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Abstract. As wind energy capacity expands globally, ensuring the operational reliability and economic viability of wind tur-

bines has become a critical industrial challenge. Effective fault detection systems are essential for minimizing high maintenance

costs and preventing catastrophic failures. To address this need, this paper presents a semi-supervised framework designed to

identify anomalies in wind turbines using only healthy operational data. The methodology begins by extracting a compre-

hensive set of features from the time and frequency domains of raw vibration signals to capture a rich representation of the5

dynamics of wind turbines. A variational autoencoder, a deep generative model, is then trained exclusively on these features

from healthy operational periods to learn a robust model of normal behavior and generate reconstruction errors as health indica-

tors with exponentially weighted moving average smoothing to enhance robustness and reduce false alarms. The framework is

evaluated using public data from the Aventa AV-7 ETH Zurich Research Wind Turbine, which includes multiple failure events.

Experimental results demonstrate effective and early detection of pitch faults, as well as accurate detection of icing events10

and aerodynamic imbalances. The proposed approach therefore offers a robust and practical solution to improving operational

safety and enabling proactive maintenance of wind turbines.

1 Introduction

Wind energy has become a major renewable technology, with global installed capacity reaching 1,136 GW in 2024 (Council,

2025). Despite this growth, the increasing deployment of wind turbines, particularly in remote and challenging offshore envi-15

ronments, has underscored significant operational and maintenance (O&M) challenges. These challenges directly threaten the

economic viability of wind energy projects, as O&M costs can constitute 20-30% of the levelized cost of electricity (Ren et al.,

2021; Irena, 2018).

Wind turbines operate in highly dynamic and stressful conditions, experiencing aerodynamic, gravitational, centrifugal,

gyroscopic, and hydrodynamic loads (Badihi et al., 2022). These harsh operational environments, combined with the remote20

locations of wind installations, make turbines particularly susceptible to component failures and premature degradation. Conse-

quently, there is an urgent and critical need for effective condition monitoring and predictive maintenance strategies to improve

turbine reliability and reduce operational expenditures.
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Prognostics and health management (PHM) has become an indispensable framework to optimize wind turbine maintenance

(Cuesta et al., 2025). PHM encompasses three core tasks: fault detection (identifying when a fault occurs), fault diagnosis25

(determining the type and location of the fault) and prognostics (predicting the remaining useful life of the components)

(Cuesta et al., 2025). Among these, fault detection represents the foundation for effective maintenance strategies, enabling

early identification of component degradation before failures occur.

Modern wind turbines are equipped with both supervisory control and data acquisition (SCADA) systems and high-frequency

condition monitoring systems (CMS). While SCADA systems provide low-frequency (e.g., 10-minute intervals) operational30

data, CMS, particularly through vibration monitoring, captures high-frequency signals essential for health assessment. Vi-

bration signals contain rich and detailed information about the health of rotating machinery, revealing characteristic fault

signatures in components such as blades, gearboxes, and bearings that are undetectable in SCADA data (Ashkarkalaei et al.,

2025; Castellani et al., 2024).

Current fault detection approaches are broadly categorized into model-based methods (Habibi et al., 2019), and data-driven35

approaches (Abid et al., 2021; Chesterman et al., 2023). Model-based methods use relevant professional knowledge to establish

physical representations based on first principles, but are often difficult to generalize and require constant updates to reflect

real-world operational complexities (Dey et al., 2015; Ashkarkalaei et al., 2025). In contrast, data-driven methods have gained

significant traction by learning directly from sensor data without the need for an explicit physical model (Pandit and Wang,

2024; Xu et al., 2024; Rezamand et al., 2020). Early data-driven techniques focused on the use of signal processing to extract40

statistical features and health indices (HIs) from time-domain (Wang et al., 2025b) and frequency-domain data (Jiang et al.,

2011; Ying et al., 2025). More recently, advances in machine learning, and deep learning in particular, have enabled the

automatic extraction of complex patterns. Architectures such as convolutional neural networks (Jiang et al., 2018), recurrent

neural networks (Yu et al., 2020; Encalada-Dávila et al., 2022), and autoencoders (AEs) (Chen et al., 2021; Wang et al., 2025a)

are now widely used to improve fault detection performance.45

However, existing data-driven approaches for vibration analysis have predominantly focused on single-channel signals,

thereby overlooking the rich, system-level information available in a multi-channel wind turbine setup. Effectively utilizing

such data presents several key challenges. First, the high dimensionality of raw multi-channel vibration signals leads to in-

creased computational burden and can cause overfitting when training samples are limited, as models may capture spurious

correlations rather than true operational patterns. Feature extraction addresses these challenges by reducing the input space to50

a manageable set of physically interpretable features. Second, the scarcity of labeled fault data in operational settings makes

supervised learning impractical. Furthermore, the inherent variability of operating conditions (for example, wind speed) can

cause anomaly detection models like traditional AEs to produce false alarms, affecting their reliability. Therefore, a robust

fault detection framework must effectively handle high-dimensional data, operate without fault examples, and provide stable

indications of degradation.55

To address the unique challenges of analyzing multi-channel vibration data, this study introduces an integrated fault detection

framework. To manage the high dimensionality and complexity inherent in the raw signals, the framework first employs a

feature engineering module. This step extracts a comprehensive set of features from the multi-channel vibration data and
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concatenates them into a unified, system-level feature vector, making the subsequent learning task more tractable and effective.

To overcome the common issue of scarce fault data in industrial settings, our framework then utilizes a semi-supervised60

learning paradigm centered on a variational autoencoder (VAE). By training on data from healthy operations, the VAE learns

a robust probabilistic model of the system’s normal behavior. Finally, to ensure stable and reliable detection while minimizing

false alarms caused by operational variability, the raw reconstruction error from the VAE is processed using an exponentially

weighted moving average (EWMA). This post-processing step smooths the resulting health index, effectively filtering transient

noise while highlighting persistent trends indicative of true degradation.65

The effectiveness of the framework is demonstrated on the Aventa AV-7 ETH Zurich Research Wind Turbine (Chatzi et al.,

2023). The experimental results show an early detection of pitch faults and an accurate identification of icing events and

aerodynamic imbalances. This work has been developed to participate in the ASCE-EMI Structural Health Monitoring for the

Wind Energy Challenge (WeDoWind), part of the WeDoWind RTDT Research Affiliate Program space, and in collaboration

with the ASCE Structural Health Monitoring & Control Committee.70

2 Related Work

This section reviews data-driven fault detection methods for wind turbines, first by explaining the different machine learning

paradigms and then by focusing on autoencoder-based models commonly used for anomaly detection.

2.1 Learning Paradigms for Wind Turbine Fault Detection

Machine learning and deep learning-based fault detection methods are typically categorized into supervised, unsupervised,75

and semi-supervised approaches. Supervised methods are powerful but depend on large and accurately labeled datasets that

represent both normal and various faulty states (Dibaj et al., 2023; Yang et al., 2024). However, these methods face significant

practical limitations in the wind energy domain due to the diverse and unpredictable nature of faults and the immense difficulty

of obtaining a comprehensive, labeled dataset for every possible failure mode (Rezamand et al., 2020). Collecting such data

on-site is both challenging and time-consuming, limiting the applicability of supervised approaches.80

Unsupervised learning operates on entirely unlabeled datasets, attempting to identify anomalies without any prior knowledge

of the turbine’s health status. The core assumption is that faults are rare and structurally distinct from the majority of the data.

Models such as the isolation forest (Xu et al., 2023) or clustering-based algorithms work by identifying these lonely points that

are few and different. However, this poses a challenge in complex operational settings. The primary limitation is the inability

to differentiate between a genuine, subtle fault and a benign but infrequent operational state (e.g., a specific startup sequence85

or emergency stop). Since the model lacks a defined concept of normal, any rare event can be flagged as an anomaly, which

can lead to a high false alarm rate.

Semi-supervised learning, particularly methods focused on normal behavior modeling, presents a pragmatic and effective

compromise. In this paradigm, a model is trained exclusively on healthy turbine operational data, which allows it to develop a

detailed understanding of normal behavior (Chesterman et al., 2023). These approaches avoid the need for labeled fault data,90
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relying on the assumption that anomalies will manifest as deviations from normal operational patterns. This paradigm includes

various strategies including regression-based (Encalada-Dávila et al., 2022; Bilendo et al., 2023), reconstruction-based (Jin

et al., 2024; Wu et al., 2023; Chen et al., 2023), and one-class classification methods (Tutivén et al., 2022). Among these

methods, autoencoder-based reconstruction methods, which learn to recreate healthy data from a compressed representation,

have become particularly prominent.95

2.2 Autoencoder-Based Anomaly Detection and Health Index Construction

Within the semi-supervised framework, autoencoders and their variants have become prominent models for anomaly detection.

The fundamental principle is to train a model to accurately reconstruct its input data. When trained exclusively on healthy data,

the AE learns a compressed representation of normal operational patterns. Consequently, it will exhibit a low reconstruction

error (RE) for healthy, seen data but a significantly higher RE for unseen, anomalous data. This RE is a powerful and widely100

used foundation for building a health index, where increasing RE values signal potential degradation (Jiang et al., 2017).

The research community has progressively improved AE architectures to improve the performance of wind turbine fault

detection. For example, Jiang et al. (Jiang et al., 2017) employed a denoising autoencoder, while Chen et al. (Chen et al., 2020)

used stacked denoising autoencoders to improve robustness. Wang et al. (Wang et al., 2022) proposed an improved autoencoder

specifically designed to improve the accuracy of fault detection. More complex models have also been developed by integrating105

AEs with other deep learning techniques. For example, long short-term memory-autoencoder (LSTM-AE) networks (Chen

et al., 2021) capture temporal dependencies in the data, enhancing the model’s ability to detect subtle fault patterns over time.

Similarly, convolutional neural network-conditional variational autoencoder models (CNN-CVAE) (Liu et al., 2022) and long

short-term memory-stacked denoising autoencoders (LSTM-SDAE) (Zhang et al., 2022) have been proposed to further improve

detection capabilities.110

Among these autoencoder variants, variational autoencoders offer particular advantages for wind turbine fault detection.

Unlike the deterministic autoencoders described above that learn fixed point-to-point mappings, VAEs employ a probabilistic

framework that models underlying data distributions. This distinction is especially valuable for wind turbine applications

where vibration signals exhibit inherent variability even during healthy operation due to load fluctuations, speed variations,

environmental factors, and measurement noise. The probabilistic approach provides better generalization, reduces overfitting115

risk, and maintains robust performance even with limited training data.

Despite these architectural advances, significant challenges persist, particularly when applying these models to the high-

dimensional, multi-channel vibration data addressed in this paper. First, the direct application of these models to high-dimensional

raw vibration signals can obscure fault signatures and increase the complexity of the model. Second, the raw HI derived from

the reconstruction error is often volatile and susceptible to fluctuations from varying operational conditions, leading to false120

alarms. To address these, the proposed method begins with targeted feature engineering to distill robust, low-dimensional in-

puts from raw signals. Then a variational autoencoder is employed, which is a probabilistic generative model known for its

ability to learn a smooth, well-regularized representation of normal behavior. Finally, a post-processing step is used, applying

an exponentially weighted moving average to the VAE’s reconstruction errors for a stable and reliable HI.
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3 Methodology125

This section provides the key components of the framework, including feature extraction, variational autoencoder, and the

application of exponentially weighted moving average for anomaly detection.

3.1 Overview

The general structure of the framework is illustrated in Figure 1. It begins by extracting features from raw vibration signals,

which capture critical time- and frequency-domain characteristics. These extracted features are then input to the VAE, which130

encodes them into a low-dimensional latent space. To ensure the latent space is continuous and well-structured, it is regular-

ized to approximate a multivariate standard normal distribution N (0, I), a standard choice in VAE formulations that enables

tractable optimization through closed-form Kullback-Leibler (KL) divergence computation (Doersch, 2016). The decoder then

reconstructs the input features from this latent representation. The reconstruction process within the VAE is guided by a loss

function that combines the reconstruction loss and KL divergence, ensuring accurate reconstruction and effective latent space135

regularization.

Figure 1. An overview of the proposed framework. Initially, the time domain and frequency domain features of a single vibration signal is

first extracted. The extracted features are then encoded into a latent distribution characterized by a mean vector (µ) and a standard deviation

vector (σ). A latent vector z is sampled from this distribution and passed through the decoder to reconstruct these features. The reconstruction

process is guided by a loss function that combines reconstruction loss and Kullback-Leibler (KL) divergence.

3.2 Feature Extraction

Feature extraction is performed on each vibration sample to characterize the dynamic behavior of the turbine. A total of 19

distinct time-domain and frequency-domain features are extracted, as detailed in Table 1. These features are selected based on

their demonstrated effectiveness in structural health monitoring and fault detection for rotating machinery and wind turbine140
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Table 1. Formulae for the selected features in time and frequency domains.

Domain Features and Formulae

Time

domain

Standard deviation: σ =
√

1
n

∑n
i=1(ai−µ)2 Maximum value: amax =max(|a|)

Minimum value: amin =min(a) Peak-to-peak value: app =max(a)−min(a)

Absolute mean: amean =
1
n

∑n
i=1 |ai| Skewness: S = 1

n

∑n
i=1

(ai−µ)3

σ3

Kurtosis: K = 1
n

∑n
i=1

(ai−µ)4

σ4 − 3 Root mean square: arms =
√

1
n

∑n
i=1 a

2
i

Waveform factor: WF = arms
amean

Impulse factor: IF = amax
amean

Crest factor: CF = amax
arms

Clearance factor: CLF = amax

( 1
n

∑n
i=1

√
|ai|)2

Frequency

domain

Spectral mean: Yµ = 1
m

∑m
i=1 |Yi| Spectral variance: Yσ2 = 1

m

∑m
i=1(|Yi| −Yµ)

2

Spectral std. deviation: Yσ =
√
Yσ2 Spectral entropy: HY =−

∑m
i=1 pi log2(pi)

Spectral energy: EY = 1
m

∑m
i=1 |Yi|2 Spectral skewness: SY = 1

m

∑m
i=1

(
|Yi|−Yµ

Yσ

)3

Spectral kurtosis: KY = 1
m

∑m
i=1

(|Yi|−Yµ)4

Yσ
4 − 3

Note: {ai} represents the time-domain vibration signal, n is the total number of sampling points, µ is the mean, σ is the standard deviation,

arms is RMS, amean is absolute mean, and amax, amin denote maximum and minimum values. {Yi} represents the magnitude of frequency

components from FFT, m is the number of frequency bins, and pi =
|Yi|∑m

k=1
|Yk|

.

components (Ding et al., 2021; Li et al., 2024; Sandoval et al., 2021; Zhou et al., 2022). Specifically, time-domain features

provide insight into statistical and physical properties, such as signal variability, energy, and peaks, which are essential for iden-

tifying transient faults and irregular patterns. On the other hand, frequency-domain features capture the spectral characteristics

of the vibration signal, enabling the identification of fault-specific harmonics and energy distributions. By integrating features

from both domains, a holistic representation of the signal is achieved, enhancing the robustness and reliability of anomaly145

detection.

For frequency-domain feature extraction, the fast Fourier transform (FFT) is applied to each sample (2000 data points,

corresponding to 10 seconds of operation at 200 Hz sampling rate). The FFT converts the time-domain vibration signal {ai}ni=1

into the frequency domain, yielding complex-valued frequency components {Yi}mi=1, where m is the number of frequency

bins. The magnitude spectrum |Yi| is computed, and the normalized power distribution pi =
|Yi|∑m

k=1 |Yk| is used for spectral150

entropy calculation. The seven frequency-domain features, including spectral mean, variance, standard deviation, entropy,

energy, skewness, and kurtosis, are then computed based on this magnitude spectrum, as defined in Table 1.
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It is important to acknowledge that the features selected in this study are general statistical and spectral indicators rather than

wind turbine-specific characteristics. Previous research has demonstrated the effectiveness of physics-informed features such

as rotor frequency (1P), blade passing frequency (3P for three-bladed turbines), structural modal frequencies, damping ratios,155

and mode shapes for detecting specific fault mechanisms (Bertelè et al., 2018; Riva et al., 2016; Cacciola et al., 2016; Chen

and Griffith, 2023). These turbine-specific features can directly reveal whether, for example, a mass imbalance has increased

1P amplitude or whether aerodynamic asymmetries are affecting 3P harmonics, offering superior physical interpretability. Our

choice of general features avoids the need for detailed system identification or turbine-specific modeling, enabling broader

applicability across different turbine models.160

3.3 Variational Autoencoder

Following the extraction of features, the resulting feature vector, denoted as x ∈ RN , is processed using a variational autoen-

coder to model the feature distribution of normal operational data. The VAE framework consists of two main components: an

encoder, Qϕ : RN → RM ×RM , which maps features x into a latent distribution characterized by mean µ ∈ RM and variance

σ2 ∈ RM , and a decoder, Pθ : RM → RN , which reconstructs the original features x from the latent codes z ∈ RM , where M165

is the latent space dimension. The structure of the VAE model is illustrated in Figure 1.

Unlike traditional deterministic autoencoders that learn point-to-point mappings, VAEs employ a probabilistic framework

that models data distributions rather than individual data points (Doersch, 2016; Kingma et al., 2013). This probabilistic nature

makes VAEs particularly suitable for fault detection applications where there are inherent signal variations even in healthy

machinery due to factors such as load fluctuations, speed variations, or measurement noise (Yan et al., 2021). Traditional170

autoencoders minimize reconstruction loss through deterministic mapping. In contrast, VAEs learn the underlying probability

distribution pdata(x) using latent variables z through variational inference (Mylonas et al., 2021; Doersch, 2016). The encoder

Qϕ(x) outputs parameters of a multivariate Gaussian distribution (mean µ(x) and variance σ2(x)) (Singh et al., 2024, 2025),

while the decoder Pθ(z) reconstructs features from sampled latent codes. This probabilistic approach enables better handling

of data variability.175

The VAE is trained to maximize the evidence lower bound (ELBO) by minimizing the combined loss of reconstruction error

and KL divergence. The reconstruction loss measures the difference between the original input data and its reconstruction from

the latent space. This loss ensures that the VAE accurately captures the underlying structure of the features. The reconstruction

loss is defined as:

Lrec =
1

n

n∑
i=1

∥xi − x̂i∥22, (1)180

where xi ∈ RN represents the i-th input feature vector, x̂i ∈ RN is the reconstructed feature vector, and n is the total number

of samples in the batch. This loss encourages the encoder Qϕ and decoder Pθ to work together to reconstruct the input x as

accurately as possible.

In addition to the reconstruction loss, the VAE incorporates a KL divergence loss, which ensures that the learned latent codes

z approximate a prior distribution, typically a multivariate standard normal distribution N (0,I), where 0 is the zero vector185
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and I is the identity matrix (Doersch, 2016). The KL divergence loss (Rolinek et al., 2019) is given by:

LKL =
1

n

n∑
i=1

M∑
j=1

1

2

(
−1− log(σ2

i,j)+µ2
i,j +σ2

i,j

)
, (2)

where µi,j and σi,j are the mean and standard deviation for the j-th dimension of the latent variable zi, and M is the dimen-

sionality of the latent space. This loss term ensures that the distribution of latent variables remains close to the desired prior

distribution.190

The total loss function for the VAE combines the reconstruction loss and the KL divergence loss:

L= Lrec +LKL. (3)

By minimizing this total loss during training, the VAE learns to capture meaningful latent representations that can be used

for fault detection and assessment. To enable backpropagation through the stochastic sampling process, the reparameterization

trick (Doersch, 2016) is employed. Specifically, the latent variable z is expressed as:195

zi = µi +σi ⊙ εi, εi ∼N (0,I), (4)

where εi ∈ RM is a random vector sampled from a multivariate standard normal distribution, ⊙ denotes element-wise multipli-

cation (Hadamard product), and µi,σi ∈ RM are the mean and standard deviation vectors predicted by the encoder network.

This reparameterization allows the gradients to flow through µ and σ during optimization, enabling efficient training of the

VAE. The training procedure is detailed in Algorithm 1.200

Algorithm 1 Training procedure for the proposed fault detection method
1: Input: Vibration signal dataset, learning rate α, batch size B, epochs Nepochs

2: Preprocess: Extract features from raw signals to obtain dataset X = {x1,x2, . . . ,xn} where each xi ∈ RN is a feature vector with

N = 266

3: for epoch = 1 to Nepochs do

4: Shuffle X and partition into mini-batches of size B

5: for each mini-batch {xi}Bi=1 from X do

6: µi,σi←Qϕ(xi) for i= 1, . . . ,B

7: zi← µi +σi⊙ εi where εi ∼N (0,I)

8: x̂i← Pθ(zi) for i= 1, . . . ,B

9: Compute batch loss L= Lrec +LKL over the mini-batch

10: Update θ,ϕ using Adam optimizer

11: end for

12: end for

13: Return: Trained parameters θ∗,ϕ∗

In this work, the input and output layers of the VAE each contain N = 266 neurons, corresponding to the 266 features derived

from vibration signal analysis (19 time- and frequency-domain features from 14 channels). This ensures that the network can
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encode and reconstruct the complete set of features effectively. The encoder compresses the input data through three hidden

layers with 128, 64, and 32 neurons, respectively, each followed by batch normalization and ReLU activation to ensure stable

and efficient training. The latent space is represented by two fully connected layers: one for the mean (M = 16 neurons) and205

one for the log variance (M = 16 neurons), resulting in a latent representation size of M = 16. The decoder reconstructs

the input features by symmetrically expanding the latent representation through layers with 32, 64, and 128 neurons, before

mapping it back to the original N -dimensional space in the output layer. Batch normalization and ReLU activations are also

used in the decoder to maintain stability and improve performance.

3.4 Exponentially Weighted Moving Average210

The exponentially weighted moving average is applied as the final step in monitoring the health of the wind turbine. This

statistical tool is particularly effective in detecting small shifts or trends in data over time, making it ideal for fault detection

in wind turbines (Sun et al., 2023; He et al., 2023). The EWMA smooths the reconstruction errors (REs) obtained from VAE,

reducing noise and highlighting deviations indicative of potential faults.

The EWMA statistic, denoted as Zt, is calculated recursively as:215

Zt = λ ·REt +(1−λ) ·Zt−1, (5)

where REt is the reconstruction error at the time t, and λ is the smoothing parameter (0< λ < 1), controlling the influence

of recent errors versus historical trends. The smoothing parameter λ controls the sensitivity of the EWMA. Smaller values of

λ assign more weight to historical data, reducing the impact of short-term fluctuations and producing a smoother curve. This

increases stability but may delay the detection of abrupt changes. On the other hand, larger values of λ give more weight to220

recent errors, making the chart more sensitive to sudden deviations but potentially more prone to false alarms caused by noise.

In monitoring applications, the typical values for λ are between 0.05 and 0.3 (He et al., 2023; Su et al., 2022; Liu et al., 2021).

In this study, λ, set to 0.2, is selected as a compromise, providing a balance that allows the EWMA to respond to significant

anomalies while maintaining robustness against transient noise.

3.5 Proposed HI Construction Method225

The proposed health index construction method, as outlined in Figure 2, consists of a training stage and a monitoring stage,

with the following detailed steps:

Training stage: In the training stage, historical vibration data collected during the normal operation of the wind turbine is

first preprocessed to remove outliers and trends, ensuring that the dataset accurately reflects the normal behavior of the turbine.

The data is then divided into training and validation samples. Training samples are used to extract features and train the model,230

while validation samples are used to set threshold limits to decide when a sample is diagnosed as faulty. Features are extracted

from both the time and frequency domains to comprehensively characterize the signal’s dynamics, resulting in 19 distinct

attributes that capture critical aspects of the vibration signals. A VAE model is then trained on the features extracted from the
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error

Reconstruction 

error

Training stage Monitoring stage 

Figure 2. Flowchart of the HI construction approach.

training samples to learn the normal operating patterns of the turbine. The VAE encodes these features into a latent space and

reconstructs them, minimizing the reconstruction error for normal data.235

Once the VAE model is trained, the REs are computed for both the training and validation datasets. These REs are then

smoothed using an EWMA, which reduces noise and highlights trends in the data. The threshold for anomaly detection is set

as the maximum EWMA value observed in the combined training and validation datasets. This threshold serves as the baseline

for distinguishing normal from abnormal conditions during monitoring. This approach is rooted in the assumption that the

training and validation datasets represent normal and healthy turbine operations. Since these datasets are drawn exclusively240

from normal conditions, no alarms should be triggered within them. Thus, the maximum EWMA value from these datasets

serves as a reliable benchmark or threshold: it represents the upper limit of what can be considered normal for healthy turbine

operations.

Monitoring stage In the monitoring stage, real-time vibration data collected during turbine operations undergo the same

preprocessing and feature extraction steps as in the training stage. The extracted features are then inputted into the trained245
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VAE, which computes the reconstruction errors for each test sample. These reconstruction errors are fed into the EWMA,

which tracks deviations from the normal operational baseline established during the training stage. The EWMA smooths the

fluctuations in reconstruction errors, enabling the detection of gradual trends or abrupt changes. If the EWMA value exceeds

the predefined threshold, the turbine condition is marked as abnormal, signaling the potential onset of a fault. In contrast, if the

HI remains within the threshold, the turbine is classified as operating under normal conditions.250

4 Experimental Validation

This section details the experimental validation of the proposed fault detection framework. It begins by describing the dataset

and the specific fault scenarios used, followed by a summary of the data pre-processing steps, and finally, a thorough presenta-

tion and discussion of the monitoring results.

4.1 Experimental Dataset Description255

The experimental dataset used is sourced from the Aventa AV-7 Research Wind Turbine, located in Taggenberg, which is

managed by the ETH Zurich Department of Structural Health Monitoring (Chatzi et al., 2023). To comprehensively monitor

the operational health of the wind turbine, vibration sensors are placed in critical locations, including the tower, the nacelle, the

main shaft bearing, and the generator, as shown in Figure 3. These locations are chosen because they represent key components

of the turbine where faults, such as structural instability, aerodynamic imbalances, or mechanical wear, are most likely to260

originate or propagate. By analyzing the vibration signals from these locations, the framework is able to capture a wide range

of potential anomalies.

The analysis uses data from 14 specific vibration channels (Table 2) that are highly relevant to diagnosing the health of

critical turbine components. The multi-location sensor placement ensures robust fault detection for various fault types. The

complete operational history, including maintenance activities and fault periods, is summarized in the timeline in Figure 4.265

This study specifically focuses on three distinct fault scenarios, chosen to represent a diverse set of real-world challenges: a

mechanical breakdown, a simulated operational anomaly, and an environmental fault. These events, illustrated in Figure 5,

include:

Table 2. Channel names and corresponding locations of vibration signals used in the analysis.

Location Channel name

Tower L5_ACC_XX_01 L5_ACC_YY_01 L5_ACC_XX_02 L5_ACC_YY_02

Nacelle NMF_ACC_YY_01 NMF_ACC_XX_02 NMF_ACC_YY_02

Main Shaft Bearing MSH_ACC_XX_01 MSH_ACC_ZZ_01 MSB_ACC_XX_01 MSB_ACC_ZZ_02

Generator GEN_ACC_XX_01 GEN_ACC_YY_01 GEN_ACC_ZZ_01
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(a) (b)

(c) (d)

Figure 3. Sensor layout for wind turbine measurements (Chatzi et al., 2023): (a) diagram of the sensor placement on the nacelle; (b)

accelerometers mounted on the nacelle main frame; (c) accelerometers installed on the bearing housing and generator; (d) accelerometers

positioned on the tower top transition piece.

1. Pitch Drive Failure: A mechanical failure of a pitch drive coupling occurred on February 16, 2022, when a flexible

coupling in the pitch drive system broke, as shown in Figure 5(a). This event led to a complete turbine stop, representing270

a critical component failure.

2. Aerodynamic Imbalance: This condition was intentionally simulated from December 19, 2022, to January 15, 2023.

As depicted in Figure 5(b), this was achieved by applying roughness tape to a blade to mimic the effects of surface

degradation on aerodynamic efficiency, such as leading-edge erosion (Visbech et al., 2023).

3. Icing Events: Naturally occurring blade icing was recorded during a period of cold weather from December 10 to275

December 19, 2022. This environmental fault, shown in Figure 5(c), affects both aerodynamic performance and mass

balance.

To prepare the data for the semi-supervised model, the dataset is partitioned into training, validation, and testing sets based

on the operational timeline, as illustrated in Figure 6. A fundamental principle of this division is that training and validation
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Aerodynamic imbalance

Figure 4. Timeline of failures and maintenance for Aventa AV-7 ETH Zurich research wind turbine.

Roughness 

tape

(b) (c)(a)

Icing

Broken flexible 

coupling

Figure 5. Illustration of wind turbine events (Chatzi et al., 2023): (a) failure of the pitch drive system caused by a broken flexible coupling;

(b) aerodynamic imbalance due to roughness tape applied to the blade, simulating surface roughness effects; (c) icing on the blade.

sets consist exclusively of data from confirmed healthy operational periods, ensuring the VAE learns an accurate representation280

of normal turbine behavior without contamination from fault signatures.

The dataset division follows a chronological approach to maintain temporal consistency. Validation sets are selected from

periods immediately following the training periods, ensuring they reflect similar operational conditions while remaining in-

dependent for threshold establishment. In contrast to the training and validation sets, test sets contain both normal and faulty

operation periods, enabling comprehensive evaluation of the framework’s ability to distinguish between healthy and faulty285
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Figure 6. Division scheme of the training set, validation set, and the testing set.

Table 3. Number of timestamps and samples for training, validation, and testing datasets in three detection tasks.

Task Training datasets Validation datasets Test datasets

Pitch fault detection
106 timestamps

(6360 samples)

43 timestamps

(2580 samples)

183 timestamps

(10980 samples)

Aerodynamic imbalance detection
17 timestamps

(1020 samples)

5 timestamps

(300 samples)

1045 timestamps

(62700 samples)

Icing detection
17 timestamps

(1020 samples)

5 timestamps

(300 samples)

427 timestamps

(25620 samples)

conditions. This mixed composition allows assessment of detection accuracy, false alarm rates, and the framework’s robustness

under realistic operational scenarios. The specific composition and temporal coverage of each dataset are detailed in Figure 6

and Table 3.

4.2 Data Pre-processing

The quality and reliability of the anomaly detection method heavily depends on proper data pre-processing. In this study,290

a comprehensive pipeline is implemented to ensure data quality and prepare raw vibration signals for subsequent feature

extraction and model training. This pipeline includes outlier removal, data segmentation, detrending, and feature normalization.
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(a)  Original data (2022-02-11 to 2022-02-15) (b) Filtered data (2022-02-11 to 2022-02-15)

(c)  Original data (2022-09-03 to 2022-11-04) (d) Filtered data (2022-09-03 to 2022-11-04)

Figure 7. Comparison of power curves before and after outlier removal for two time periods.

4.2.1 Outlier Removal

To ensure that the training and validation datasets accurately represent true healthy operating conditions, the turbine’s power

output is used as the primary indicator of its operational state. Any timestamp where the corresponding power measurement295

is anomalous (e.g., zero or negative values) is flagged as invalid. Subsequently, for any timestamp flagged, the associated

vibration data is discarded from the analysis. Discarding these timestamps ensures that the dataset more accurately represents

the normal operating conditions of the wind turbines. Figure 7 clearly illustrates the effectiveness of this step, comparing power

curves before (Figure 7(a) and (c)) and after (Figure 7(b) and (d)) outlier removal for two distinct time periods.
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4.2.2 Data Segmentation300

Each record or timestamp consists of approximately 10 minutes of vibration data sampled at 200 Hz. To process these data,

it is divided into 60 non-overlapping sub-samples, with each sub-sample containing 2000 data points (corresponding to 10

seconds of operation). Timestamps with less than 10 minutes of data are excluded to ensure uniformity. For each 10-second

sub-sample, the reconstruction error is calculated. Subsequently, the average of these 60 individual REs is computed to derive

a single ensemble RE for the entire 10-minute record. This ensemble averaging strategy provides a more stable and robust305

representation of the turbine’s operational state, effectively minimizing the influence of transient fluctuations on the health

indicator. The data segmentation process is visually explained in Figure 8.

Ensemble RE

RE #1 RE #2 RE #60

Vibration Data for 

One Timestamp (10 min)

Sample #1 Sample #2 Sample #60...

...

Figure 8. Illustration of the data segmentation process for vibration signals.

4.2.3 Detrending

Unlike typical vibration signals that oscillate around zero, the experimental vibration data from the Aventa AV-7 exhibited

exclusively positive values, likely due to the specific data acquisition settings. To counteract any inherent biases or drifts310

that could affect the analysis, detrending is applied to the vibration signals to ensure that the signals oscillate around zero.

Specifically, in this work, detrending is achieved by subtracting the mean value of each sample from its own data points. This

ensures that each sample is centered around zero, without any biases introduced by the data acquisition settings.

4.2.4 Feature Normalization

Following extraction of features in the time and frequency domains from detrended vibration signals, min-max scaling is315

applied to normalize these features. This standardization step is critical for machine learning models, as it brings all features

to a comparable scale, preventing features with larger numerical ranges from dominating the learning process. Crucially, the
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maximum and minimum values for scaling are computed exclusively from the training dataset, ensuring data consistency and

standardization throughout model training while preventing information leakage from the test set.

4.3 Experimental Results320

The performance of the proposed framework is systematically evaluated in three distinct fault scenarios, showcasing its robust

capabilities to detect various types of anomalies. Each type of fault, including pitch drive failure, aerodynamic imbalance, and

icing event, presents unique challenges in monitoring wind turbine health, thereby providing a comprehensive validation of the

framework.

To demonstrate the effectiveness of the proposed approach, comparative analysis is conducted with several baseline methods325

using the same 14-channel vibration signals. The baseline methods include standard autoencoder (AE), denoising autoencoder

(DAE) (Chen et al., 2020), deep support vector data description (Deep SVDD) (Peng et al., 2025), one-class support vector

machine (OC-SVM) (Ghiasi et al., 2024), and a standard variational autoencoder (VAE). The configurations are as follows:

– To directly evaluate the impact of the input type, AE, DAE, and Deep SVDD are tested with both feature-based (F) and

raw signal (R) inputs.330

– The OC-SVM method, which conventionally operates on a feature space, is applied directly to the engineered features,

referred to as OC-SVMF.

– To create a direct ablation baseline for our framework, a standard VAE is applied to the raw signal (VAER).
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Figure 9. Monitoring result for wind turbine pitch drive failure using the proposed method.
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For fair comparison, all baseline methods adopt identical network architectures and training procedures. The encoder com-

presses input data through three hidden layers with 128, 64, and 32 neurons, while the decoder symmetrically reconstructs the335

input through layers with 32, 64, and 128 neurons. Batch normalization and ReLU activations are applied in both encoder and

decoder to maintain stability and improve performance. All models are implemented using PyTorch and optimized using the

Adam optimizer with a learning rate of 0.001, batch size of 256, and maximum 100 epochs on an NVIDIA 4060 GPU. The

convergence of all models during training is confirmed, with the corresponding loss curves presented in Appendix A.

4.3.1 Case I: Pitch Drive Failure340

Figure 9 illustrates the result of the pitch drive failure monitoring using the proposed method. The green dots represent the HI

during the training stage, while the blue dots show the HI values from the validation stage used to set the threshold (horizontal

red dashed line). The orange dots depict the HI during the monitoring (testing) stage including both normal and faulty data.

The framework demonstrates the capability to provide early warning for this progressive fault. As shown in Figure 9, an

alarm is triggered at 14:32, providing a 2.5-hour lead time before the actual turbine shutdown at 17:12. While this lead time345
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Figure 10. Health index comparison of baseline methods during Case I pitch drive failure detection. The figure shows (a-d) methods with

feature-based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue dotted

line represents the detection threshold.
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is insufficient for comprehensive maintenance planning in operational scenarios, the result validates the framework’s ability to

detect early signs of pitch drive degradation before complete failure occurs.

The performance of baseline methods is detailed in Figure 10. The methods with feature-based input (F) demonstrate superior

early warning capabilities. Specifically, AEF, DAEF, Deep SVDDF, and OC-SVMF all successfully provide early warnings

approximately 2.5 hours before the actual turbine shutdown with HI values clearly crossing the threshold well in advance of350

fault occurrence. In contrast, the methods with raw signal input (R) exhibit significantly inferior performance patterns. AER and

DAER fail to detect the fault entirely. Deep SVDDR and VAER provide fault indication only at the moment of fault occurrence

without early warning capability, while VAER suffers from frequent false alarms during normal operation periods.

This comparison clearly demonstrates the superior performance of methods using feature-based input over those using raw

signal input for complex fault detection tasks, highlighting the critical importance of proper feature engineering in achieving355

reliable early warning capabilities.

4.3.2 Case II: Aerodynamic Imbalance

Figure 11 illustrates the monitoring results for aerodynamic imbalance detection using the proposed method. The red dashed

threshold line represents the decision boundary for imbalance detection. On December 8, 2022, an imbalance event is accurately

detected, as indicated by the spike in the health index that crosses the threshold line, triggering an immediate alarm. The360
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Figure 11. Monitoring result for wind turbine aerodynamic imbalance using the proposed method.
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Figure 12. Health index comparison of baseline methods during Case II aerodynamic imbalance detection. The figure shows (a-d) methods

with feature-based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue

dotted line represents the detection threshold.

proposed method achieves precise detection with no false alarms during normal operation periods and no missed detections

during fault occurrence, demonstrating excellent discrimination capability between normal and faulty conditions.

Unlike rapidly progressing mechanical failures such as pitch drive faults, aerodynamic imbalances represent static condi-

tions with potentially indefinite time-to-failure. The framework’s robust and accurate detection of such faults (achieving 100%

accuracy with zero false alarms) offers significant practical value for operational wind farms. Early identification of aerody-365

namic imbalances enables timely corrective actions that minimize performance losses, prevent secondary damage to turbine

components, and optimize energy production efficiency.

The performance of the baseline methods, detailed in Figure 12, varies significantly in terms of reliability, even though

all feature-based methods successfully identify the imbalance event. Specifically OC-SVMF is compromised by false alarms

during normal operational phases. In contrast, AEF and Deep SVDDF provide a stable baseline free of false alarms but suffers370

from some missed detections during the fault period. Among all baselines, DAEF demonstrates exceptional performance in

this case, achieving a perfect detection record with metrics identical to the proposed method. The methods using raw signal
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input (R variants) proved largely ineffective, suffering from high rates of both false alarms and missed detections. This again

highlights the proposed framework’s consistent and reliable performance across different conditions.

4.3.3 Case III: Icing Event375

The monitoring process for detecting icing events using the proposed method is illustrated in Figure 13. On December 17, 2022,

a significant spike in the EWMA value crosses the red dashed threshold line, triggering an alarm. This rapid increase in the

HI value provides a clear indication of the fault’s occurrence. The results demonstrate that the proposed framework accurately

identifies the icing event without any false alarms or missed detections, as evidenced by the clear distinction between normal

and faulty conditions in the figure.380

The baseline comparison in Figure 14 shows that while most methods could detect the icing event, their reliability varied

significantly. All feature-based methods (F variants) once again provided clear and stable fault signatures. The most notable

deficiency is observed in the raw-signal variants of AE and DAE, where both AER and DAER suffer from high baseline

variability, leading to numerous false alarms during periods of normal operation. The other baseline methods are able to

identify the fault without this significant false alarm issue. This result further underscores the superiority of the proposed385

framework, which delivers accurate fault detection while ensuring a stable and reliable baseline.
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Figure 13. Monitoring result for wind turbine icing event using the proposed method.
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Figure 14. Health index comparison of baseline methods during Case III icing event detection. The figure shows (a-d) methods with feature-

based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue dotted line

represents the detection threshold.

4.3.4 Performance metrics

To quantitatively evaluate and compare the fault detection performance of the different HI construction methods, Table 4

presents a comprehensive quantitative comparison of different methods for aerodynamic imbalance (Case II) and icing events

(Case III). These two cases provide clearly defined fault labels based on operational records, enabling precise evaluation of390

false alarm rates and missed alarm rates alongside conventional accuracy metrics. Here, Case I (pitch drive failure) is excluded

from this quantitative analysis as it is primarily intended for assessing the early warning capabilities of the models due to its

progressive failure characteristics.

As shown in Table 4, the proposed framework consistently demonstrates excellent performance, achieving 100% accuracy

with zero false alarm and missed alarm rates in both test scenarios. This robust and reliable performance validates the effective-395

ness of our integrated approach. The consistent performance across all scenarios demonstrates the robustness of the VAE-based

approach. The probabilistic modeling and KL regularization contribute to stable health indices with minimal false alarms, as
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Table 4. Performance comparison of different methods on imbalance and icing events.

Case II (Aerodynamic imbalance) Case III (Icing events)

Method Accuracy False alarm rate Missed alarm rate Accuracy False alarm rate Missed alarm rate

AER 95.98% 100.00% 2.62% 96.49% 100.00% 0.00%

DAER 93.11% 100.00% 5.53% 96.49% 100.00% 0.00%

Deep SVDDR 51.00% 0.00% 49.71% 99.77% 0.00% 0.24%

VAER 53.97% 0.00% 46.70% 100.00% 0.00% 0.00%

AEF 98.56% 0.00% 1.46% 100.00% 0.00% 0.00%

DAEF 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%

Deep SVDDF 99.23% 0.00% 0.78% 99.06% 26.67% 0.00%

OC-SVMF 99.90% 6.67% 0.00% 99.77% 6.67% 0.00%

Proposed 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%

evidenced by the zero false alarm rate achieved across all test cases. Notably, DAEF also achieves identical perfect scores in

both cases, demonstrating the effectiveness of feature-based autoencoder approaches for these fault types.

Furthermore, the quantitative results confirm the superiority of methods using feature-based input over those using raw400

signal input under identical network architectures. This contrast highlights that well-engineered features can effectively reduce

dimensionality and filter noise, thereby accentuating fault-related information crucial for robust detection from complex multi-

channel vibration signals.

In summary, the comprehensive evaluation validates that by synergizing effective feature engineering with a VAE-based

detector and EWMA smoothing, our framework offers a highly reliable and robust solution with strong potential for practical405

deployment.

4.4 Hyperparameter Analysis

To validate the robustness of the proposed framework, sensitivity analysis is conducted on key parameters: the VAE latent

space dimension and the EWMA smoothing parameter λ.

4.4.1 Latent Space Dimension410

The latent space dimension is a critical hyperparameter in VAE architecture that affects the model’s capacity to capture normal

operational patterns. The performance for aerodynamic imbalance and icing detection is evaluated with latent dimensions of 2,

4, 8, 16, 32, and 64, while other architectural parameters were held constant. Table 5 presents the detection performance across

different dimensions.

The results demonstrate that the proposed framework is robust to the choice of latent space dimension, achieving perfect or415

near-perfect performance across a wide range of dimensions. All tested dimensions achieve 100% accuracy for icing detec-
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Table 5. Performance comparison of different latent space dimensions for aerodynamic imbalance and icing detection.

Latent dimension
Case II (Aerodynamic imbalance) Case III (Icing events)

Accuracy Recall Precision F1 Accuracy Recall Precision F1

2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

4 99.81% 99.81% 100.00% 99.90% 100.00% 100.00% 100.00% 100.00%

8 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

16 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

32 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

64 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

tion (Case III). For aerodynamic imbalance detection (Case II), latent dimensions of 2, 8, 16, 32, and 64 all achieve perfect

performance with 100% accuracy, while dimension 4 achieves near-perfect performance at 99.81% accuracy. This consistent

high performance across different latent dimensions indicates that the framework is not sensitive to this hyperparameter and

can maintain excellent detection capability across a broad range of configurations. This robustness is particularly valuable for420

practical deployment, as it reduces the need for extensive hyperparameter tuning and suggests the method can generalize well

across different operational scenarios.

4.4.2 EWMA Smoothing Parameter

In addition, the impact of the smoothing parameter λ in the EWMA method on the fault detection performance is analyzed.

Table 6 summarizes the performance metrics (accuracy, recall, precision, and F1 score) for different values of the parameter λ425

in the context of detection of aerodynamic imbalances.

Table 6. The performance metrics (accuracy, recall, precision, and F1 score) for different values of λ in the EWMA method for aerodynamic

imbalance.

λ Accuracy Recall Precision F1 Score

0.45 95.02% 94.95% 100.00% 97.41%

0.40 96.75% 96.70% 100.00% 98.32%

0.35 97.51% 97.48% 100.00% 98.72%

0.30 98.09% 98.06% 100.00% 99.02%

0.25 100.00% 100.00% 100.00% 100.00%

0.20 100.00% 100.00% 100.00% 100.00%

0.15 100.00% 100.00% 100.00% 100.00%
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Higher values of λ (e.g., 0.45 and 0.4), assign greater weight to recent errors, making the EWMA chart more sensitive to

abrupt deviations. However, this increased sensitivity can result in a higher likelihood of false alarms caused by noise. As λ

decreases to 0.35 and 0.3, the performance improves, achieving near-perfect results. At λ= 0.25, the model achieves perfect

scores in all metrics, with the accuracy, recall, precision, and F1 scores reaching 100%. This trend continues for even smaller430

values of λ (e.g. 0.2 and 0.15), where the model consistently maintains perfect detection performance. The results show that

lower values of λ result in a progressively smoother EWMA curve, reducing false alarms while maintaining accurate and early

detection of anomalies. Based on this analysis, a value of λ= 0.2 is chosen for the proposed framework, ensuring reliable

anomaly detection with high and consistent performance in all metrics evaluated.

4.5 Computational Efficiency435

The computational efficiency of the proposed framework is assessed to ensure its suitability for real-time wind turbine moni-

toring and fault detection, as shown in Table 7. All models are implemented using PyTorch, and training and inference tasks

are executed on hardware with the following specifications: GPU: NVIDIA GeForce RTX 4060, CPU: Intel Core i7-13700K,

Memory: 32 GB RAM. Feature extraction, which involves computing 19 time- and frequency-domain features across 14 vibra-

tion signal channels, requires an average of 2.06 seconds per 10-minute dataset. Model training times vary by task, reflecting440

the size and complexity of the dataset. The inference process, which includes feature extraction, model loading, feature re-

construction, and HI computation for anomaly detection, required an average of 2.56 seconds per 10-minute dataset. These

computational times demonstrate the practical viability of the framework for continuous, near-real-time monitoring applica-

tions in wind turbine operations.

Table 7. Computational efficiency for feature extraction, model training, and inference.

Process Task Time cost Notes

All Tasks

Pitch Drive Failure 8.17 seconds

Aerodynamic Imbalance 1.61 seconds

Icing Detection 1.61 seconds

Inference All Tasks

Feature

Extraction

2.06 seconds per

10-minute dataset

Computation of time-domain and

frequency-domain features for 14 channels.

Model

Training

Trained for 100 epochs on the given

feature dataset.

2.56 seconds per

10-minute dataset

Includes feature extraction, model loading,

feature reconstruction, and HI computation.
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4.6 Discussion445

This section provides a more profound insight into the framework’s ability to interpret and differentiate between various

fault types based on the HI values, particularly focusing on icing events and aerodynamic imbalances. Figure 15 graphically

illustrates the HI values alongside the relevant environmental data.

Rotor icing not only alters the aerodynamic properties of the blades but also introduces mass imbalance, leading to pro-

nounced deviations in vibration signals. These combined effects typically result in higher reconstruction errors and higher HI450

values. In contrast, the aerodynamic imbalance caused by the roughness tape is primarily localized, with less severe effects on

the rotor dynamics, often producing lower HI values. As shown in Figures 15 (a) and (b), HI values during icing events are
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generally higher than those observed during aerodynamic imbalance periods, except for the period from December 8 to 11,

2022.

In particular, as can be seen in Figure 15 (b), during the period from December 8 to 11, 2022, highlighted in the shaded455

region, the framework detected HI values comparable to those observed during the confirmed icing event from December 17 to

20, 2022. Analysis of environmental data, including low temperatures and high humidity (Figure 15 (c) and (d)), suggests that

the conditions were conducive to icing formation. This raises the hypothesis that icing may have co-occurred with aerodynamic

imbalance during this period. Similarly, there are potential indications of icing events on January 15 and 21, 2023, based on

similar environmental conditions.460

This ability to identify periods with high HI values correlating with conducive environmental conditions, even without direct

fault labels, underscores the framework’s potential for proactive and insightful operational diagnostics. If these potential icing

events were to be confirmed, a simple threshold on the HI values could effectively differentiate between icing and aerodynamic

imbalance, based on their distinct HI magnitudes. The results from this analysis highlight the framework’s advanced potential

not only for detecting anomalies but also for contributing to the differentiation of fault types based on their characteristic HI465

signatures.

5 Conclusion

This paper presented a semi-supervised fault detection framework that integrates multi-channel vibration analysis with deep

learning. The core of the methodology is to build a robust model of a wind turbine’s normal operational state using only healthy

data. This is achieved by training a variational autoencoder on a comprehensive set of time-domain and frequency-domain fea-470

tures extracted from vibration signals. An exponentially weighted moving average is then applied to the VAE’s reconstruction

error to create a stable and reliable health index, minimizing the risk of false alarms. The framework’s effectiveness is validated

on the ETH Zurich research turbine dataset, covering three distinct fault types. The experimental results demonstrate a high

level of performance. Notably, the framework provided a 2.5-hour early warning for a critical pitch drive failure and achieved

perfect (100%) accuracy in detecting both simulated aerodynamic imbalances and naturally occurring icing events. The ex-475

perimental results validate the framework’s effectiveness in providing timely and accurate fault detection, offering sufficient

lead time for proactive maintenance. These findings confirm that the approach provides timely and accurate fault detection, a

capability crucial for enhancing operational reliability and minimizing downtime.

While the framework demonstrates promising detection capability, several limitations exist. The models were trained on

data from a single turbine during specific measurement campaigns, and generalization to other turbines or extended operational480

periods requires further validation. The framework provides anomaly detection without detailed fault diagnosis, and the use of

general statistical features limits physical interpretability compared to wind turbine-specific features. Additionally, as a static

baseline approach, the framework would require periodic retraining or integration with alarm management systems for long-

term deployment to handle gradual turbine aging while maintaining sensitivity to new faults. Future work should address these

limitations through validation across multiple turbines and extended operational periods, extension to fault localization and485
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identification capabilities, exploration of hybrid approaches combining general features with physics-informed characteristics,

and investigation of adaptive learning strategies for sustained operational deployment.

Code availability. The source code is publicly available at https://github.com/shun-wang1/wedowind-challenge-ASCE-EMI/tree/main.

Data availability. The challenge dataset was provided through Zenodo https://doi.org/10.5281/zenodo.8229750.

Appendix A: Model training convergence analysis490

Figure A1 presents the training convergence behavior for both Model 1 and Model 2. Both models demonstrate successful

learning, with the total loss decreasing steadily and stabilizing, indicating effective learning of normal operational patterns and

proper regularization of the latent space.
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showing the total loss over 100 training epochs.
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