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Abstract. The concepts of Energy Islands or Energy Hubs have gained attention in Europe as a means to enhance offshore

wind integration and regional energy systems. These islands can incorporate HVAC and HVDC transmission systems, battery

energy storage systems (BESS), and hydrogen production, requiring advanced operational strategies to manage the inherent

nonlinearities and time-dependence of their subsystems. To address these challenges, this work proposes a comprehensive

framework for the optimal operation of hybrid AC/DC energy islands, addressing: (i) active and reactive power dispatch,5

incorporating BESS and hydrogen production; (ii) a detailed wind resource characterization based on one year of hourly data

obtained using a realistic wind model with local measurements, including wake losses and turbine-level forecasts, used to

define representative seasonal and spatial production patterns that inform typical operating conditions; and (iii) operational

optimization of a realistic test system based on the Princess Elisabeth energy island, set up using commercial wind power

planning tools and advanced forecasting software, and validated with Pyomo/Python.10

1 Introduction

Offshore regions hold significant potential for wind energy generation, which has led to an accelerated development of offshore

wind farms. In this context, the concept of energy islands has emerged as a powerful framework for planning and interconnect-

ing these offshore wind projects. Energy islands offer a promising approach for the creation of a resilient and flexible power

system, underpinned by regional interconnections. Their strategic positioning enables the integration of responsive technolo-15

gies such as energy storage systems and green hydrogen production, which are vital for mitigating challenges often faced by

renewable energy-dominated power grids. These challenges include issues related to voltage and frequency stability, curtail-

ment, and fluctuations caused by the inherent intermittency of renewable energy sources, as well as grid constraints and the

low system inertia. Furthermore, energy islands offer the flexibility needed to address these challenges, improving the over-

all reliability and efficiency of power systems that increasingly rely on renewable energy sources, as analyzed by Teng et al.20
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(2019); Williams and Zhao (2023); Yang et al. (2023); Østergaard et al. (2023); Useche-Arteaga and et al. (2024); Lüth et al.

(2024).

The optimal operation of energy islands is crucial for achieving efficient integration of offshore wind power while ensur-

ing the safe operation of power systems. Since energy islands serve as multi-energy hubs that combine hybrid AC/DC power

systems, energy storage, and green hydrogen production, sophisticated coordination strategies are required to ensure their op-25

timal operation. The complexity of the optimal operation of these systems arises from the nonlinear interactions between their

subsystems, fluctuating wind power availability, and the need to comply with physical and security constraints. Addressing

these complexities requires detailed AC/DC grid models, accurate wind power forecasts, and advanced mathematical program-

ming techniques to optimize performance, security, and cost-effectiveness. Consequently, an optimal operational strategy must

achieve three key objectives: coordinate power flows efficiently, ensure safe system operation, and maximize energy utiliza-30

tion. This involves optimizing wind power plant dispatch, defining the set points for HVDC power converters, and strategically

managing energy storage and hydrogen production.

The optimization of energy island operations lacks a unified methodology, primarily due to the nonlinear and non-convex

nature of the power flow equations in the grid power model. These equations, which contain trigonometric terms, can be rep-

resented in polar or complex notation, influencing the choice of optimization approach. The main strategies include linear,35

convex, and nonlinear methods. Linearization, a straightforward approach, simplifies the relationships between voltage and

current magnitudes and their angles in polar notation, enabling a linear approximation of active and reactive power, as pre-

sented in Ju et al. (2018). In the complex domain, linearization employs Wirtinger’s calculus, as power flow equations lack

conventional derivatives in complex numbers, as proposed by Garces (2022). Another methodology that has gained significant

relevance in power system analysis is convex programming, as it ensures a global optimum and unique solution under well-40

defined conditions, while also guaranteeing algorithmic convergence, as analyzed by Arteaga et al. (2023). These advantages

make convex programming a powerful tool for optimizing energy island operations. On the other hand, nonlinear programming

(NLP), despite its high computational burden, allows for precise modeling of voltage–current relationships and active–reactive

power interactions, as presented in Useche-Arteaga et al. (2024a). Recent advancements in numerical optimization algorithms

and high-performance computing have improved NLP’s tractability, as explained by Liu et al. (2022), allowing it to explore45

realistic operational scenarios.

AC-based energy islands, as studied by Useche-Arteaga et al. (2024b), have been identified as potentially cost-effective

solutions for short- and medium-distance applications through the integration of storage and hydrogen production systems.

However, their efficiency significantly declines in long-distance and high-power transmission scenarios due to increased power

losses and voltage deviations, as analyzed in Useche-Arteaga and et al. (2024). Consequently, recent developments increasingly50

favor HVDC-based configurations, which offer inherent technical advantages such as reduced losses, enhanced voltage control,

and flexible power flow management. Building upon these trends, hybrid AC/DC configurations have been proposed to leverage

the benefits of both technologies; however, their operational coordination remains relatively underexplored. To address this gap,

AC/DC Optimal Power Flow (OPF) methodologies offer a promising framework for improving the performance of hybrid grids.

Prior research has demonstrated that OPF formulations can enhance system efficiency, ensure secure operation, and facilitate55
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large-scale renewable energy integration. Addressing this gap, AC/DC Optimal Power Flow (OPF) methodologies offer a

promising framework for improving the performance of hybrid AC/DC grids. Existing studies apply OPF models to improve

system efficiency, ensure operational safety, and facilitate renewable energy integration. For instance, Ergun et al. (2019)

introduce a convexified and linearized OPF formulation tailored for hybrid AC/DC grids, prioritizing computational tractability

without compromising solution accuracy. Similarly, security-constrained OPF (SCOPF) approaches have been developed to60

enhance grid reliability under contingency scenarios in large-scale hybrid systems, as explained by Mohy-ud-din et al. (2024).

The work by Cao and Yan (2016) further incorporates wind farm variability into AC/DC OPF models through iterative methods.

Despite these advances, a critical gap persists: current methodologies lack explicit consideration of technologies central to

AC/DC energy islands, such as such as HVDC systems, energy storage and green hydrogen production. This gap underscores

the need for novel operational strategies that holistically address the specific challenges of AC/DC energy islands.65

Therefore, this paper proposes a comprehensive framework for the optimal operation of AC/DC energy islands using non-

linear programming, with three key contributions: (i) the development of a detailed optimization model that integrates active

and reactive power dispatch while considering BESS management and hydrogen production. The framework also leverages

the reactive power capabilities of wind power plants, BESS, and HVDC systems; (ii) a detailed wind resource characterization

based on one year of hourly data generated using a realistic method with local measurements from Federal Public Service70

Economy of Belgium (2024), including wake losses and turbine-level forecasts. This analysis identifies representative seasonal

and spatial patterns used to define typical daily operating conditions; and (iii) the application of the proposed framework to

a realistic test system modeled after the Princess Elisabeth Energy Island, incorporating detailed turbine layout designs for

offshore wind power plants.

The remainder of this paper is organized as follows: Section 2 introduces strategies for the optimal operation of AC/DC75

energy islands. Section 3 presents the corresponding mathematical programming models. Section 4 is divided into three core

components: (i) a description of the test system based on the Princess Elisabeth Energy Island, defined using the Youwind

platform; (ii) a set of simulation scenarios designed to evaluate operational challenges in offshore energy systems, leveraging

the wind power forecasting capabilities of the Youwind platform; and (iii) comprehensive numerical validations assessing

system performance and the effectiveness of the proposed operational strategy under varying conditions. Finally, Section 580

draws conclusions, followed by the references.

2 General Concept and Operational Strategies of AC/DC Energy Islands

Energy islands are designed to integrate multi-energy systems by combining hybrid AC/DC grids, energy storage systems, and

Power-to-X technologies, as illustrated in Fig. 1. Their general design typically employs AC technology for the export cables

of wind power plants, particularly for short- to medium-distance applications. However, the vast wind energy potential in far85

offshore areas has driven the development of energy islands toward long-distance transmission systems. Consequently, HVDC

technology has become the preferred choice for most energy island projects due to its ability to efficiently transport large-scale
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Figure 1. AC/DC Energy Island Considering Energy Storage and Hydrogen Production.

power over extended distances, meeting the operational requirements of these systems, as explained by Ansari et al. (2020);

Korompili et al. (2016); Rodrigues et al. (2015).

Beyond transmission considerations, energy islands can incorporate flexible infrastructure to enhance system adaptability.90

For instance, energy storage systems help mitigate wind power intermittency and grid constraints. Conventional Battery Energy

Storage Systems (BESS) with integrated power converters enable both active and reactive power control, reducing curtailments

and supporting the reactive power needs of AC energy islands.

In addition to storage solutions, green hydrogen production plays a crucial role in energy islands. Hydrogen’s high energy

density makes it particularly valuable for energy-intensive industries such as steel, non-ferrous metals, and cement, as outlined95

by Neuwirth et al. (2022). Furthermore, as technological advancements and economies of scale drive cost reductions, hydrogen

is expected to become a key player in the energy transition, as explained in the work by Ueckerdt et al. (2024). Therefore,

integrating green hydrogen systems within energy islands will be essential for future power systems.

The operational strategy proposed for AC/DC energy islands adopts a centralized approach, where a central controller

processes all relevant information to determine the optimal operating configuration, as illustrated in Fig. 2. The inputs to this100

strategy include: (i) the AC grid model, which represents the topology and electrical parameters of the array and export cables;

(ii) the DC grid model, which characterizes the HVDC system interconnecting the energy island with the main grid; (iii)
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Figure 2. Diagram of the operational strategy for AC/DC energy islands.

wind power forecasts for each individual turbine within the offshore wind power plants; and (iv) the physical and security

constraints required to ensure safe system operation. These constraints encompass nodal voltage limits, thermal ratings of

transmission lines, and the operating limits of generators and converters within the electrical infrastructure. Additionally,105

operational setpoints specified by the Transmission System Operator (TSO) can be integrated into the energy management

scheme to align the island’s operation with system-wide requirements.

Based on these inputs, as shown in Fig. 2, the centralized controller determines the optimal operating configuration of the

energy island by simultaneously coordinating: (i) the active and reactive power dispatch of the wind power plants, (ii) the

setpoints of the HVDC converters, (iii) the operation of the hydrogen production system, and (iv) the management of the110

Battery Energy Storage System (BESS). This integrated coordination framework ensures secure and efficient operation under

varying system conditions. To implement this strategy, this paper proposes a mathematical programming approach, detailed in

Section 3, which optimally schedules these four subsystems within a unified decision-making model.

3 Mathematical formulation for the optimal operation of AC/DC energy islands

This study addresses the operation of AC/DC energy islands using a predictive nonlinear mathematical programming approach.115

Managing these complex systems requires a structured methodology to optimize decision-making while ensuring technical
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feasibility. The mathematical formulation of an optimization problem consists of an objective function to be maximized or

minimized, subject to a set of constraints. In this context, the objective function represents the operational goals of the energy

island, while the constraints ensure adherence to the physical and technical limitations of its subsystems.

The predictive component of the proposed approach is inspired by the principles of model predictive optimization, using120

forecasts of time-dependent operational variables, such as wind power and generation costs, over a finite horizon to guide

steady-state operational decisions. By anticipating grid conditions based on these forecasts, the approach enables proactive

adjustments to operation actions, ensuring optimal performance under evolving scenarios. Furthermore, the nonlinear formu-

lation is crucial for maintaining the physical accuracy of AC/DC power flow equations, which inherently exhibit nonlinear

characteristics due to the coupling of voltage magnitudes, active power, and reactive power.125

This section describes the mathematical programming models for the subsystems of the AC/DC energy island, details the

objective function, and presents the complete optimization problem governing its operation.

3.1 Power Grid Model

The power grid model ensures the power balance of the energy island and the conditions for the secure operation of the system,

as outlined below:130

3.1.1 Export and array cables of the wind power plants

The export cables refer to the export and array cables and the offshore transmission lines that connect the wind power plants to

the energy island, typically using AC technology. This subsystem is modeled in the mathematical programming model using

the π representation for the AC power lines, while the AC power grid is represented by the AC admittance matrix. As a result,

export and array cables of the wind power plants are included in the mathematical programming model through the power135

balance of the AC system, as follows:

Pi,t = νi,t

∑

m∈Nac

(νm,t[gim cos(θi,t− θm,t) + bim sin(θi,t− θm,t)]),∀i ∈Nac,∀t ∈ T (1)

Qi,t = νi,t

∑

m∈Nac

(νm,t[gim sin(θi,t− θm,t)− bim cos(θi,t− θm,t)])∀i ∈Nac,∀t ∈ T (2)

Here, νi,t denotes the magnitude of the bus voltage at node i during period t, while θi,t represents the corresponding voltage

phase angle. The parameters gim and bim correspond to the real and imaginary parts of the im-th element of the system’s ad-140

mittance matrix, respectively. Finally,Nac represents the set of AC nodes in the network, and T is the set of periods considered

within the analyzed time window.

3.1.2 HVDC Grid

The HVDC branch model for steady-state studies, such as the operation problem of energy islands, is represented by a series

resistance. This HVDC branch model does not exhibit capacitive or inductive effects, which distinguishes it from HVAC145

6

https://doi.org/10.5194/wes-2025-102
Preprint. Discussion started: 2 July 2025
c© Author(s) 2025. CC BY 4.0 License.



US Uf Uc

ScScf Phase
Reactor

SsfSs

Filter
Qf

Pdc

Figure 3. General Scheme of a VSC-HVDC Station

systems. This results in lower power losses, which can be considerable in comparable offshore AC transmission systems. The

mathematical programming model of the HVDC grid is presented as follows:

Pdci = ρ ·ui,t

∑

j∈Ndc
j ̸=i

ydcij (ui,t−uj,t),∀i ∈Ndc,∀t ∈ T (3)

where ui,t represents the DC nodal voltage at node i during period t, ydcij
denotes the DC admittance of the HVDC branch

connecting nodes i and j, and ρ is a constant indicating the polarity of the HVDC branch.150

3.1.3 HVDC converter station

Fig. 3 illustrates the general model of a conventional HVDC converter station, which plays a crucial role in facilitating the

conversion between AC and DC power. This conversion process is essential for integrating HVDC transmission systems with

AC grids. The model includes key components such as the AC filter, which mitigates harmonics and enhances power quality;

the phase reactor, and the power transformer.155

The AC-to-DC conversion process involves switching operations that contribute to power losses in converters. These losses

depend on switching time, as power electronic devices dissipate energy during transitions between on and off states. To account

for this, power losses are incorporated into the optimization model through the following constraint, where a, b and c are loss

constants of the HVDC converter station, and Ic represents the converter current, as explained in the work by Valerio et al.

(2025). The connection between AC and DC networks is modeled through the following power balance constraints:160

Ploss = a + b · Ic + c · I2
c (4)

Pdci
=−Pci

−Plossi
,∀i ∈Ndc (5)

where Ploss represents the active power losses in the HVDC converters, modeled as a quadratic function of the converter

current Ic, with a, b, and c being loss coefficients. The second equation defines the power withdrawn from the DC grid at node

i, where Pdci
denotes the DC power demand, Pci

corresponds to the converter’s output power, and Plossi
accounts for the165

losses at node i. The set Ndc includes all DC nodes in the system.
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The power flow equations for the elements of the HVDC converter station, as depicted in Fig. 3, are given by

Ps =−U2
s Gtf + UsUf

(
Gtf cos(δs− δf ) +Btf sin(δs− δf )

)
, (6)

Qs = U2
s Btf + UsUf

(
Gtf sin(δs− δf )−Btf cos(δs− δf )

)
, (7)

Pc = U2
c Gc−UfUc

(
Gc cos(δf − δc)−Bc sin(δf − δc)

)
, (8)170

Qc =−U2
c Bc + UfUc

(
Gc sin(δf − δc) +Bc cos(δf − δc)

)
, (9)

Qf =−U2
f Bf , (10)

Psf = U2
f Gtf −UfUs

(
Gtf cos(δs− δf )−Btf sin(δs− δf )

)
, (11)

Qsf =−U2
f Btf + UfUs

(
Gtf sin(δs− δf ) +Btf cos(δs− δf )

)
, (12)

Pcf =−U2
f Gc−UfUc

(
Gc cos(δf − δc) +Bc sin(δf − δc)

)
, (13)175

Qcf = U2
f Bc + UfUc

(
Gc sin(δf − δc)−Bc cos(δf − δc)

)
. (14)

Here, Ps and Qs represent the active and reactive power at the grid side, while Pc and Qc correspond to the active and reactive

power at the converter side, respectively. The reactive power at the filter, denoted as Qf , depends on the filter susceptance Bf .

The power transfer through the transformer is characterized by Psf and Qsf , whereas Pcf and Qcf describe the power flow

through the phase reactor. The parameters Gtf and Btf define the transformer conductance and susceptance, respectively, while180

Gc and Bc account for the phase reactor parameters. The voltage magnitudes and angles at different points of the converter

station are given by Us,Uf ,Uc and δs, δf , δc, as shown in Fig. 3.

3.2 Security Constraints and Physical Limits

The mathematical programming model for operating energy islands must account for constraints related to both the physical

limits of power grid components and operational limits to ensure safe system operation. Specifically, the proposed model185

includes the constraints for the thermal limits of HVDC lines (17)-(18), thermal restrictions for AC lines (15)-(16), (19) for the

power limits of the converters, constraints (20) for AC nodal voltages, and constraint (21) for DC nodal voltages.

∥νi,t[yij(νi,t− νj,t)]∗∥ ≤ Smax
ij ,∀ij ∈ Lac, ,∀t ∈ T (15)

∥νj,t[ykm(νj,t− νi,t)]∗∥ ≤ Smax
ij ,∀ij ∈ Lac, ,∀t ∈ T (16)

∥ρui,tyij(ui,t−uj,t)∥ ≤ Pmax
ij ,∀ij ∈ Ldc,∀t ∈ T (17)190

∥ρuj,tyij(uj,t−ui,t)∥ ≤ Pmax
ij ,∀ij ∈ Ldc,∀t ∈ T (18)

∥sc,t∥ ≤ smax
c , sc,t = pc,t + jqc,t,∀t ∈ T (19)

V min
ac ≤ ∥νi,t∥ ≤ V max

ac ,∀i ∈Nac,∀t ∈ T (20)

Umin
dc ≤ ui,t ≤ Umax

dc ,∀i ∈Ndc,∀t ∈ T (21)
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Here, constraints (15) and (16) ensure that the apparent power flow through AC transmission lines does not exceed the ther-195

mal limits imposed by their capacity, denoted as Smax
ij . Similarly, constraints (17) and (18) enforce the maximum permissible

power transfer on DC transmission lines, defined by Pmax
ij . The converter operational limits are enforced by (19), which con-

strains the apparent power sc,t within the converter’s rated capacity smax
c . Voltage magnitude constraints for AC and DC nodes

are imposed by (20) and (21), ensuring that nodal voltages remain within the prescribed operational limits V min
ac ,V max

ac and

Umin
dc ,Umax

dc , respectively.200

The proposed strategy for AC/DC energy islands includes active power dispatch of wind farms, constrained by wind power

availability. Forecast wind power values are integrated into the model through constraints (22). Additionally, wind turbines

can contribute to reactive power support, which is particularly relevant in offshore AC applications. The proposed approach

accounts for this by incorporating reactive power dispatch. This capability is modeled by including the turbine’s capability

curve, which is approximated by limiting the wind turbine’s apparent power to its maximum value, as defined in constraint (22).205

ℜ
(
sw

i,t

)
≤ fi,t ·Pw

i,nom,∀t ∈ T (22)

∥sw
i,t∥ ≤ sw

i,max, sw
i,t = pw

i,t + jqw
i,t,∀t ∈ T (23)

where sw
i,t ∈ C represents the complex power generated by the wind turbine i at period t, with pw

i,t ∈ R and qw
i,t ∈ R denoting

its active and reactive power components, respectively. The parameter fi,t ∈ R corresponds to the forecasted available wind

power for turbine i at time t, while Pw
i,nom ∈ R represents its nominal active power capacity. The variable sw

i,max ∈ R defines210

the maximum apparent power output of the wind turbine. The notation ℜ(·) extracts the real part of a complex number, and

∥ · ∥ denotes the Euclidean norm.

3.3 Battery Energy Storage System Model

Energy islands could improve flexibility by integrating energy storage systems to manage wind power intermittency, grid

constraints, and curtailments. Conventional BESS, equipped with power converters, regulate both active and reactive power,215

minimizing curtailments while enhancing reactive power support for AC energy islands. The energy storage system is repre-

sented by constraints (24)-(29), following the linear model in Pozo (2022). This approach determines the BESS energy state

using the previous state within the prediction horizon. Charging and discharging losses are incorporated through efficiency rates

ηc and ηd. To ensure continuity between time windows, the initial (E0) and final (Ef ) energy states are enforced in constraint

(26). This ensures that the energy state of the system is consistent and maintains a seamless transition from one time window220

to the next. Additionally, BESS power and storage capacity limits are imposed by constraints (27)-(29). Here, et represents the

state of energy (SoE) of the BESS at period t, while et−1 corresponds to the SoE from the previous period. The variables pc
t

and pd
t denote the charging and discharging power of the BESS at period t, respectively. The parameters emin and emax define

the minimum and maximum allowable SoE, while P c,max and P d,max impose the upper bounds on charging and discharging

power.225
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et = et−1 + ηcP
c
t −

1
ηd

P d
t ,∀t ∈ T (24)

etini
= E0 (25)

etfin
= Ef (26)

emin ≤ et ≤ emax,∀t ∈ T (27)

0≤ P c
t ≤ P c,max,∀t ∈ T (28)230

0≤ P d
t ≤ P d,max,∀t ∈ T (29)

Similar to wind turbines, BESS can provide reactive power support through the Q-control of their converters, enabling

additional grid services. This capability is modeled as a control variable in the optimization framework to meet the reactive

power demands of the AC grid. To this end, the converter’s capability curve is incorporated by limiting its apparent power to

the maximum allowable value, as shown in the following equations:235

sb
t = (pd

t − pc
t) + jqb

t ,∀t ∈ T (30)

∥sb
t∥ ≤ smax

b ,∀t ∈ T (31)

where the complex power injected or absorbed by the BESS at period t is denoted as sb
t , which consists of an active power

component (pd
t − pc

t) and a reactive power component qb
t . Additionally, constraint (31) ensures that the apparent power of the

BESS does not exceed its nominal capacity, denoted as smax
b .240

3.4 Green Hydrogen Production Model

Hydrogen production systems exhibit inherently nonlinear behavior, particularly in electrolyzers, where efficiency depends

on factors such as voltage, current density, temperature, and degradation effects. This nonlinearity primarily stems from the

electrochemical relationship between electrolyzer voltage and current density, which influences power input and hydrogen

output, as explained in the work by Raheli et al. (2023). Common modeling approaches include constant efficiency, polynomial,245

piecewise linear, and convex approximations, as discussed by Werner (2023); Matute et al. (2021). Although constant-efficient

models are widely used, such as the works by Useche-Arteaga et al. (2024a); Matute et al. (2021), they have limitations in

capturing these nonlinear dynamics. To enhance accuracy, the proposed approach incorporates a linear model, formulated

through the following constraints:
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Mt = Mt−1 + ht,∀t ∈ T (32)250

ht = bhP e
t + ch,∀t ∈ T (33)

Mti
= M,∀t ∈ T (34)

Mtf
= M,∀t ∈ T (35)

where hi,t represents the hydrogen produced at node i during period t. In addition, the model considers the initial cumulative

hydrogen state, Mi,ti
, and its final state, Mi,tf

, which corresponds to the hydrogen demand for the analysis period. Finally,255

P e
i,t represents the demanded power of the electrolyzer, and bh

i and ch
i denote the parameters of the linear model for the green

hydrogen production system.

3.5 Objective function

The objective function of the proposed approach focuses on the maximization of revenue derived from offshore wind power

generation. This objective reflects the importance of optimizing the economic performance of energy islands, particularly260

when integrating renewable energy sources such as wind power. The mathematical expression for this maximization objective

function is as follows:

max z =
∑

t∈T

∑

i∈C
Ci,tP

m
i,t, (36)

where Ci,t represents the power price at country i during period t, and Pm
i,t denotes the active power delivered to country i

in period t within the time window T .265

4 Case Study: Test System Description, Simulation Scenarios, and Results

This section evaluates the proposed optimization model through a case study. It introduces the test system based on the Princess

Elisabeth Energy Island, defines simulation scenarios to assess offshore operational challenges, and conducts numerical vali-

dations to analyze system performance and strategy effectiveness.

4.1 Test System Definition: Setup Based on the Princess Elisabeth Energy Island270

The Princess Elisabeth Energy Island is planned for construction by the Belgian Transmission System Operator (TSO) Elia in

the Belgian sector of the North Sea, approximately 45 km offshore, as described in Williams and Zhao (2023); Viaene et al.

(2022); der Straeten (2022), and illustrated in Fig. 4. The energy island is designed to integrate three future offshore wind

power plants: a 700 MW installation (PE-I), expected to be operational by 2028, and two additional wind power plants (PE-II

and PE-III), each with a capacity of up to 1400 MW, planned for 2029, as shown in Fig. 5a.275

11

https://doi.org/10.5194/wes-2025-102
Preprint. Discussion started: 2 July 2025
c© Author(s) 2025. CC BY 4.0 License.



UK
NL

GERMANY

BE

DK

PE II
PE III

EI

PE I

Figure 4. Test system based on the Princess Elisabeth energy island
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Figure 5. AC/DC Energy Island and Grid Layout Configurations.

The infrastructure will incorporate both AC and DC technologies, where AC cables will be used for wind farm collection,

while high-voltage direct current (HVDC) connections will facilitate interconnections. The HVDC links with Denmark and
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Table 1. Technical Parameters of BESS, Green Hydrogen Production, and HVDC Connections

Battery Energy Storage System (BESS)

Capacity [MWh] E [MWh] Ē [MWh] P̄ c [MW] P̄ d [MW] ηc [%] ηd [%] E0 [pu] Ef [pu]

3500 350 3500 1155 1155 85 90 0.5 0.5

Green Hydrogen Production System

P e
max [MW] P e

min [MW] MH [kg] M̄H [kg] bh [kg/MWh] ch [kg]

150 22.5 0 43,448 16.058 8.219

HVDC Interconnections to Onshore Grids

Parameter Belgium United Kingdom Denmark

Distance [km] 40 70 600

Capacity [MW] 3500 1400 2000

Voltage [kV] 345 345 345

the UK are scheduled for commissioning in 2030. Given that these wind farms are yet to be developed, this study defines and

simulates their layout within the designated areas, employing commercially available tools from Youwind (2025). Assuming

full capacity utilization, the turbine layout is designed using the IEA-22 MW reference wind turbine defined in Zahle et al.280

(2024), applying a staggered grid arrangement with optimized row orientation and spacing to minimize wake losses, as shown

in Fig. 5a. Wind Power Plant PE-I contains 32 turbines, while Wind Power Plants PE-II and PE-III contain 64 turbines.

To support the analysis, Fig. 5b presents the single-line diagram of the test system, conceptually based on the Princess

Elisabeth Energy Island. The diagram illustrates the topological structure, including offshore wind farms, internal AC collection

systems, HVDC converters, storage options, and export transmission links to multiple regions. This configuration serves as the285

foundation for simulation scenarios used to validate the proposed optimization framework. The main technical parameters are

summarized in Table 1.

4.2 Hydrogen Production System: Electrolyzer model description

The Hydrogen Production System in this study was modeled in more detail and implemented in Matlab Simulink, from which

measurements were obtained to identify the parameters of a linear hydrogen production model, considering both the electrical290

and downstream components of an electrolyzer. The electrical model is based on a voltage-current characteristic, using an

empirical formula with approximated parameters for Alkaline electrolyzers from Øystein Ulleberg (2003). The downstream

model links the electrolyzer current to the hydrogen production rate via chemical coefficients and Faraday efficiency, following

the equations and parameters from Dozein et al. (2023). The electrolyzer stack is modeled as a series connection of cells,

introducing non-linearity between consumed power and hydrogen production due to the voltage-current characteristic and295

Faraday efficiency effects at low current levels. Additionally, the measurements are taken on the DC side, excluding power

supply losses. Finally, the parameters used for the measurements are detailed in Table 2.
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Table 2. Hydrogen electrolyzer nominal operating point

Parameter Value

Nominal voltage 1kV

Number of cells 455

Nominal cell voltage 2.2V

Temperature 30°C
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Figure 6. Results of the Hydrogen Production System estimation and model errors.

Table 3. Estimated parameters of the linear model for the hydrogen system

Parameter Value Units

bh 16.31 kg/MWh

ch 6.24 kg

4.3 Measurement-Based Optimization for Estimating Green Hydrogen Production Models

The efficiency of hydrogen production varies with system degradation, leading to changes in the parameters bh, and ch. Conse-

quently, a significant challenge in modeling hydrogen production systems is accurately estimating the parameters of the linear300

model. This subsection presents a methodology for estimating the linear model for green hydrogen production systems through

an optimization approach. Accordingly, the following optimization problem is proposed:

argmin
bh, ch

M∑

k=1

Ek

s.t. Ek = ∥hk − h̃k∥,

hk = bhP e
k + ch (37)
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where h̃k is the measurement of the hydrogen produced with the power P e
k , hk is the hydrogen production estimation based305

on the linear model presented in equations (32)-(35) and bh, and ch are the parameters estimated by the optimization problem

presented in equations (37). Similarly, the parameter of the constant-efficiency model is estimated using the problem model

presented in (37) with ch = 0.

Fig. 6a illustrates the estimation performance of the hydrogen production system using both constant-efficiency and linear

models, identified against the measured data. The associated modeling errors are presented in Fig. 6b. The linear model achieves310

a maximum error of approximately 12.91%, with an average and median error of 1.20% and 0.69%, respectively. In comparison,

the constant-efficiency model exhibits a higher maximum error of 14.95%, along with an average and median error of 3.98%

and 2.08%. These results clearly indicate the improved accuracy of the linear approach. In particular, the significantly lower

mean and median errors of the linear model reflect its enhanced robustness and sensitivity in capturing variations in the input

power to the hydrogen electrolyzer, making it more suitable for dynamic operational conditions.315

4.4 Wind Power Profile Analysis of the Princess Elisabeth Energy Island

This subsection analyzes the wind power profiles of the three offshore wind power plants integrated into the Princess Elisabeth

Energy Island. The objective is to characterize both seasonal and spatial patterns in the available power, based on hourly pro-

duction data over a full year,generated using a simulation of the wake losses in the wind parks and wind speed and direction

timeseries provided by the Federal Public Service Economy of Belgium (2024). These patterns are used to identify represen-320

tative daily profiles for each season, which are later used to define typical operating conditions in the optimization framework.

The analysis includes the statistical distribution of daily average power, representative daily curves, and turbine-level power

output for a representative day.

Figure 7 shows the seasonal distribution of average daily power for each of the three wind power plants. The boxplots

summarize the statistical variability of the available power across the four seasons, based on daily average values. The central325

line indicates the median, the box spans the interquartile range (25th to 75th percentiles), and whiskers extend to 1.5 times the

interquartile range. Autumn shows the highest median daily power across all wind power plants, while Summer consistently

presents the lowest. Spring and Winter exhibit intermediate values, with Winter showing greater variability. Rather than using

a full year of data, we demonstrate the optimization on representative days for each season, to keep the calculation time for the

study limited, while still capturing the key seasonal characteristics of offshore wind variability. Based on these analyses and330

the simulation of the wind parks in the Youwind platform using the N.O. Jensen wake model (Katic et al. (1987)), we obtained

turbine-level power forecasts, which constitute one of the key inputs for implementing the proposed optimization approach.

Figure 8 shows the representative daily profiles of hourly wind power generation for each wind power plant: PE_I (a), PE_II

(b), and PE_III (c). For each season, a representative day was selected by identifying the daily profile whose average total power

was closest to the seasonal median. The curves reflect typical intraday generation behavior under seasonal wind conditions.335

These profiles provide seasonally realistic input scenarios for the operation of the hybrid energy island.
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Figure 7. Seasonal distribution of average daily power for the three wind power plants over a year.
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Figure 8. Seasonal representative daily profiles of hourly power generation for each wind power plant (PE_I, PE_II, and PE_III).

Finally, Figure 9 shows the hourly wind speed and power output per turbine in PE_I for the representative winter day. The

plot illustrates the spatial variability in turbine performance over the course of a day, influenced by wake effects and wind

direction, and highlights the importance of considering spatial resolution in wind power modeling.

4.5 Energy Management and Optimization for Representative Days on the Princess Elisabeth Energy Island340

In this subsection, we present the results of applying a nonlinear optimization model to the operation of the Princess Elisabeth

Energy Island, focusing on representative days that encapsulate typical seasonal variations in wind power availability and

electricity prices.

However, before proceeding with the multiperiod and seasonal analyses, a preliminary validation of the proposed optimiza-

tion approach was conducted to ensure its reliability under nominal operating conditions. Specifically, a double-check was345

performed using the Python-based power flow tool pyflow_acdc, developed by Valerio et al. (2025). The comparison shows

that both approaches yield very similar results, with the proposed method achieving a 1.5% improvement in the objective

function value compared to pyflow_acdc, thereby demonstrating the accuracy and robustness of the optimization results.

16

https://doi.org/10.5194/wes-2025-102
Preprint. Discussion started: 2 July 2025
c© Author(s) 2025. CC BY 4.0 License.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour (UTC)

T1
T2
T3
T4
T5
T6
T7
T8
T9

T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32

Tu
rb

in
e

Hourly Wind Speed per Turbine (PE_I)

7

8

9

10

11

12

13

W
in

d 
Sp

ee
d 

(m
/s

)

(a) Wind speed per turbine (PE_I).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour (UTC)

T1
T2
T3
T4
T5
T6
T7
T8
T9

T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32

Tu
rb

in
e

Hourly Power Output per Turbine (PE_I)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Po
we

r O
ut

pu
t (

M
W

)

(b) Power output per turbine (PE_I).

Figure 9. Hourly turbine-level wind speed and power output in PE_I on a representative winter day, illustrating spatial variability and wake

effects across the wind power plant.

After validating the proposed approach, the analysis focuses on the representative days selected to characterize the seasonal

operation of the energy island. Figure 8 illustrates the seasonal representative daily profiles of hourly power generation for the350

three wind power plants (PE_I, PE_II, and PE_III) integrated into the energy island, with each plant’s profile displayed in dedi-

cated subfigures. These profiles provide a detailed representation of wind power availability across different seasons, serving as

a fundamental input for the optimization model. Complementing this, Figure 10 shows the day-ahead electricity price profiles

for the representative seasonal day in the UK, Belgium, and Denmark, which are pivotal for the economic optimization of the

energy island’s operation. The electricity price data for Belgium and Denmark were obtained from ENTSO-E (2025), while the355

UK prices were sourced from Elexon (2025). Leveraging these wind power and electricity price profiles, the nonlinear model

optimizes the power dispatch from the wind turbines, the charging and discharging schedules of the battery energy storage

systems, and the production rates of green hydrogen, while accounting for the detailed characteristics of the energy island’s

AC/DC infrastructure. The results demonstrate the effectiveness of the proposed optimization framework in coordinating the

energy island’s resources, ensuring both operational efficiency and system reliability across diverse conditions.360

To facilitate a structured analysis, the evaluation has been divided into two stages. First, we present a detailed operational

analysis of a representative day for the autumn season. This focused assessment allows for an in-depth examination of the

system’s performance throughout a typical day under a specific seasonal scenario. Subsequently, we extend the analysis by

presenting the representative daily profiles for all four seasons. This broader assessment demonstrates the capability of the

proposed approach to adapt the optimal operational strategy to the varying conditions across the year.365

Figure 10 presents the representative autumn daily profiles of electricity prices and dispatched power for Belgium (BE), Great

Britain (GB), and Denmark (DK). The top subfigures show that electricity prices peak around 199 C/MWh at hour 10 in BE,

191 C/MWh at hour 6 in GB, and 199 C/MWh at hour 10 in DK. In response, the bottom subfigures illustrate the dispatched
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Figure 10. Representative autumn daily profiles. Top row: hourly electricity prices for Belgium (BE), Great Britain (GB), and Denmark

(DK). Bottom row: dispatched power to the corresponding onshore grid in per unit [MW].
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Figure 11. Operational profiles of the hydrogen production and battery storage systems during a representative autumn day: (a) Electrolyzer

power Pe(t), (b) cumulative hydrogen production MH2(t), (c) BESS power charging/discharging rates pc(t) and pd(t), and (d) battery state

of energy (SoE).

power profiles optimized according to these electricity price profiles. In BE, substantial exports occur between hours 8 and 22,

with a maximum dispatch of approximately 3.43 GW at hours 19–20, coinciding with the higher electricity prices observed370

during these periods. In GB, exports are concentrated around hours 4–7 and 15–18, following the increases in electricity prices

during the early morning and late afternoon. Despite similar price levels between BE and DK, dispatched power to DK remains

lower, with peaks around 656 MW at hour 19, primarily due to the greater distance and associated transmission losses between

the energy island and the Danish grid. The operation of the battery energy storage system (BESS), as illustrated in Figure 11,

further enhances the dispatch strategy: the BESS charges predominantly during lower-price periods around hours 15–18 and375

22–24, with charging powers up to 1155 MW, and discharges during high-price intervals, notably at hours 10 and 19–20 with

discharging peaks above 1140 MW. The hydrogen production system dynamically adjusts its operation, reducing electrolyzer

power to 22.5 MW at hours 10 and 19–20 to prioritize electricity exports during price peaks, while otherwise absorbing surplus

renewable generation, thus guaranteeing the fulfillment of the daily hydrogen production demand, which constitutes a critical

operational constraint for the energy island.380
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for representative days in the four seasons.
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Figure 13. Seasonal variation of battery operation: (top) charging power pc(t), (middle) discharging power pd(t), and (bottom) state of

energy SoE(t).

Figures 12, 13, and 14 illustrate the seasonal operation of the energy island, covering the hourly electricity prices, the dis-

patched power to the onshore grids, and the performance of the battery and hydrogen production systems. The results clearly

reflect the seasonal variability in both offshore wind generation and market prices. Despite these fluctuations, the proposed

optimization framework dynamically adjusts energy dispatch, BESS management, and hydrogen production to maximize eco-

nomic revenues while ensuring the secure operation of the energy island and the power system. In the representative days385

analyzed, the dispatched energy varies from 15,506 MWh in summer to 51,246 MWh in winter, with intermediate values of

23,018 MWh in spring and 43,971 MWh in autumn. Similarly, the revenues range from approximately C5.31 million in spring

to C10.14 million in winter, with C6.27 million in summer and C7.26 million in autumn.
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Figure 14. Hydrogen system operation across seasons: (a) Electrolyzer power Pe(t) in [MW] and (b) cumulative hydrogen production

MH2(t) in [kg].

5 Conclusions

This work presented a predictive nonlinear optimization framework for the operation of AC/DC energy islands, validated390

through a case study based on the Princess Elisabeth Energy Island. The reliability of the proposed approach was confirmed

through validation with the Python-based power flow tool pyflow_acdc, developed by Valerio et al. (2025), providing a strong

basis for the subsequent multiperiod and seasonal optimization analyses. The linear model for green hydrogen production,

whose parameters were calculated using a measurement-based optimization approach, demonstrated significantly improved

accuracy over conventional constant-efficiency models, achieving a mean modeling error below 1.5%. Seasonal analyses high-395

lighted the flexibility and robustness of the proposed framework, which dynamically adjusts energy dispatch, BESS manage-

ment, and hydrogen production to maximize economic revenues while ensuring secure operation of the energy island and the

power system. The integration of BESS and hydrogen systems enabled efficient energy shifting: batteries were charged during

periods of low electricity prices and discharged during peak price periods, while hydrogen systems absorbed excess renewable

energy when export was less profitable, guaranteeing hydrogen production targets. Furthermore, realistic offshore wind condi-400

tions were modeled using Youwind’s commercial platform, including wake effects, ensuring seasonally representative inputs.

The results confirm that the proposed optimization approach effectively adapts to seasonal variability, maximizing operational

efficiency and economic performance in future hybrid AC/DC energy island scenarios.
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