required to provide initial value estimates xest of the system265

states for the ENMPC internal model, using the available measurements from the plant.

A classical approach for state estimation is the Kalman filter, also widely used for wind turbine control (Bottasso and Croce,

2009; Ritter, 2020). However, due to the nonlinear nature of the system and the need to enforce constraints on both stage and

terminal states, here we instead adopt a moving horizon estimator (MHE). A detailed comparison between optimization-based

state estimation techniques based on MHE and Kalman filters has been presented in Loew and Bottasso (2022). The MHE270

formulation used in this study builds upon the approach discussed in Anand et al. (2022).

MHE utilizes the system information from the plant over a finite past duration (specified using the MHE horizon length

Thorizon,est), to calculate the initial state estimates xest(t0) for the current ENMPC step. The MHE optimization problem aims to

minimize the sum of the deviation of the current estimated output yest from the measurement values ymeas, with the deviation of

the current state estimates xest from the previous state estimates xest,prev (to ensure a smooth estimator output over consecutive275

MHE steps), and with the noise variable ν̄ (S. Gros, 2013; Huang et al., 2010).

The objective function is given as

min
ν̄

t0∫

t0−Thorizon,est

(||yest−ymeas||2Wmeas
+ ||xest−xest,prev||2Wprev

+ ||ν̄||2Wν̄
)dt , (19)

where yest = (xest, d̈TFA,est , d̈TSS,est) and ymeas = (xmeas, d̈TFA,meas , d̈TSS,meas). The estimated tower-top fore-aft acceleration d̈TFA,est and

side-side acceleration d̈TSS,est are obtained using the nonlinear output equation expressed by Eq. (3) and Eq. (4), respectively. The280

measured tower-top fore-aft acceleration d̈TFA,meas and the side-side acceleration d̈TSS,meas are obtained from the plant as a result

of standard sensor measurements. The measured tower-top velocity and deflection in both the fore-aft and side-side directions

are obtained by numerical integration of the tower-top acceleration and velocity, respectively. The diagonal weighting matrices

Wmeas, Wprev, and Wν̄ are obtained by a trial and error tuning, such that a satisfactory performance is achieved.

The optimization problem is subjected to the estimator system dynamics285

ẋest = Fest(xest(t),dest(t)) +ν(t) , (20)

where dest(t) = (Vw(t),βb(t),Tg(t)) are the disturbance inputs to the system, which are already set by the ENMPC and are

hence fixed for the current MHE step. Here, xest represents the estimator system states, corresponding to the wind turbine
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system states x, as discussed in Sect. 2.1. Moreover, Fest(·) represents the system of ODEs for wind turbine dynamics discussed

in Sect. 2.1.290

After the execution of an MHE step, the terminal state at the end of the MHE horizon becomes the initial state at the

beginning of the ENMPC prediction horizon, i.e. x0 = x(t0) = xest(t0).

3.4 Disturbance estimator

The wind speed Vw is considered as a disturbance input to the ENMPC formulation, and needs to be estimated over the

prediction horizon Thorizon of the controller. This work considers a simple rotor effective wind speed (REWS) estimator, based295

on the approach discussed in Soltani et al. (2013). The REWS estimator utilizes the drivetrain dynamics, see Eq. (2), to estimate

the aerodynamic torque

TQest =
PQest

ωmeas
≈ Pgenmeas + Jrω̇

ωmeas
, (21)

using measured generator power Pgenmeas and rotor speed ωmeas. The rate of change of rotor speed ω̇ is computed by finite dif-

ference from ωmeas. The estimated aerodynamic torque TQest is then equated to the aerodynamic torque TQ(ωmeas,βbmeas,Vwest)300

described in Sect. 2.1, to estimate wind speed Vwest, for the measured pitch angle βbmeas and ωmeas.

4 Results and discussions

4.1 Case study

The ability of the adapted model to accurately predict the plant states depends directly on the precision of the data-driven

corrections. Additionally, to determine the extent of model adaptation required, it is necessary to assess how reducing the model305

mismatch impacts the closed-loop performance of the controller. To answer these questions, we consider a plant represented

by the NREL 5 MW reference wind turbine (Jonkman et al., 2009), which is modeled using OpenFAST (Bonnie Jonkman

et al., 2022), a widely used tool for simulating wind turbine dynamics. The plant model includes the first and second flapwise

bending modes and the first edgewise bending mode for each of the three blades. Additionally, it also includes the first and

second tower bending modes in both fore-aft and side-side directions, as well as the torsional flexibility of the drivetrain and310

the generator DOF.

The model, which incorporates pitch and torque actuators but excludes the yaw mechanism, consists of thirty-three system

states. There are eight states for the tower dynamics, eighteen for the blades (six per blade), two for drive-shaft torsion, two for

rotor rotation, two for collective blade pitch actuation, and one for generator torque actuation.

The fixed model parameters of the corresponding ROM, namely f1−3, s1−4, g1, and b1−2, are derived from the NREL report315

describing the 5 MW reference wind turbine (Jonkman et al., 2009).
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4.1.1 Data generation

The performance of a NN heavily depends on the quality of its training, which requires an exhaustive dataset that encompasses

a wide range of operating conditions. To generate a comprehensive training dataset, the OpenFAST model is simulated in

turbulent wind conditions using the baseline controller provided in the OpenFAST package. Full-field turbulent wind inputs320

are generated using TurbSim (Jonkman, 2009), considering the class-B normal turbulence model. Simulations are performed

for wind speeds ranging from cut-in to cut-out, in 1 ms−1 steps. For each wind speed, six different turbulent wind seed

simulations are conducted.

Figure 2 presents the Pearson correlation coefficients of the states (x), inputs (u), and disturbances (d) of the ROM with the

corresponding state errors (refer to Sect. 2.2), computed over the entire dataset. The Pearson correlation coefficient quantifies325

the linear relationship between two variables (Nafis Faizi and Yasir Alvi, 2023). Each entry in the table of Fig. 2 displays the

absolute value of the coefficient, where a higher magnitude indicates a stronger correlation. The same relationship is visualized

through a color gradient map, where darker shades represent stronger correlations and lighter shades indicate weaker ones.
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Figure 2. Correlation coefficient of states, inputs, and disturbance of the controller-internal model (as columns) with the error in states (as

rows) for the generated dataset, rounded off to two significant digits. The number in each cell denotes the absolute value of the Pearson

correlation coefficient, while the cell color visually denotes the degree of correlation.
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Figure 2 shows that all ROM states and inputs significantly influence the state errors, as evidenced by their nonzero corre-

lation coefficients. In particular, the rotor speed (ω) and blade states (βb, β̇b) exhibit the strongest correlation with both rotor330

speed errors and tower state errors. Additionally, the control inputs (βc and Tgc) and wind speed (Vw) strongly affect the mis-

match across all states. Furthermore, the nonzero yet distinct correlation magnitudes for blade pitch (βb) and collective blade

control (βc) highlight the importance of blade dynamics, shown in Eq. (6), in the internal model of the controller. This suggests

that, while the ROM captures an approximation of the complex aeroelastic response, it does not fully represent the detailed

dynamics present in the plant.335

4.1.2 NN training

The proposed NN input set xNN contains eleven features (eight system states, two control variables, and one disturbance input),

and each output set yNN contains eight features representing errors in the derivatives of states calculated using the plant and

ROM states. The selection of input features is guided by the correlation coefficients presented in Fig. 2, which indicate a

nonzero correlation between all variables in the input and target sets. The hidden layer of the network consists of twenty340

neurons, each utilizing a radial basis activation function, while the output layer comprises eight neurons with linear activation

functions. The number of neurons in the hidden layer was determined through hyperparameter tuning, ensuring optimal training

performance.

Before training the NN, the generated dataset is split into training and testing sets. During wind turbine operation, more data

is naturally collected for operating conditions corresponding to more probable wind speed values. To account for this effect in345

the application of the proposed methodology, the dataset split is performed according to a hypothetical site-specific Weibull

distribution. Figure 3 illustrates the distribution of selected input features within the training dataset, which consists of 216,071

sample points. The various subplots show that the dataset covers a broad operational range of the wind turbine, allowing the

NN to predict the target variables across a wide range of input conditions. Furthermore, Fig. 3i confirms that the wind speed

distribution in the training dataset closely follows the Weibull shape, ensuring a realistic representation of operating conditions.350

4.2 Open-loop evaluation

The ability of the augmented internal model to accurately track system states is necessary for ensuring both the optimality and

stability of the closed-loop behavior. To evaluate this aspect of the proposed approach, both ROMaug and ROM are simulated

using each input combination from the testing dataset (refer to Sect. 4.1.2), with the initial state accordingly set. The final states

predicted by both models are then compared to the corresponding plant states, and the prediction error is computed to quantify355

the accuracy of each model.

Figure 4 presents the Kernel-density plot of the absolute prediction errors for both ROM (solid blue line) and ROMaug (solid

green line) across all system states. For each of the subplot, the x-axis represents the absolute error values, while the y-axis

shows the probability density estimate (PDE), calculated using a normal kernel function.

In the ROM case, certain states, such as “Tower-top FA defl.” and “Tower-top FA vel.”, exhibit their highest PDE at a360

nonzero error value, indicating a mismatch in model fidelity. In contrast, in the ROMaug case, this mismatch is corrected
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Figure 3. Distribution of different input features in the training set.

using the proposed adaptation scheme. As a result, the PDE peak shifts toward zero, signifying an improved state prediction

accuracy. Furthermore, for most system states, the PDE peak magnitude in the ROMaug case is higher than in the ROM case.

This indicates a greater concentration of cases where ROMaug achieves lower absolute errors than ROM, further demonstrating

the effectiveness of the proposed model augmentation. The figure also shows that the accuracy of some quantities cannot be365

improved, although their typical errors are always very small.

To quantify the effectiveness of ROMaug in minimizing plant-model mismatch in open-loop, a statistical evaluation was

conducted using the mean and standard deviation (STD) of prediction errors. Table 1 presents the percentage reduction in both

the average error and standard deviation of errors for ROMaug, relative to ROM, across the test set.

The results show varying degrees of improvement in state prediction, demonstrating that NN-based augmentation reduces370

not only the average error but also the error spread over different operating conditions. A greater reduction in prediction error is

observed for states with higher absolute error magnitudes in Fig. 4. This highlights the effectiveness of weight tuning during the

NN training stage, which prioritizes correcting states with significant errors. These findings further emphasize the effectiveness
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Figure 4. Probability density estimate (PDE) of the open-loop prediction errors for both ROMaug and ROM, shown in green and blue,

respectively, evaluated over the test set.

Table 1. Percentage reduction in mean error and standard deviation (STD) error due to model augmentation assessed on the test set.

State Mean error reduction [%] STD error reduction [%]

Rotor speed (ω) 25.37 26.51

Tower-top FA defl. (dTFA ) 20.55 12.57

Tower-top FA vel. (ḋTFA ) 11.02 9.73

Tower-top SS defl. (dTSS ) 7.91 8.14

Tower-top SS vel. (ḋTSS ) 7.76 9.05

Pitch angle (βb) 5.69 5.96

Pitch angle rate (β̇b) 0.08 0.53

Gen. torque (Tg) 0.01 0.00
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of the proposed offline data-driven approach in reducing plant-model mismatch, improving the overall accuracy of the internal

model.375

For a practical application of the model adaptation, it is interesting to quantify the amount of training data that is needed

to achieve a desired level of performance. To this end, multiple data subsets are created from the original training set. Each

subset contains a specified fraction of the data samples from the original training set. Figure 5a illustrates the distribution

of wind speed for multiple subsets, ranging from 45% to 95% of the original training set. The x-axis represents the wind

speed magnitude, while the y-axis shows the corresponding relative share. Each subset is used to train a NN with the same380

architecture as described in Sect. 4.1.2.
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Figure 5. Open-loop evaluation of the proposed model adaptation where the NNs are trained using subsets of the full training set. Relative

share of wind speed (Vw) in the NN training set (a). Corresponding performance score of ROMaug relative to the performance score of ROM

as a function of test set size (b).

Figure 5b presents the performance of the adapted models evaluated on the same test set. The performance score is calculated

by summing the root mean squared error (RMSE) of predictions for all eight states. For ease of comparison, the performance

scores of the different ROMaug models are normalized against the performance score of ROM. The y-axis shows the relative

values, while the x-axis displays the different ROMaug formulations trained using the data subsets shown in Fig. 5a. Addition-385

ally, Fig. 5b includes the normalized performance score of the ROMaug model trained with the full dataset, represented by the

green circle.

The results show that, as expected, incorporating more data into the training process provides the NN with additional infor-

mation, leading to improved performance. However, even a relatively small subset of training data helps reduce the plant-model

mismatch. Furthermore, performance begins to level off beyond a certain point, as additional data samples no longer signif-390

icantly contribute to improving the model. In this study, performance starts to plateau once 85% of the training dataset is

used.

4.3 Closed-loop evaluation

Although the prediction errors of the augmented ROM are still non-zero for some operating conditions (refer to the long

tail of the PDE plots in Fig. 4), it is useful to understand the impact of plant-model mismatch reduction on closed-loop395
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performance, as this helps quantify the necessary level of compensation. To investigate this aspect of the formulation, the

proposed adaptive economic controller is implemented in closed-loop with the plant. This configuration will be henceforth

referred to as ENMPCaug. To assess the impact of the augmentation, the performance of the plant is also evaluated using the

same ENMPC based on the original non-augmented ROM, which is referred to as ENMPC.

We consider the design load case (DLC) 1.2 at 11 ms−1 wind speed. The ENMPC-MHE optimization problem (refer to400

Sect. 3) is solved via the state-of-the-art Acados framework (Verschueren et al., 2019). The interior-point solver HPIPM is

used for solving the underlying quadratic programs (QP) within the nonlinear program (NLP). Several sequential quadratic

program (SQP) iterations are carried out at each controller step. The multiple shooting approach is employed with a Newton

step length of 1. To address potential numerical issues caused by the highly non-standard formulation produced by PORFC

(Loew et al., 2020b), the Hessian matrix is automatically convexified. It is important to note that solving multiple SQPs can405

improve performance. However, it also increases the computational burden.

The ENMPC and MHE horizon lengths, Thorizon and Thorizon,est, are both set to 2 seconds, each having 20 discretization steps.

This results in a sample time Tctrl of 100 ms for both the controller and the estimator. The sample time of the plant, Tsim, is

set to 10 ms. The optimal control inputs applied to the plant model are considered as piece-wise constant values over Tctrl.

Measurements from the plant are taken every Tctrl.410

The closed-loop simulations run for a duration of 10 minutes. Six turbulent wind speed seeds, generated using TurbSim, are

used to characterize uncertainties in fatigue damage. The controller uses the estimated wind speed REWS (refer to Sect. 3.4)

as input, which remains constant over the prediction horizon of the controller.

The closed-loop control performance is evaluated using the following performance indicators:

1. Revenue due to power generation, calculated considering a fixed feed-in tariff wP and turbine electrical power generation415

ηgen ωTg (refer to Eq. 17 for details).

2. Cost due to projected tower base fatigue damage. To calculate the projected damage, the tower fore-aft σFA(t) and tower

side-side oscillations σSS(t) are first projected along the various azimuth directions at tower base. Next, the fatigue

damage cost is computed for each of these projections, as discussed in Sect. 3.1. Finally, the maximum cost across all

projections is selected.420

3. Profit, calculated as a difference of revenue and cost.

4. Pitch travel, showing the total degrees that the blades traveled for a given control formulation. This can be considered as

a proxy for the usage of pitch actuators, which may be prone to wear and tear, calling for extra maintenance.

5. Torque travel, showing the total amount of torque that the generator had to apply. This can be considered as a proxy for

the usage of the turbine drivetrain, leading to wear and tear of bearings and gearbox. Additionally, it also serves as a425

proxy for switching-related damage in the power electronic converters.
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4.3.1 Economic performance of the controller

Figure 6 presents the performance indicators calculated over a 10 minute simulation, with results averaged across different

seeds. The set of bars in the left and right parts of the figure represent the performance for the ENMPC and ENMPCaug

formulations, respectively. The color of the bars corresponds to different performance indicators. The results for ENMPCaug430

are normalized with the ENMPC ones to facilitate comparison, and the y-axis shows the relative values. The black numbers

above each bar indicate the relative cumulative value compared to the ENMPC case. Additionally, the numbers on the face of

each bar, shown in purple text, represent the absolute values.

1

1.09

1
1.09

1
1.05

1

0.54

20
76

 [
°]

11
24

 [
°]

1

0.33

83
64

 [
M

N
m

]

27
90

 [
M

N
m

]

ENMPC ENMPC
aug

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
va

lu
es

 [-
]

Cumulative Profit
Cumulative Revenue
Cumulative Cost
Pitch Travel
Torque Travel

Figure 6. Performance indicators for closed loop simulations using controllers employing the baseline ROM (ENMPC) and the augmented

ROM (ENMPCaug) as internal models. The black numbers on the top of each bar denote the corresponding relative cumulative values. The

purple text on the face of each bar denote the absolute cumulative values.

The plots in Fig. 6 show that ENMPCaug results in 9% higher economic profit than ENMPC. This improvement is due to the

more accurate estimation of revenue and cost within ENMPCaug, which is made possible by a better prediction of the system435

states. The higher profit is directly attributed to an increased revenue, with a slight increase in cost. Since the absolute economic

value of revenue exceeds that of cost (as shown by the purple numbers on the face of the bars), ENMPCaug effectively balances

the two, leading to a higher overall economic profit.

In contrast, for the ENMPC case, while the controller aims to maximize economic profit, the plant-model mismatch leads

to control actions that are not economically optimal. As a result, the controller struggles to accurately estimate and balance440

revenue and cost, ultimately resulting in a lower economic profit.

Furthermore, since the future predictions within the controller more closely match the actual evolution of the plant in the

ENMPCaug formulation, the controller requires less frequent control actions. This is reflected in the significantly smaller pitch

and torque travel compared to the ENMPC case.
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As a result, reducing plant-model mismatch to improve system state predictions, not only enhances performance but also445

leads to a substantial reduction in actuator usage. This, in turn, results in lower maintenance costs for both the actuators and

the drivetrain. This effect was however not quantified for a lack of data and specific reliable models.

4.3.2 Benefits under different wind inputs

Advanced wind turbine control formulations require the current wind speed as an input. Improved foresight of the wind speed

enables the ENMPC to determine the most suitable control actions.450

Wind speed can be gauged using a simple wind-speed estimator, as utilized in this work (refer to Sect. 3.4), or through

advanced estimators as discussed in Soltani et al. (2013). Alternatively, the current wind speed can be measured directly, either

using a nacelle-mounted anemometer or a light detection and ranging (LiDAR) device. LiDARs not only provide real-time

wind speed data but also offer short-term wind speed previews. This capability makes LiDARs an ideal complement to MPC-

based wind turbine control, where the MPC optimization uses system states derived from wind speed forecasts over the MPC455

prediction horizon (Loew and Bottasso, 2022; Canet et al., 2021).

Here, the benefits of the proposed model adaptation for reducing plant-model mismatch under different wind input estimates

are assessed. Figure 7 presents various wind profiles used as input to the controller.

0 100 200 300 400 500 600

5
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15
Hub height wind speed
RAWS (LiDaR)
NFWS (Anemometer)

Figure 7. Exemplary wind profiles used as disturbance inputs to the ENMPC formulations.

The gray curve represents the longitudinal component of the full wind field generated using TurbSim at the turbine hub height

for a 10 minute duration. This scenario is labeled as “Hub height wind speed”. This is only shown to illustrate wind fluctuations,460

but it is not used as input to the controller. The red curve corresponds to the nacelle filtered wind speed (NFWS), which is a

rough approximation of what an anemometer mounted on the nacelle would measure. Typically, anemometer measurements

are subjected to various disturbances, including – among others – flow distortion due to proximity of the nacelle (a bluff body),

periodic effects caused by blade passage, interference due to the wake, sensor noise. For the lack of models of these complex

phenomena, here we have simply filtered the wind field at the nacelle location using a standard bandpass filter. This case is465

referred to as “Anemometer”. The green curve shows the rotor averaged wind speed (RAWS). The RAWS is a much simplified

19

https://doi.org/10.5194/wes-2025-101
Preprint. Discussion started: 26 June 2025
c© Author(s) 2025. CC BY 4.0 License.



representation of what a nacelle-mounted scanning LiDaR system with discrete scanning and spatial averaging would estimate

under a frozen turbulence hypothesis, i.e. with a purely rigid transport of the flow from the measurement volume to the rotor

disk (Loew and Bottasso, 2022). This case is referred to as “LiDaR”.

It can be observed that the anemometer-measured wind speed follows the highly turbulent fluctuations of the wind speed at470

hub height. Additionally, the RAWS shows even less dynamic variation in the wind speed but successfully captures the long-

term wind speed trends. Although these speeds are only very rough approximations of the wind that could be actually measured

on a wind turbine, they still capture a range of situations from point-wise exact values to spatial and temporal averages.

Figure 8 presents the results of the closed-loop control formulations, considering different wind speed estimates. For each

wind speed input scenario, two sets of bars are displayed: the first set represents the ENMPC case, followed by the second set475

for the ENMPCaug case. Within each set, the five performance indicators are shown as five bars, each distinguished by different

face colors. The various sets of bars correspond to the following situations:

– The first and second sets show results when the controllers use REWS, described in Sect. 3.4, as disturbance input and

the current wind speed is held constant over the prediction horizon. These results are the same as discussed in Fig. 6, and

are shown here again for ease of comparison.480

– The third and the fourth sets show results when the controllers use NFWS (Anemometer) as disturbance input, and the

current wind speed is held constant over the prediction horizon.

– The fifth and the sixth sets show results when the controllers use LiDaR measurements as input, and the current wind

speed is held constant over the prediction horizon.

– The seventh and the eighth sets show results when the controllers use LiDaR measurements as input, and a perfect485

preview of wind condition over the prediction horizon is considered. This case has been labeled as LiDaR-PF.

The results are normalized with respect to the ENMPC case, which is shown in the first set. The black text above each bar

represents the relative cumulative values. To aid interpretation, the results from different wind input scenarios are highlighted

with distinct background colors. The red background corresponds to the Anemometer scenario, the light green shade represents

the LiDaR scenario, and the dark green background indicates the LiDaR-PF scenario.490

The results show that better information about the wind disturbance input within the controller leads to increased economic

profit for both ENMPC and ENMPCaug. As expected, the Anemometer scenario, providing only a disturbed point-wise wind

measurement, results in the lowest economic profit, while the LiDaR-PF scenario yields the highest economic profit.

Furthermore, for all wind input scenarios, the proposed model adaptation results in higher economic profit and reduced

pitch and torque travel. The magnitude of the performance improvement varies across the different wind input scenarios. For495

example, ENMPCaug achieves a 7% higher economic profit in the Anemometer scenario and a 30% increase in the LiDaR

scenario, compared to the corresponding ENMPC formulation. It is noteworthy that the economic performance of ENMPCaug

in the LiDaR scenario is only slightly worse than that in the LiDaR-PF scenario. This suggests that, for this case study,
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Figure 8. Performance indicators for closed loop simulations using ENMPC and ENMPCaug. The background colors denote different wind

input scenarios: white for REWS, red for Anemometer, light green for LiDaR, and dark green for LiDaR-PF. For a given background color,

the left and the right columns show ENMPC and ENMPCaug results, respectively. The black numbers on the top of each bar denote the

corresponding relative cumulative values.

a perfect wind preview does not significantly pay off, and a simple constant speed estimate is sufficient. However, a more

general conclusion can only be drawn by evaluating the two scenarios over a wider range of turbine inflow conditions.500

4.3.3 Computational performance

An economic controller is real-time feasible if the computational time required to generate the optimal control actions is less

than the sample time of the plant. The length of the prediction horizon, along with the nature of the underlying internal model

and the optimization problem, directly affects the number of SQP iterations needed for the controller to converge to a solution.

A higher number of SQP iterations increases the computational time.505

Although this work does not focus on optimizing the computational performance of the formulated controllers to ensure

real-time feasibility, the impact of the proposed model adaptation on the computational performance of the controllers is

assessed.

Figure 9 presents the economic profit and computational time for ENMPCaug LiDaR, with the controller limited to a maxi-

mum of three, five, and ten SQP iterations, as reported on the x-axis. The results are normalized with respect to the ENMPC510

LiDaR formulation, which uses a maximum of ten SQP iterations. The y-axis on the left shows the relative economic profit

in blue, while the y-axis on the right displays the relative mean CPU time per controller iteration in orange. The results for

ENMPCaug LiDaR are marked with circular markers filled in blue, and the results for ENMPC LiDaR are marked with circular

markers filled in green.

The simulations were performed on a desktop computer with an Intel i7 processor, a 64-bit operating system, and 8 gigabytes515

of RAM.
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Figure 9. Economic performance and the corresponding CPU computational time requirement for several ENMPCaug LiDaR formulations

utilizing an increasing number of SQP iterations. Performance is normalized with respect to the ENMPC LiDaR formulation utilizing ten

SQP iterations.

The results clearly show that increasing the number of SQP iterations leads to a higher relative economic profit. For ten SQP

iterations, ENMPCaug LiDaR results in a 30% higher economic profit, but it requires more than double the computational effort

compared to ENMPC LiDaR. This is because of the additional calculations in the NN part of the model.

Interestingly, ENMPCaug LiDaR with only five SQP iterations still achieves a 22% higher economic profit than ENMPC520

LiDaR with ten SQP iterations, while requiring just 15% more computational effort. This demonstrates that, although the

proposed model adaptation increases the CPU time for ENMPC, the improvement in economic performance outweighs the

additional computational cost. Moreover, the adapted model requires fewer SQP iterations to generate economically optimal

control actions at a smaller actuator usage.

This effect, combined with the use of high performance computational platforms and further software optimization for speed,525

may result in real-time feasible economic controllers.

5 Conclusions

MPC uses an approximate representation of the plant to predict the system evolution over a short future horizon. The internal

models used by MPC are typically a reduced representation of the plant. The resulting model mismatch affects the feasibility

and the optimality of the closed-loop performance. This study presented an adaptive ENMPC for closed-loop control of wind530

turbines. The ENMPC directly incorporates cyclic fatigue costs using a novel online rainflow counting approach and is able to

generate more accurate model predictions through a data-driven adapted model.

The proposed adaptive ENMPC aims to maximize economic profit, which is here computed as the revenue from power

generation minus the cost of fatigue damage at the tower base. Revenue is calculated based on the market tariff and the energy
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supplied to the grid. The cyclic fatigue damage is estimated using online rainflow counting on adapted model predictions,535

while also accounting for residual cycles. While cycle counting is the only approach to precisely account for fatigue, it also

inherently introduces discontinuities in the MPC optimization problem. To address this problem, the PORFC approach is used

to externalize fatigue estimation from the MPC optimization. This method estimates time-varying fatigue-related parameters,

allowing for a continuous formulation of cyclic fatigue costs that can be numerically optimized within the MPC.

Additionally, the ENMPC optimization is subject to bound constraints on system states and control variables, ensuring540

stable closed-loop behavior. The ENMPC formulation is further enhanced by integrating state and disturbance estimators.

These estimators account for measurement uncertainties and provide accurate initial values for the ENMPC.

The proposed approach utilizes wind turbine operational or synthetic data with machine learning techniques to predict the

mismatch in the system states of plant and ROM. A data-driven model is developed to estimate the error in the states across a

range of relevant inflow and control conditions. This process results in an adapted model, where the underlying dynamics are545

represented by a simple physics-based model combined with data-driven correction terms. The adapted ROM is then used as

the internal model within the controller.

The performance of the proposed approach is assessed through a case study using an OpenFAST model of the NREL 5 MW

reference wind turbine as plant. This model generates measurement data for the study. The plant model has fifteen degrees

of freedom and includes thirty-three system states, while the ROM has only three degrees of freedom and consists of eight550

system states. The simulation data is generated across a wide range of operational conditions. A feed-forward NN is developed

to predict the error in plant and ROM states, and is then used in the adapted model dynamics.

The performance of the proposed model adaptation is initially evaluated in an open-loop setup. In this case, the predictions

of the adapted model ROMaug and the baseline ROM are compared with the actual behavior of the plant across a range of

operational conditions. The kernel density estimates of the prediction error show that the adapted model performs significantly555

better than the original model for all eight system states. The performance improvement is further quantified in terms of

statistics of the prediction error. The results reveal a reduction in both the mean and standard deviation of errors for all system

states, with an approximate 20% reduction in the angular velocity error of the rotor.

Additionally, the effect of dataset size on the open-loop performance of the proposed model adaptation is assessed. Results

indicate that even a relatively small subset of training data helps reduce the plant-model mismatch. Performance starts to plateau560

once 85% of the generated training dataset is used, as additional data samples no longer significantly improve the model.

To further quantify the impact of model adaptation on the economic control of wind turbines, the closed-loop performance of

the proposed economic MPC formulation is assessed by using ROMaug as the internal model of the controller. Five performance

indicators are considered: revenue (due to wind power generation), cost (due to tower fatigue damage in fore-aft and side-side

directions), profit (calculated as the difference of revenue and cost), pitch travel (as a proxy for actuator usage), and torque565

travel (as a proxy for damage of power electronic converters and drivetrain usage). The optimization problem is solved with

the Acados framework using an interior-point solver. The MPC sample time is chosen as 100 milliseconds with a prediction

horizon of 2 seconds, where multiple SQP iterations are performed per controller step.
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The performance of ENMPCaug is compared to the ENMPC formulation that uses ROM as its internal model. Results show

that ENMPCaug achieves 9% higher economic profit than ENMPC. This improvement is attributed to more accurate revenue570

and cost estimations within ENMPCaug, made possible by better predictions of the system states. Additionally, since the future

predictions in ENMPCaug are closer to the actual evolution of the plant, the controller requires relatively fewer control actions.

This is reflected in a significantly smaller pitch and torque travel compared to the ENMPC formulation.

The benefits of the proposed model adaptation are further assessed across different wind input scenarios. The results show

an increased economic profit with improved wind foresight, for both ENMPCaug and ENMPC. Moreover, the model adaptation575

leads to higher economic profit – up to 30% in the LiDaR scenario – and reduced pitch and torque travel for all wind input

scenarios.

Although this study did not focus on optimizing the computational performance of the controllers for real-time feasibility,

the impact of model adaptation on computational performance was also evaluated. The results show that increasing the number

of SQP iterations leads to higher economic profit but also increases computational expenses. Additionally, for the same number580

of SQP iterations, ENMPCaug is more computationally expensive than ENMPC due to the extra computational cost due to NN

evaluations. However, when considering LiDaR wind estimates, ENMPCaug achieves a 22% higher economic profit while

requiring only 15% more computational effort compared to ENMPC. Therefore, the proposed model adaptation, combined

with high-performance computing platforms and additional software optimization (not considered here), could enable real-

time feasible economic controllers.585

The accuracy of offline data-driven model corrections heavily depends on the quality of its training process, which requires a

comprehensive dataset characterizing the range of operational conditions of a wind turbine. In reality, the wind turbine OEMs

typically have validated high-fidelity turbine models from the design and prototyping phases. These models can be used to

represent the wind turbine behavior and generate the dataset. Moreoever, OEMs sometimes also have access to high-resolution

data from on-board sensors of operational turbines that can also contribute to the required dataset. A generalized usability of590

the adapted model relies on how similar the turbine behavior is from one installation site to another, a problem that was not

investigated here.

Future work should focus on developing a more comprehensive economic objective that accounts for the fatigue damage of

additional turbine components, such as the bearings and drivetrain, while also incorporating a more realistic profit evaluation

model. Currently, the profit formulation overlooks the impact of fatigue on component reliability and O&M costs, and only595

considers tower fatigue damage. Additionally, the physics-based internal model dynamics can be expanded to better capture

dependencies on other system states. Furthermore, the model can be enhanced to include online tuning of the model parameters,

in addition to the offline augmentation used in this study.

Appendix A: Nomenclature and abbreviations

DLC Design load case600

DOF Degree of freedom
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ENMPC Economic nonlinear model predictive control

ENMPCaug Economic nonlinear model predictive control having ROMaug as the controller-internal model

FA Fore-aft

LiDaR Light detection and ranging605

MHE Moving horizon estimator

MPC Model predictive control

NFWS Nacelle filtered wind speed

NLP Nonlinear program

NN Neural network610

O&M Operation and maintenance

ODE Ordinary differential equation

OEM Original equipment manufacturer

PDE Probability density estimate

PF Perfect foresight615

PORFC Parametric online rainflow counting

QP Quadratic program

RAWS Rotor averaged wind speed

REWS Rotor effective wind speed

RMSE Root mean squared error620

ROM Reduced order model

ROMaug Augmented reduced order model

SQP Sequential quadratic program

SS Side-side

STD Standard deviation625

ξ Slack variable

ν̄ Noise variable

ω Rotor speed630

βb Blade pitch angle

βc Commanded blade pitch angle

σ Stress at tower base

η Power conversion efficiency of the drivetrain

635
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F Set of dynamic equations of a model

FNN Function mapping of the NN

∆F Set of dynamic equations of the correction model

FT Aerodynamic thrust force640

J Optimization objective

Jr Moment of inertia of the rotor

Nu Number of intervals in the controller prediction horizon

P Electrical power output of the turbine

Rm Ultimate tensile strength of the material645

Tg Generator torque

Tgc Commanded generator torque

TQ Aerodynamic torque

Tctrl Sample time of the internal model and the controller

Thorizon Prediction horizon of the controller650

Thorizon,est Prediction horizon of the state estimator

Tsim Sample time of the plant

Vw Wind speed

W Weight

655

am Intial capital cost of the machine

b Bias

c Cycle

d Disturbance variable660

dTFA Tower-top deflection in fore-aft direction

dTSS Tower-top deflection in side-side direction

e Error in state

f act Activation function

i Time instant665

m Time-varying PORFC parameter: mean

p Free model parameter

t Time

∆t Difference in time between current and next instants

u Control variable670

w Time-varying PORFC parameter: weight
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x State variable

xNN Input feature of the NN

yNN Output feature of the NN

675

b1−2 Model parameters for blade dynamics

f1−3 Model parameters for tower fore-aft dynamics

g1 Model parameters for generator dynamics

m Fatigue exponent derived from material properties680

s1−4 Model parameters for tower side-side dynamics

□aug Augmented

□est Estimation685

□gen Generation

□meas Measurement

□prev Previous

□sim Simulation

690

Code and data availability. A Python script to extract PORFC parameters for a given stress time series can be accessed on Zenodo at

https://doi.org/10.5281/zenodo.15530467 (Anand and Bottasso, 2025). The data for figures 3-9 can also be retrieved in Python pickle format

from the same Zenodo repository.
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