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Abstract. This study introduces a computationally efficient engineering aerodynamic model specifically designed for load

calculations of swept wind turbine blades, overcoming limitations in existing models. The proposed method couples a near

wake trailed vortex model with a novel far wake vortex cylinder model. In this coupled model, the near wake, defined as the

first quarter revolution of the blade’s own trailed wake, is modeled using non-expanding helical vortices. Together with the

influence of the curved bound vortex, the sweep effects are effectively captured. This comprehensive approach accounts for5

the influence of a finite number of blades, eliminating the need for Prandtl’s empirical tip-loss correction used in conventional

blade element momentum (BEM) methods. The far wake, representing the remaining trailed wake, is modeled using concen-

tric vortex cylinders originating downstream of the rotor plane, replacing the conventional momentum-based approach. The

near and far wake contributions are coupled together to obtain the total induction. In this study, a detailed analysis identifies

limitations in the original coupling method, leading to two proposed modifications that enhance numerical stability and accu-10

racy. Comparisons with higher-fidelity free-wake lifting line (LL) and Reynolds-averaged Navier–Stokes (RANS) simulations

demonstrate the load prediction improvements, particularly for forward swept blades. The model achieves comparable accu-

racy with significantly reduced computational efforts, making it an ideal tool for design optimization and repetitive aeroelastic

simulations of swept wind turbine blades. While developed and validated under steady-state conditions, the formulation readily

supports extensions to unsteady aerodynamics using methodologies analogous to unsteady BEM approaches. The model can15

also be adapted in future work for generalized blade geometries combining sweep and prebend.

1 Introduction

Technological advancements in wind turbine design and manufacturing have led to substantial increases in the size and flex-

ibility of modern horizontal-axis wind turbine (HAWT) blades, especially compared to those from the 1980s. For instance,

a state-of-the-art offshore wind turbine installed in 2024 reached a rotor diameter of 260 m and a rated power of 18 MW.20

Innovative blade designs, such as backward swept blades for passive load alleviation through geometric bend-twist coupling

(Liebst, 1986; Zuteck, 2002; Larwood and Zutek, 2006; Manolas et al., 2018) and aerodynamically or aeroelastically opti-

mized curved blade tips involving sweep (Barlas et al., 2021; Madsen et al., 2022), are gaining popularity. Swept blades are

also adopted in small wind turbine designs. For example, Eocycle integrates swept blade designs into its EOX M-series turbines
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in distributed wind applications (Eocycle Technologies Inc., 2021a, b). Fritz et al. (2024a) conducted a wind tunnel experiment25

on backward swept blades using particle image velocimetry (PIV) methods. Additive manufacturing is also being explored

for blade tips, enabling design integration and improved aerodynamics while reducing manufacturing constraints (Houchens

et al., 2024). While these innovative designs offer potential aerodynamic and aeroelastic benefits, they also introduce increased

modeling complexity, which exposes inherent limitations in existing aerodynamic models and poses significant challenges for

load calculations and design optimization.30

Higher-fidelity methods, such as free-wake lifting line (LL) solvers and Reynolds-averaged Navier–Stokes (RANS) simu-

lations, provide relatively accurate load predictions but are computationally intensive, limiting their use to specific load cases

or comparison studies. Consequently, the blade element momentum (BEM) method remains the primary tool for low-fidelity

aerodynamic modeling of HAWTs, valued for its simplicity and minimal computational requirements, making it well-suited for

design optimization and aero-servo-elastic simulations. However, BEM implicitly assumes a planar rotor with straight blades35

(Li et al., 2022b, 2025b, 2024). As a result, the BEM method cannot accurately predict the influence of wake geometry result-

ing from curved blade geometries or blade coning on aerodynamic loads, as shown in recent analytical and numerical studies

(Li et al., 2022b, d, a; Barlas et al., 2022; Horcas et al., 2023; Li et al., 2025b, 2024; Zahle et al., 2024).

To mitigate some of BEM’s limitations, Madsen and Rasmussen (2004) introduced a coupled near and far wake model that

integrates a lifting line approach for the near wake with a momentum-based far wake model, building on the foundational work40

by Beddoes (1987). The near wake, defined as the first quarter revolution of the blade’s own trailed vortex, is modeled using

non-expanding helical vortex filaments, with an indicial function approach capturing its dynamic behavior. The remaining

trailed wake, termed the far wake, is modeled based on momentum theory. The near and far wake models are coupled using a

coupling factor to obtain the total induction (Andersen et al., 2010; Pirrung et al., 2016). The far wake inductions are determined

by scaling down the BEM thrust coefficient using this factor during the induction calculation. Subsequent research extended45

this coupled model framework to swept blades by explicitly modeling the influence of curved bound vortices and accounting

for the in-plane shift in the starting position of trailed vortices (Li et al., 2018, 2020, 2022d).
::::::::
Regarding

::::::::
accuracy

::
in

::::::::
unsteady

::::::::::
aerodynamic

:::::::::::
simulations,

:::::::
previous

::::::
studies

::::
have

::::::
shown

::::
that

:::
for

:
a
:::::::
straight

:::::
blade,

:::
the

::::::::
NW-MT

::::::::
approach

:::
can

::::::
closely

:::::::::
reproduce

::
the

:::::::::::
aerodynamic

::::::::
response

::::::::
predicted

::
by

:::::::::
free-wake

:::::
lifting

::::
line

::::::
models,

:::
as

:::::::::::
demonstrated

:::
for

::::
pitch

:::::
steps

:::
and

:::::::::
prescribed

::::::::
vibration

::::
cases

::::::::::::::::::
(Pirrung et al., 2017a)

:
.
::::
This

::::::::
represents

::
a
:::::::::
significant

:::::::::::
improvement

::::
over

:::
the

:::::
BEM

:::::::
method.50

Despite these advancements, the coupled model shows limitations when applied to forward swept blades, primarily due to

limitations in the coupling factor and potentially the far wake model, both of which require further improvements (Li et al.,

2022d). To address these challenges, this study introduces a novel far wake vortex cylinder model that replaces the exist-

ing momentum-based approach, providing a more physically consistent representation of the far wake. This study focuses

on steady-state conditions (assuming uniform inflow, fixed rotor speed and no elastic deformations) to isolate sweep-induced55

effects. However, the framework is readily extendable to unsteady conditions using sub-models, such as dynamic inflow and

dynamic stall models, similar to those applied in unsteady BEM methods (Madsen et al., 2020). In addition, this study refines

the coupling factor through two modifications based on a modified Newton–Raphson approach, enabling automatic adjust-

ments across different swept blade configurations, with improved numerical stability. Furthermore, the proposed model has the

2



potential to be further adapted to more generalized curved blades featuring combined sweep and prebend, which has significant60

implications for future wind turbine design optimization and aeroelastic simulations.

The remainder of this paper is structured as follows: Section 2 briefly reviews the inherent limitations of the BEM method

in modeling swept blades. Section 3 outlines the existing coupled near and far wake model, which is extended for modeling

swept blades. In Sect. 4, we develop the new far wake vortex cylinder model to enhance the physical representation of the

far wake. Section 5 presents three modified coupled models with different fidelities that improve upon the existing coupled65

model for swept blades. In Sect. 6, we investigate and improve the coupling factor. Section 7 describes the simulation setups of

higher-fidelity LL and RANS CFD solvers and also blade configurations used for comparison. Section 8 presents a comparative

analysis of results from different models, evaluating the performance of the new models. Finally, Section 9 summarizes the

contributions and findings of the study and suggests directions for future research.

2 Blade element momentum method70

The blade element momentum (BEM) method is a fundamental engineering aerodynamic model that integrates blade element

theory (BET) with momentum theory (MT). Due to its simplicity and minimal computational effort, BEM is widely used

in aerodynamic load calculations of rotors. In the BEM method, the rotor plane is divided into multiple concentric annular

sections, each assumed to be radially independent. Within each annulus, the aerodynamic forces acting on the 2-D airfoil

sections (blade elements) of all blades are balanced with the momentum changes in the flow. Momentum theory is then applied75

to determine the axial and tangential induced velocities at the rotor plane. It has been argued that only the lift force should be

included in the momentum balancing, excluding the drag force (Wilson and Lissaman, 1974; Branlard, 2017). Furthermore,

the radial induced velocity is not accounted for in the momentum theory and is not standard in BEM implementations (Madsen

et al., 2020).

Unlike conventional BEM literature and textbooks, we formulate the BEM method in this section using vortex theory, which80

has been shown to be equivalent (Branlard and Gaunaa, 2015a; Li et al., 2025b). The Kutta–Joukowski thrust and power

coefficients are derived from the projection of the lift force, assuming zero radial induction (Li et al., 2025b):

Cpl
t,KJ = ks(1+ a′), (1)

Cpl
p,KJ = ks(1− aB), (2)

where ks is the normalized circulation strength:85

ks =
ΩΓ

πU2
0

. (3)

Neglecting the radial induction results in these coefficients being identical to those of a corresponding planar rotor with

straight blades and have the same circulation distribution (Li et al., 2025b), as indicated by the superscript "pl".
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The bound circulation of the blade is calculated from the circulatory part of the lift coefficient CC
L . Assuming all blades are

operating under the same conditions, the total bound circulation strength is:90

Γ =NBΓB =
1

2
NBVrelcC

C
L . (4)

The tangential induction can be derived either by balancing the angular momentum (Madsen et al., 2020) using Eq. (2) or

directly calculated from the circulation Γ, as in the vortex cylinder model (Øye, 1990; Branlard and Gaunaa, 2015b; Li et al.,

2022b):

a′ =
Γ

4πΩr2
. (5)95

Prandtl’s tip-loss correction is commonly applied in BEM-based methods to account for the influence of a finite number of

blades on the axial induction (Glauert, 1935; Sørensen, 2015). This correction increases the blade’s axial induction compared

to the annulus-averaged value when moving towards the tip. Various implementations of the tip-loss correction exist. In this

study, we adopt the approach proposed by Madsen et al. (2020):

aB = aBEM = fa−Ct(C
pl
t /F ). (6)100

In the present work, the empirical relationship between the axial induction factor and the thrust coefficient based on the

polynomial function by Madsen et al. (2020) is adopted, which is the default relationship in the HAWC2 code (Larsen and

Hansen, 2007).

One key advantage of the BEM method is its computational efficiency. However, as demonstrated by Li et al. (2025b, 2024),

with a prescribed bound circulation, the BEM method predicts the same inductions and approximately the same loads, which is105

independent of geometric modifications to the blade (e.g., sweep or prebend), providing these changes do not affect the blade

radius. This is because the method does not account for the influence of specific wake geometry on inductions, with the wake

corresponding to that of straight blades forming a planar rotor. Nonetheless, the BEM method remains a valuable baseline

model and starting point upon which more advanced engineering aerodynamic models can be developed.

3 Existing coupled near and far wake model for swept blades110

The coupled near and far wake model, a hybrid of the lifting line method and the momentum theory, was developed to mitigate

the dependency on Prandtl’s empirical tip-loss correction used in models based on the actuator disc theory. Additionally,

the coupled model provides a more physically consistent framework for modeling unsteady tip-loss effects. Since its first

application in wind turbine modeling (Madsen and Rasmussen, 2004), several improvements have been introduced (Pirrung

et al., 2014, 2016, 2017a, b), enabling time-domain aeroelastic simulations.115

3.1 Background

In this coupled model, the rotor’s trailed wake is divided into two components: the near wake, which captures immediate effects

close to the blade, and the far wake, which accounts for wake effects further downstream. The near wake, defined as the first
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quarter revolution of the blade’s own trailed vortices, is modeled using a simplified lifting line approach with non-expanding

helical vortex filaments. An indicial function approach is used for time stepping, with the steady-state induction approximated120

using empirical equations (Beddoes, 1987) and correction factors (Pirrung et al., 2016, 2017b). This method maintains low

computational effort, independent of the elapsed simulation time.

The remaining trailed vortices, including those of the blade itself and the other blades, are defined as the far wake. In the

original coupled model, the far wake is modeled based on momentum theory (Madsen and Rasmussen, 2004). A rotor-averaged

coupling factor kMT
FW is applied to scale down the far wake inductions relative to the full trailed wake inductions:125

aFW, MT = fa−Ct
(kMT

FWCt), (7)

a′FW, MT = kMT
FWa

′. (8)

While this direct scaling approach is straightforward, it lacks physical consistency because it uniformly reduces the far wake

induction relative to the full trailed wake induction, rather than capturing the spanwise variation due to the actual far wake

geometry and the cross-talk between annular sections.130

The total axial and tangential inductions are obtained by summing the near wake and far wake contributions. The radial

induction is not included, as it is also excluded in standard BEM implementations (Madsen et al., 2020):

aB,tot = aNW + aFW, (9)

a′tot = a′NW + a′FW. (10)

3.2 Modeling of swept blades135

To accurately predict the aerodynamic loads of swept blades, modifications to the coupled model are necessary to account for

the influence of blade sweep on inductions. Previous studies (Li et al., 2018, 2022d; Fritz et al., 2022, 2024b) have identified

two primary effects of blade sweep on inductions. First, the blade’s bound vortex, which is assumed following the 1/4 chord

line of the blade, becomes curved and has an influence on itself (Li et al., 2018, 2020). Second, the starting position of the

trailed vortex follows the swept blade geometry and is thus shifted within the rotor plane compared to a straight blade. The140

bound and trailed vortices of a backward swept blade are illustrated in Fig. 1.

The trailing functions of a swept blade, representing the contributions of an elementary trailed vortex to inductions as

a function of the azimuthal angle
::
β, are derived. The position vectors x and the elementary trailed vortex ds are used to

determine the trailing functions in the blade local coordinate system (BL-sys):

x=


R sin(β+ψ)

−Rβ tanφ
R−h−Rcos(β+ψ)

 , (11)145

ds=Rdβ


−cos(β+ψ)

tanφ

−sin(β+ψ)

 , (12)
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Figure 1. Front view of a backward swept wind turbine blade rotating clockwise, in the blade local coordinate system (BL-sys). The rotational

speed is Ω and the free wind speed is U0. The radius of the trailing point (tp) is R and the radius of the calculation point (cp) is r, with a

difference in radius of h. The sweep angle ψ is defined as the azimuthal difference between tp and cp. The azimuthal difference between the

elementary trailed vorticity ds and the tp is β. The position vector x points from ds to the cp. The figure is adapted from (Li et al., 2022d)

with updated coordinate system definitions detailed in (Li et al., 2025b).

where h is defined as the difference in radius between the trailing point and the calculation point:

h≡R− r., (13)

:::
and

:::
the

::::
helix

:::::
angle

::
φ

::
of

:::
the

::::::
trailed

:::::
vortex

::
is

:::::::::
calculated

::::
from

:::
the

:::::::::
inductions

::
at

:::
the

::::::
trailing

:::::
point

:::
(tp)

:::::
using:

:

φ≡ U0(1− aB,tot)

ΩR(1+ a′tot)
.

::::::::::::::::

(14)150

For a trailed vortex element ds with a strength of ∆ΓB , the elementary induced velocity at the blade section is calculated

according to the Biot-Savart law:

dw =−∆ΓB

4π

x×ds

∥x∥3
. (15)

The trailing functions of axial, tangential and radial induced velocities, corresponding to the y-, x- and z-components of

dw, are expressed as:155

dwy =−∆ΓB dscosφ

4πR2

1− r̃ cos(β+ψ)[
1+ r̃2 − 2r̃ cos(β+ψ)+ (β tanφ)2

] 3
2

, (16)

dwx =
∆ΓB dssinφ

4πR2

r̃− cos(β+ψ)−β sin(β+ψ)[
1+ r̃2 − 2r̃ cos(β+ψ)+ (β tanφ)2

] 3
2

, (17)

dwz =
∆ΓB dssinφ

4πR2

−sin(β+ψ)+β cos(β+ψ)[
1+ r̃2 − 2r̃ cos(β+ψ)+ (β tanφ)2

] 3
2

, (18)
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where:

ds= Vreldt=R
dβ

cosφ
≡Rdβ∗, (19)160

r̃ ≡ r

R
= 1− h

R
. (20)

Integrating these trailing functions with respect to the azimuthal angle β from 0 to π/2 gives the steady-state near wake

inductions:

W =

β=π
2∫

β=0

dw. (21)

In the existing near wake model, the radial induction due to the trailed wake is neglected. The trailing functions of the axial165

and tangential inductions in Eqs. (16) and (17) are approximated by the sum of two exponential functions. Following Beddoes

(1987), the parameters A1 = 1.359, A2 =−0.359, b1 = 1 and b2 = 4 are chosen.

dw̃ =
∆ΓBR

4πh|h|
(A1e

−b1β
∗/Φ +A2e

−b2β
∗/Φ)dβ∗ (22)

By integrating the approximated trailing function from zero to infinity, the approximated steady-state near wake induction

is obtained:170

W̃ =
∆ΓBR

4πh|h|

(
A1

b1
+
A2

b2

)
Φ≈W. (23)

According to Eq. (23), the steady-state induction can be represented using Φ, which is a function of the radial position r̃,

sweep angle ψ and helical angle φ. Direct numerical integration of the trailing functions from the Biot-Savart law would be

computationally intensive. To address this, previous modifications to the near wake model use steady-state inductions at special

conditions and apply corrections for general conditions (Li et al., 2022d). First, the steady-state inductions for the special con-175

ditions of φ= 0 and φ= π/2, corresponding to an in-plane trailed vortex and a straight trailed vortex convecting downstream,

are derived analytically and labeled as Φip and Φss, respectively. Then, the steady-state inductions for general helical angles

are calculated using these special conditions and a correction factor kΦ, based on pre-calculated influence coefficients.

Φ= fconv(kΦ,Φip,Φss) (24)

This approach, as detailed in (Li et al., 2022d), has relatively high accuracy and maintains low computational effort. It is180

applied to the near wake axial and tangential inductions, while the radial induction is neglected. The total near wake axial and

tangential inductions also include the influence of the curved bound vortex:

aNW = abound + aNW, trail, (25)

a′NW = a′bound + a′NW, trail. (26)

It is assumed that the sweep effect is fully captured by the blade’s own near wake trailed vortex and the curved bound vortex185

influence, while the influence of the other blade’s bound vorticity and near wakes is neglected. As a result, the far wake does
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not have to account for sweep effects. Consequently, the same far wake model as for straight blades, based on momentum

theory and described in Sect. 3.1, can be applied. The total axial and tangential inductions are then the sum of the near wake

and far wake contributions. For the radial induction, only the influence of the bound vortex is included.

aB,tot = aNW + aFW,MT (27)190

a′tot = a′NW + a′FW,MT (28)

ur,tot = ur,bound (29)

This modified coupled model is labeled as NW-MT, representing the coupling of the near wake model and the far wake

momentum theory. For different swept blades operating under optimal conditions, loads predicted by NW-MT were compared

with results from higher-fidelity aerodynamic models, such as a free wake lifting line method and a RANS CFD solver. Results195

from NW-MT show significant improvements over the BEM method in predicting sweep effects (Li et al., 2022d).

4 Far wake vortex cylinder model

This section introduces the far wake vortex cylinder model as a replacement for the momentum theory-based far wake model

in the coupled model. This approach provides a more physically consistent representation of the far wake.

4.1 Elementary right vortex cylinder200

First, the elementary right vortex cylinder, a fundamental element of the far wake vortex cylinder model, is introduced. The

trailed vortex of a uniformly loaded planar rotor can be represented using a non-expanding vortex cylinder (Branlard and

Gaunaa, 2015a). Assuming the rotor operates under uniform inflow with zero yaw error and no rotor tilt, the vortex cylinder

will be a right cylinder rather than an oblique one (Branlard and Gaunaa, 2015b). The cylindrical vortex sheet is decomposed

into tangential and longitudinal components, denoted as γt and γl, respectively.205

For a vortex cylinder with radius R, the axial, tangential and radial induced velocities at a point with radius r and axial

position y (positive downstream from the rotor disc) are given by:

ua(r,y) =
γt
2

[
R− r+|R− r|

2|R− r|
+

y
√
m

2π
√
rR

(
K (m)+

R− r

R+ r
Π(n,m)

)]
≡ ũa(r,R,y)γt, (30)

ut,l(r,y) =
γl
2

R

r

[
r−R+|R− r|

2|R− r|
+

y
√
m

2π
√
rR

(
K (m)− R− r

R+ r
Π(n,m)

)]
≡ ũt,l(r,R,y)γl, (31)

ur(r,y) =− γt
2π

√
R

r

[
2−m√
m

K (m)− 2√
m
E (m)

]
≡ ũr(r,R,y)γt, (32)210

where:

m=
4rR

(R+ r)2 + y2
, (33)

n=
4rR

(R+ r)2
, (34)
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and K(m), E(m) and Π(n,m) are the complete elliptic integrals of the first, second and third kind, respectively.

4.2 Superposition of far wake vortex cylinders215

To model the radially varying bound circulation of a rotor, concentric vortex cylinders with different radii and circulations

are superpositioned (Branlard and Gaunaa, 2015a). This approach models the full trailed wake and is capable of capturing the

rotor’s non-planar effects (Li et al., 2022b).

In this study, vortex cylinders are used to model the far wake, replacing the existing far wake momentum model in the cou-

pled model. This provides a physically more consistent representation of the far wake, addressing the limitations discussed in220

Sect. 3.1. The far wake vortex cylinders are positioned a constant distance ∆yFW downstream from the rotor plane1, as illus-

trated in Fig. 2, for both a planar rotor (panel a) and a non-planar rotor (panel b). The concept of using a constant downstream

offset distance aligns with applying a rotor-averaged coupling factor for the entire rotor in the far wake momentum theory. The

far wake vortex cylinders can be considered as the far wake part of the full wake vortex cylinders, which effectively subtracts

the near wake part from the full trailed wake. This decomposition is also illustrated in Fig. 2.225

Figure 2. Decomposition of the full trailed wake vortex cylinder into a near wake part and a far wake part for: (a) a planar rotor; (b) a

non-planar rotor. All far wake vortex cylinders begin a constant distance of ∆yFW further downstream from the rotor plane, which is the

surface swept by the blades.

4.2.1 Definition of coupling factor

For the far wake vortex cylinder model, a rotor-averaged coupling factor kVC
FW is defined. The near wake is assumed to convect

downstream at a constant velocity that is evaluated at the blade. The corresponding near wake helical pitch hNW is:

hNW =
2πU0(1− aB,tot)

Ω(1+ a′tot)
= 2πr tanφ. (35)

First, the near wake helical pitch is weighted-averaged by the annulus area to obtain the rotor-averaged value h̄NW:230

h̄NW =

∑Ncp
i=1hNW,iAa,i∑Ncp

i=1Aa,i

, (36)

1In this work, the rotor plane refers to the surface swept by the blades.
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where Aa,i is the annulus area at the i-th calculation point (cp), calculated from the radii of the surrounding trailing points (tp):

Aa,i = π(R2
i+1 −R2

i ). (37)

Since the near wake is defined as the first quarter revolution of the trailed vortex, the downstream distance traveled by the235

near wake corresponds to one-fourth of h̄NW. This distance is further scaled by the coupling factor kVC
FW, which is limited to

values between 0 and 1, reflecting the decreasing convection speed of the trailed wake as it convects downstream2.

∆yFW =
1

4
kVC

FWh̄NW (38)

The axial coordinate of a far wake vortex cylinder at radius Rj is calculated by shifting the trailing point’s axial coordinate

downstream by ∆yFW:240

yFW,j = y(Rj)+∆yFW. (39)

4.2.2 Calculation of far wake induction

Each far wake vortex cylinder is assumed to convect downstream at a constant speed, which is the mean value of the two

velocities just outside and inside the vortex sheet, at infinitely far downstream. Since the same assumption is also used for

the system closure of full vortex cylinders (Branlard and Gaunaa, 2015a), the far wake vortex cylinder system can be solved245

using the same method (Li et al., 2022b). First, the annulus-averaged axial inductions of the corresponding planar full vortex

cylinders are calculated similarly to Eq. (6) but neglecting the tip-loss correction:

apl
∞ = fa−Ct

(Cpl
t ), (40)

where the subscript ∞ denotes the annulus-averaged value.

Then, the tangential vorticity is obtained from the difference in annulus axial induction factors of the two neighbouring250

sections:

γt,j = 2U0(a
pl
∞,j+1 − apl

∞,j). (41)

The strength of the longitudinal vortex sheet for the vortex cylinder with radius Rj and total trailed circulation ∆Γj is:

γl,j =
∆Γj

2πRj
. (42)

2The coupling factor needs to be smaller than one also because the far wake includes the trailed wake contributions from the two other blades
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For a calculation point at radius r and axial coordinate y, the contributions from all far wake vortex cylinders are summed255

to obtain the far wake inductions:

aFW,VC =− 1

U0

Ntp∑
j=1

ũa
(
r,Rj ,y− yFW,j

)
γt,j , (43)

a′FW,VC =− 1

Ωr

Ntp∑
j=1

ũt,l
(
r,Rj ,y− yFW,j

)
γl,j , (44)

ur,FW,VC =

Ntp∑
j=1

ũr
(
r,Rj ,y− yFW,j

)
γt,j . (45)

In the present work, only blade sweep effects are included and non-planar effects are neglected, assuming both the full wake260

vortex cylinders and the far wake vortex cylinders are planar, as depicted in panel (a) of Fig. 2. Therefore, the axial coordinate

difference, which is the last term in the brackets of Eqs. (43) to (45), simplifies to:

y− yFW,j =−∆yFW. (46)

5 Modified coupled near and far wake models

Building upon the limitations identified in the existing coupled near and far wake model (NW-MT), this section introduces265

three modified coupled models aimed at improving aerodynamic load predictions for swept blades. The first two methods use

the far wake vortex cylinder model, while the third corrects the existing NW-MT model by including the trailed wake radial

induction from the vortex cylinder model.

5.1 Idealized near wake model coupled with far wake vortex cylinder

The first modified coupled model, labeled as NW(ideal)-VC, is introduced to provide a benchmark of the highest fidelity270

that can be achieved within the coupled framework. It extends the existing NW-MT model by using an idealized near wake

model that captures sweep effects with the highest possible fidelity, without regard to computational cost or model complexity.

Additionally, it replaces the far wake momentum theory with the more physically consistent far wake vortex cylinder model

introduced in Sect. 4.2.

The near wake is defined as the first quarter revolution of the blade’s own trailed wake, following the original coupled model.275

The near wake trailed vortex inductions are calculated from the numerical integration of the trailing functions in Eqs. (16) to

(18) derived from the Biot–Savart law, according to Eq. (21). The near wake inductions are defined as the sum of the inductions

from the bound vortex and the near wake trailed vortex of the own blade:

aNW = abound + anum
NW, trail, (47)

a′NW = a′bound + a′,num
NW, trail, (48)280

ur,NW = ur,bound +unum
r,NW, trail, (49)
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where the superscript "num" indicates that the inductions are calculated from numerical integration.

The far wake inductions are calculated from the far wake vortex cylinder model using Eqs. (43) to (45). The total inductions

are then the sum of the near wake and far wake contributions:

aB,tot = aNW + aFW,VC, (50)285

a′tot = a′NW + a′FW,VC, (51)

ur,tot = ur,NW +ur,FW,VC. (52)

This idealized NW(ideal)-VC method includes the influence of a finite number of blades on axial, tangential and also radial

inductions. However, this model is computationally expensive, as the near wake inductions require numerical integration at

each iteration.290

5.2 Existing near wake model coupled with far wake vortex cylinder

The second modified coupled model, labeled as NW-VC, is introduced as the primary model targeted in this work, offer-

ing a balance between fidelity and computational efficiency. It addresses the computational challenges of NW(ideal)-VC by

simplifying the near wake model while still improving upon NW-MT through the use of the far wake vortex cylinder model.

The near wake axial and tangential inductions are calculated using the computationally efficient approach as in NW-MT,295

using Eqs. (25) and (26). The far wake axial and tangential inductions are obtained from the far wake vortex cylinder model,

using Eqs. (43) and (44). The total axial and tangential inductions are then the sum of the near wake and far wake contributions,

following the same forms as Eqs. (50) and (51) for NW(ideal)-VC. For blades with only sweep and no prebend, the error in

near wake axial and tangential inductions in NW-VC is shown to be small compared to direct numerical integration as in

NW(ideal)-VC (Li et al., 2022d).300

The trailed wake radial induction, including both near wake and far wake contributions, is modeled using the full trailed

wake vortex cylinder model:

ur,VC =

Ntp∑
j=1

ũr
(
r,Rj ,y− y(Rj)

)
γt,j . (53)

Under the assumption of a planar rotor without tilt or coning, the axial coordinate differences simplify:

y− y(Rj) = 0. (54)305

The total radial induction includes contributions from both the bound vortex and the trailed vortex:

ur,tot = ur,bound +ur,VC. (55)

Unlike the idealized NW(ideal)-VC model that models the near wake trailed vortex radial induction using non-expanding

helical vortex filaments and adds it to the far wake vortex cylinder induction, the simplified NW-VC model uses the vortex

cylinder model for the radial induction from the entire trailed wake. As a result, the influence of a finite number of blades on310

the radial induction is not included in NW-VC.
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5.3 Radial induction correction to NW-MT using vortex cylinder model

The third modified coupled model, labeled as NW-MT-VC, serves as a comparison to the previous NW-MT model to assess

the impact of radial induction on aerodynamic loads of swept blades. It modifies the existing NW-MT model by including the

trailed wake radial induction calculated from the full trailed wake using the vortex cylinder model.315

The axial and tangential inductions are calculated identically to NW-MT, using Eqs. (27) and (28). The radial induction is

calculated the same as in NW-VC, using Eq. (55).

5.4 Comparison between coupled models

Table 1 summarizes the relationships between the four different coupled models, listed in ascending order of fidelity.

Table 1. Comparison between different coupled models, in ascending order of fidelity. The modeling of axial, tangential and radial induction

components are compared. NW-MT represents the previous implementation; NW-MT-VC extends this by including radial induction from

the vortex cylinder (VC) model; NW-VC further improves the far wake modeling and is the primary model; Finally, NW(ideal)-VC serves

as an idealized reference model.

Model Near wake (aNW, a′NW) Far wake (aFW, a′FW) Radial induction (ur)

NW-MT Approximate, Eqs. (25) and (26) FW MT, Eqs. (7) and (8) Bound vortex, Eq. (29)

NW-MT-VC Approximate, Eqs. (25) and (26) FW MT, Eqs. (7) and (8) Bound vortex + VC, Eq. (55)

NW-VC Approximate, Eqs. (25) and (26) FW VC, Eqs. (43) and (44) Bound vortex + VC, Eq. (55)

NW(ideal)-VC Exact, Eqs. (47) and (48) FW VC, Eqs. (43) and (44) Bound vortex + NW trailed + FW VC, Eq. (52)

From NW-MT to NW-MT-VC, the radial induction due to the trailed wake is included, modeled using the vortex cylinder320

model. From NW-MT-VC to NW-VC, the far wake axial and tangential inductions are calculated using the more physically

consistent far wake vortex cylinders, instead of the far wake momentum theory. Finally, from NW-VC to NW(ideal)-VC, the

radial induction due to the near wake trailed vortex is modeled using non-expanding helical vortex filaments, instead of vortex

cylinders. Hence, the influence of a finite number of blades on the radial induction is included. In addition, the near wake axial

and tangential inductions are calculated using numerical integration, resulting in slightly improved accuracy when modeling325

blades with only sweep and no prebend.

In summary, the proposed modified coupled models address the limitations of previous aerodynamic models for swept

blades. These models provide a framework for evaluating the impact of various modeling choices on aerodynamic load predic-

tions, which will be analyzed in the subsequent sections.

6 Investigation and improvement of the coupling factor330

Previous work (Li et al., 2022d) demonstrated that the existing automatically-adjusted coupling factor in the coupled NW-

MT model performs well for straight and backward swept blades but exhibits unsatisfactory performance for forward swept
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blades. Although the primary source of the issue was narrowed down to the coupling factor, the underlying causes were

not analyzed in depth. This section provides a detailed examination of the current coupling factor to identify the reasons

for its insufficient performance. Modifications are then proposed to address these issues, aiming to enable a more robust,335

automatically-adjusted coupling factor for general swept blades. Improving the coupling factor will enhance the accuracy and

reliability of aerodynamic load predictions for swept blades, which is critical for blade design optimizations. Because coupling

factors are calculated very similarly for both the far wake momentum theory (kMT
FW) and the far wake vortex cylinder model

(kVC
FW), NW-MT is used for this investigation3. The blades used for the investigation are the baseline straight blade (Str), the

backward swept blade (mB-1) and the forward swept blade (mB-5), as described in Sect. 7.3.340

6.1 Existing coupling factor

The existing coupling factor, which is adjusted automatically at each time step as described by Pirrung et al. (2016), was

initially implemented in HAWC2 version 12.3, released in 2016. In HAWC2 version 12.4 (released in 2017), the rotor-averaged

coupling factor was modified to be weighted by annulus area instead of thrust force, to improve numerical stability in aeroelastic

simulations. This modified approach is described below.345

First, local coupling factors are introduced for each blade section. For section i, the local coupling factor at time step t,

labeled as κtFW,i, is updated from the previous time step using the Newton–Raphson method4:

κtFW,i = κt−1
FW,i −

δai
∂δai/∂kFW

, (56)

where δa represents the difference between the total axial induction from the coupled model and a reference BEM model that

has tip-loss correction applied:350

δa= aB,tot − aBEM = aNW + aFW − aBEM. (57)

Since the near wake induction aNW and the reference BEM induction aBEM are not direct functions of the coupling factor,

the partial derivative ∂δa/∂kFW is derived as:

∂δa

∂kFW
=
∂aFW

∂kFW
. (58)

For the far wake momentum theory, the far wake inductions are radially independent, so this partial derivative can be directly355

derived from Eq. (7), resulting in simple expressions (Pirrung et al., 2016). In contrast, in the far wake vortex cylinder model,

contributions from all vortex cylinders affect the far wake induction of each section. Hence, the derivations are more complex,

as detailed in Appendix B.

To limit the impact of extreme values caused by strong trailed vortices, the sectional coupling factor is limited to values

between 0 and 1, denoted as κ̃FW. The rotor-averaged coupling factor is then obtained by weighting these limited local coupling360

3Insights gained from analyzing kMT
FW used in NW-MT are expected to be directly transferable to kVC

FW used in the far wake vortex cylinder model, making

NW-MT a suitable and sufficient choice for identifying the issues.
4In practice, the rotor-averaged value kt−1

FW at the previous time step (t− 1) is used for the calculation, instead of κt−1
FW,i.

14



factors by the annulus area Aa,i:

kFW =

∑Ncp
i=1 κ̃FW,iAa,i∑Ncp

i=1Aa,i

. (59)

In the far wake momentum theory, this rotor-averaged coupling factor kFW is applied uniformly across all rotor sections

to calculate the far wake induction, as shown in Eqs. (7) and (8). Similarly, in the far wake vortex cylinder model, all vortex

cylinders are shifted downstream by a constant distance that is scaled by kFW, as shown in Eq. (38). Importantly, the sectional365

coupling factor κFW is not used directly in the far wake model, since it would cause the converged axial induction to tend

towards the value from the reference BEM method for each section (Pirrung et al., 2016)5.

6.1.1 Performance of the existing coupling factor

For blades without significant sweep, the coupled NW-MT model with the existing coupling factor has been extensively used

for aeroelastic simulations and has generally shown satisfactory performance and numerical stability across various operational370

conditions(Pirrung et al., 2017a, b). However, for blades with significant forward sweep, the existing coupling factor for the

NW-MT model shows insufficient performance.

Numerical tests were performed to evaluate the steady-state loads for both backward and forward swept blades with different

geometries at the optimal operational condition (Li et al., 2022d). It is expected that both the rotor-averaged coupling factor and

far wake inductions for the swept blades should closely match those of the straight blade, as the blade sweep effect is assumed375

to be fully captured in the near wake part of the coupled model. The current method of calculating the automatically-adjusted

coupling factor performs well for the backward swept blades tested in the previous work (Li et al., 2022d), predicting similar

coupling factor values as the baseline straight blade. However, for all forward swept blades tested in that previous work, the

automatically-adjusted coupling factor consistently exhibits noticeable underestimations, leading to overestimated loads across

the blade span. Using a fixed coupling factor equal to that of the baseline straight blade was found to show good agreement380

with higher-fidelity models for all tested swept blades. This suggests that the modeling of bound and near wake trailed vortices

of swept blades is sufficient. However, a fixed coupling factor is not feasible for general aeroelastic calculations, as the rotor

load and hence the coupling factor vary over time.

6.2 Analysis of the existing coupling factor

To identify the issues with the existing method of calculating the coupling factor, an investigation was performed using the NW-385

MT model. At the optimal operational condition with a wind speed of 8 m s−1, different components of the axial inductions and

the local coupling factor κ̃FW along the blade span are compared, as depicted in Fig. 3. Three different values of axial induction

are compared: the near wake induction aNW in Eq. (25), the far wake induction aFW,MT from the far wake momentum theory in

Eq. (7) and the difference between the total axial induction and the reference BEM induction, denoted as δa in Eq. (57).

5Except the sections where the sectional coupling factor κFW would fall outside of the range from 0 to 1 without limiting.
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Figure 3. Comparison of: (a) local coupling factor κ̃FW; (b) different components of axial induction factors from the NW-MT(origin) model

with the existing coupling factor, for the baseline straight blade Str, backward swept blade mB-1 and forward swept blade mB-5, at a wind

speed of 8 m s−1.

It is observed that from the blade root to the mid-span (radius of 50 m), the local coupling factor exhibits only small390

differences between different blades, which have minimal impacts on the rotor-averaged value. Therefore, the focus is on the

outer half of the blade, from the mid-span to the blade tip.

For the baseline straight blade (Str), as shown in Fig. 3 (a), the local coupling factor κ̃FW slowly decreases from mid-span to

a radius of 90 m, maintaining a high level of approximately 0.9. Beyond 90 m, κ̃FW increases steeply and quickly reaches the

upper limit of 1.0 at a radius of 95 m, maintaining this upper limit until the blade tip. This behavior of κ̃FW is directly related395

to the axial induction difference δa, according to Eq. (56).

As shown in Fig. 3 (b), from a radius of 50 m to 90 m, δa remains around zero and slowly increases. For radii larger than 90

m, δa decreases steeply with increasing radius. This indicates that the axial inductions from NW-MT and BEM are generally

similar, except for the blade tip region. Near the blade tip, different methods of modeling tip effects in NW-MT and BEM

result in relatively large differences in axial induction. Due to the upper limit of 1.0 applied to the local coupling factor κ̃FW,400

the impact of these large differences on the rotor-averaged value is limited. The resulting rotor-averaged coupling factor kFW

is 0.909, closely resembling the overall level of the local coupling factor κ̃FW.

6.2.1 Backward swept blade

For the backward swept blade mB-1, as shown in Fig. 3 (a), the local coupling factor κ̃FW behaves similarly to the baseline

straight blade (Str) from a radius of 50 m to 90 m, changing slowly with the radius and maintaining a high level of around 0.9.405

Beyond 90 m, κ̃FW increases steeply and reaches the upper limit of 1.0 at a radius of 93 m, maintaining this upper limit until

the tip. For mB-1, the value of κ̃FW is slightly lower than Str, from a radius of 50 m to 80 m but slightly higher from 80 m to
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95 m. For radii larger than 95 m, both Str and mB-1 reach the upper limit. The resulting rotor-averaged coupling factor kFW for

mB-1 is 0.904, which is very similar to that of Str.

As shown in Fig. 3 (b), the far wake inductions of mB-1 and Str are nearly identical, due to the similar value of rotor-averaged410

kFW. Consequently, the difference in δa is dominated by the near wake axial induction aNW. The near wake model captures

the backward blade sweep effects on the bound and near wake trailed vortices, leading to different near wake axial inductions

aNW between mB-1 and Str. For mB-1, aNW is higher than Str from a radius of 50 m to 80 m and is lower from 80 m to 90

m. Beyond 90 m, aNW decreases steeply, which is mainly due to the shifted starting position of the trailed wake within the

rotor plane. This results in a significant decrease of δa all the way to the blade tip. According to Eq. (56), this steep decrease415

in δa should correspond to a steep increase in the local coupling factor κ̃FW. However, at this operational condition, κ̃FW is

already at high levels around 0.9. Further increases of κ̃FW will quickly reach the upper limit of 1.0, limiting the impact on the

rotor-averaged kFW.

This suggests that the good performance of the existing coupling factor for the backward swept blades tested in (Li et al.,

2022d) may relate to the high loading operational condition and the limiting applied to the local coupling factor κ̃FW. However,420

under lower loading conditions with lower overall levels of κ̃FW, performance might worsen. This is because the steep increase

in κ̃FW near the blade tip may not quickly reach the upper limit, resulting in a noticeable increase in rotor-averaged kFW and,

consequently, an underestimation of the loads. As a result, the performance of the existing coupling factor should also be tested

for operational conditions with lower loading, as discussed later in Sect. 8.3.1.

6.2.2 Forward swept blade425

For the forward swept blade mB-5, as shown in Fig. 3 (a), the local coupling factor κ̃FW is slightly higher than the baseline

straight blade (Str) from a radius of 50 m to 80 m. In this region, the value of κ̃FW is changing slowly with the radius and

maintaining a high level of approximately 0.9, showing similar behavior to Str. For radii from 80 m to the blade tip, κ̃FW

decreases steeply all the way to the lower limit of zero, significantly lower compared to Str. Moreover, the higher weighting

applied at the tip region when calculating the rotor-averaged value further amplifies this effect. The resulting rotor-averaged430

coupling factor kFW is 0.838, notably lower than the straight blade’s value of 0.909.

The local coupling factor κ̃FW is influenced by the axial induction difference δa, which has two components. Firstly, the

difference in aNW between mB-5 and Str, which is due to the influence of the blade’s forward sweep, is investigated. As shown

in Fig. 3 (b), for mB-5, aNW is slightly lower than Str from a radius of 50 m to 80 m and is slightly higher from 80 m to 90

m. Beyond 90 m, aNW is significantly higher than Str, which is mainly due to the shifted starting position of the trailed vortex435

within the rotor plane. Secondly, due to the lowered value of the rotor-averaged kFW, the far wake induction for mB-5 is lower

than Str, showing an offset. Consequently, the overall level of δa for mB-5 is also lower compared to Str, showing a significant

offset, except in the very tip region.

This analysis suggests that the insufficient performance of the existing coupling factor for forward swept blades is directly

related to the steep decrease in the local coupling factor κ̃FW near the blade tip. The lower limit of zero applied to κ̃FW is440
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insufficient to limit the significant local change. The decrease in the rotor-averaged kFW results in the total axial induction from

NW-MT being underestimated, which in turn leads to an overestimation of the loads.

6.2.3 Issues in the existing coupling factor

From the analysis, three major issues with the existing coupling method are identified. Firstly, the Newton–Raphson method is

applied to the local coupling factor κ̃FW, which is not directly applied in the far wake model. Instead, the rotor-averaged value445

kFW, which is the area-weighted value calculated from the local coupling factors, is directly applied in the far wake model. This

indirect application of the Newton–Raphson method introduces inconsistencies between the local and rotor-averaged coupling

factors. Secondly, the significant differences in axial inductions near the blade tip, resulting from different tip modeling methods

in NW-MT and BEM, are balanced by adjusting the overall level of the far wake axial induction. However, this method has

limited effectiveness in counteracting the significant differences in axial inductions locally at the blade tip. For example, due450

to the sweep effects being included in the coupled NW-MT model but not in the reference BEM method. This can lead to large

changes in the rotor-averaged kFW and subsequently affecting load predictions. Thirdly, the impact of the large error locally at

the blade tip is amplified by the larger weighting applied to the blade tip region when averaging the coupling factor based on

the annulus area.

6.3 Modifications to the coupling factor455

To address the issues identified in the existing method of calculating the coupling factor, two modifications are proposed. These

modifications aim to improve the consistency between local and rotor-averaged coupling factors and to reduce the excessive

influence of the blade tip region on the coupling factor calculation. Note that both modifications are applicable to kMT
FW and kVC

FW.

6.3.1 First modification

The first modification addresses the inconsistency arising from not directly applying the Newton–Raphson method to the rotor-460

averaged coupling factor used in the far wake induction. To resolve this, the Newton–Raphson method is applied directly to the

rotor-averaged coupling factor kFW, rather than to the local coupling factor κ̃FW. The residual function Fa is therefore defined

as the sum of the axial induction difference δa weighted by the corresponding annulus area Aa:

Fa =

Ncp∑
i=1

δaiAa,i. (60)

The rotor-averaged coupling factor at the current time step t, labeled as ktFW, is updated from the value at the previous time465

step using the Newton–Raphson method:

ktFW = kt−1
FW − F t

a
∂Fa

∂kFW

. (61)
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By substituting Eq. (60), the partial derivative of Fa with respect to kFW is given by:

∂Fa

∂kFW
=

Ncp∑
i=1

∂aFW,i

∂kFW
Aa,i. (62)

To prevent excessively large differences in axial induction, particularly near the blade tip, a limiting method is introduced.470

This involves calculating a tentative local coupling factor κFW for each section, following a similar approach to Eq. (56):

κtFW,i = kt−1
FW − δai

∂aFW,i/∂kFW
. (63)

This tentative local coupling factor is then limited to the range between 0 and 1, which is labeled as κ̃FW after the limiting.

Then, the adjusted axial induction difference, labeled as δã, is calculated back from the limited local coupling factor κ̃FW,i:

δãi = (kFW − κ̃FW,i)
∂aFW,i

∂kFW
. (64)475

This limited axial induction difference δã replaces the original δa in Eq. (60) to calculate the residual function Fa in Eq. (60).

This first modified method of calculating the coupling factor is labeled as method (a).

6.3.2 Second modification

The second modification specifically addresses the impact of significant axial induction differences at the blade tip region,

targeting the second and third issues as previously identified. This modification is optional and corresponds to an alternative480

modified method for calculating the coupling factor.

Inspired by the observation that the bound circulation decreases rapidly towards zero at the blade tip under near-optimal

operating conditions, the weighting factor for the rotor-averaged coupling factor is modified. Instead of weighting solely by

the annulus area Aa, the new approach uses the product of Aa and the normalized bound circulation ks as defined in Eq. (3).

The residual function is then given by:485

Fka =

Ncp∑
i=1

ks,iδaiAa,i. (65)

The rotor-averaged coupling factor is updated using the Newton–Raphson method:

ktFW = kt−1
FW − F t

ka
∂F t

ka

∂kt
FW

. (66)

By substituting Eq. (65), the partial derivative is obtained using the chain rule:

∂Fka

∂kFW
=

Ncp∑
i=1

(
ks,i

∂aFW,i

∂kFW
+ δai

∂ks,i
∂kFW

)
Aa,i. (67)490

Similar to the first modification, the limiting method is applied to prevent excessive influence due to locally large axial

induction differences. The tentative local coupling factor κFW in Eq. (63) is introduced, which is then limited between 0 and
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1. The adjusted axial induction difference δã that is calculated back using Eq. (64) is then used in Eq. (65), replacing δa, to

compute the residual function Fka.

This second modified method, labeled as method (ka), effectively reduces the influence of the blade tip region on the coupling495

factor calculation. So that the rotor-averaged kFW is expected to better represent the overall level along the blade. Moreover, it

can be shown that performing an area-weighted rotor averaging of ksaB is equivalent to averaging of Cpl
p,KJ in Eq. (2), which

serves as an approximation to the local power coefficient. Additionally, this method is conceptually similar to matching the

rotor-averaged axial induction weighted by the annulus thrust force.

Compared to the first modified method, this second modified method has more complicated forms of the partial derivatives, as500

shown in Eq. (67). Specifically, computing the partial derivative ∂ks/∂kFW requires additional considerations. The normalized

bound circulation ks depends on the lift coefficientCL and relative velocity Vrel according to Eqs. (3) and (4). The lift coefficient

CL depends on the angle of attack α and in turn depends on the induced velocities, which are functions of kFW. Therefore, the

lift slope dCL/dα is required to calculate the partial derivative. This adds complexity to the implementation of this modified

method.505

7 Simulation setup and blades for the comparison

In this section, the higher-fidelity RANS solver and lifting-line (LL) solver are firstly described. Then, the straight and swept

blades used for the comparison are described. Finally, loads used for the comparison are described.

7.1 Reynolds-averaged Navier–Stokes solver

The pressure-based incompressible three-dimensional solver EllipSys3D was used to solve the Reynolds-Averaged Navier–510

Stokes (RANS) equations using finite volume discretization. An inlet/outlet boundary condition strategy was applied at the

outer limit of the computational fluid dynamics (CFD) domain. The flow was assumed to be fully turbulent, with the k–ω

SST model employed (Menter, 1994). Rotor-resolved meshes were generated fully scripted in two consecutive steps to ensure

consistent grid quality. First, a structured mesh of the blade surface was generated (Zahle, 2025), with 128 cells in the spanwise

direction and 256 cells in the chordwise direction. Second, the surface mesh was radially extruded using a hyperbolic mesh515

generator (Sørensen, 1998) to create a volume grid with a total of 256 cells. The resulting outer domain was located approxi-

mately 11 D (rotor diameters) away. A boundary layer clustering was applied with an imposed first cell height of 1× 10−6 m

to target y+ values lower than one. The resulting volume meshes accounted for 14.2 million cells.

While a steady solver was employed, some unsteady flow separation is expected near the blade root region during operation.

Unlike previous works (Li et al., 2022b, c, d), which averaged CFD results over the last 350 iterations, the present work averages520

only the last 50 iterations, resulting in increased noise in the root region. Applying convergence enhancement methods to the

RANS CFD solver, such as the modified BoostConv method (Dicholkar et al., 2022, 2024, 2025), could improve the root region

comparisons. However, since the blade root region is not the focus of this study and has negligible influence on the blade tip

region, the existing results are deemed sufficient for this study.
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7.2 Free-wake lifting line solver525

In addition to the RANS CFD solver, the free-wake lifting line (LL) module implemented in the in-house multi-fidelity vortex

code MIRAS (Ramos-García et al., 2016; Ramos-García et al., 2017) is also used for comparison, as a higher-fidelity aerody-

namic model. While the blade-resolved RANS CFD approach resolves the 3-D flow field around the blade geometry, the LL

method relies on 2-D airfoil data and applies the cross-flow principle (Hoerner and Borst, 1985). The free-wake LL method

represents the highest fidelity within the framework of engineering aerodynamic models that rely on 2-D airfoil data, making530

it a crucial benchmark for this study.

In the LL method, each blade is represented by a concentrated bound vortex line located at the 1/4 chord line of the blade

and is modeled as discrete vortex filaments. With the spanwise and temporal variation of the bound vortex, vorticities are

trailed and shed into the wake. Importantly, the influence of a curved bound vortex on itself is included (Li et al., 2020),

which is essential for modeling blade sweep effects (Li et al., 2018, 2022d; Fritz et al., 2022, 2024b). The first row of wake535

vortex panels is released from the lifting line, using velocities locally at the 1/4 chord line. To simulate the wake, a hybrid

filament-particle-mesh method is employed. To accurately resolve the near wake, which is crucial for capturing sweep effects,

the bound vortex and the first 360 wake panels after each blade are modeled using vortex filaments. This vortex filament

wake corresponds to approximately 1.5 revolutions of the rotor6. The remaining wake is represented by vortex particles, which

are subsequently interpolated onto an auxiliary Cartesian mesh. Interactions between vortex particles and influence of vortex540

particles on the filaments are efficiently computed using an FFT-based method to solve the Poisson equation with a regularized

Green’s function under free-space boundary conditions. A 10th-order Gaussian filter is used to regularize the singular free-

space Green’s function (Hejlesen et al., 2013, 2015). Furthermore, a filter function with a width of 1.5 times of the mesh

cell size is applied to minimize smoothing errors. The influence of the vortex filaments on themselves are modeled using the

Biot-Savart law. The influence of the vortex filaments on the vortex particles are neglected, since the filament wake size is large545

enough.

7.2.1 Numerical setup

The Cartesian mesh used for wake modeling spans approximately (11D× 2D× 2D) (where D is the rotor diameter), with a

cell size of 2.5 m, approximately 0.0125D. This configuration results in approximately 22.5 million cells and an equal number

of vortex particles. Relatively high temporal and spatial resolutions are used to ensure the accurate modeling of sweep effects.550

For each simulation, a time step of 0.03 s is chosen, corresponding to an azimuthal discretization of approximately 1.5◦, or

240 time steps per rotor revolution. Simulations are conducted for 20,000 time steps, corresponding to 600 s of total simulation

time or approximately 83 rotor revolutions. A maximum of 50 sub-iterations per time step is applied to ensure the angle of

attack residual converges below a specified tolerance. Each blade is discretized radially into 50 spanwise sections using cosine

spacing. The airfoil polars are obtained from fully turbulent 2-D RANS CFD simulations (Bortolotti et al., 2019).555

6A parameter study has been performed and showed that the results converged if the filament wake size is 1.5 revolutions or larger.
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7.3 Blades used for the comparison

The blades used for comparison are based on the IEA-10.0-198 10 MW reference wind turbine (RWT) (Bortolotti et al., 2019),

following previous studies (Li et al., 2018, 2022b, d, 2025b, 2024). The baseline straight blade is modified by aligning the

half-chord line into a straight main axis. Swept blades are also used for comparison, which are modified based on the baseline

straight blade by introducing x-components into the main-axis geometry. Afterwards, the main axis geometry is scaled so that560

the radius of each blade section remains unchanged compared to the baseline straight blade. The chord and twist distributions

of the swept blades are also modified so that the BEM method predicts the same operational conditions (e.g., angle of attack and

local thrust coefficient) as the baseline straight blade (Li et al., 2025b). The blades used for comparison include the backward

swept blade mB-1 and the forward swept blade mB-5, which are also used in previous work (Li et al., 2025b). Their main axis

geometries are illustrated in Fig. 4.

Figure 4. Front view of the backward swept blade mB-1 and the forward swept blade mB-5 in the blade root coordinate system (B-sys). The

main axis, which is the half-chord line, is highlighted. The figure is adapted from (Li et al., 2025b).

565

It has been tested that other swept blades with different main axis shapes exhibit similar behaviors to the swept blades used

in the present work. Including these additional results will not change the conclusions of the present work. The results of other

swept blades are summarized in an internet appendix (Li et al., 2025a).

For all cases, the rotor radius is 99 m with a hub radius of 2.8 m. The blades are assumed to be stiff, excluding elastic

deformation effects. For the low- to mid-fidelity engineering aerodynamic models, including BEM and coupled near and far570

wake models, the same airfoil data in the LL method is used, which is from 2-D fully turbulent RANS CFD simulations

(Bortolotti et al., 2019). For BEM and coupled models, each blade is discretized radially into 80 sections.

7.4 Operational conditions

The operational conditions for the numerical tests also align with previous studies (Li et al., 2022b, c, d, 2025b). First, an

optimal operational condition with high rotor thrust is used for comparison. The rotors operate under a uniform inflow of575

8 m s−1 perpendicular to the rotor plane, with a constant rotational speed of 0.855 rad s−1 and no blade pitch.

In addition, comparisons are conducted at operational conditions corresponding to lower thrust coefficients. Three conditions

defined in the IEA Wind TCP Task 37 report (Bortolotti et al., 2019) are used for these lower-loading cases, with rotational

speed set at 0.909 rad s−1, wind speed varying from 12.0 m s−1 to 20.0 m s−1 and the blade is pitched towards lower loadings.

For the baseline straight blade, the blade is pitched with θp for these lower loading conditions. For swept blades, the blade is580
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not directly pitched but has modified chord and twist distributions according to (Li et al., 2025b), so that the BEM method

predicts the same circulation distribution as the pitched straight blade.

The operational conditions are summarized in Table 2, detailing wind speed, tip-speed-ratio and pitch angle θp. The table

also lists the thrust and power coefficients of the rotor with baseline straight blades, as predicted by the CFD solver.

Table 2. Operational conditions used in the comparison.Cstr
T,CFD andCstr

P,CFD are the thrust and power coefficients predicted by the CFD solver

for the baseline straight blade.

Wind speed U0 [m s−1] Tip-speed-ratio λ [-] Pitch angle θp [◦] Cstr
T,CFD [-] Cstr

P,CFD [-]

8.0 10.58 0.00 0.91 0.45

12.0 7.50 5.98 0.44 0.31

15.0 6.00 11.77 0.21 0.16

20.0 4.50 18.51 0.09 0.07

7.5 Loads for comparison585

In the present work, the non-dimensional axial and tangential loads, which are in the y- and x-directions in the blade local

coordinate system (BL-sys) as described in (Li et al., 2025b), are used for comparison. The axial and tangential forces are

non-dimensionalized into the local thrust coefficient and the simplified local power coefficient as follows:

Ct =
NBf

BL
y ds

1
2ρU

2
0 2πrdr

, (68)

C̃p ≡
ΩrNBf

BL
x ds

1
2ρU

3
0 2πrdr

, (69)590

where the simplified power coefficient C̃p represents the contribution of the tangential force to power. Note that other loads,

such as sectional moments, can also contribute to aerodynamic power. However, for moderately swept blades, these contribu-

tions are generally insignificant.

To better illustrate the influence of curved blade geometry on loads, the load differences between the swept blades and the

baseline straight blade at the same radial positions are used for the comparison:595

∆Ct(r) = Ct(r)−Cstr
t (r), (70)

∆C̃p(r) = C̃p(r)− C̃str
p (r). (71)

8 Results

In this section, comparative studies are conducted to evaluate the performance of different coupling factors and far wake models

for both straight and swept blades. Building on the methodology and coupling factor modifications introduced in Sect. 6.3, the600
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coupled models NW-MT and NW-VC with coupling factors calculated using different methods are compared for the baseline

straight blade (Str), the backward swept blade (mB-1) and the forward swept blade (mB-5). The coupled models using the

original coupling factor and the two modified coupling factors are labeled as (origin), (a) and (ka), respectively. Additionally,

the comparison includes coupled models using a fixed coupling factor for the swept blades, set equal to that of the baseline

straight blade, labeled as (fixed). This fixed coupling factor is following the assumption that the sweep effects are fully captured605

in the near wake, making the coupling factor independent of blade sweep. Although insightful for comparison purposes, this

approach is impractical for implementation since it requires simultaneous computations for both straight and swept blades.

Finally, results from different coupled models with their preferred coupling factors are compared with BEM, LL and CFD

results.

8.1 Baseline straight blade610

First, loads of the baseline straight blade, calculated using the coupled models NW-MT(origin) and NW-VC(origin) with the

original coupling factors, are compared with results from the BEM method, the LL solver and the RANS CFD solver at the

optimal operational condition with a wind speed of 8 m s−1. The results are depicted in Fig. 5.
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Figure 5. Thrust coefficient Ct (panel a) and simplified power coefficient C̃p (panel b) of the baseline straight blade Str at a wind speed of

8 m s−1, calculated using the BEM method, coupled models NW-MT(origin) and NW-VC(origin) with the original coupling factors, the LL

solver and the CFD solver.

For loads in the blade root region with a radius of less than 20 m, there is a relatively large difference between results from

the CFD solver and the other models. As discussed in Sect. 7, it is due to unsteady flow separation in this region. Therefore,615

the comparison focuses on the radius from 20 m to the blade tip.

The thrust coefficients predicted by these different models show good agreement, indicating that the predicted circulation

distributions are similar (Li et al., 2025b). However, larger discrepancies are observed in the simplified power coefficient

results, especially for radii larger than 60 m. All engineering aerodynamic models overestimate the tangential loads compared
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to the LL and CFD results. This is likely to be related to the assumptions in the engineering models, such as the use of Prandtl’s620

tip-loss correction in the BEM method and the assumption of a non-expanding helical trailed wake in the coupled models.

Furthermore, the BEM method and the coupled models do not take into account the wake expansion and wake roll-up effects,

which are significant for this high-loading condition. In contrast, the free-wake LL method includes the wake expansion and

wake roll-up effects; the CFD solver is modeling the blade tip and wake effects with much higher fidelity, as the flow around

the 3-D blade geometry is fully resolved.625

For NW-VC(origin), there is surprisingly good agreement with the BEM results from a radius of 20 m to 90 m, for both thrust

and power coefficients. Beyond 90 m, differences in the power coefficient arise due to different tip-loss modeling approaches. In

comparison, NW-MT(origin) shows larger discrepancies compared to the BEM and NW-VC(origin) results for both thrust and

power coefficients. Since both NW-MT(origin) and NW-VC(origin) use the same near wake model, the differences arise from

the far wake modeling. Specifically, NW-MT(origin) uses the far wake momentum theory, which is less physically consistent630

than the far wake vortex cylinder model used in NW-VC(origin).

For operational conditions with higher wind speeds and lower thrust coefficients listed in Table 2, the results are presented

in Fig. C1 in Appendix C. In general, the different models show good agreement across all tested lower loading conditions.

As wind speed increases and rotor loading decreases, the agreement between different models generally improve, especially

near the blade tip. This improvement is likely due to the weaker tip vortex strength and reduced induction effects at lower rotor635

loading conditions. Furthermore, the wake expansion effect becomes weaker as rotor loading decreases.

8.2 Impact of blade sweep on aerodynamic loads

In this section, the CFD results are used to illustrate the impact of blade sweep on aerodynamic loads at different operational

conditions. The purpose is to provide an intuitive understanding of the relative magnitude of the blade sweep effects compared

to the overall loads, setting a basis for the following comparisons. First, the CFD results of the baseline straight blade (Str) and640

the swept blades (mB-1 with backward sweep and mB-5 with forward sweep) at an optimal operational condition with a wind

speed of 8 m s−1 are compared in Fig. 6. The relative differences in rotor-integrated thrust and power for the swept blades

compared to the baseline straight blade are summarized in Table 3

Table 3. Relative differences in rotor thrust and power coefficients of the swept blades (mB-1 with backward sweep and mB-5 with forward

sweep) compared to the baseline straight blade, predicted by the CFD solver. Relative differences computed as: ϵCi = (CSweep
i −CStr

i )/CStr
i ,

where Ci represents either the thrust coefficient (CT ) or the power coefficient (CP ).

Wind speed U0 [m s−1] ϵCmB-1
T [%] ϵCmB-5

T [%] ϵCmB-1
P [%] ϵCmB-5

P [%]

8.0 -0.10 0.12 2.90 -2.68

12.0 -0.02 0.31 0.76 -0.26

15.0 0.23 0.03 0.82 -0.52

20.0 0.17 -0.68 0.98 -1.25
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Figure 6. Thrust coefficient Ct (panel a) and simplified power coefficient C̃p (panel b) of the baseline straight blade Str, the backward swept

blade mB-1, and the forward swept blade mB-5 at a wind speed of 8 m s−1, calculated using the CFD solver.

At this operational condition, blade sweep has a smaller relative influence on thrust than on power. For both swept blades mB-

1 and mB-5, the thrust coefficients remain similar to that of the straight blade. The rotor-integrated thrust coefficient differ only645

by approximately 0.1%. However, significant differences are observed in the power coefficients of the swept blades compared

to the straight blade, with a more substantial difference exceeding 2.5% observed in the rotor-integrated power coefficient. For

radii less than 50 m, loads of the swept blades are almost identical to those of the baseline straight blade. Moving from the

blade mid-span (radius of 50 m) towards the blade tip, a spanwise redistribution of loads is observed for both thrust and power

coefficients, consistent with observations in previous studies (Li et al., 2018, 2022d, 2025b). Specifically, for the backward650

swept blade mB-1, the loads initially decrease and then increase compared to the baseline straight blade. For the forward swept

blade mB-5, the load redistribution shows an opposite trend, with the loads initially increasing and then decreasing relative to

the baseline straight blade.

For lower loading conditions at wind speeds of 12, 15 and 20 m s−1, the results are presented in Fig. C2 in Appendix

C. Across all tested lower loading conditions, the spanwise load redistribution effect is observed for both thrust and power655

coefficients. However, as wind speed increases and rotor thrust coefficient decreases, the differences in loads between the

swept blades and the straight blade diminish, indicating a reduced influence of blade sweep. At the highest tested wind speed

of 20 m s−1, corresponding to a rotor-averaged thrust coefficient of 0.1, both axial and tangential loads of the swept blades are

nearly identical to those of the baseline straight blade. Nevertheless, the influence of blade sweep remains consistently more

pronounced on rotor power coefficients than on rotor thrust coefficients across all tested conditions7, except for the single case660

of blade mB-5 operating at 12 m s−1.

7Note that, in practice, for a pitch-regulated turbine operating at higher wind speeds, the pitch angle will be determined by the controller to maintain the

rated aerodynamic power. Then, the differences between the swept and straight blades will be in the thrust only.
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8.3 Coupled models with far wake momentum theory

This section evaluates the performance of different coupling factors when applied to the coupled models with far wake mo-

mentum theory. As described in Sect. 5.3, the only difference between NW-MT and NW-MT-VC is the inclusion of radial

induction, which has negligible influence on the coupling factor; therefore, only NW-MT is used for this comparison. First,665

the rotor-averaged coupling factors kMT
FW for the straight and swept blades, calculated using the three different methods, are

compared in Table 4.

Table 4. Rotor-averaged coupling factor of the baseline straight blade (Str), the backward swept blade (mB-1) and the forward swept blade

(mB-5) calculated from the coupled NW-MT model with the original coupling factor, NW-MT(origin), and the modified coupling factors,

NW-MT(a) and NW-MT(ka), at a wind speed of 8 m s−1. The differences in the coupling factor of the swept blades compared to the baseline

straight blade are also shown.

Model Str mB-1 mB-5 ∆mB-1 ∆mB-5

NW-MT(origin) 0.904 0.909 0.838 0.006 -0.066

NW-MT(a) 0.911 0.912 0.888 0.001 -0.024

NW-MT(ka) 0.912 0.911 0.900 -0.001 -0.012

For the baseline straight blade (Str), the rotor-averaged coupling factors kFW from all three methods are very similar, indi-

cating negligible differences in far wake inductions and consequently in the loads. Thus, NW-MT(a) and NW-MT(ka) with the670

two modified coupling factors described in Sect. 6.3 predict very similar loads to NW-MT(origin) for the straight blade case,

as shown in Fig. 5.

For the swept blades, the performance of different coupling factors is evaluated by comparing the loads predicted by the

coupled models with CFD results and with NW-MT(fixed), which uses the same fixed coupling factor as the baseline straight

blade. As shown in Sect. 8.2, the load differences between the swept blades and the baseline straight blade are relatively small675

compared to the overall loads, especially at lower loading conditions. To better illustrate the effects of using different coupling

factors, the load differences between the swept blades and the baseline straight blade calculated using Eqs. (70) and (71) are

compared.

At the optimal operational condition with a wind speed of 8 m s−1, the load offsets of the swept blades mB-1 and mB-5

relative to the baseline straight blade (Str) are depicted in Figs. 7 and 8, respectively. In addition, the BEM results are included680

as a reference, which predict approximately the same loads for the swept and straight blades (Li et al., 2025b).

For the backward swept blade mB-1, the loads predicted by the NW-MT model with different coupling factors are similar

and agree well with the CFD results. Both modified methods, NW-MT(a) and NW-MT(ka), show slight improvements over

NW-MT(origin) when compared to NW-MT(fixed). Furthermore, as shown in Table 4, the rotor-averaged coupling factors

kMT
FW for mB-1 are very close to those of the straight blade across all methods. For the forward swept blade mB-5, NW-685
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Figure 7. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the backward swept blade mB-1

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. Results from the coupled NW-MT model with different coupling

factors are compared with BEM and CFD results.
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Figure 8. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the forward swept blade mB-5

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. Results from the coupled NW-MT model with different coupling

factors are compared with BEM and CFD results.
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MT(origin) significantly overestimates the loads along the span. This overestimation is associated with a noticeable decrease

in kMT
FW compared to the straight blade, due to inconsistencies in calculating the coupling factor, as detailed in Sect. 6.2.2. In

contrast, both NW-MT(a) and NW-MT(ka) with modified coupling factors show clear improvements over NW-MT(origin).

However, both modified methods still slightly underestimate the rotor-averaged coupling factor kMT
FW , which leads to an overall

overestimation of the aerodynamic loads compared to NW-MT(fixed). Among the two methods, NW-MT(ka) shows further690

improvement over NW-MT(a) and has sufficiently good agreement with both NW-MT(fixed) and CFD results.

8.3.1 Lower loading conditions

To ensure a comprehensive evaluation, the performance of the different coupling factors applied to NW-MT is also assessed

under lower loading conditions listed in Table 2. Detailed results for these conditions are shown in Figs. C3 and C4 in Ap-

pendix C, with conclusions summarized here.695

For the backward swept blade mB-1, the NW-MT model with different coupling factors exhibits sufficiently good agreement

with the CFD results across all tested lower loading conditions. In the case of NW-MT(origin), the loads are underestimated

compared to NW-MT(fixed) from radii 20 m to 50 m and this underestimation becomes more pronounced at lower loading

conditions8. Both modified methods, NW-MT(a) and NW-MT(ka), show improved agreement with NW-MT(fixed), with NW-

MT(ka) showing slightly better performance. For the forward swept blade mB-5, NW-MT(origin) overestimates the loads700

across all conditions, showing significant discrepancies compared to the CFD results. In contrast, NW-MT(fixed) demonstrates

very good agreement with the CFD solver. Results from NW-MT(a) show clear improvements over NW-MT(origin) but still

overestimate the loads, especially from radii 20 m to 50 m. NW-MT(ka) shows further improvement over NW-MT(a) and has

sufficiently good agreement with NW-MT(fixed).

8.3.2 Summary705

In summary, both NW-MT(a) and NW-MT(ka) with modified coupling factors show similarly good performance as NW-

MT(origin) when modeling the baseline straight blade (Str) and the backward swept blade (mB-1) across all tested operational

conditions. For the forward swept blade (mB-5), NW-MT(a) offers improvement over NW-MT(origin) but still overestimates

the loads. In comparison, NW-MT(ka) shows sufficiently good agreement with NW-MT(fixed) and CFD results across all tested

operational conditions. Therefore, despite its more complex implementation, the modified coupling factor (ka) is preferred for710

coupled models using the far wake momentum theory. This suggests that NW-MT(ka) and NW-MT(ka)-VC are preferable over

NW-MT and NW-MT-VC with other coupling factors.

8.4 Coupled models with far wake vortex cylinders

This section evaluates the performance of different coupling factors when applied to the coupled models with the far wake

vortex cylinder model. As in Sect. 8.3, the influence of the modified coupling factors on both straight and swept blades is715

8This can be linked to the discussion in Sect. 6.2.1 that the local coupling factor κFW maintains a lower overall level under these operational conditions.
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assessed. Since the primary difference between NW-VC and NW(ideal)-VC lies in the radial induction, which has negligible

influence on the coupling factor, only NW-VC is used for the comparison. The rotor-averaged coupling factors (kVC
FW) for the

straight and swept blades, calculated using the three different methods, are compared in Table 5.

Table 5. Rotor-averaged coupling factor of the baseline straight blade (Str), the backward swept blade (mB-1) and the forward swept blade

(mB-5) calculated from the original method NW-VC(origin) and the modified methods NW-VC(a) and NW-VC(ka), at a wind speed of

8 m s−1. The differences in the coupling factor of the swept blades compared to the baseline straight blade are also shown.

Model Str mB-1 mB-5 ∆mB-1 ∆mB-5

NW-VC(origin) 0.562 0.581 0.573 0.019 0.011

NW-VC(a) 0.576 0.578 0.608 0.002 0.032

NW-VC(ka) 0.576 0.592 0.583 0.016 0.006

For the baseline straight blade Str, the rotor-averaged coupling factors kFW from all three methods are similar, showing that720

the performance remains similar before and after the coupling factor modifications. Consequently, NW-VC(a) and NW-VC(ka)

with modified coupling factors predict very similar loads as NW-VC(origin) for the straight blade case, as shown earlier in

Fig. 5.

To evaluate the performance of different coupling factors for swept blades, loads predicted by the coupled models are

compared with results from CFD and NW-VC(fixed), which uses a fixed coupling factor equal to that of the baseline straight725

blade. As in previous sections, the load differences between the swept blades and the baseline straight blade, calculated using

Eqs. (70) and (71) are compared, to better illustrate the effects of using different coupling factors. At the optimal operational

condition with a wind speed of 8 m s−1, the load offsets between the swept blades mB-1 and mB-5 relative to the baseline

straight blade Str are shown in Figs. 9 and 10, respectively. The BEM results are also included as a reference, which predict

approximately the same loads for the swept and straight blades (Li et al., 2025b).730

For both swept blades mB-1 and mB-5, loads from the coupled models with different coupling factors are very similar to

each other and show good agreement with the CFD results. As shown in Table 5, the rotor-averaged coupling factors kVC
FW for

both swept blades from different methods are all similar and closely approximate the value of the straight blade Str.

Compared to NW-MT(origin), the results from NW-VC(origin) show significant improvements in modeling the forward

swept blade mB-5, despite using the original coupling factor. To understand the surprisingly good performance of the NW-735

VC(origin) model, the analysis is performed using the similar method as in Sect. 6.2 for NW-MT(origin). Specifically, the local

coupling factor and also the different components of the axial inductions for the swept blades mB-1 and mB-5 are compared

with those of the baseline straight blade Str, as shown in Fig. 11.

For the baseline straight blade Str, the axial induction difference δa is approximately zero from the mid-span to a radius

of 90 m. Beyond 90 m, δa decreases steeply. This indicates that the axial induction from NW-VC(origin) is almost identical740
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Figure 9. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the backward swept blade mB-1

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. The results calculated from the coupled NW-VC model with different

coupling factors are compared with BEM and CFD results.
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Figure 10. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the forward swept blade mB-5

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. The results calculated from the coupled NW-VC model with different

coupling factors are compared with BEM and CFD results.
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Figure 11. Comparison of: (a) the local coupling factor κ̃FW; (b) different components of the axial induction factors from the coupled model

NW-VC(origin) with the existing coupling factor, of the baseline straight blade Str, the backward swept blade mB-1 and the forward swept

blade mB-5, at a wind speed of 8 m s−1.

to the BEM axial induction along the blade span, except in the blade tip region with radius larger than 90 m. In contrast, as

shown earlier in Fig. 3, NW-MT(origin) that has the same method of calculating the coupling factor has noticeable non-zero

values of δa from a radius of 20 m to 90 m. This means that BEM and NW-MT have larger discrepancies in axial inductions

along the span. This observation further justifies the far wake vortex cylinder model in NW-VC provides a more physically

consistent representation of the far wake compared to the simple scaling approach used in the far wake momentum theory745

of NW-MT. For the straight blade Str, the improved consistency reduces systematic errors in axial induction along the span,

making the coupling between the near and far wake models inherently easier to balance. For the swept blades mB-1 and mB-5,

although the blade sweep effects make balancing of δa more challenging, the improved physical consistency of the far wake

vortex cylinder model allows for effective balancing, even when using the original coupling factor. Additionally, the NW-VC

model has a different definition of the coupling factor compared to that of NW-MT, as described in Sect. 4.2.1, which prevents750

extraordinary changes in the far wake induction. Furthermore, variations in the rotor-averaged coupling factor kVC
FW affect the

far wake inductions differently in the far wake vortex cylinder model than kMT
FW in the simple scaling approach used in the far

wake momentum theory.

8.4.1 Lower loading conditions

To provide a comprehensive evaluation, the performance of the different coupling factors applied to NW-VC is also assessed755

under lower loading conditions listed in Table 2. Detailed results for these conditions are provided in Figs. C5 and C6 in

Appendix C, with conclusions summarized here.

For the backward swept blade mB-1, results from NW-VC with different coupling factors exhibit very good agreement with

the CFD results, particularly from the mid-span to the blade tip. Overall, results from NW-VC(origin) show sufficiently good
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agreement with NW-VC(fixed) and CFD results. Some minor differences are observed from radius 20 m to 50 m, especially for760

NW-VC(origin) at a wind speed of 20 m s−1. Both modified methods, NW-VC(a) and NW-VC(ka), show marginally improved

agreement with NW-VC(fixed), especially from radius 20 m to 50 m.

For the forward swept blade mB-5, NW-VC(origin) results maintain sufficiently good agreement with NW-VC(fixed) and

CFD results at wind speeds of 12 m s−1 and 15 m s−1. However, at a wind speed of 20 m s−1, corresponding to a rotor

thrust coefficient of 0.1, NW-VC(origin) significantly underestimates the loads between radii of 20 m and 70 m. Neverthe-765

less, results from NW-VC(origin) still show significantly improved agreement compared to NW-MT(origin), due to the more

physically consistent far wake vortex cylinder model. The two modified methods, NW-VC(a) and NW-VC(ka), demonstrate

further improvements over NW-VC(origin) and provide better agreement with NW-VC(fixed). At 20 m s−1, NW-VC(a) shows

improvements over NW-VC(origin) but noticeably overestimates the load between radii of 20 m and 50 m. In comparison,

NW-VC(ka) shows further improved agreement with NW-VC(fixed) compared to NW-VC(a). However, at such low loading770

conditions, the magnitude of the absolute error is very small, so the performance of both NW-VC(a) and NW-VC(ka) remains

acceptable.

8.4.2 Summary

In summary, NW-VC(origin) with the original coupling factor shows good agreement with NW-VC(fixed) and CFD results at

the optimal operational condition but its performance worsens under lower loading conditions. Nevertheless, due to its more775

physically consistent far wake modeling, NW-VC(origin) performs significantly better than NW-MT(origin), especially for

forward swept blades. Both NW-VC(a) and NW-VC(ka) with modified coupling factors show further improvements over NW-

VC(origin) and provide sufficiently good performance across different operational conditions. However, the modified method

(a) is preferred for coupled models using the far wake vortex cylinder model due to its simpler implementation. This suggests

that NW-VC(a) and NW(ideal)-VC(a) should be used over NW-VC and NW(ideal)-VC with other coupling factors.780

8.5 Comparison of different coupled methods

In this section, the performance of different coupled methods is compared with LL and CFD results. The methods evaluated in-

clude the existing coupled model NW-MT(ka) and the modified coupled models NW-MT(ka)-VC, NW-VC(a) and NW(ideal)-

VC(a). Note that all coupled models use the favorable modified methods for calculating the coupling factor introduced earlier.

Results from the conventional BEM method are also included as a baseline. The primary aim is to compare the performance of785

these coupled models and investigate the impact of different trailed wake radial induction modeling and far wake modeling on

the load calculation of swept blades.

At the optimal operational condition with a wind speed of 8 m s−1, the load offsets of the swept blades mB-1 and mB-5

compared to the baseline straight blade are shown in Figs. 12 and 13, respectively.

The BEM method predicts that the swept blades have approximately the same loads as the baseline straight blade, which790

is expected since it is not able to model the influence of blade sweep on the wake. For the thrust coefficient, the existing

coupled model NW-MT(ka), which does not include trailed wake radial induction, predicts results that differ from all the
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Figure 12. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the backward swept blade mB-1

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. Results calculated from NW-MT(ka), NW-MT(ka)-VC, NW-VC(a)

and NW(ideal)-VC(a) are compared with BEM, LL and CFD results.
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Figure 13. Offset in thrust coefficient (∆Ct) (panel a) and simplified power coefficient (∆C̃p) (panel b) of the forward swept blade mB-5

compared to the baseline straight blade Str, at a wind speed of 8 m s−1. Results calculated from NW-MT(ka), NW-MT(ka)-VC, NW-VC(a)

and NW(ideal)-VC(a) are compared with BEM, LL and CFD results.
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modified coupled models that include the trailed wake radial induction. This difference is relatively small compared to the

overall magnitude of the thrust coefficient. Nevertheless, including the trailed wake radial induction, as done in the modified

coupled models, leads to predicted thrust coefficients showing improved agreement with the LL and CFD results. Furthermore,795

comparing the results from NW-VC(a) and NW(ideal)-VC(a), the differences are negligible, indicating that the influence of

the finite number of blades on radial induction is negligible for swept blades. In addition, the good agreement also relates

to the high accuracy of the approximated near wake axial and tangential inductions in the NW-VC model, as described in

Sect. 3.2. For the simplified power coefficient, results from NW-MT(ka) are almost identical to those from NW-MT(ka)-VC,

indicating that the radial induction has negligible contribution to tangential loads for blades with only sweep. In general, the800

existing coupled model NW-MT(ka) with the modified coupling factor demonstrates sufficiently good performance for both

swept blades. Moreover, NW-VC(a) and NW(ideal)-VC(a) show very good agreement with LL and CFD results, with only

insignificant improvements compared to NW-MT(ka) and NW-MT(ka)-VC. The slight differences are mainly due to the far

wake modeling, with a small portion possibly resulting from the different coupling factors applied.

Furthermore, the relative differences in rotor-integrated thrust and power coefficients for the swept blades compared to the805

baseline straight blade are summarized in Table 6.

Table 6. Relative differences in rotor-integrated thrust and power coefficients of the swept blades mB-1 (backward swept) and mB-5 (forward

swept) compared to the baseline straight blade, at a wind speed of 8 m s−1. Results from coupled methods NW-MT(ka), NW-MT(ka)-VC,

NW-VC(a) and NW(ideal)-VC(a) are compared against BEM, LL and CFD results.

Method ϵCmB-1
T [%] ϵCmB-5

T [%] ϵCmB-1
P [%] ϵCmB-5

P [%]

BEM 0.01 0.01 0.25 0.25

NW-MT(ka) 0.26 0.11 2.15 -0.45

NW-MT(ka)-VC -0.33 0.72 2.22 -0.52

NW-VC(a) -0.21 0.45 2.67 -1.31

NW(ideal)-VC(a) -0.12 0.37 2.67 -1.30

LL -0.20 0.06 1.90 -1.54

CFD -0.10 0.12 2.90 -2.68

As presented in Table 6, all coupled models predict relatively small differences in rotor thrust coefficients compared to the

baseline straight blade. However, rotor power coefficients exhibit larger relative differences. Among the coupled methods, NW-

VC(a) and NW(ideal)-VC(a) exhibit the closest agreement with LL and CFD predictions, demonstrating improved performance

over NW-MT(ka) and NW-MT(ka)-VC. These findings highlight the effectiveness of the modified coupled models, particularly810

NW-VC(a), in accurately capturing the sweep-induced effects on rotor-integrated loads. In contrast, the conventional BEM

method predicts negligible differences in both thrust and power, as expected, since it does not model wake-induced effects of

blade sweep.
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8.5.1 Lower loading conditions

For the lower loading conditions listed in Table 2, the results are depicted in Figs. C7 and C8 in Appendix C, with conclusions815

summarized here.

For the backward swept blade mB-1, there is very good agreement among the different coupled models, all showing very

similar trends with the LL and CFD results across all tested operational conditions. Specifically, as the load decreases, the

thrust coefficients from NW-MT(ka) and NW-MT(ka)-VC become very similar, indicating that the relative importance of the

trailed wake radial induction decreases with the loading. For the forward swept blade mB-5, the results are almost identical820

for models with the same far wake modeling. For radii between 20 m and 50 m, results from models with different far wake

modeling show slight differences. Note that these differences can also result from the different coupling factors applied.

At lower loading conditions, load offsets from CFD show notably difference from both the engineering models and the LL

solver, around a radius of 60 m. The load offset is lower for the backward swept blades and is higher for the forward swept

blades. This difference is also visualized for the tangential load of the swept blades at the optimal operational condition, as825

shown in Figs. 12 and 13. This difference could be related to the assumption of cross-flow principle and the use of 2-D airfoil

data. The actual 3-D flow effects may introduce additional complexities and result in secondary effects, which are only captured

by the CFD solver. For example, spanwise flow can lead to variations in the viscous drag force, as analyzed by Gaunaa et al.

(2024). As discussed in Sects. 8.3.1 and 8.4.1, the influence of induction becomes less significant for lower loading conditions.

Consequently, the absolute differences between different coupled methods are negligible and all methods predict very similar830

results.

8.5.2 Summary

In summary, all modified coupled models using their respective favorable modified coupling factors show good agreement

with LL and CFD results for modeling the loads of swept blades. Notably, the modified coupled models exhibit an exception-

ally close match with the free-wake LL solver, indicating the good capability in capturing sweep effects. The computation-835

ally efficient simplified coupled models NW-MT(ka)-VC and NW-VC(a) have similarly good performance as the idealized

NW(ideal)-VC(a) model for modeling sweep effects. It is also shown that modeling the trailed wake radial induction is benefi-

cial for predicting the thrust coefficient of swept blades, while the influence of a finite number of blades on the radial induction

are less significant.

8.6 Computational effort840

This section compares
:::
first

:::::::
reports the computational effort required to obtain the steady-state results presented in this study 9.

:
,
:::::::
followed

:::
by

:
a
::::::::
summary

::
of

::::::::
indicative

:::::
CPU

:::::
times

::
for

::::::::
unsteady

::::::::::::
time-marching

:::::::::
aeroelastic

:::::::::::
simulations.

9The CPU time for post-processing is included in this comparison and remains constant across all methods. Additionally, all presented results are converged

to steady-state solutions. Therefore, the computational time reported here is significantly longer than the computational time needed per time step in a time-

marching simulation.
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For the stand-alone BEM method, a single steady-state computation takes approximately two seconds
:
2

:
s
:
on one CPU core.

Coupled methods using the approximated near wake induction (NW-MT, NW-MT-VC and NW-VC) require about six seconds

:
6
:
s
:
per steady-state computation. In contrast, the idealized coupled model NW(ideal)-VC needs significantly more computa-845

tional effort, taking approximately 180 s. The higher-fidelity LL and CFD solvers require substantially greater computational

resources. Both solvers are parallelized using the Message Passing Interface (MPI) and executed on the Sophia HPC cluster,

where each node consists of 32 CPU cores operating at 2.9 GHz. Specifically, the LL solver uses 128 cores per computation

with a wall-time of approximately 26.5 h. The CFD solver utilizes 216 cores per computation, with a wall-time of approxi-

mately 1.2 h.850

:::
For

:::::::
unsteady

::::::::::::
time-marching

:::::::::
aeroelastic

:::::::::::
simulations,

::
the

::::::::::::
computational

:::::
effort

:::::::
depends

:::
on

::
the

:::::::::
simulation

:::::
setup

::::::
details

::
of

::::
both

::
the

:::::::::::
aerodynamic

::::
and

::::::::
structural

:::::::
solvers.

:::
An

::::
early

:::::::
version

::
of

:::
the

:::::::::::
NW-MT-VC

::::::
model

:::
has

::::
been

:::::::::::
implemented

:::
in

:::
the

:::::::::
aeroelastic

:::::
solver

:::::::
HAWC2

:::::::
(version

:::::::
13.0.0),

::::
with

::::::::::::
computational

:::::
effort

::::::
similar

::
to

:::
the

::::::::
NW-MT

::::::
model;

:::
see

::::::
Section

:::
8.8

:::
of

::::::::::::::
Li et al. (2022d)

::
for

::
a

::::
more

:::::::
detailed

:::::::::
discussion

::
of

:::::::::
aeroelastic

:::::::::
simulation

:::::
times

::::
using

:::::
BEM

:::
and

::::::::
NW-MT.

:::
For

::
a

::::::
typical

::::::::::::
time-marching

:::::::::
aeroelastic

:::::
setup,

:::
the

::::
total

::::
CPU

::::
time

:::::
when

:::::
using

::
the

:::::::::::
NW-MT-VC

:::::::
method

:
is
::::::::::::
approximately

:::::
twice

::::
that

::
of

:::
the

::::
BEM

:::::::
method.

::
In

:::::::::::
comparison,855

::
the

:::::
total

::::
CPU

::::
time

:::
for

:::
an

::::::::
unsteady

:::::::::
aeroelastic

:::::::::
simulation

::::
with

:::
LL

::
or
::::::::

actuator
:::
line

:::::
(AL)

:::::::
methods

:::::
(e.g.,

::::::::
HAWC2

:::::::
coupled

::
to

::
the

:::::::
MIRAS

::::::
solver

::
or

:::
the

:::
AL

:::::::
module

::
in

::::::::::
EllipSys3D)

::
is
::::::::::::
approximately

::::
3-4

:::::
orders

:::
of

:::::::::
magnitude

:::::
larger10

:
.
:::
The

::::::::
NW-VC

::::::
model,

::
by

:::::::
contrast,

::::
has

:::
not

::::
been

:::::::::::
implemented

::
in

::::::::
HAWC2,

::::
since

:::
its

::::::::::::
computational

:::::
effort

::
is

:::::::
expected

::
to

:::
be

::::::::::
substantially

::::::
higher.

::::::
While

::::::::
promising

::
in

::::::
theory,

::
its

::::
new

::::::::
coupling

::::::::
approach

::::::
requires

:::::::::
expensive

::::::
elliptic

:::::::
integrals

::
to

:::
be

::::::::::
recalculated

::
at

:::::
nearly

:::::
every

::::
time

::::
step

::
as

:::
the

::::
rotor

::::::
loading

::::::::
changes,

:::::
which

::::::::
currently

:::::
limits

::
its

:::::::
practical

:::
use

::
in

:::::::::
aeroelastic

::::::::::
simulations.

:::
By

::::::::::
comparison,

:::
the

:::::::::::
NW-MT-VC860

::::::
method

::::
only

:::::
needs

::
to

::::::
update

:::
the

:::::
elliptic

::::::::
integrals

:::::
when

::
the

:::::
blade

::::::::
geometry

:::::::
changes

::::::
exceed

:
a
::::::::
specified

::::::::
tolerance.

::::::::::::
Consequently,

::
the

:::::::::::
NW-MT-VC

:::::::
method

:::::::
provides

::
a
::::::::
favorable

:::::::
balance

:::::::
between

:::::::::::
aerodynamic

::::::
fidelity

::::
and

::::::::::::
computational

::::::::
efficiency,

:::::::
making

::
it

:::::::::
particularly

:::::::
suitable

:::
for

:::
use

::
in

::::::::
unsteady

::::::::::::
time-marching

:::::::::
aeroelastic

::::::::::
simulations.

:

9 Conclusions and future work

This study addresses the challenge of accurately and efficiently calculating aerodynamic loads on swept wind turbine blades.865

We introduce a novel and computationally efficient method that couples near wake bound and trailed vortex modeling with a

far wake vortex cylinder model. This approach offers a more physically consistent representation of the far wake compared to

previous coupled models based on the far wake momentum theory. The improved coupling method between the near and far

wake models enables automatic adjustment of the coupling factor across various loading conditions and different swept blade

configurations. The modified coupled models, with the proposed coupling factors, show significantly improved agreement870

with higher-fidelity free-wake lifting line (LL) and computational fluid dynamics (CFD) simulations, particularly for forward

swept blades
:
,
:
where previous models showed limitations. For blades with backward sweep, the new models presented here

predict both the distributed and integrated aerodynamic loads close to the LL and CFD results. While,
:
,
:::::
while for forward

swept blades, the trends of the distributed loads are well captured, although small discrepancies remain in the integrated load

10
:::
Note

:::
that

::
the

:::
LL

::
and

:::
AL

::::::
methods

::
can

::
be

::::::::
accelerated

::::
using

:::::
parallel

:::::::
computing

:::
and

:::
GPU

::::::::
acceleration

::
to
:::::
reduce

:::::::
wall-time.
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predictions. In comparison, the conventional blade element momentum (BEM) method is unable to capture either distributed or875

integrated load variations due to backward or forward blade sweep. Moreover, the computational effort of the presented model

is
:::::::
proposed

:::::::::::
NW-MT-VC

::::::
model

:
is
:::::::

readily
::::::::
applicable

:::
to

:::::::
unsteady

:::::::::
aeroelastic

::::::::::
simulations

::::::
within

:::
the

:::::::
existing

::::::::::
framework,

::::
with

::
the

::::::::::::
computational

:::::
effort

:
comparable to those based on the conventional BEM method, making it

:
.
::::
This

:::::
makes

:::
the

:::::::::::
NW-MT-VC

:::::
model highly suitable for aero-servo-elastic simulations and the design optimization of swept blades.

::
By

::::::::
contrast,

:::
the

:::::::
NW-VC

:::::
model

::
is

::::
well

:::::
suited

:::
for

::::::::::
aerodynamic

::::::::::
steady-state

:::::::::::
computations

::::
and

:::::
design

:::::::::::
optimization,

:::
but

:::::::
requires

::::::
further

::::::::::
acceleration

:::::
(e.g.,880

::::
reuse

::
of

::::::
elliptic

::::::::
integrals)

::::::
before

::::::::
becoming

::::::::
practical

:::
for

:::::::
unsteady

:::::::::
aeroelastic

:::::::::::
simulations.

Looking forward, the coupled near wake and far wake vortex cylinder model presented in this study has promising potential

for further adaptation to model more generalized curved blades, including configurations with combined sweep and prebend.

This presents a valuable direction for future research and development.
:::::
Future

:::::
work

:::
will

::::
also

:::::
focus

::
on

:::::::::
improving

:::
the

::::::::
unsteady

::::::::::
aerodynamic

:::::::::
responses

::
of

:::
the

:::::::
models,

:::::
such

::
as

:::::::
through

::
a
:::::::
detailed

:::::::::::
investigation

::
of

:::
the

::::::
factors

:::::
used

::
in

:::
the

:::::::
indicial

::::::::
response885

::::::::
functions.

:::::::
Further,

:::::::::
systematic

:::::::::::
comparisons

:::
will

:::
be

:::::::::
performed

::::
with

::::::::
unsteady

:::
LL

:::
and

:::::::
actuator

::::
line

:::::
(AL)

::::::::::
simulations

:::
for

::::
both

:::::::
unsteady

:::::::::::
aerodynamic

:::
and

:::::::::
aeroelastic

::::::
cases.
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Appendix A: Nomenclature

Table A1. Variables used in the present work.

Symbol Description

a, a′ Axial and tangential induction factors

CL Lift coefficient

Ct Local thrust coefficient

CT Rotor-integrated thrust coefficient

C̃p Local simplified power coefficient

CP Rotor-integrated power coefficient

D Rotor diameter

F Tip-loss factor

h Helical pitch

k Factor for the calculation of the elliptic integral

k1, k2, k3 Factors for the relationship between axial induction and thrust coefficient

ks Normalized sectional circulation of the vortex cylinder

NB Number of blades

r, R Radius of the calculation point; trailing point

ua, ut, ur Axial, tangential and radial induced velocities

U0 Free-stream wind speed

Vrel Relative velocity

Γ, ΓB Bound vorticity strength of all blades; of a single blade

γt, γl Tangential and longitudinal vorticity strength of the vortex cylinder

ρ Air density

Ω Rotor speed
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Appendix B: Partial derivative for the far wake vortex cylinder model890

This section derives the partial derivative of the far wake axial induction aFW,VC from the far wake vortex cylinder model with

respect to the rotor-averaged coupling factor kVC
FW. This derivative is a critical component for calculating the coupling factor in

the far wake vortex cylinder model.

By substituting Eq. (38) into Eq. (43), the partial derivative is expressed as:

∂aFW,VC

∂kVC
FW

=
h̄NW

4U0

Ntp∑
j=1

∂ũa
∂y

(r,Rj ,y− yFW,j)γt,j . (B1)895

The next step is to determine ∂ũa/∂y. According to Eq. (30), the partial derivative is as follows:

∂ũa
∂y

=
∂

∂y

[
gc(y)

(
K (m)+

R− r

R+ r
Π(n,m)

)]
, (B2)

where gc(y) is defined as:

gc(y)≡
y
√
m

4π
√
rR

. (B3)

Using the chain rule, Eq. (B2) expands to:900

∂ũa
∂y

=
∂gc
∂y

(
K (m)+

R− r

R+ r
Π(n,m)

)
+ gc(y)

∂m

∂y

(
dK (m)

dm
+
R− r

R+ r

∂Π(n,m)

∂m

)
. (B4)

The parameter m is defined according to Eq. (33). Its partial derivative with respect to y is:

∂m

∂y
=

−2ym

(R+ r)2 + y2
. (B5)

Using the definition of gc(y) in Eq. (B3) and applying the chain rule. Also, inserting Eq. (B5):

∂gc
∂y

=
1

4π
√
rR

(√
m+

y

2
√
m

∂m

∂y

)
=

1

2π

(R+ r)2[
(R+ r)2 + y2

] 3
2

. (B6)905

The derivatives of the complete elliptic integrals of the first and third kinds with respect to m are given by:

dK (m)

dm
=
E(m)− (1−m)K(m)

2m(1−m)
, (B7)

∂Π(n,m)

∂m
=
E(m)− (1−m)Π(n,m)

2(m−n)(1−m)
. (B8)

Finally, by substituting Eqs. (B5) to (B8) into Eq. (B4), the complete expression for the partial derivative is obtained.
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Appendix C: Comparison of the results for low loadings910
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Figure C1. Thrust coefficient Ct and simplified power coefficient C̃p of the baseline straight blade. Values are calculated using the BEM

method, the coupled methods NW-MT and NW-VC with the original coupling factor, the LL solver and the CFD solver. Results are shown

for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C2. Thrust coefficient Ct and simplified power coefficient C̃p of the baseline straight blade, the backward swept blade mB-1 and the

forward swept blade mB-5, calculated using the CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d)

at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C3. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the backward swept blade mB-1 compared to the

baseline straight blade Str. Values are calculated using the coupled NW-MT model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C4. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the forward swept blade mB-5 compared to the

baseline straight blade Str. Values are calculated using the coupled NW-MT model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C5. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the backward swept blade mB-1 compared to the

baseline straight blade Str. Values are calculated using the coupled NW-VC model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C6. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the forward swept blade mB-5 compared to the

baseline straight blade Str. Values are calculated using the coupled NW-VC model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C7. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the backward swept blade mB-1 compared to the

baseline straight blade Str. Values are calculated using different coupled models, the BEM method, the LL solver and the CFD solver. Results

are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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Figure C8. Offset in thrust coefficient (∆Ct) and simplified power coefficient (∆C̃p) of the forward swept blade mB-5 compared to the

baseline straight blade Str. Values are calculated using different coupled models, the BEM method, the LL solver and the CFD solver. Results

are shown for three operational conditions: (a), (b) at 12 m s−1; (c), (d) at 15 m s−1; and (e), (f) at 20 m s−1.
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