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Abstract. This study introduces a computationally efficient engineering aerodynamic model specifically designed for load
calculations of swept wind turbine blades, overcoming limitations in existing models. The proposed method couples a near
wake trailed vortex model with a novel far wake vortex cylinder model. In this coupled model, the near wake, defined as the
first quarter revolution of the blade’s own trailed wake, is modeled using non-expanding helical vortices. Together with the
influence of the curved bound vortex, the sweep effects are effectively captured. This comprehensive approach accounts for
the influence of a finite number of blades, eliminating the need for Prandtl’s empirical tip-loss correction used in conventional
blade element momentum (BEM) methods. The far wake, representing the remaining trailed wake, is modeled using concen-
tric vortex cylinders originating downstream of the rotor plane, replacing the conventional momentum-based approach. The
near and far wake contributions are coupled together to obtain the total induction. In this study, a detailed analysis identifies
limitations in the original coupling method, leading to two proposed modifications that enhance numerical stability and accu-
racy. Comparisons with higher-fidelity free-wake lifting line (LL) and Reynolds-averaged Navier—Stokes (RANS) simulations
demonstrate the load prediction improvements, particularly for forward swept blades. The model achieves comparable accu-
racy with significantly reduced computational efforts, making it an ideal tool for design optimization and repetitive aeroelastic
simulations of swept wind turbine blades. While developed and validated under steady-state conditions, the formulation readily
supports extensions to unsteady aerodynamics using methodologies analogous to unsteady BEM approaches. The model can

also be adapted in future work for generalized blade geometries combining sweep and prebend.

1 Introduction

Technological advancements in wind turbine design and manufacturing have led to substantial increases in the size and flex-
ibility of modern horizontal-axis wind turbine (HAWT) blades, especially compared to those from the 1980s. For instance,
a state-of-the-art offshore wind turbine installed in 2024 reached a rotor diameter of 260 m and a rated power of 18 MW.
Innovative blade designs, such as backward swept blades for passive load alleviation through geometric bend-twist coupling
(Liebst, 1986; Zuteck, 2002; Larwood and Zutek, 2006; Manolas et al., 2018) and aerodynamically or aeroelastically opti-
mized curved blade tips involving sweep (Barlas et al., 2021; Madsen et al., 2022), are gaining popularity. Swept blades are

also adopted in small wind turbine designs. For example, Eocycle integrates swept blade designs into its EOX M-series turbines
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in distributed wind applications (Eocycle Technologies Inc., 2021a, b). Fritz et al. (2024a) conducted a wind tunnel experiment
on backward swept blades using particle image velocimetry (PIV) methods. Additive manufacturing is also being explored
for blade tips, enabling design integration and improved aerodynamics while reducing manufacturing constraints (Houchens
et al., 2024). While these innovative designs offer potential acrodynamic and aeroelastic benefits, they also introduce increased
modeling complexity, which exposes inherent limitations in existing aerodynamic models and poses significant challenges for
load calculations and design optimization.

Higher-fidelity methods, such as free-wake lifting line (LL) solvers and Reynolds-averaged Navier—Stokes (RANS) simu-
lations, provide relatively accurate load predictions but are computationally intensive, limiting their use to specific load cases
or comparison studies. Consequently, the blade element momentum (BEM) method remains the primary tool for low-fidelity
aerodynamic modeling of HAWTs, valued for its simplicity and minimal computational requirements, making it well-suited for
design optimization and aero-servo-elastic simulations. However, BEM implicitly assumes a planar rotor with straight blades
(Li et al., 2022b, 2025b, 2024). As a result, the BEM method cannot accurately predict the influence of wake geometry result-
ing from curved blade geometries or blade coning on aerodynamic loads, as shown in recent analytical and numerical studies
(Li et al., 2022b, d, a; Barlas et al., 2022; Horcas et al., 2023; Li et al., 2025b, 2024; Zahle et al., 2024).

To mitigate some of BEM’s limitations, Madsen and Rasmussen (2004) introduced a coupled near and far wake model that
integrates a lifting line approach for the near wake with a momentum-based far wake model, building on the foundational work
by Beddoes (1987). The near wake, defined as the first quarter revolution of the blade’s own trailed vortex, is modeled using
non-expanding helical vortex filaments, with an indicial function approach capturing its dynamic behavior. The remaining
trailed wake, termed the far wake, is modeled based on momentum theory. The near and far wake models are coupled using a
coupling factor to obtain the total induction (Andersen et al., 2010; Pirrung et al., 2016). The far wake inductions are determined
by scaling down the BEM thrust coefficient using this factor during the induction calculation. Subsequent research extended
this coupled model framework to swept blades by explicitly modeling the influence of curved bound vortices and accounting
for the in-plane shift in the starting position of trailed vortices (Li et al., 2018, 2020, 2022d). Regarding accuracy in unsteady
aerodynamic simulations, previous studies have shown that for a straight blade, the NW-MT approach can closely reproduce
the aerodynamic response predicted by free-wake lifting line models, as demonstrated for pitch steps and prescribed vibration
cases (Pirrung et al., 2017a). This represents a significant improvement over the BEM method.

Despite these advancements, the coupled model shows limitations when applied to forward swept blades, primarily due to
limitations in the coupling factor and potentially the far wake model, both of which require further improvements (Li et al.,
2022d). To address these challenges, this study introduces a novel far wake vortex cylinder model that replaces the exist-
ing momentum-based approach, providing a more physically consistent representation of the far wake. This study focuses
on steady-state conditions (assuming uniform inflow, fixed rotor speed and no elastic deformations) to isolate sweep-induced
effects. However, the framework is readily extendable to unsteady conditions using sub-models, such as dynamic inflow and
dynamic stall models, similar to those applied in unsteady BEM methods (Madsen et al., 2020). In addition, this study refines
the coupling factor through two modifications based on a modified Newton—Raphson approach, enabling automatic adjust-

ments across different swept blade configurations, with improved numerical stability. Furthermore, the proposed model has the
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potential to be further adapted to more generalized curved blades featuring combined sweep and prebend, which has significant
implications for future wind turbine design optimization and aeroelastic simulations.

The remainder of this paper is structured as follows: Section 2 briefly reviews the inherent limitations of the BEM method
in modeling swept blades. Section 3 outlines the existing coupled near and far wake model, which is extended for modeling
swept blades. In Sect. 4, we develop the new far wake vortex cylinder model to enhance the physical representation of the
far wake. Section 5 presents three modified coupled models with different fidelities that improve upon the existing coupled
model for swept blades. In Sect. 6, we investigate and improve the coupling factor. Section 7 describes the simulation setups of
higher-fidelity LL and RANS CFD solvers and also blade configurations used for comparison. Section 8 presents a comparative
analysis of results from different models, evaluating the performance of the new models. Finally, Section 9 summarizes the

contributions and findings of the study and suggests directions for future research.

2 Blade element momentum method

The blade element momentum (BEM) method is a fundamental engineering aerodynamic model that integrates blade element
theory (BET) with momentum theory (MT). Due to its simplicity and minimal computational effort, BEM is widely used
in aerodynamic load calculations of rotors. In the BEM method, the rotor plane is divided into multiple concentric annular
sections, each assumed to be radially independent. Within each annulus, the aerodynamic forces acting on the 2-D airfoil
sections (blade elements) of all blades are balanced with the momentum changes in the flow. Momentum theory is then applied
to determine the axial and tangential induced velocities at the rotor plane. It has been argued that only the lift force should be
included in the momentum balancing, excluding the drag force (Wilson and Lissaman, 1974; Branlard, 2017). Furthermore,
the radial induced velocity is not accounted for in the momentum theory and is not standard in BEM implementations (Madsen
et al., 2020).

Unlike conventional BEM literature and textbooks, we formulate the BEM method in this section using vortex theory, which
has been shown to be equivalent (Branlard and Gaunaa, 2015a; Li et al., 2025b). The Kutta—Joukowski thrust and power

coefficients are derived from the projection of the lift force, assuming zero radial induction (Li et al., 2025b):

CPy = ks(1+a), (1)
CPly =ks(1—ap), )

where k; is the normalized circulation strength:

_ar
S_’lTUg.

3)

Neglecting the radial induction results in these coefficients being identical to those of a corresponding planar rotor with

straight blades and have the same circulation distribution (Li et al., 2025b), as indicated by the superscript "pl".
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The bound circulation of the blade is calculated from the circulatory part of the lift coefficient C¢'. Assuming all blades are

operating under the same conditions, the total bound circulation strength is:
1 c
F:NBFB=§NB‘/}MCCL. (4)

The tangential induction can be derived either by balancing the angular momentum (Madsen et al., 2020) using Eq. (2) or
directly calculated from the circulation T', as in the vortex cylinder model (@ye, 1990; Branlard and Gaunaa, 2015b; Li et al.,
2022b):

a = @TFW )

Prandtl’s tip-loss correction is commonly applied in BEM-based methods to account for the influence of a finite number of
blades on the axial induction (Glauert, 1935; Sgrensen, 2015). This correction increases the blade’s axial induction compared
to the annulus-averaged value when moving towards the tip. Various implementations of the tip-loss correction exist. In this

study, we adopt the approach proposed by Madsen et al. (2020):
aB = ABEM = fa—c,,(cfl/F)- ©

In the present work, the empirical relationship between the axial induction factor and the thrust coefficient based on the
polynomial function by Madsen et al. (2020) is adopted, which is the default relationship in the HAWC2 code (Larsen and
Hansen, 2007).

One key advantage of the BEM method is its computational efficiency. However, as demonstrated by Li et al. (2025b, 2024),
with a prescribed bound circulation, the BEM method predicts the same inductions and approximately the same loads, which is
independent of geometric modifications to the blade (e.g., sweep or prebend), providing these changes do not affect the blade
radius. This is because the method does not account for the influence of specific wake geometry on inductions, with the wake
corresponding to that of straight blades forming a planar rotor. Nonetheless, the BEM method remains a valuable baseline

model and starting point upon which more advanced engineering aerodynamic models can be developed.

3 Existing coupled near and far wake model for swept blades

The coupled near and far wake model, a hybrid of the lifting line method and the momentum theory, was developed to mitigate
the dependency on Prandtl’s empirical tip-loss correction used in models based on the actuator disc theory. Additionally,
the coupled model provides a more physically consistent framework for modeling unsteady tip-loss effects. Since its first
application in wind turbine modeling (Madsen and Rasmussen, 2004), several improvements have been introduced (Pirrung

et al., 2014, 2016, 2017a, b), enabling time-domain aeroelastic simulations.
3.1 Background

In this coupled model, the rotor’s trailed wake is divided into two components: the near wake, which captures immediate effects

close to the blade, and the far wake, which accounts for wake effects further downstream. The near wake, defined as the first
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quarter revolution of the blade’s own trailed vortices, is modeled using a simplified lifting line approach with non-expanding
helical vortex filaments. An indicial function approach is used for time stepping, with the steady-state induction approximated
using empirical equations (Beddoes, 1987) and correction factors (Pirrung et al., 2016, 2017b). This method maintains low
computational effort, independent of the elapsed simulation time.

The remaining trailed vortices, including those of the blade itself and the other blades, are defined as the far wake. In the
original coupled model, the far wake is modeled based on momentum theory (Madsen and Rasmussen, 2004). A rotor-averaged

coupling factor kMy is applied to scale down the far wake inductions relative to the full trailed wake inductions:

apw, M1 = fa—c, (ki Ct), 2
a;:w, MT = kg/l\; a’. (®)
While this direct scaling approach is straightforward, it lacks physical consistency because it uniformly reduces the far wake
induction relative to the full trailed wake induction, rather than capturing the spanwise variation due to the actual far wake
geometry and the cross-talk between annular sections.

The total axial and tangential inductions are obtained by summing the near wake and far wake contributions. The radial

induction is not included, as it is also excluded in standard BEM implementations (Madsen et al., 2020):

aB ot = ANW + aFwW, )
Ao = A T G- (10)

3.2 Modeling of swept blades

To accurately predict the aerodynamic loads of swept blades, modifications to the coupled model are necessary to account for
the influence of blade sweep on inductions. Previous studies (Li et al., 2018, 2022d; Fritz et al., 2022, 2024b) have identified
two primary effects of blade sweep on inductions. First, the blade’s bound vortex, which is assumed following the 1/4 chord
line of the blade, becomes curved and has an influence on itself (Li et al., 2018, 2020). Second, the starting position of the
trailed vortex follows the swept blade geometry and is thus shifted within the rotor plane compared to a straight blade. The
bound and trailed vortices of a backward swept blade are illustrated in Fig. 1.

The trailing functions of a swept blade, representing the contributions of an elementary trailed vortex to inductions as
a function of the azimuthal angle (3, are derived. The position vectors x and the elementary trailed vortex ds are used to

determine the trailing functions in the blade local coordinate system (BL-sys):

Rsin (8 + )
T = —Rftane ; (11)
R—h— Rcos(B+)

—cos(B+1)
dS:Rdﬂ tangp s (12)

—sin(B8+)
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Figure 1. Front view of a backward swept wind turbine blade rotating clockwise, in the blade local coordinate system (BL-sys). The rotational
speed is €2 and the free wind speed is Up. The radius of the trailing point (tp) is R and the radius of the calculation point (cp) is r, with a
difference in radius of k. The sweep angle v is defined as the azimuthal difference between tp and cp. The azimuthal difference between the
elementary trailed vorticity ds and the tp is 8. The position vector @ points from ds to the cp. The figure is adapted from (Li et al., 2022d)
with updated coordinate system definitions detailed in (Li et al., 2025b).

where h is defined as the difference in radius between the trailing point and the calculation point:
h=R-—r, (13)

and the helix angle ¢ of the trailed vortex is calculated from the inductions at the trailing point (tp) using:

Uo(1—aB o)

QR(1+agy) (14

Y=

For a trailed vortex element ds with a strength of AT'g, the elementary induced velocity at the blade section is calculated

according to the Biot-Savart law:

Al'g x x ds
w=——— (15)
dr |

The trailing functions of axial, tangential and radial induced velocities, corresponding to the y-, x- and z-components of

dw, are expressed as:

du, = 7AI‘Bd5(2:0s<p 1—7cos(B+) _ (16)
AnR [1 472 — 27 cos (B + 1) + (Btany)?]
to, — AFBdszimp 7 —cos(B+1) — Bsin (B +1)) _ a7
dmR (1472 —27cos(B+ 1) + (Btany)?]?
dw, — AT'gdssinp —sin (B +1) + Bcos (B + 1)) _ (18)

3
2

ArR? [1 +72 —27cos(B+)+ (B tango)ﬂ



160

165

170

175

180

185

where:

ds = Vdt = ﬂERdﬁ*, (19)
cos
T h
r=g= 1— = (20)
Integrating these trailing functions with respect to the azimuthal angle 8 from O to 7/2 gives the steady-state near wake
inductions:
=3
W= / dw. @D
=0

In the existing near wake model, the radial induction due to the trailed wake is neglected. The trailing functions of the axial
and tangential inductions in Egs. (16) and (17) are approximated by the sum of two exponential functions. Following Beddoes
(1987), the parameters A; = 1.359, A, = —0.359, b; = 1 and by = 4 are chosen.

_ATRR
 4rh|h|

d (Ape 87/ 4 Ayemb287/®) 8" (22)

I}

By integrating the approximated trailing function from zero to infinity, the approximated steady-state near wake induction

is obtained:

ATsR (A1 Ay

—+— | o= W 23

W =

According to Eq. (23), the steady-state induction can be represented using ¢, which is a function of the radial position 7,
sweep angle ¢ and helical angle ¢. Direct numerical integration of the trailing functions from the Biot-Savart law would be
computationally intensive. To address this, previous modifications to the near wake model use steady-state inductions at special
conditions and apply corrections for general conditions (Li et al., 2022d). First, the steady-state inductions for the special con-
ditions of ¢ = 0 and ¢ = /2, corresponding to an in-plane trailed vortex and a straight trailed vortex convecting downstream,
are derived analytically and labeled as ®;;, and @, respectively. Then, the steady-state inductions for general helical angles

are calculated using these special conditions and a correction factor kg, based on pre-calculated influence coefficients.
P = fconv(klbaq)ipaq)ss) (24)

This approach, as detailed in (Li et al., 2022d), has relatively high accuracy and maintains low computational effort. It is
applied to the near wake axial and tangential inductions, while the radial induction is neglected. The total near wake axial and

tangential inductions also include the influence of the curved bound vortex:

ANW = Qbound + ANW, trail 5 (25)
!/ ! !/

aNW = Qbound T ANW, trail - (26)

It is assumed that the sweep effect is fully captured by the blade’s own near wake trailed vortex and the curved bound vortex

influence, while the influence of the other blade’s bound vorticity and near wakes is neglected. As a result, the far wake does
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not have to account for sweep effects. Consequently, the same far wake model as for straight blades, based on momentum
theory and described in Sect. 3.1, can be applied. The total axial and tangential inductions are then the sum of the near wake

and far wake contributions. For the radial induction, only the influence of the bound vortex is included.

aB tot = GNW + GFWMT 27)
i _ / + ! (28)

Aot = ANW T AFWMT

U, tot = Uy bound (29)

This modified coupled model is labeled as NW-MT, representing the coupling of the near wake model and the far wake
momentum theory. For different swept blades operating under optimal conditions, loads predicted by NW-MT were compared
with results from higher-fidelity aerodynamic models, such as a free wake lifting line method and a RANS CFD solver. Results

from NW-MT show significant improvements over the BEM method in predicting sweep effects (Li et al., 2022d).

4 Far wake vortex cylinder model

This section introduces the far wake vortex cylinder model as a replacement for the momentum theory-based far wake model

in the coupled model. This approach provides a more physically consistent representation of the far wake.
4.1 Elementary right vortex cylinder

First, the elementary right vortex cylinder, a fundamental element of the far wake vortex cylinder model, is introduced. The
trailed vortex of a uniformly loaded planar rotor can be represented using a non-expanding vortex cylinder (Branlard and
Gaunaa, 2015a). Assuming the rotor operates under uniform inflow with zero yaw error and no rotor tilt, the vortex cylinder
will be a right cylinder rather than an oblique one (Branlard and Gaunaa, 2015b). The cylindrical vortex sheet is decomposed
into tangential and longitudinal components, denoted as v; and -y;, respectively.

For a vortex cylinder with radius R, the axial, tangential and radial induced velocities at a point with radius » and axial

position y (positive downstream from the rotor disc) are given by:

_ | R-r+|R—r] yym R—r -
ua(r,y) - 2 2|R—7'| + 271_\/@ K(m)+ R_’_Tﬂ(nam) —ua(T,R,y)%, (30)
_mRBR|r=R+[R—r] yy/m R-r _ -
Ut,l(7"7y)— 2 7 2|R*7’| +27‘(‘\/’rﬁ K<m) R+T’H(n,m) —ut,l(r7R7y)7l> (31)
__ e [E(2=m 2 .y
wlr) == |22 K ()~ =B ()| = R (2
where:
4rR
VR o
4rR
" e .
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and K (m), E(m) and II(n,m) are the complete elliptic integrals of the first, second and third kind, respectively.
4.2 Superposition of far wake vortex cylinders

To model the radially varying bound circulation of a rotor, concentric vortex cylinders with different radii and circulations
are superpositioned (Branlard and Gaunaa, 2015a). This approach models the full trailed wake and is capable of capturing the
rotor’s non-planar effects (Li et al., 2022b).

In this study, vortex cylinders are used to model the far wake, replacing the existing far wake momentum model in the cou-
pled model. This provides a physically more consistent representation of the far wake, addressing the limitations discussed in
Sect. 3.1. The far wake vortex cylinders are positioned a constant distance Aygw downstream from the rotor plane', as illus-
trated in Fig. 2, for both a planar rotor (panel a) and a non-planar rotor (panel b). The concept of using a constant downstream
offset distance aligns with applying a rotor-averaged coupling factor for the entire rotor in the far wake momentum theory. The
far wake vortex cylinders can be considered as the far wake part of the full wake vortex cylinders, which effectively subtracts

the near wake part from the full trailed wake. This decomposition is also illustrated in Fig. 2.

pl pl np np
aNw ve Apw ve aNw,ve Apw,ve
Ayrw Ayrw
(a) Planar rotor (b) Non-planar rotor

Figure 2. Decomposition of the full trailed wake vortex cylinder into a near wake part and a far wake part for: (a) a planar rotor; (b) a
non-planar rotor. All far wake vortex cylinders begin a constant distance of Aygrw further downstream from the rotor plane, which is the

surface swept by the blades.

4.2.1 Definition of coupling factor

For the far wake vortex cylinder model, a rotor-averaged coupling factor kyy is defined. The near wake is assumed to convect
downstream at a constant velocity that is evaluated at the blade. The corresponding near wake helical pitch hnw is:

o 27TUO(1 — aB,tOt)

hnw = = 9271rt . 35
Tl o

First, the near wake helical pitch is weighted-averaged by the annulus area to obtain the rotor-averaged value hxw:

N
Doicn Pnw,iAai

) (36)
SN Ay

ENW =

'In this work, the rotor plane refers to the surface swept by the blades.
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where A, ; is the annulus area at the -th calculation point (cp), calculated from the radii of the surrounding trailing points (tp):

A =m(RZ, — R). (37)

Since the near wake is defined as the first quarter revolution of the trailed vortex, the downstream distance traveled by the
near wake corresponds to one-fourth of hnw. This distance is further scaled by the coupling factor k%G, which is limited to

values between 0 and 1, reflecting the decreasing convection speed of the trailed wake as it convects downstream?.
Loves
Aypw = lkFWhNW (38)

The axial coordinate of a far wake vortex cylinder at radius R; is calculated by shifting the trailing point’s axial coordinate

downstream by Aypw:
yrw,; = Y(R;j) + Aypw. (39)
4.2.2 Calculation of far wake induction

Each far wake vortex cylinder is assumed to convect downstream at a constant speed, which is the mean value of the two
velocities just outside and inside the vortex sheet, at infinitely far downstream. Since the same assumption is also used for
the system closure of full vortex cylinders (Branlard and Gaunaa, 2015a), the far wake vortex cylinder system can be solved
using the same method (Li et al., 2022b). First, the annulus-averaged axial inductions of the corresponding planar full vortex

cylinders are calculated similarly to Eq. (6) but neglecting the tip-loss correction:
pl _ pl
Qoo = f(l*Ct (Ct )7 (40)

where the subscript co denotes the annulus-averaged value.
Then, the tangential vorticity is obtained from the difference in annulus axial induction factors of the two neighbouring

sections:
1 1
Vt,5 = 2U0(ad j 11 — % ;)- 1)

The strength of the longitudinal vortex sheet for the vortex cylinder with radius R; and total trailed circulation Al'; is:

AT
27TRJ' ’

Vi, = (42)

2The coupling factor needs to be smaller than one also because the far wake includes the trailed wake contributions from the two other blades

10
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For a calculation point at radius r and axial coordinate y, the contributions from all far wake vortex cylinders are summed

to obtain the far wake inductions:

Ny
1 .
aFwvC = —ﬁozua (r Ry, y — yrw,j) Ve (43)
=1
1 O
Ghwve =~ ; i1 (v, Ry y = yew ) s (44)
N
Up FW,VC = Zﬂr (r, Rj,y — yrw.j) Yej- 45)
=1

In the present work, only blade sweep effects are included and non-planar effects are neglected, assuming both the full wake
vortex cylinders and the far wake vortex cylinders are planar, as depicted in panel (a) of Fig. 2. Therefore, the axial coordinate

difference, which is the last term in the brackets of Eqs. (43) to (45), simplifies to:

Y—Yrw,j = —Ayrw. (46)

5 Modified coupled near and far wake models

Building upon the limitations identified in the existing coupled near and far wake model (NW-MT), this section introduces
three modified coupled models aimed at improving aerodynamic load predictions for swept blades. The first two methods use
the far wake vortex cylinder model, while the third corrects the existing NW-MT model by including the trailed wake radial

induction from the vortex cylinder model.
5.1 Idealized near wake model coupled with far wake vortex cylinder

The first modified coupled model, labeled as NW(ideal)-VC, is introduced to provide a benchmark of the highest fidelity
that can be achieved within the coupled framework. It extends the existing NW-MT model by using an idealized near wake
model that captures sweep effects with the highest possible fidelity, without regard to computational cost or model complexity.
Additionally, it replaces the far wake momentum theory with the more physically consistent far wake vortex cylinder model
introduced in Sect. 4.2.

The near wake is defined as the first quarter revolution of the blade’s own trailed wake, following the original coupled model.
The near wake trailed vortex inductions are calculated from the numerical integration of the trailing functions in Egs. (16) to
(18) derived from the Biot—Savart law, according to Eq. (21). The near wake inductions are defined as the sum of the inductions

from the bound vortex and the near wake trailed vortex of the own blade:

num
ANW = Qbound + ANW, trail» S
/ 7 /,num
ANW = Qpound T ONW, trail* (48)
num
Up NW = U bound T Uy NW, trail s (49)

11
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where the superscript "num" indicates that the inductions are calculated from numerical integration.
The far wake inductions are calculated from the far wake vortex cylinder model using Egs. (43) to (45). The total inductions

are then the sum of the near wake and far wake contributions:

OB tot = ANW + AFW,VC, (50
r /

Qo = aNw + Gpw,vCs (51)

U tot = Ur,NW T Ur FW,VC- (52)

This idealized NW(ideal)-VC method includes the influence of a finite number of blades on axial, tangential and also radial
inductions. However, this model is computationally expensive, as the near wake inductions require numerical integration at

each iteration.
5.2 Existing near wake model coupled with far wake vortex cylinder

The second modified coupled model, labeled as NW-VC, is introduced as the primary model targeted in this work, offer-
ing a balance between fidelity and computational efficiency. It addresses the computational challenges of NW(ideal)-VC by
simplifying the near wake model while still improving upon NW-MT through the use of the far wake vortex cylinder model.

The near wake axial and tangential inductions are calculated using the computationally efficient approach as in NW-MT,
using Eqgs. (25) and (26). The far wake axial and tangential inductions are obtained from the far wake vortex cylinder model,
using Eqs. (43) and (44). The total axial and tangential inductions are then the sum of the near wake and far wake contributions,
following the same forms as Eqgs. (50) and (51) for NW(ideal)-VC. For blades with only sweep and no prebend, the error in
near wake axial and tangential inductions in NW-VC is shown to be small compared to direct numerical integration as in
NW(ideal)-VC (Li et al., 2022d).

The trailed wake radial induction, including both near wake and far wake contributions, is modeled using the full trailed

wake vortex cylinder model:

No
Upve = Z tr (7, Rj,y — y(Ry)) Ve 5- (53)

j=1

Under the assumption of a planar rotor without tilt or coning, the axial coordinate differences simplify:

y—y(R;)=0. (54)
The total radial induction includes contributions from both the bound vortex and the trailed vortex:

Uptot = Ur bound + Ur,VC- (55)

Unlike the idealized NW(ideal)-VC model that models the near wake trailed vortex radial induction using non-expanding
helical vortex filaments and adds it to the far wake vortex cylinder induction, the simplified NW-VC model uses the vortex
cylinder model for the radial induction from the entire trailed wake. As a result, the influence of a finite number of blades on

the radial induction is not included in NW-VC.

12
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5.3 Radial induction correction to NW-MT using vortex cylinder model

The third modified coupled model, labeled as NW-MT-VC, serves as a comparison to the previous NW-MT model to assess
the impact of radial induction on aerodynamic loads of swept blades. It modifies the existing NW-MT model by including the
trailed wake radial induction calculated from the full trailed wake using the vortex cylinder model.

The axial and tangential inductions are calculated identically to NW-MT, using Egs. (27) and (28). The radial induction is
calculated the same as in NW-VC, using Eq. (55).

5.4 Comparison between coupled models
Table 1 summarizes the relationships between the four different coupled models, listed in ascending order of fidelity.

Table 1. Comparison between different coupled models, in ascending order of fidelity. The modeling of axial, tangential and radial induction
components are compared. NW-MT represents the previous implementation; NW-MT-VC extends this by including radial induction from
the vortex cylinder (VC) model; NW-VC further improves the far wake modeling and is the primary model; Finally, NW(ideal)-VC serves

as an idealized reference model.

Model Near wake (anw, aiw) Far wake (arw, afw) Radial induction ()

NW-MT Approximate, Egs. (25) and (26) FW MT, Egs. (7) and (8) Bound vortex, Eq. (29)

NW-MT-VC Approximate, Egs. (25) and (26) FW MT, Egs. (7) and (8) Bound vortex + VC, Eq. (55)

NW-VC Approximate, Egs. (25) and (26) FW VC, Egs. (43) and (44) Bound vortex + VC, Eq. (55)

NW(ideal)-VC  Exact, Egs. (47) and (48) FW VC, Egs. (43) and (44) Bound vortex + NW trailed + FW VC, Eq. (52)

From NW-MT to NW-MT-VC, the radial induction due to the trailed wake is included, modeled using the vortex cylinder
model. From NW-MT-VC to NW-VC, the far wake axial and tangential inductions are calculated using the more physically
consistent far wake vortex cylinders, instead of the far wake momentum theory. Finally, from NW-VC to NW(ideal)-VC, the
radial induction due to the near wake trailed vortex is modeled using non-expanding helical vortex filaments, instead of vortex
cylinders. Hence, the influence of a finite number of blades on the radial induction is included. In addition, the near wake axial
and tangential inductions are calculated using numerical integration, resulting in slightly improved accuracy when modeling
blades with only sweep and no prebend.

In summary, the proposed modified coupled models address the limitations of previous aerodynamic models for swept
blades. These models provide a framework for evaluating the impact of various modeling choices on aerodynamic load predic-

tions, which will be analyzed in the subsequent sections.

6 Investigation and improvement of the coupling factor

Previous work (Li et al., 2022d) demonstrated that the existing automatically-adjusted coupling factor in the coupled NW-

MT model performs well for straight and backward swept blades but exhibits unsatisfactory performance for forward swept
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blades. Although the primary source of the issue was narrowed down to the coupling factor, the underlying causes were
not analyzed in depth. This section provides a detailed examination of the current coupling factor to identify the reasons
for its insufficient performance. Modifications are then proposed to address these issues, aiming to enable a more robust,
automatically-adjusted coupling factor for general swept blades. Improving the coupling factor will enhance the accuracy and
reliability of aerodynamic load predictions for swept blades, which is critical for blade design optimizations. Because coupling
factors are calculated very similarly for both the far wake momentum theory (kMy) and the far wake vortex cylinder model
(k;’\g,), NW-MT is used for this investigation3. The blades used for the investigation are the baseline straight blade (Str), the
backward swept blade (mB-1) and the forward swept blade (mB-5), as described in Sect. 7.3.

6.1 Existing coupling factor

The existing coupling factor, which is adjusted automatically at each time step as described by Pirrung et al. (2016), was
initially implemented in HAWC?2 version 12.3, released in 2016. In HAWC?2 version 12.4 (released in 2017), the rotor-averaged
coupling factor was modified to be weighted by annulus area instead of thrust force, to improve numerical stability in aeroelastic
simulations. This modified approach is described below.

First, local coupling factors are introduced for each blade section. For section ¢, the local coupling factor at time step ¢,
labeled as nf;wl is updated from the previous time step using the Newton-Raphson method*:

t—1 da;

t — - -
Krw,i = Frw i 9da; | Okpw (56)

where da represents the difference between the total axial induction from the coupled model and a reference BEM model that

has tip-loss correction applied:
0a = aB ot — GBEM = ONW + AFW — GBEM. (57)

Since the near wake induction anw and the reference BEM induction aggy are not direct functions of the coupling factor,
the partial derivative 9da/Okpw is derived as:

85(1 - 5‘apw
Okpw — Okpw

(58)

For the far wake momentum theory, the far wake inductions are radially independent, so this partial derivative can be directly
derived from Eq. (7), resulting in simple expressions (Pirrung et al., 2016). In contrast, in the far wake vortex cylinder model,
contributions from all vortex cylinders affect the far wake induction of each section. Hence, the derivations are more complex,
as detailed in Appendix B.

To limit the impact of extreme values caused by strong trailed vortices, the sectional coupling factor is limited to values

between 0 and 1, denoted as kgw. The rotor-averaged coupling factor is then obtained by weighting these limited local coupling

3Insights gained from analyzing k%}’{,\T, used in NW-MT are expected to be directly transferable to k;’vc, used in the far wake vortex cylinder model, making
NW-MT a suitable and sufficient choice for identifying the issues.

“In practice, the rotor-averaged value klt:\:,l at the previous time step (¢ — 1) is used for the calculation, instead of n;;vli.
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factors by the annulus area A, ;:
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Dich Frw,idai
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In the far wake momentum theory, this rotor-averaged coupling factor kpw is applied uniformly across all rotor sections

kpw = (59)

to calculate the far wake induction, as shown in Egs. (7) and (8). Similarly, in the far wake vortex cylinder model, all vortex
cylinders are shifted downstream by a constant distance that is scaled by kgw, as shown in Eq. (38). Importantly, the sectional
coupling factor kgw is not used directly in the far wake model, since it would cause the converged axial induction to tend

towards the value from the reference BEM method for each section (Pirrung et al., 2016)°.
6.1.1 Performance of the existing coupling factor

For blades without significant sweep, the coupled NW-MT model with the existing coupling factor has been extensively used
for aeroelastic simulations and has generally shown satisfactory performance and numerical stability across various operational
conditions(Pirrung et al., 2017a, b). However, for blades with significant forward sweep, the existing coupling factor for the
NW-MT model shows insufficient performance.

Numerical tests were performed to evaluate the steady-state loads for both backward and forward swept blades with different
geometries at the optimal operational condition (Li et al., 2022d). It is expected that both the rotor-averaged coupling factor and
far wake inductions for the swept blades should closely match those of the straight blade, as the blade sweep effect is assumed
to be fully captured in the near wake part of the coupled model. The current method of calculating the automatically-adjusted
coupling factor performs well for the backward swept blades tested in the previous work (Li et al., 2022d), predicting similar
coupling factor values as the baseline straight blade. However, for all forward swept blades tested in that previous work, the
automatically-adjusted coupling factor consistently exhibits noticeable underestimations, leading to overestimated loads across
the blade span. Using a fixed coupling factor equal to that of the baseline straight blade was found to show good agreement
with higher-fidelity models for all tested swept blades. This suggests that the modeling of bound and near wake trailed vortices
of swept blades is sufficient. However, a fixed coupling factor is not feasible for general aeroelastic calculations, as the rotor

load and hence the coupling factor vary over time.
6.2 Analysis of the existing coupling factor

To identify the issues with the existing method of calculating the coupling factor, an investigation was performed using the NW-
MT model. At the optimal operational condition with a wind speed of 8 m s~ !, different components of the axial inductions and
the local coupling factor Kgw along the blade span are compared, as depicted in Fig. 3. Three different values of axial induction
are compared: the near wake induction anw in Eq. (25), the far wake induction agwmr from the far wake momentum theory in

Eq. (7) and the difference between the total axial induction and the reference BEM induction, denoted as da in Eq. (57).

SExcept the sections where the sectional coupling factor krw would fall outside of the range from 0 to 1 without limiting.
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Figure 3. Comparison of: (a) local coupling factor krw; (b) different components of axial induction factors from the NW-MT(origin) model

with the existing coupling factor, for the baseline straight blade Str, backward swept blade mB-1 and forward swept blade mB-5, at a wind

speed of 8 ms ™!,

It is observed that from the blade root to the mid-span (radius of 50 m), the local coupling factor exhibits only small
differences between different blades, which have minimal impacts on the rotor-averaged value. Therefore, the focus is on the
outer half of the blade, from the mid-span to the blade tip.

For the baseline straight blade (Str), as shown in Fig. 3 (a), the local coupling factor <gw slowly decreases from mid-span to
a radius of 90 m, maintaining a high level of approximately 0.9. Beyond 90 m, krw increases steeply and quickly reaches the
upper limit of 1.0 at a radius of 95 m, maintaining this upper limit until the blade tip. This behavior of Kpw is directly related
to the axial induction difference da, according to Eq. (56).

As shown in Fig. 3 (b), from a radius of 50 m to 90 m, da remains around zero and slowly increases. For radii larger than 90
m, da decreases steeply with increasing radius. This indicates that the axial inductions from NW-MT and BEM are generally
similar, except for the blade tip region. Near the blade tip, different methods of modeling tip effects in NW-MT and BEM
result in relatively large differences in axial induction. Due to the upper limit of 1.0 applied to the local coupling factor Kpw,
the impact of these large differences on the rotor-averaged value is limited. The resulting rotor-averaged coupling factor kg

15 0.909, closely resembling the overall level of the local coupling factor Kgy.
6.2.1 Backward swept blade

For the backward swept blade mB-1, as shown in Fig. 3 (a), the local coupling factor <pw behaves similarly to the baseline
straight blade (Str) from a radius of 50 m to 90 m, changing slowly with the radius and maintaining a high level of around 0.9.
Beyond 90 m, kpw increases steeply and reaches the upper limit of 1.0 at a radius of 93 m, maintaining this upper limit until

the tip. For mB-1, the value of <pw is slightly lower than Str, from a radius of 50 m to 80 m but slightly higher from 80 m to
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95 m. For radii larger than 95 m, both Str and mB-1 reach the upper limit. The resulting rotor-averaged coupling factor kgw for
mB-1 is 0.904, which is very similar to that of Str.

As shown in Fig. 3 (b), the far wake inductions of mB-1 and Str are nearly identical, due to the similar value of rotor-averaged
kew. Consequently, the difference in da is dominated by the near wake axial induction anw. The near wake model captures
the backward blade sweep effects on the bound and near wake trailed vortices, leading to different near wake axial inductions
anw between mB-1 and Str. For mB-1, anw is higher than Str from a radius of 50 m to 80 m and is lower from 80 m to 90
m. Beyond 90 m, anw decreases steeply, which is mainly due to the shifted starting position of the trailed wake within the
rotor plane. This results in a significant decrease of da all the way to the blade tip. According to Eq. (56), this steep decrease
in da should correspond to a steep increase in the local coupling factor Zgw. However, at this operational condition, RKgw is
already at high levels around 0.9. Further increases of s<pw will quickly reach the upper limit of 1.0, limiting the impact on the
rotor-averaged kg .

This suggests that the good performance of the existing coupling factor for the backward swept blades tested in (Li et al.,
2022d) may relate to the high loading operational condition and the limiting applied to the local coupling factor <gw. However,
under lower loading conditions with lower overall levels of kgw, performance might worsen. This is because the steep increase
in Kpw near the blade tip may not quickly reach the upper limit, resulting in a noticeable increase in rotor-averaged kgw and,
consequently, an underestimation of the loads. As a result, the performance of the existing coupling factor should also be tested

for operational conditions with lower loading, as discussed later in Sect. 8.3.1.
6.2.2 Forward swept blade

For the forward swept blade mB-5, as shown in Fig. 3 (a), the local coupling factor kg is slightly higher than the baseline
straight blade (Str) from a radius of 50 m to 80 m. In this region, the value of kgw is changing slowly with the radius and
maintaining a high level of approximately 0.9, showing similar behavior to Str. For radii from 80 m to the blade tip, Kpw
decreases steeply all the way to the lower limit of zero, significantly lower compared to Str. Moreover, the higher weighting
applied at the tip region when calculating the rotor-averaged value further amplifies this effect. The resulting rotor-averaged
coupling factor kgw is 0.838, notably lower than the straight blade’s value of 0.909.

The local coupling factor kgw is influenced by the axial induction difference da, which has two components. Firstly, the
difference in anw between mB-5 and Str, which is due to the influence of the blade’s forward sweep, is investigated. As shown
in Fig. 3 (b), for mB-5, anw is slightly lower than Str from a radius of 50 m to 80 m and is slightly higher from 80 m to 90
m. Beyond 90 m, anw is significantly higher than Str, which is mainly due to the shifted starting position of the trailed vortex
within the rotor plane. Secondly, due to the lowered value of the rotor-averaged kgw, the far wake induction for mB-5 is lower
than Str, showing an offset. Consequently, the overall level of da for mB-5 is also lower compared to Str, showing a significant
offset, except in the very tip region.

This analysis suggests that the insufficient performance of the existing coupling factor for forward swept blades is directly

related to the steep decrease in the local coupling factor <pw near the blade tip. The lower limit of zero applied to Rpw is
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insufficient to limit the significant local change. The decrease in the rotor-averaged kgw results in the total axial induction from

NW-MT being underestimated, which in turn leads to an overestimation of the loads.
6.2.3 Issues in the existing coupling factor

From the analysis, three major issues with the existing coupling method are identified. Firstly, the Newton—Raphson method is
applied to the local coupling factor <pw, which is not directly applied in the far wake model. Instead, the rotor-averaged value
kgw, which is the area-weighted value calculated from the local coupling factors, is directly applied in the far wake model. This
indirect application of the Newton—Raphson method introduces inconsistencies between the local and rotor-averaged coupling
factors. Secondly, the significant differences in axial inductions near the blade tip, resulting from different tip modeling methods
in NW-MT and BEM, are balanced by adjusting the overall level of the far wake axial induction. However, this method has
limited effectiveness in counteracting the significant differences in axial inductions locally at the blade tip. For example, due
to the sweep effects being included in the coupled NW-MT model but not in the reference BEM method. This can lead to large
changes in the rotor-averaged kgw and subsequently affecting load predictions. Thirdly, the impact of the large error locally at
the blade tip is amplified by the larger weighting applied to the blade tip region when averaging the coupling factor based on

the annulus area.
6.3 Modifications to the coupling factor

To address the issues identified in the existing method of calculating the coupling factor, two modifications are proposed. These
modifications aim to improve the consistency between local and rotor-averaged coupling factors and to reduce the excessive

influence of the blade tip region on the coupling factor calculation. Note that both modifications are applicable to kM and kY-
6.3.1 First modification

The first modification addresses the inconsistency arising from not directly applying the Newton—Raphson method to the rotor-
averaged coupling factor used in the far wake induction. To resolve this, the Newton—Raphson method is applied directly to the
rotor-averaged coupling factor kgw, rather than to the local coupling factor Kgw. The residual function Fj, is therefore defined

as the sum of the axial induction difference da weighted by the corresponding annulus area A,:

Nep
F, = Zéai Agi. (60)
i=1

The rotor-averaged coupling factor at the current time step ¢, labeled as kfy, is updated from the value at the previous time
step using the Newton—Raphson method:
F,

oF, °
Okpw

Elw = kb — (61)
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By substituting Eq. (60), the partial derivative of F, with respect to kg is given by:

Za&FWl (62)

8kFW Okpw

To prevent excessively large differences in axial induction, particularly near the blade tip, a limiting method is introduced.
This involves calculating a tentative local coupling factor xgw for each section, following a similar approach to Eq. (56):

(Sai

by =kt - ———— 63
KEW i FW darw.i/Okrw (63)

This tentative local coupling factor is then limited to the range between 0 and 1, which is labeled as Agw after the limiting.
Then, the adjusted axial induction difference, labeled as da, is calculated back from the limited local coupling factor Agw ;:

(5&1 = (kFW — R 8aFW7i

l‘iFW,i) m (64)

This limited axial induction difference §a replaces the original da in Eq. (60) to calculate the residual function Fy, in Eq. (60).

This first modified method of calculating the coupling factor is labeled as method (a).
6.3.2 Second modification

The second modification specifically addresses the impact of significant axial induction differences at the blade tip region,
targeting the second and third issues as previously identified. This modification is optional and corresponds to an alternative
modified method for calculating the coupling factor.

Inspired by the observation that the bound circulation decreases rapidly towards zero at the blade tip under near-optimal
operating conditions, the weighting factor for the rotor-averaged coupling factor is modified. Instead of weighting solely by
the annulus area A,, the new approach uses the product of A, and the normalized bound circulation k as defined in Eq. (3).

The residual function is then given by:

= ks iba; Ag . (65)
i=1

The rotor-averaged coupling factor is updated using the Newton—Raphson method:

-1 Ff
kew = kiew' — 5 (66)
6kt

By substituting Eq. (65), the partial derivative is obtained using the chain rule:

Nep

OFga _ Oapw i Oks i '
Okew ; <k ke 0 akpw> A (67)

Similar to the first modification, the limiting method is applied to prevent excessive influence due to locally large axial

induction differences. The tentative local coupling factor xkpw in Eq. (63) is introduced, which is then limited between 0 and
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1. The adjusted axial induction difference da that is calculated back using Eq. (64) is then used in Eq. (65), replacing da, to
compute the residual function F,,.

This second modified method, labeled as method (ka), effectively reduces the influence of the blade tip region on the coupling
factor calculation. So that the rotor-averaged kgw is expected to better represent the overall level along the blade. Moreover, it
can be shown that performing an area-weighted rotor averaging of ksap is equivalent to averaging of CSTKJ in Eq. (2), which
serves as an approximation to the local power coefficient. Additionally, this method is conceptually similar to matching the
rotor-averaged axial induction weighted by the annulus thrust force.

Compared to the first modified method, this second modified method has more complicated forms of the partial derivatives, as
shown in Eq. (67). Specifically, computing the partial derivative Ok, /Okpw requires additional considerations. The normalized
bound circulation k¢ depends on the lift coefficient C'7, and relative velocity Vi according to Egs. (3) and (4). The lift coefficient
C', depends on the angle of attack « and in turn depends on the induced velocities, which are functions of kgw. Therefore, the
lift slope dC'y, / dev is required to calculate the partial derivative. This adds complexity to the implementation of this modified

method.

7 Simulation setup and blades for the comparison

In this section, the higher-fidelity RANS solver and lifting-line (LL) solver are firstly described. Then, the straight and swept

blades used for the comparison are described. Finally, loads used for the comparison are described.
7.1 Reynolds-averaged Navier—Stokes solver

The pressure-based incompressible three-dimensional solver EllipSys3D was used to solve the Reynolds-Averaged Navier—
Stokes (RANS) equations using finite volume discretization. An inlet/outlet boundary condition strategy was applied at the
outer limit of the computational fluid dynamics (CFD) domain. The flow was assumed to be fully turbulent, with the k—w
SST model employed (Menter, 1994). Rotor-resolved meshes were generated fully scripted in two consecutive steps to ensure
consistent grid quality. First, a structured mesh of the blade surface was generated (Zahle, 2025), with 128 cells in the spanwise
direction and 256 cells in the chordwise direction. Second, the surface mesh was radially extruded using a hyperbolic mesh
generator (Sgrensen, 1998) to create a volume grid with a total of 256 cells. The resulting outer domain was located approxi-
mately 11 D (rotor diameters) away. A boundary layer clustering was applied with an imposed first cell height of 1 x 1075 m
to target y* values lower than one. The resulting volume meshes accounted for 14.2 million cells.

While a steady solver was employed, some unsteady flow separation is expected near the blade root region during operation.
Unlike previous works (Li et al., 2022b, c, d), which averaged CFD results over the last 350 iterations, the present work averages
only the last 50 iterations, resulting in increased noise in the root region. Applying convergence enhancement methods to the
RANS CFD solver, such as the modified BoostConv method (Dicholkar et al., 2022, 2024, 2025), could improve the root region
comparisons. However, since the blade root region is not the focus of this study and has negligible influence on the blade tip

region, the existing results are deemed sufficient for this study.
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7.2 Free-wake lifting line solver

In addition to the RANS CFD solver, the free-wake lifting line (LL) module implemented in the in-house multi-fidelity vortex
code MIRAS (Ramos-Garcia et al., 2016; Ramos-Garcia et al., 2017) is also used for comparison, as a higher-fidelity aerody-
namic model. While the blade-resolved RANS CFD approach resolves the 3-D flow field around the blade geometry, the LL
method relies on 2-D airfoil data and applies the cross-flow principle (Hoerner and Borst, 1985). The free-wake LL method
represents the highest fidelity within the framework of engineering aerodynamic models that rely on 2-D airfoil data, making
it a crucial benchmark for this study.

In the LL method, each blade is represented by a concentrated bound vortex line located at the 1/4 chord line of the blade
and is modeled as discrete vortex filaments. With the spanwise and temporal variation of the bound vortex, vorticities are
trailed and shed into the wake. Importantly, the influence of a curved bound vortex on itself is included (Li et al., 2020),
which is essential for modeling blade sweep effects (Li et al., 2018, 2022d; Fritz et al., 2022, 2024b). The first row of wake
vortex panels is released from the lifting line, using velocities locally at the 1/4 chord line. To simulate the wake, a hybrid
filament-particle-mesh method is employed. To accurately resolve the near wake, which is crucial for capturing sweep effects,
the bound vortex and the first 360 wake panels after each blade are modeled using vortex filaments. This vortex filament
wake corresponds to approximately 1.5 revolutions of the rotor®. The remaining wake is represented by vortex particles, which
are subsequently interpolated onto an auxiliary Cartesian mesh. Interactions between vortex particles and influence of vortex
particles on the filaments are efficiently computed using an FFT-based method to solve the Poisson equation with a regularized
Green’s function under free-space boundary conditions. A 10th-order Gaussian filter is used to regularize the singular free-
space Green’s function (Hejlesen et al., 2013, 2015). Furthermore, a filter function with a width of 1.5 times of the mesh
cell size is applied to minimize smoothing errors. The influence of the vortex filaments on themselves are modeled using the
Biot-Savart law. The influence of the vortex filaments on the vortex particles are neglected, since the filament wake size is large

enough.
7.2.1 Numerical setup

The Cartesian mesh used for wake modeling spans approximately (11D x 2D x 2D) (where D is the rotor diameter), with a
cell size of 2.5 m, approximately 0.0125D. This configuration results in approximately 22.5 million cells and an equal number
of vortex particles. Relatively high temporal and spatial resolutions are used to ensure the accurate modeling of sweep effects.
For each simulation, a time step of 0.03 s is chosen, corresponding to an azimuthal discretization of approximately 1.5°, or
240 time steps per rotor revolution. Simulations are conducted for 20,000 time steps, corresponding to 600 s of total simulation
time or approximately 83 rotor revolutions. A maximum of 50 sub-iterations per time step is applied to ensure the angle of
attack residual converges below a specified tolerance. Each blade is discretized radially into 50 spanwise sections using cosine

spacing. The airfoil polars are obtained from fully turbulent 2-D RANS CFD simulations (Bortolotti et al., 2019).

6 A parameter study has been performed and showed that the results converged if the filament wake size is 1.5 revolutions or larger.
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7.3 Blades used for the comparison

The blades used for comparison are based on the IEA-10.0-198 10 MW reference wind turbine (RWT) (Bortolotti et al., 2019),
following previous studies (Li et al., 2018, 2022b, d, 2025b, 2024). The baseline straight blade is modified by aligning the
half-chord line into a straight main axis. Swept blades are also used for comparison, which are modified based on the baseline
straight blade by introducing z-components into the main-axis geometry. Afterwards, the main axis geometry is scaled so that
the radius of each blade section remains unchanged compared to the baseline straight blade. The chord and twist distributions
of the swept blades are also modified so that the BEM method predicts the same operational conditions (e.g., angle of attack and
local thrust coefficient) as the baseline straight blade (Li et al., 2025b). The blades used for comparison include the backward
swept blade mB-1 and the forward swept blade mB-5, which are also used in previous work (Li et al., 2025b). Their main axis

geometries are illustrated in Fig. 4.
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Figure 4. Front view of the backward swept blade mB-1 and the forward swept blade mB-5 in the blade root coordinate system (B-sys). The
main axis, which is the half-chord line, is highlighted. The figure is adapted from (Li et al., 2025b).

It has been tested that other swept blades with different main axis shapes exhibit similar behaviors to the swept blades used
in the present work. Including these additional results will not change the conclusions of the present work. The results of other
swept blades are summarized in an internet appendix (Li et al., 2025a).

For all cases, the rotor radius is 99 m with a hub radius of 2.8 m. The blades are assumed to be stiff, excluding elastic
deformation effects. For the low- to mid-fidelity engineering aerodynamic models, including BEM and coupled near and far
wake models, the same airfoil data in the LL method is used, which is from 2-D fully turbulent RANS CFD simulations
(Bortolotti et al., 2019). For BEM and coupled models, each blade is discretized radially into 80 sections.

7.4 Operational conditions

The operational conditions for the numerical tests also align with previous studies (Li et al., 2022b, c, d, 2025b). First, an
optimal operational condition with high rotor thrust is used for comparison. The rotors operate under a uniform inflow of
8 ms~! perpendicular to the rotor plane, with a constant rotational speed of 0.855 rad s~! and no blade pitch.

In addition, comparisons are conducted at operational conditions corresponding to lower thrust coefficients. Three conditions
defined in the IEA Wind TCP Task 37 report (Bortolotti et al., 2019) are used for these lower-loading cases, with rotational
speed set at 0.909 rad s~*, wind speed varying from 12.0 ms~! to 20.0 ms~! and the blade is pitched towards lower loadings.

For the baseline straight blade, the blade is pitched with 6, for these lower loading conditions. For swept blades, the blade is
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not directly pitched but has modified chord and twist distributions according to (Li et al., 2025b), so that the BEM method
predicts the same circulation distribution as the pitched straight blade.
The operational conditions are summarized in Table 2, detailing wind speed, tip-speed-ratio and pitch angle 6,,. The table

also lists the thrust and power coefficients of the rotor with baseline straight blades, as predicted by the CFD solver.

Table 2. Operational conditions used in the comparison. C%‘{CFD and C’ﬁéfCFD are the thrust and power coefficients predicted by the CFD solver

for the baseline straight blade.

Wind speed U [ms~ ']  Tip-speed-ratio A [-]  Pitch angle 6,, [°] C¥em -1 CHepp [-]

8.0 10.58 0.00 0.91 0.45
12.0 7.50 5.98 0.44 0.31
15.0 6.00 11.77 0.21 0.16
20.0 4.50 18.51 0.09 0.07

7.5 Loads for comparison

In the present work, the non-dimensional axial and tangential loads, which are in the y- and z-directions in the blade local
coordinate system (BL-sys) as described in (Li et al., 2025b), are used for comparison. The axial and tangential forces are

non-dimensionalized into the local thrust coefficient and the simplified local power coefficient as follows:

NpfBtds
L (68)
5pUq2mrdr
~ QrNpfBlds
G, = ENolads (69)
5pUq2mrdr

where the simplified power coefficient C’p represents the contribution of the tangential force to power. Note that other loads,
such as sectional moments, can also contribute to aerodynamic power. However, for moderately swept blades, these contribu-
tions are generally insignificant.

To better illustrate the influence of curved blade geometry on loads, the load differences between the swept blades and the

baseline straight blade at the same radial positions are used for the comparison:

AC(r) = Cy(r) — C™(r), (70)
AC,(r) = Cy(r) = Cy¥(r). (71)
8 Results

In this section, comparative studies are conducted to evaluate the performance of different coupling factors and far wake models

for both straight and swept blades. Building on the methodology and coupling factor modifications introduced in Sect. 6.3, the
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coupled models NW-MT and NW-VC with coupling factors calculated using different methods are compared for the baseline
straight blade (Str), the backward swept blade (mB-1) and the forward swept blade (mB-5). The coupled models using the
original coupling factor and the two modified coupling factors are labeled as (origin), (a) and (ka), respectively. Additionally,
the comparison includes coupled models using a fixed coupling factor for the swept blades, set equal to that of the baseline
straight blade, labeled as (fixed). This fixed coupling factor is following the assumption that the sweep effects are fully captured
in the near wake, making the coupling factor independent of blade sweep. Although insightful for comparison purposes, this
approach is impractical for implementation since it requires simultaneous computations for both straight and swept blades.
Finally, results from different coupled models with their preferred coupling factors are compared with BEM, LL and CFD

results.
8.1 Baseline straight blade

First, loads of the baseline straight blade, calculated using the coupled models NW-MT(origin) and NW-VC(origin) with the
original coupling factors, are compared with results from the BEM method, the LL solver and the RANS CFD solver at the

optimal operational condition with a wind speed of 8 ms~*. The results are depicted in Fig. 5.

1.2 T T T T 0.6
(a) — (b)
. o 05F
1t 0"
o = |
S g 0.4
€ 08Ff =
() 1) L
}:_) S 0.3
g o6t $ o2t |
7 ; 3
2 ® 01Ff
£ 0471 5
?(g BEM - .,-' BEM
9 i NW-MT (origin) 2 Orys NW-MT (origin)
02t = = =NW-VC(origin) 3 = = =NW-VC(origin)
21 ;
! ———--LL E 017 ———=-LL
! ......... CFD D | NS e CFD
0 1 . | | . 0.2 . | | .
0 20 40 60 80 100 0 20 40 60 80 100
r[m] r[m]

Figure 5. Thrust coefficient C; (panel a) and simplified power coefficient ép (panel b) of the baseline straight blade Str at a wind speed of
8 ms™*, calculated using the BEM method, coupled models NW-MT(origin) and NW-VC(origin) with the original coupling factors, the LL

solver and the CFD solver.

For loads in the blade root region with a radius of less than 20 m, there is a relatively large difference between results from
the CFD solver and the other models. As discussed in Sect. 7, it is due to unsteady flow separation in this region. Therefore,
the comparison focuses on the radius from 20 m to the blade tip.

The thrust coefficients predicted by these different models show good agreement, indicating that the predicted circulation
distributions are similar (Li et al., 2025b). However, larger discrepancies are observed in the simplified power coefficient

results, especially for radii larger than 60 m. All engineering aerodynamic models overestimate the tangential loads compared
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to the LL and CFD results. This is likely to be related to the assumptions in the engineering models, such as the use of Prandtl’s
tip-loss correction in the BEM method and the assumption of a non-expanding helical trailed wake in the coupled models.
Furthermore, the BEM method and the coupled models do not take into account the wake expansion and wake roll-up effects,
which are significant for this high-loading condition. In contrast, the free-wake LL method includes the wake expansion and
wake roll-up effects; the CFD solver is modeling the blade tip and wake effects with much higher fidelity, as the flow around
the 3-D blade geometry is fully resolved.

For NW-VC(origin), there is surprisingly good agreement with the BEM results from a radius of 20 m to 90 m, for both thrust
and power coefficients. Beyond 90 m, differences in the power coefficient arise due to different tip-loss modeling approaches. In
comparison, NW-MT (origin) shows larger discrepancies compared to the BEM and NW-VC(origin) results for both thrust and
power coefficients. Since both NW-MT (origin) and NW-VC(origin) use the same near wake model, the differences arise from
the far wake modeling. Specifically, NW-MT(origin) uses the far wake momentum theory, which is less physically consistent
than the far wake vortex cylinder model used in NW-VC(origin).

For operational conditions with higher wind speeds and lower thrust coefficients listed in Table 2, the results are presented
in Fig. C1 in Appendix C. In general, the different models show good agreement across all tested lower loading conditions.
As wind speed increases and rotor loading decreases, the agreement between different models generally improve, especially
near the blade tip. This improvement is likely due to the weaker tip vortex strength and reduced induction effects at lower rotor

loading conditions. Furthermore, the wake expansion effect becomes weaker as rotor loading decreases.
8.2 Impact of blade sweep on aerodynamic loads

In this section, the CFD results are used to illustrate the impact of blade sweep on aerodynamic loads at different operational
conditions. The purpose is to provide an intuitive understanding of the relative magnitude of the blade sweep effects compared
to the overall loads, setting a basis for the following comparisons. First, the CFD results of the baseline straight blade (Str) and
the swept blades (mB-1 with backward sweep and mB-5 with forward sweep) at an optimal operational condition with a wind

1

speed of 8 ms™" are compared in Fig. 6. The relative differences in rotor-integrated thrust and power for the swept blades

compared to the baseline straight blade are summarized in Table 3

Table 3. Relative differences in rotor thrust and power coefficients of the swept blades (mB-1 with backward sweep and mB-5 with forward
sweep) compared to the baseline straight blade, predicted by the CFD solver. Relative differences computed as: eC; = (C¥* — C$7) /OS5,

where C; represents either the thrust coefficient (C'r) or the power coefficient (C'p).

Wind speed Up [ms™ 1] eCRB! [%]  eCFBS (%]  eC™B' (%] eC™BS [%]

8.0 -0.10 0.12 2.90 -2.68
12.0 -0.02 0.31 0.76 -0.26
15.0 0.23 0.03 0.82 -0.52
20.0 0.17 -0.68 0.98 -1.25
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Figure 6. Thrust coefficient C'; (panel a) and simplified power coefficient C’p (panel b) of the baseline straight blade Str, the backward swept

blade mB-1, and the forward swept blade mB-5 at a wind speed of 8 ms™*, calculated using the CFD solver.

At this operational condition, blade sweep has a smaller relative influence on thrust than on power. For both swept blades mB-
1 and mB-5, the thrust coefficients remain similar to that of the straight blade. The rotor-integrated thrust coefficient differ only
by approximately 0.1%. However, significant differences are observed in the power coefficients of the swept blades compared
to the straight blade, with a more substantial difference exceeding 2.5% observed in the rotor-integrated power coefficient. For
radii less than 50 m, loads of the swept blades are almost identical to those of the baseline straight blade. Moving from the
blade mid-span (radius of 50 m) towards the blade tip, a spanwise redistribution of loads is observed for both thrust and power
coefficients, consistent with observations in previous studies (Li et al., 2018, 2022d, 2025b). Specifically, for the backward
swept blade mB-1, the loads initially decrease and then increase compared to the baseline straight blade. For the forward swept
blade mB-5, the load redistribution shows an opposite trend, with the loads initially increasing and then decreasing relative to
the baseline straight blade.

For lower loading conditions at wind speeds of 12, 15 and 20 ms~?, the results are presented in Fig. C2 in Appendix
C. Across all tested lower loading conditions, the spanwise load redistribution effect is observed for both thrust and power
coefficients. However, as wind speed increases and rotor thrust coefficient decreases, the differences in loads between the
swept blades and the straight blade diminish, indicating a reduced influence of blade sweep. At the highest tested wind speed
of 20 ms~*, corresponding to a rotor-averaged thrust coefficient of 0.1, both axial and tangential loads of the swept blades are
nearly identical to those of the baseline straight blade. Nevertheless, the influence of blade sweep remains consistently more
pronounced on rotor power coefficients than on rotor thrust coefficients across all tested conditions’, except for the single case

of blade mB-5 operating at 12 ms~*.

"Note that, in practice, for a pitch-regulated turbine operating at higher wind speeds, the pitch angle will be determined by the controller to maintain the

rated aerodynamic power. Then, the differences between the swept and straight blades will be in the thrust only.
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8.3 Coupled models with far wake momentum theory

This section evaluates the performance of different coupling factors when applied to the coupled models with far wake mo-
mentum theory. As described in Sect. 5.3, the only difference between NW-MT and NW-MT-VC is the inclusion of radial
induction, which has negligible influence on the coupling factor; therefore, only NW-MT is used for this comparison. First,
the rotor-averaged coupling factors kMy for the straight and swept blades, calculated using the three different methods, are

compared in Table 4.

Table 4. Rotor-averaged coupling factor of the baseline straight blade (Str), the backward swept blade (mB-1) and the forward swept blade
(mB-5) calculated from the coupled NW-MT model with the original coupling factor, NW-MT(origin), and the modified coupling factors,
NW-MT(a) and NW-MT(ka), at a wind speed of 8 ms™*. The differences in the coupling factor of the swept blades compared to the baseline

straight blade are also shown.

Model Str mB-1 mB-5 AmB-1 AmB-5
NW-MT(origin) 0.904 0.909 0.838 0.006 -0.066
NW-MT(a) 0911 0912 0.888 0.001 -0.024
NW-MT(ka) 0912 0911 0900 -0.001 -0.012

For the baseline straight blade (Str), the rotor-averaged coupling factors kpw from all three methods are very similar, indi-
cating negligible differences in far wake inductions and consequently in the loads. Thus, NW-MT(a) and NW-MT (ka) with the
two modified coupling factors described in Sect. 6.3 predict very similar loads to NW-MT (origin) for the straight blade case,
as shown in Fig. 5.

For the swept blades, the performance of different coupling factors is evaluated by comparing the loads predicted by the
coupled models with CFD results and with NW-MT(fixed), which uses the same fixed coupling factor as the baseline straight
blade. As shown in Sect. 8.2, the load differences between the swept blades and the baseline straight blade are relatively small
compared to the overall loads, especially at lower loading conditions. To better illustrate the effects of using different coupling
factors, the load differences between the swept blades and the baseline straight blade calculated using Eqgs. (70) and (71) are
compared.

At the optimal operational condition with a wind speed of 8 ms~!, the load offsets of the swept blades mB-1 and mB-5
relative to the baseline straight blade (Str) are depicted in Figs. 7 and 8, respectively. In addition, the BEM results are included
as a reference, which predict approximately the same loads for the swept and straight blades (Li et al., 2025b).

For the backward swept blade mB-1, the loads predicted by the NW-MT model with different coupling factors are similar
and agree well with the CFD results. Both modified methods, NW-MT(a) and NW-MT(ka), show slight improvements over
NW-MT(origin) when compared to NW-MT(fixed). Furthermore, as shown in Table 4, the rotor-averaged coupling factors

kMT for mB-1 are very close to those of the straight blade across all methods. For the forward swept blade mB-5, NW-
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Figure 7. Offset in thrust coefficient (AC}) (panel a) and simplified power coefficient (AC’p) (panel b) of the backward swept blade mB-1

compared to the baseline straight blade Str, at a wind speed of 8 ms™*. Results from the coupled NW-MT model with different coupling
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-0.05

Offset in power coefficient [-]

BEM = = =NW-MT(ka)
NW-MT(origin) = = = NW-MT(fixed)
H - - -NW,MT(a) .........
0 20 40 60 80
r[m]

factors are compared with BEM and CFD results.

100

28

-0.05

0.2

S

e

o
T

o
=
T

o

o

3]
T

BEM - — -NW-MT(ka)
NW-MT(origin) = = = NW-MT(fixed)
--------- CFD

— — -NW-MT(a)

-0.05

r[m]

100

(b)

BEM - = -NW-MT(ka)
| NW-MT(origin) = = = NW-MT(fixed)
- - -NW,MT(a) --------- CFD
20 40 60 80
r [m]

100



690

695

700

705

710

715

MT (origin) significantly overestimates the loads along the span. This overestimation is associated with a noticeable decrease
in kMY compared to the straight blade, due to inconsistencies in calculating the coupling factor, as detailed in Sect. 6.2.2. In
contrast, both NW-MT(a) and NW-MT(ka) with modified coupling factors show clear improvements over NW-MT(origin).
However, both modified methods still slightly underestimate the rotor-averaged coupling factor kMy, which leads to an overall
overestimation of the aerodynamic loads compared to NW-MT(fixed). Among the two methods, NW-MT(ka) shows further
improvement over NW-MT(a) and has sufficiently good agreement with both NW-MT(fixed) and CFD results.

8.3.1 Lower loading conditions

To ensure a comprehensive evaluation, the performance of the different coupling factors applied to NW-MT is also assessed
under lower loading conditions listed in Table 2. Detailed results for these conditions are shown in Figs. C3 and C4 in Ap-
pendix C, with conclusions summarized here.

For the backward swept blade mB-1, the NW-MT model with different coupling factors exhibits sufficiently good agreement
with the CFD results across all tested lower loading conditions. In the case of NW-MT (origin), the loads are underestimated
compared to NW-MT(fixed) from radii 20 m to 50 m and this underestimation becomes more pronounced at lower loading
conditions®. Both modified methods, NW-MT(a) and NW-MT\(ka), show improved agreement with NW-MT(fixed), with NW-
MT(ka) showing slightly better performance. For the forward swept blade mB-5, NW-MT (origin) overestimates the loads
across all conditions, showing significant discrepancies compared to the CFD results. In contrast, NW-MT(fixed) demonstrates
very good agreement with the CFD solver. Results from NW-MT(a) show clear improvements over NW-MT (origin) but still
overestimate the loads, especially from radii 20 m to 50 m. NW-MT(ka) shows further improvement over NW-MT(a) and has
sufficiently good agreement with NW-MT(fixed).

8.3.2 Summary

In summary, both NW-MT(a) and NW-MT(ka) with modified coupling factors show similarly good performance as NW-
MT (origin) when modeling the baseline straight blade (Str) and the backward swept blade (mB-1) across all tested operational
conditions. For the forward swept blade (mB-5), NW-MT(a) offers improvement over NW-MT (origin) but still overestimates
the loads. In comparison, NW-MT(ka) shows sufficiently good agreement with NW-MT(fixed) and CFD results across all tested
operational conditions. Therefore, despite its more complex implementation, the modified coupling factor (ka) is preferred for
coupled models using the far wake momentum theory. This suggests that NW-MT(ka) and NW-MT(ka)-VC are preferable over
NW-MT and NW-MT-VC with other coupling factors.

8.4 Coupled models with far wake vortex cylinders

This section evaluates the performance of different coupling factors when applied to the coupled models with the far wake

vortex cylinder model. As in Sect. 8.3, the influence of the modified coupling factors on both straight and swept blades is

8This can be linked to the discussion in Sect. 6.2.1 that the local coupling factor xpw maintains a lower overall level under these operational conditions.
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assessed. Since the primary difference between NW-VC and NW(ideal)-VC lies in the radial induction, which has negligible
influence on the coupling factor, only NW-VC is used for the comparison. The rotor-averaged coupling factors (k) for the

straight and swept blades, calculated using the three different methods, are compared in Table 5.

Table 5. Rotor-averaged coupling factor of the baseline straight blade (Str), the backward swept blade (mB-1) and the forward swept blade
(mB-5) calculated from the original method NW-VC(origin) and the modified methods NW-VC(a) and NW-VC(ka), at a wind speed of

8 ms~!. The differences in the coupling factor of the swept blades compared to the baseline straight blade are also shown.

Model Str mB-1 mB-5 AmB-1 AmB-5
NW-VC(origin) 0.562 0.581 0.573 0.019 0.011
NW-VC(a) 0.576  0.578 0.608 0.002 0.032
NW-VC(ka) 0.576  0.592 0.583 0.016 0.006

For the baseline straight blade Str, the rotor-averaged coupling factors kgw from all three methods are similar, showing that
the performance remains similar before and after the coupling factor modifications. Consequently, NW-VC(a) and NW-VC(ka)
with modified coupling factors predict very similar loads as NW-VC(origin) for the straight blade case, as shown earlier in
Fig. 5.

To evaluate the performance of different coupling factors for swept blades, loads predicted by the coupled models are
compared with results from CFD and NW-VC(fixed), which uses a fixed coupling factor equal to that of the baseline straight
blade. As in previous sections, the load differences between the swept blades and the baseline straight blade, calculated using
Egs. (70) and (71) are compared, to better illustrate the effects of using different coupling factors. At the optimal operational
condition with a wind speed of 8 ms~!, the load offsets between the swept blades mB-1 and mB-5 relative to the baseline
straight blade Str are shown in Figs. 9 and 10, respectively. The BEM results are also included as a reference, which predict
approximately the same loads for the swept and straight blades (Li et al., 2025b).

For both swept blades mB-1 and mB-5, loads from the coupled models with different coupling factors are very similar to
each other and show good agreement with the CFD results. As shown in Table 5, the rotor-averaged coupling factors kg for
both swept blades from different methods are all similar and closely approximate the value of the straight blade Str.

Compared to NW-MT(origin), the results from NW-VC(origin) show significant improvements in modeling the forward
swept blade mB-5, despite using the original coupling factor. To understand the surprisingly good performance of the NW-
VC(origin) model, the analysis is performed using the similar method as in Sect. 6.2 for NW-MT (origin). Specifically, the local
coupling factor and also the different components of the axial inductions for the swept blades mB-1 and mB-5 are compared
with those of the baseline straight blade Str, as shown in Fig. 11.

For the baseline straight blade Str, the axial induction difference da is approximately zero from the mid-span to a radius

of 90 m. Beyond 90 m, da decreases steeply. This indicates that the axial induction from NW-VC(origin) is almost identical
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Figure 9. Offset in thrust coefficient (AC}) (panel a) and simplified power coefficient (AC’p) (panel b) of the backward swept blade mB-1
compared to the baseline straight blade Str, at a wind speed of 8 ms™*. The results calculated from the coupled NW-VC model with different
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coupling factors are compared with BEM and CFD results.
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Figure 10. Offset in thrust coefficient (AC}) (panel a) and simplified power coefficient (Aé’p) (panel b) of the forward swept blade mB-5
compared to the baseline straight blade Str, at a wind speed of 8 ms™*. The results calculated from the coupled NW-VC model with different

coupling factors are compared with BEM and CFD results.
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Figure 11. Comparison of: (a) the local coupling factor Krw; (b) different components of the axial induction factors from the coupled model

NW-VC(origin) with the existing coupling factor, of the baseline straight blade Str, the backward swept blade mB-1 and the forward swept

blade mB-5, at a wind speed of § ms™*.

to the BEM axial induction along the blade span, except in the blade tip region with radius larger than 90 m. In contrast, as
shown earlier in Fig. 3, NW-MT (origin) that has the same method of calculating the coupling factor has noticeable non-zero
values of da from a radius of 20 m to 90 m. This means that BEM and NW-MT have larger discrepancies in axial inductions
along the span. This observation further justifies the far wake vortex cylinder model in NW-VC provides a more physically
consistent representation of the far wake compared to the simple scaling approach used in the far wake momentum theory
of NW-MT. For the straight blade Str, the improved consistency reduces systematic errors in axial induction along the span,
making the coupling between the near and far wake models inherently easier to balance. For the swept blades mB-1 and mB-5,
although the blade sweep effects make balancing of da more challenging, the improved physical consistency of the far wake
vortex cylinder model allows for effective balancing, even when using the original coupling factor. Additionally, the NW-VC
model has a different definition of the coupling factor compared to that of NW-MT, as described in Sect. 4.2.1, which prevents
extraordinary changes in the far wake induction. Furthermore, variations in the rotor-averaged coupling factor k¥ affect the
far wake inductions differently in the far wake vortex cylinder model than kMY in the simple scaling approach used in the far

wake momentum theory.
8.4.1 Lower loading conditions

To provide a comprehensive evaluation, the performance of the different coupling factors applied to NW-VC is also assessed
under lower loading conditions listed in Table 2. Detailed results for these conditions are provided in Figs. C5 and C6 in
Appendix C, with conclusions summarized here.

For the backward swept blade mB-1, results from NW-VC with different coupling factors exhibit very good agreement with
the CFD results, particularly from the mid-span to the blade tip. Overall, results from NW-VC(origin) show sufficiently good
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agreement with NW-VC(fixed) and CFD results. Some minor differences are observed from radius 20 m to 50 m, especially for
NW-VC(origin) at a wind speed of 20 m s~!. Both modified methods, NW-VC(a) and NW-VC(ka), show marginally improved
agreement with NW-VC(fixed), especially from radius 20 m to 50 m.

For the forward swept blade mB-5, NW-VC(origin) results maintain sufficiently good agreement with NW-VC(fixed) and

CFD results at wind speeds of 12 ms™! and 15 ms~!. However, at a wind speed of 20 ms~!

, corresponding to a rotor
thrust coefficient of 0.1, NW-VC(origin) significantly underestimates the loads between radii of 20 m and 70 m. Neverthe-
less, results from NW-VC(origin) still show significantly improved agreement compared to NW-MT(origin), due to the more
physically consistent far wake vortex cylinder model. The two modified methods, NW-VC(a) and NW-VC(ka), demonstrate
further improvements over NW-VC(origin) and provide better agreement with NW-VC(fixed). At 20 ms~!, NW-VC(a) shows
improvements over NW-VC(origin) but noticeably overestimates the load between radii of 20 m and 50 m. In comparison,
NW-VC(ka) shows further improved agreement with NW-VC(fixed) compared to NW-VC(a). However, at such low loading
conditions, the magnitude of the absolute error is very small, so the performance of both NW-VC(a) and NW-VC(ka) remains

acceptable.
8.4.2 Summary

In summary, NW-VC(origin) with the original coupling factor shows good agreement with NW-VC(fixed) and CFD results at
the optimal operational condition but its performance worsens under lower loading conditions. Nevertheless, due to its more
physically consistent far wake modeling, NW-VC(origin) performs significantly better than NW-MT (origin), especially for
forward swept blades. Both NW-VC(a) and NW-VC(ka) with modified coupling factors show further improvements over NW-
VC(origin) and provide sufficiently good performance across different operational conditions. However, the modified method
(a) is preferred for coupled models using the far wake vortex cylinder model due to its simpler implementation. This suggests

that NW-VC(a) and NW(ideal)-VC(a) should be used over NW-VC and NW(ideal)-VC with other coupling factors.
8.5 Comparison of different coupled methods

In this section, the performance of different coupled methods is compared with LL and CFD results. The methods evaluated in-
clude the existing coupled model NW-MT (ka) and the modified coupled models NW-MT(ka)-VC, NW-VC(a) and NW (ideal)-
VC(a). Note that all coupled models use the favorable modified methods for calculating the coupling factor introduced earlier.
Results from the conventional BEM method are also included as a baseline. The primary aim is to compare the performance of
these coupled models and investigate the impact of different trailed wake radial induction modeling and far wake modeling on
the load calculation of swept blades.

At the optimal operational condition with a wind speed of 8 ms~!, the load offsets of the swept blades mB-1 and mB-5
compared to the baseline straight blade are shown in Figs. 12 and 13, respectively.

The BEM method predicts that the swept blades have approximately the same loads as the baseline straight blade, which
is expected since it is not able to model the influence of blade sweep on the wake. For the thrust coefficient, the existing

coupled model NW-MT(ka), which does not include trailed wake radial induction, predicts results that differ from all the
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Figure 12. Offset in thrust coefficient (AC') (panel a) and simplified power coefficient (Aé’p) (panel b) of the backward swept blade mB-1
compared to the baseline straight blade Str, at a wind speed of 8 ms™'. Results calculated from NW-MT(ka), NW-MT(ka)-VC, NW-VC(a)
and NW(ideal)-VC(a) are compared with BEM, LL and CFD results.
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Figure 13. Offset in thrust coefficient (AC}) (panel a) and simplified power coefficient (Aé’p) (panel b) of the forward swept blade mB-5
compared to the baseline straight blade Str, at a wind speed of 8 m s~!. Results calculated from NW-MT(ka), NW-MT(ka)-VC, NW-VC(a)

and NW(ideal)-VC(a) are compared with BEM, LL and CFD results.
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modified coupled models that include the trailed wake radial induction. This difference is relatively small compared to the
overall magnitude of the thrust coefficient. Nevertheless, including the trailed wake radial induction, as done in the modified
coupled models, leads to predicted thrust coefficients showing improved agreement with the LL and CFD results. Furthermore,
comparing the results from NW-VC(a) and NW(ideal)-VC(a), the differences are negligible, indicating that the influence of
the finite number of blades on radial induction is negligible for swept blades. In addition, the good agreement also relates
to the high accuracy of the approximated near wake axial and tangential inductions in the NW-VC model, as described in
Sect. 3.2. For the simplified power coefficient, results from NW-MT(ka) are almost identical to those from NW-MT(ka)-VC,
indicating that the radial induction has negligible contribution to tangential loads for blades with only sweep. In general, the
existing coupled model NW-MT(ka) with the modified coupling factor demonstrates sufficiently good performance for both
swept blades. Moreover, NW-VC(a) and NW(ideal)-VC(a) show very good agreement with LL. and CFD results, with only
insignificant improvements compared to NW-MT(ka) and NW-MT(ka)-VC. The slight differences are mainly due to the far
wake modeling, with a small portion possibly resulting from the different coupling factors applied.

Furthermore, the relative differences in rotor-integrated thrust and power coefficients for the swept blades compared to the

baseline straight blade are summarized in Table 6.

Table 6. Relative differences in rotor-integrated thrust and power coefficients of the swept blades mB-1 (backward swept) and mB-5 (forward
swept) compared to the baseline straight blade, at a wind speed of 8 ms™'. Results from coupled methods NW-MT(ka), NW-MT(ka)-VC,
NW-VC(a) and NW(ideal)-VC(a) are compared against BEM, LL and CFD results.

Method eCPBL%]  eCPB3 (%] eCBB %] eCBBS [%)]
BEM 0.01 0.01 0.25 0.25
NW-MT(ka) 0.26 0.11 2.15 -0.45
NW-MT(ka)-VC ~ -0.33 0.72 2.22 -0.52
NW-VC(a) -0.21 0.45 2.67 -1.31
NW(ideal)-VC(a) -0.12 0.37 2.67 -1.30

LL -0.20 0.06 1.90 -1.54

CFD -0.10 0.12 2.90 -2.68

As presented in Table 6, all coupled models predict relatively small differences in rotor thrust coefficients compared to the
baseline straight blade. However, rotor power coefficients exhibit larger relative differences. Among the coupled methods, NW-
VC(a) and NW(ideal)-VC(a) exhibit the closest agreement with LL and CFD predictions, demonstrating improved performance
over NW-MT(ka) and NW-MT (ka)-VC. These findings highlight the effectiveness of the modified coupled models, particularly
NW-VC(a), in accurately capturing the sweep-induced effects on rotor-integrated loads. In contrast, the conventional BEM
method predicts negligible differences in both thrust and power, as expected, since it does not model wake-induced effects of

blade sweep.
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8.5.1 Lower loading conditions

For the lower loading conditions listed in Table 2, the results are depicted in Figs. C7 and C8 in Appendix C, with conclusions
summarized here.

For the backward swept blade mB-1, there is very good agreement among the different coupled models, all showing very
similar trends with the LL. and CFD results across all tested operational conditions. Specifically, as the load decreases, the
thrust coefficients from NW-MT(ka) and NW-MT(ka)-VC become very similar, indicating that the relative importance of the
trailed wake radial induction decreases with the loading. For the forward swept blade mB-5, the results are almost identical
for models with the same far wake modeling. For radii between 20 m and 50 m, results from models with different far wake
modeling show slight differences. Note that these differences can also result from the different coupling factors applied.

At lower loading conditions, load offsets from CFD show notably difference from both the engineering models and the LL
solver, around a radius of 60 m. The load offset is lower for the backward swept blades and is higher for the forward swept
blades. This difference is also visualized for the tangential load of the swept blades at the optimal operational condition, as
shown in Figs. 12 and 13. This difference could be related to the assumption of cross-flow principle and the use of 2-D airfoil
data. The actual 3-D flow effects may introduce additional complexities and result in secondary effects, which are only captured
by the CFD solver. For example, spanwise flow can lead to variations in the viscous drag force, as analyzed by Gaunaa et al.
(2024). As discussed in Sects. 8.3.1 and 8.4.1, the influence of induction becomes less significant for lower loading conditions.
Consequently, the absolute differences between different coupled methods are negligible and all methods predict very similar

results.
8.5.2 Summary

In summary, all modified coupled models using their respective favorable modified coupling factors show good agreement
with LL and CFD results for modeling the loads of swept blades. Notably, the modified coupled models exhibit an exception-
ally close match with the free-wake LL solver, indicating the good capability in capturing sweep effects. The computation-
ally efficient simplified coupled models NW-MT(ka)-VC and NW-VC(a) have similarly good performance as the idealized
NW(ideal)-VC(a) model for modeling sweep effects. It is also shown that modeling the trailed wake radial induction is benefi-
cial for predicting the thrust coefficient of swept blades, while the influence of a finite number of blades on the radial induction

are less significant.
8.6 Computational effort

This section first reports the computational effort required to obtain the steady-state results presented in this study °, followed

by a summary of indicative CPU times for unsteady time-marching aeroelastic simulations.

9The CPU time for post-processing is included in this comparison and remains constant across all methods. Additionally, all presented results are converged
to steady-state solutions. Therefore, the computational time reported here is significantly longer than the computational time needed per time step in a time-

marching simulation.
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For the stand-alone BEM method, a single steady-state computation takes approximately 2 s on one CPU core. Coupled
methods using the approximated near wake induction (NW-MT, NW-MT-VC and NW-VC) require about 6 s per steady-state
computation. In contrast, the idealized coupled model NW(ideal)-VC needs significantly more computational effort, taking
approximately 180 s. The higher-fidelity LL. and CFD solvers require substantially greater computational resources. Both
solvers are parallelized using the Message Passing Interface (MPI) and executed on the Sophia HPC cluster, where each node
consists of 32 CPU cores operating at 2.9 GHz. Specifically, the LL solver uses 128 cores per computation with a wall-time of
approximately 26.5 h. The CFD solver utilizes 216 cores per computation, with a wall-time of approximately 1.2 h.

For unsteady time-marching aeroelastic simulations, the computational effort depends on the simulation setup details of both
the aerodynamic and structural solvers. An early version of the NW-MT-VC model has been implemented in the aeroelastic
solver HAWC?2 (version 13.0.0), with computational effort similar to the NW-MT model; see Section 8.8 of Li et al. (2022d)
for a more detailed discussion of aeroelastic simulation times using BEM and NW-MT. For a typical time-marching aeroelastic
setup, the total CPU time when using the NW-MT-VC method is approximately twice that of the BEM method. In comparison,
the total CPU time for an unsteady aeroelastic simulation with LL or actuator line (AL) methods (e.g., HAWC2 coupled to
the MIRAS solver or the AL module in EllipSys3D) is approximately 3-4 orders of magnitude larger'®. The NW-VC model,
by contrast, has not been implemented in HAWC?2, since its computational effort is expected to be substantially higher. While
promising in theory, its new coupling approach requires expensive elliptic integrals to be recalculated at nearly every time step
as the rotor loading changes, which currently limits its practical use in aeroelastic simulations. By comparison, the NW-MT-VC
method only needs to update the elliptic integrals when the blade geometry changes exceed a specified tolerance. Consequently,
the NW-MT-VC method provides a favorable balance between aerodynamic fidelity and computational efficiency, making it

particularly suitable for use in unsteady time-marching aeroelastic simulations.

9 Conclusions and future work

This study addresses the challenge of accurately and efficiently calculating aerodynamic loads on swept wind turbine blades.
We introduce a novel and computationally efficient method that couples near wake bound and trailed vortex modeling with a
far wake vortex cylinder model. This approach offers a more physically consistent representation of the far wake compared to
previous coupled models based on the far wake momentum theory. The improved coupling method between the near and far
wake models enables automatic adjustment of the coupling factor across various loading conditions and different swept blade
configurations. The modified coupled models, with the proposed coupling factors, show significantly improved agreement with
higher-fidelity free-wake lifting line (LL) and computational fluid dynamics (CFD) simulations, particularly for forward swept
blades, where previous models showed limitations. For blades with backward sweep, the new models presented here predict
both the distributed and integrated aerodynamic loads close to the LL and CFD results, while for forward swept blades, the
trends of the distributed loads are well captured, although small discrepancies remain in the integrated load predictions. In

comparison, the conventional blade element momentum (BEM) method is unable to capture either distributed or integrated

10Note that the LL and AL methods can be accelerated using parallel computing and GPU acceleration to reduce wall-time.

37



875

880

885

load variations due to backward or forward blade sweep. Moreover, the proposed NW-MT-VC model is readily applicable to
unsteady aeroelastic simulations within the existing framework, with the computational effort comparable to those based on the
conventional BEM method. This makes the NW-MT-VC model highly suitable for aero-servo-elastic simulations and the design
optimization of swept blades. By contrast, the NW-VC model is well suited for aerodynamic steady-state computations and
design optimization, but requires further acceleration (e.g., reuse of elliptic integrals) before becoming practical for unsteady
aeroelastic simulations.

Looking forward, the coupled near wake and far wake vortex cylinder model presented in this study has promising potential
for further adaptation to model more generalized curved blades, including configurations with combined sweep and prebend.
This presents a valuable direction for future research and development. Future work will also focus on improving the unsteady
aerodynamic responses of the models, such as through a detailed investigation of the factors used in the indicial response
functions. Further, systematic comparisons will be performed with unsteady LL and actuator line (AL) simulations for both

unsteady aerodynamic and aeroelastic cases.

38



Appendix A: Nomenclature

Table A1. Variables used in the present work.

Symbol

Description

/
a,a
CL
Cy

k1, k2, k3
ks

Np

r, R

Uqa, Ut, Ur

Uo
Viel
I, Tp
Yt Vi

Axial and tangential induction factors

Lift coefficient

Local thrust coefficient

Rotor-integrated thrust coefficient

Local simplified power coefficient

Rotor-integrated power coefficient

Rotor diameter

Tip-loss factor

Helical pitch

Factor for the calculation of the elliptic integral
Factors for the relationship between axial induction and thrust coefficient
Normalized sectional circulation of the vortex cylinder
Number of blades

Radius of the calculation point; trailing point

Axial, tangential and radial induced velocities
Free-stream wind speed

Relative velocity

Bound vorticity strength of all blades; of a single blade
Tangential and longitudinal vorticity strength of the vortex cylinder
Air density

Rotor speed
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Appendix B: Partial derivative for the far wake vortex cylinder model

This section derives the partial derivative of the far wake axial induction apw,vc from the far wake vortex cylinder model with
respect to the rotor-averaged coupling factor k. This derivative is a critical component for calculating the coupling factor in
the far wake vortex cylinder model.

By substituting Eq. (38) into Eq. (43), the partial derivative is expressed as:

N, -
% 91,

0 h
arwyvc _ hnw Ty(r’ Rivy — yew ) Ve (B1)

vC
oY AU =

The next step is to determine 91, /Qy. According to Eq. (30), the partial derivative is as follows:

0ty 0 R—r
= a c K -1 ) ) B2
o2 [g ) (5 () + 1t m))] (©2
where g.(y) is defined as:
m
goly) = (B3)
47v/rR
Using the chain rule, Eq. (B2) expands to:
0t, 09 R—r om (dK (m) R—rdll(n,m)
= K —11 (y)— . B4
Oy dy < <m>+R+r (n,m)>+g(y) Oy ( dm +R+r om (B4)
The parameter m is defined according to Eq. (33). Its partial derivative with respect to y is:
om —2ym (B5)

dy  (R+r)2+y?

Using the definition of g.(y) in Eq. (B3) and applying the chain rule. Also, inserting Eq. (B5):

9. 1 ( y 8m) 1 (R+7)?
= A/ + — == -~ _3- B6
0y  4nVrR " 2y/m Oy 2w [(R+7)%+y%]* (B6)

The derivatives of the complete elliptic integrals of the first and third kinds with respect to m are given by:

dK (m) E(m)—(1—m)K(m)

dm 2m(1—m) ’ (B7)
Oll(n,m) E(m)— (1 —-m)Il(n,m)
om  2m—n)(1-m) (B8)

Finally, by substituting Eqgs. (B5) to (B8) into Eq. (B4), the complete expression for the partial derivative is obtained.
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Appendix C: Comparison of the results for low loadings
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Figure C1. Thrust coefficient C; and simplified power coefficient C’p of the baseline straight blade. Values are calculated using the BEM
method, the coupled methods NW-MT and NW-VC with the original coupling factor, the LL solver and the CFD solver. Results are shown
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Figure C2. Thrust coefficient C; and simplified power coefficient C’p of the baseline straight blade, the backward swept blade mB-1 and the
forward swept blade mB-5, calculated using the CFD solver. Results are shown for three operational conditions: (a), (b) at 12 ms™"; (c), (d)

at 15ms™'; and (e), (f) at 20 ms™?.
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Figure C3. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the backward swept blade mB-1 compared to the
baseline straight blade Str. Values are calculated using the coupled NW-MT model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m 7L (c),(d)atI15m s71; and (e), (f) at 20 m s7L.
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Figure C4. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the forward swept blade mB-5 compared to the
baseline straight blade Str. Values are calculated using the coupled NW-MT model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s7L (c),(d)atI15m s71; and (e), (f) at 20 ms ™.
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Figure C5. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the backward swept blade mB-1 compared to the
baseline straight blade Str. Values are calculated using the coupled NW-VC model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m s71:(c), (d) at 15 ms™; and (e), (f) at 20 ms™ L.
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Figure C6. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the forward swept blade mB-5 compared to the
baseline straight blade Str. Values are calculated using the coupled NW-VC model with different coupling factors, the BEM method and the

CFD solver. Results are shown for three operational conditions: (a), (b) at 12 m 7L (c),(d)atI5m s71;and (e), (f) at 20 ms ™.
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Figure C7. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the backward swept blade mB-1 compared to the
baseline straight blade Str. Values are calculated using different coupled models, the BEM method, the LL solver and the CFD solver. Results

are shown for three operational conditions: (a), (b) at 12 m s71:(c), (d) at 15 ms™1; and (e), (f)at20 ms™ .
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Figure C8. Offset in thrust coefficient (AC}) and simplified power coefficient (Aé’p) of the forward swept blade mB-5 compared to the
baseline straight blade Str. Values are calculated using different coupled models, the BEM method, the LL solver and the CFD solver. Results

are shown for three operational conditions: (a), (b) at 12 m s71:(c), (d) at 15 ms™1; and (e), (f) at 20 ms™ !,
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