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Abstract. As wind energy capacity expands globally, ensuring the operational reliability and economic viability of wind tur-

bines has become a critical industrial challenge. Effective fault detection systems are essential for minimizing high maintenance

costs and preventing catastrophic failures. To address this need, this paper presents a semi-supervised framework designed to

identify anomalies in wind turbines using only healthy operational data. The methodology begins by extracting a compre-

hensive set of features from the time and frequency domains of raw vibration signals to capture a rich representation of the5

dynamics of wind turbines. A variational autoencoder, a deep generative model, is then trained exclusively on these features

from healthy operational periods to learn a robust model of normal behavior and generate reconstruction errors as health indica-

tors with exponentially weighted moving average smoothing to enhance robustness and reduce false alarms. The framework is

evaluated using public data from the Aventa AV-7 ETH Zurich Research Wind Turbine, which includes multiple failure events.

Experimental results demonstrate effective and early detection of pitch faults, as well as accurate detection of icing events10

and aerodynamic imbalances. The proposed approach therefore offers a robust and practical solution to improving operational

safety and enabling proactive maintenance of wind turbines.

1 Introduction

Wind energy has become a major renewable technology, with global installed capacity reaching 1,136 GW in 2024 (Council,

2025). Despite this growth, the increasing deployment of wind turbines, particularly in remote and challenging offshore envi-15

ronments, has underscored significant operational and maintenance (O&M) challenges. These challenges directly threaten the

economic viability of wind energy projects, as O&M costs can constitute 20-30% of the levelized cost of electricity (Ren et al.,

2021; Irena, 2018).

Wind turbines operate in highly dynamic and stressful conditions, experiencing aerodynamic, gravitational, centrifugal,

and gyroscopic loads (Badihi et al., 2022). These harsh operational environments, combined with the remote locations of wind20

installations, make turbines particularly susceptible to component failures and premature degradation. Consequently, there is an

urgent and critical need for effective condition monitoring and predictive maintenance strategies to improve turbine reliability

and reduce operational expenditures.
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Prognostics and health management (PHM) has become an indispensable framework to optimize wind turbine maintenance

(Cuesta et al., 2025). PHM encompasses three core tasks: fault detection (identifying when a fault occurs), fault diagnosis25

(determining the type and location of the fault) and prognostics (predicting the remaining useful life of the components)

(Cuesta et al., 2025). Among these, fault detection represents the foundation for effective maintenance strategies, enabling

early identification of component degradation before failures occur.

Modern wind turbines are equipped with both supervisory control and data acquisition (SCADA) systems and high-frequency

condition monitoring systems (CMS). While SCADA systems provide low-frequency (e.g., 10-minute intervals) operational30

data, CMS, particularly through vibration monitoring, captures high-frequency signals essential for health assessment. Vi-

bration signals contain rich and detailed information about the health of rotating machinery, revealing characteristic fault

signatures in components such as blades, gearboxes, and bearings that are undetectable in SCADA data (Ashkarkalaei et al.,

2025; Castellani et al., 2024).

Current fault detection approaches are broadly categorized into model-based methods (Habibi et al., 2019), and data-driven35

approaches (Abid et al., 2021; Chesterman et al., 2023). Model-based methods use relevant professional knowledge to establish

physical representations based on first principles, but are often difficult to generalize and require constant updates to reflect

real-world operational complexities (Dey et al., 2015; Ashkarkalaei et al., 2025). In contrast, data-driven methods have gained

significant traction by learning directly from sensor data without the need for an explicit physical model (Pandit and Wang,

2024; Xu et al., 2024; Rezamand et al., 2020). Early data-driven techniques focused on the use of signal processing to extract40

statistical features and health indices (HIs) from time-domain (Wang et al., 2025b) and frequency-domain data (Jiang et al.,

2011; Ying et al., 2025). More recently, advances in machine learning, and deep learning in particular, have enabled the

automatic extraction of complex patterns. Architectures such as convolutional neural networks (Jiang et al., 2018), recurrent

neural networks (Yu et al., 2020; Encalada-Dávila et al., 2022), and autoencoders (AEs) (Chen et al., 2021; Wang et al., 2025a)

are now widely used to improve fault detection performance.45

However, existing data-driven approaches for vibration analysis have predominantly focused on single-channel signals,

thereby overlooking the rich, system-level information available in a multi-channel wind turbine setup. Effectively utilizing

such data presents several key challenges. First, the high dimensionality and complexity of raw vibration signals can lead to an

increased computational burden and model overfitting. Second, the scarcity of labeled fault data in operational settings makes

supervised learning impractical. Furthermore, the inherent variability of operating conditions (for example, wind speed) can50

cause anomaly detection models like traditional AEs to produce false alarms, affecting their reliability. Therefore, a robust

fault detection framework must effectively handle high-dimensional data, operate without fault examples, and provide stable

indications of degradation.

To address the unique challenges of analyzing multi-channel vibration data, this study introduces an integrated fault detection

framework. To manage the high dimensionality and complexity inherent in the raw signals, the framework first employs a55

feature engineering module. This step extracts a comprehensive set of features from the multi-channel vibration data and

concatenates them into a unified, system-level feature vector, making the subsequent learning task more tractable and effective.

To overcome the common issue of scarce fault data in industrial settings, our framework then utilizes an semi-supervised
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learning paradigm centered on a variational autoencoder (VAE). By training on data from healthy operations, the VAE learns

a robust probabilistic model of the system’s normal behavior. Finally, to ensure stable and reliable detection while minimizing60

false alarms caused by operational variability, the raw reconstruction error from the VAE is processed using an exponentially

weighted moving average (EWMA). This post-processing step smooths the resulting health index, effectively filtering transient

noise while highlighting persistent trends indicative of true degradation.

The effectiveness of the framework is demonstrated on the Aventa AV-7 ETH Zurich Research Wind Turbine (Chatzi et al.,

2023). The experimental results show an early detection of pitch faults and an accurate identification of icing events and65

aerodynamic imbalances. This work has been developed to participate in the ASCE-EMI Structural Health Monitoring for the

Wind Energy Challenge (WeDoWind), part of the WeDoWind RTDT Research Affiliate Program space, and in collaboration

with the ASCE Structural Health Monitoring & Control Committee.

2 Related Work

This section reviews data-driven fault detection methods for wind turbines, first by explaining the different machine learning70

paradigms and then by focusing on autoencoder-based models commonly used for anomaly detection.

2.1 Learning Paradigms for Wind Turbine Fault Detection

Machine learning and deep learning-based fault detection methods are typically categorized into supervised, unsupervised,

and semi-supervised approaches. Supervised methods are powerful but depend on large and accurately labeled datasets that

represent both normal and various faulty states (Dibaj et al., 2023; Yang et al., 2024). However, these methods face significant75

practical limitations in the wind energy domain due to the diverse and unpredictable nature of faults and the immense difficulty

of obtaining a comprehensive, labeled dataset for every possible failure mode (Rezamand et al., 2020). Collecting such data

on-site is both challenging and time-consuming, limiting the applicability of supervised approaches.

Unsupervised learning operates on entirely unlabeled datasets, attempting to identify anomalies without any prior knowledge

of the turbine’s health status. The core assumption is that faults are rare and structurally distinct from the majority of the data.80

Models such as the isolation forest (Xu et al., 2023) or clustering-based algorithms work by identifying these lonely points that

are few and different. However, this poses a challenge in complex operational settings. The primary limitation is the inability

to differentiate between a genuine, subtle fault and a benign but infrequent operational state (e.g., a specific startup sequence

or emergency stop). Since the model lacks a defined concept of normal, any rare event can be flagged as an anomaly, which

can lead to a high false alarm rate.85

Semi-supervised learning, particularly methods focused on normal behavior modeling, presents a pragmatic and effective

compromise. In this paradigm, a model is trained exclusively on healthy turbine operational data, which allows it to develop a

detailed understanding of normal behavior (Chesterman et al., 2023). These approaches avoid the need for labeled fault data,

relying on the assumption that anomalies will manifest as deviations from normal operational patterns. This paradigm includes

various strategies including regression-based (Encalada-Dávila et al., 2022; Bilendo et al., 2023), reconstruction-based (Jin90
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et al., 2024; Wu et al., 2023; Chen et al., 2023), and one-class classification methods (Tutivén et al., 2022). Among these

methods, autoencoder-based reconstruction methods, which learn to recreate healthy data from a compressed representation,

have become particularly prominent.

2.2 Autoencoder-Based Anomaly Detection and Health Index Construction

Within the semi-supervised framework, autoencoders and their variants have become prominent models for anomaly detection.95

The fundamental principle is to train a model to accurately reconstruct its input data. When trained exclusively on healthy data,

the AE learns a compressed representation of normal operational patterns. Consequently, it will exhibit a low reconstruction

error (RE) for healthy, seen data but a significantly higher RE for unseen, anomalous data. This RE is a powerful and widely

used foundation for building a health index, where increasing RE values signal potential degradation (Jiang et al., 2017).

The research community has progressively improved AE architectures to improve the performance of wind turbine fault100

detection. For example, Jiang et al. (Jiang et al., 2017) employed a denoising autoencoder, while Chen et al. (Chen et al., 2020)

used stacked denoising autoencoders to improve robustness. Wang et al. (Wang et al., 2022) proposed an improved autoencoder

specifically designed to improve the accuracy of fault detection. More complex models have also been developed by integrating

AEs with other deep learning techniques. For example, long short-term memory-autoencoder (LSTM-AE) networks (Chen

et al., 2021) capture temporal dependencies in the data, enhancing the model’s ability to detect subtle fault patterns over time.105

Similarly, convolutional neural network-conditional variational autoencoder models (CNN-CVAE) (Liu et al., 2022) and long

short-term memory-stacked denoising autoencoders (LSTM-SDAE) (Zhang et al., 2022) have been proposed to further improve

detection capabilities.

Despite these architectural advances, significant challenges persist, particularly when applying these models to the high-

dimensional, multi-channel vibration data addressed in this paper. First, the direct application of these models to high-dimensional110

raw vibration signals can obscure fault signatures and increase the complexity of the model. Second, the raw HI derived from

the reconstruction error is often volatile and susceptible to fluctuations from varying operational conditions, leading to false

alarms. To address these, the proposed method begins with targeted feature engineering to distill robust, low-dimensional in-

puts from raw signals. Then a variational autoencoder is employed, which is a probabilistic generative model known for its

ability to learn a smooth, well-regularized representation of normal behavior. Finally, a post-processing step is used, applying115

an exponentially weighted moving average to the VAE’s reconstruction errors for a stable and reliable HI.

3 Methodology

This section provides the key components of the framework, including feature extraction, variational autoencoder, and the

application of exponentially weighted moving average for anomaly detection.
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3.1 Overview120

The general structure of the framework is illustrated in Figure 1. It begins by extracting features from raw vibration signals,

which capture critical time- and frequency-domain characteristics. The extracted features are then inputted to the VAE, which

encodes the input into a latent space that is regularized to approximate a multivariate normal distribution N (0, I). The recon-

struction process within the VAE is guided by a loss function that combines the reconstruction loss and Kullback-Leibler (KL)

divergence, ensuring accurate reconstruction and effective latent space regularization.125

Figure 1. An overview of the proposed framework. Initially, the time domain and frequency domain features of a single vibration signal is

first extracted. The extracted features are then encoded into a latent distribution characterized by a mean vector (µ) and a standard deviation

vector (σ). A latent vector z is sampled from this distribution and passed through the decoder to reconstruct these features. The reconstruction

process is guided by a loss function that combines reconstruction loss and Kullback-Leibler (KL) divergence.

3.2 Feature Extraction

Firstly, feature extraction is performed on each vibration sample. A total of 20 distinct time- and frequency-domain features

are extracted to characterize the vibration signals accurately, as illustrated in Table 1. These features are selected based on

their demonstrated effectiveness in structural health monitoring and fault detection, as evidenced by previous studies (Ding

et al., 2021; Li et al., 2024; Sandoval et al., 2021; Zhou et al., 2022), demonstrating their effectiveness in detecting problems130

in rotating machinery and wind turbine components. Specifically, time-domain features provide insight into statistical and

physical properties, such as signal variability, energy, and peaks, which are essential for identifying transient faults and irregular

patterns. On the other hand, frequency-domain features capture the spectral characteristics of the vibration signal, enabling

the identification of fault-specific harmonics and energy distributions. By integrating features from both domains, a holistic

representation of the signal is achieved, enhancing the robustness and reliability of anomaly detection.135
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Table 1. Formulae for the selected features in time and frequency domains.

Domain Features and Formulae

Time

domain

Standard deviation σ =
√

1
n

∑n
i=1(ai−µ)2 Root mean square RMS =

√
1
n

∑n
i=1 a2

i

Maximum value Amax = max(|a|) Minimum value Amin = min(a)

Peak-to-peak value App = max(a)−min(a) Skewness S = 1
n

∑n
i=1

(ai−µ)3

σ3

Kurtosis K = 1
n

∑n
i=1

(ai−µ)4

σ4 − 3 Waveform factor WF = RMS
mean(|a|)

Peak factor PF = Amax
RMS Impulse factor IF = Amax

mean(|a|)

Absolute Mean value AM = 1
n

∑n
i=1 |ai| Crest factor Cf = Amax√

1
n

∑n
i=1 x2

i

Clearance factor Cl = Amax

( 1
n

∑n
i=1

√
|xi|)2

Frequency

domain

Spectral mean Fµ = 1
m

∑m
i=1 |Fi| Spectral variance Fσ2 = 1

m

∑m
i=1(|Fi| −Fµ)2

Spectral std. deviation Fσ =
√

Fσ2 Spectral entropy HF =−∑m
i=1 pi log2(pi)

Spectral energy EF =
∑m

i=1 |Fi|2
m

Spectral skewness SF = 1
m

∑m
i=1

(
|Fi|−Fµ

Fσ

)3

Spectral kurtosis KF = 1
m

∑m
i=1

(|Fi|−Fµ)4

Fσ
4 − 3

Note: {ai} represents vibration signals, n is the the total amount of sampling points, µ represents the mean value of vibration signal, and σ

is the standard deviation. {Fi} represents frequency components, m is the number of frequency components, and pi = |Fi|∑m
k=1 |Fk| .

3.3 Variational Autoencoder

Following the extraction of features, the resulting features, now denoted as x, are processed using a variational autoencoder to

model the feature distribution of normal operational data. The VAE framework consists of two main components: an encoder,

Qϕ (x), which maps features x into a latent distribution z, and a decoder, Pθ (z), which reconstructs the original features x

from the latent codes z. The structure of the VAE model is illustrated in Figure 1.140

Unlike traditional deterministic autoencoders that learn point-to-point mappings, VAEs employ a probabilistic framework

that models data distributions rather than individual data points (Doersch, 2016; Kingma et al., 2013). This probabilistic nature

makes VAEs particularly suitable for fault detection applications where there are inherent signal variations even in healthy

machinery due to factors such as load fluctuations, speed variations, or measurement noise (Yan et al., 2021). Traditional au-

toencoders minimize reconstruction loss through deterministic mapping. In contrast, VAEs learn the underlying probability145

distribution pdata(x) using latent variables z through variational inference. The encoder Qϕ(x) outputs parameters of a mul-
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tivariate Gaussian distribution (mean µ(x) and variance σ2(x)), while the decoder Pθ(z) reconstructs features from sampled

latent codes. This probabilistic approach enables better handling of data variability.

The VAE optimizes the evidence lower bound (ELBO) through two complementary loss terms: reconstruction loss and KL

divergence loss. The reconstruction loss measures the difference between the original input data and its reconstruction from150

the latent space. This loss ensures that the VAE accurately captures the underlying structure of the features. The reconstruction

loss is defined as:

Lrec =
1
n

n∑

i=1

∥xi− x̂i∥22, (1)

where xi represents the i-th input sample, x̂i is the reconstructed sample, and n is the total number of samples. This loss

encourages the encoder Q and decoder P to work together to reconstruct the input x as accurately as possible.155

In addition to the reconstruction loss, the VAE incorporates a KL divergence loss, which ensures that the learned latent codes

z approximate a prior distribution, typically a multivariate normal distributionN (0, I), where I is the identity matrix (Doersch,

2016). The KL divergence loss (Rolinek et al., 2019) is given by:

LKL =
1
n

n∑

i=1

d∑

j=1

1
2

(
−1− log(σ2

i,j) +µ2
i,j + σ2

i,j

)
, (2)

where µi,j and σi,j are the mean and standard deviation for the j-th dimension of the latent variable zi, and d is the dimen-160

sionality of the latent space. This loss term ensures that the distribution of latent variables remains close to the desired prior

distribution.

The total loss function for the VAE combines the reconstruction loss and the KL divergence loss:

L= Lrec +LKL. (3)

By minimizing this total loss during training, the VAE learns to capture meaningful latent representations that can be used165

for fault detection and assessment. To enable backpropagation through the stochastic sampling process, the reparameterization

trick (Doersch, 2016) is employed. Specifically, the latent variable z is expressed as:

zi = µi + σi · ϵ, ϵ∼N (0, I), (4)

where ϵ is a random variable sampled from a multivariate normal distribution, and µi and σi are the mean and standard deviation

predicted by the encoder network. This reparameterization allows the gradients to flow through µ and σ during optimization,170

enabling efficient training of the VAE. The training procedure is detailed in Algorithm 1.
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Algorithm 1 Training procedure for the proposed fault detection method
1: Input: Dataset D, learning rate α, batch size B, epochs Nmax

2: for epoch = 1 to Nmax do

3: for each batch {si}Bi=1 from D do

4: Extract features xi from signal si

5: µi,σi←Qϕ(xi)

6: zi← µi + σi⊙ ϵ, where ϵ∼N (0, I)

7: x̂i← Pθ(zi)

8: Compute L= Lrec +LKL

9: Update θ,ϕ using Adam optimizer

10: end for

11: end for

12: Return: Trained parameters θ∗,ϕ∗

In this work, the input and output layers of the VAE each contain 280 neurons, corresponding to the 280 features derived

from vibration signal analysis (20 time- and frequency-domain features from 14 channels). This ensures that the network can

encode and reconstruct the complete set of features effectively. The encoder compresses the input data through three hidden

layers with 128, 64, and 32 neurons, respectively, each followed by batch normalization and ReLU activation to ensure stable175

and efficient training. The latent space is represented by two fully connected layers: one for the mean (16 neurons) and one

for the log variance (16 neurons), resulting in a latent representation size of 16. The decoder reconstructs the input features by

symmetrically expanding the latent representation through layers with 32, 64, and 128 neurons, before mapping it back to the

original 280-dimensional space in the output layer. Batch normalization and ReLU activations are also used in the decoder to

maintain stability and improve performance.180

3.4 Exponentially Weighted Moving Average

The exponentially weighted moving average is applied as the final step in monitoring the health of the wind turbine. This

statistical tool is particularly effective in detecting small shifts or trends in data over time, making it ideal for fault detection

in wind turbines (Sun et al., 2023; He et al., 2023). The EWMA smooths the reconstruction errors (REs) obtained from VAE,

reducing noise and highlighting deviations indicative of potential faults.185

The EWMA statistic, denoted as Zt, is calculated recursively as:

Zt = λ ·REt + (1−λ) ·Zt−1, (5)

where REt is the reconstruction error at the time t, and λ is the smoothing parameter (0 < λ < 1), controlling the influence

of recent errors versus historical trends. The smoothing parameter λ controls the sensitivity of the EWMA. Smaller values of

λ assign more weight to historical data, reducing the impact of short-term fluctuations and producing a smoother curve. This190

increases stability but may delay the detection of abrupt changes. On the other hand, larger values of λ give more weight to
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recent errors, making the chart more sensitive to sudden deviations but potentially more prone to false alarms caused by noise.

In monitoring applications, the typical values for λ are between 0.05 and 0.3 (He et al., 2023; Su et al., 2022; Liu et al., 2021).

In this study, λ, set to 0.2, is selected as a compromise, providing a balance that allows the EWMA to respond to significant

anomalies while maintaining robustness against transient noise.195

Historical data Test data

Time domain Frequency domainFeature extraction

Threshold setting

Training samples Validation samples

 Exponentially weighted moving average

Normal / Fault

Validation samples

Data preprocessing Data preprocessing Data preprocessing

VAE Trained VAE Trained VAE

Reconstruction error Reconstruction error Reconstruction error

Training stage Monitoring stage 

Figure 2. Flowchart of the HI construction approach.

3.5 Proposed HI Construction Method

The proposed health index construction method, as outlined in Figure 2, consists of a training stage and a monitoring stage,

with the following detailed steps:

Training stage: In the training stage, historical vibration data collected during the normal operation of the wind turbine is

first preprocessed to remove outliers and trends, ensuring that the dataset accurately reflects the normal behavior of the turbine.200

The data is then divided into training and validation samples. Training samples are used to extract features and train the model,
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while validation samples are used to set threshold limits to decide when a sample is diagnosed as faulty. Features are extracted

from both the time and frequency domains to comprehensively characterize the signal’s dynamics, resulting in 20 distinct

attributes that capture critical aspects of the vibration signals. A VAE model is then trained on the features extracted from the

training samples to learn the normal operating patterns of the turbine. The VAE encodes these features into a latent space and205

reconstructs them, minimizing the reconstruction error for normal data.

Once the VAE model is trained, the REs are computed for both the training and validation datasets. These REs are then

smoothed using an EWMA, which reduces noise and highlights trends in the data. The threshold for anomaly detection is set

as the maximum EWMA value observed in the combined training and validation datasets. This threshold serves as the baseline

for distinguishing normal from abnormal conditions during monitoring. This approach is rooted in the assumption that the210

training and validation datasets represent normal and healthy turbine operations. Since these datasets are drawn exclusively

from normal conditions, no alarms should be triggered within them. Thus, the maximum EWMA value from these datasets

serves as a reliable benchmark or threshold: it represents the upper limit of what can be considered normal for healthy turbine

operations.

Monitoring stage In the monitoring stage, real-time vibration data collected during turbine operations undergo the same215

preprocessing and feature extraction steps as in the training stage. The extracted features are then inputted into the trained

VAE, which computes the reconstruction errors for each test sample. These reconstruction errors are fed into the EWMA,

which tracks deviations from the normal operational baseline established during the training stage. The EWMA smooths the

fluctuations in reconstruction errors, enabling the detection of gradual trends or abrupt changes. If the EWMA value exceeds

the predefined threshold, the turbine condition is marked as abnormal, signaling the potential onset of a fault. In contrast, if the220

HI remains within the threshold, the turbine is classified as operating under normal conditions.

4 Experimental Validation

This section details the experimental validation of the proposed fault detection framework. It begins by describing the dataset

and the specific fault scenarios used, followed by a summary of the data pre-processing steps, and finally, a thorough presenta-

tion and discussion of the monitoring results.225

4.1 Experimental Dataset Description

The experimental dataset used is sourced from the Aventa AV-7 Research Wind Turbine, located in Taggenberg, which is

managed by the ETH Zurich Department of Structural Health Monitoring (Chatzi et al., 2023). To comprehensively monitor

the operational health of the wind turbine, vibration sensors are placed in critical locations, including the tower, the nacelle, the

main shaft bearing, and the generator, as shown in Figure 3. These locations are chosen because they represent key components230

of the turbine where faults, such as structural instability, aerodynamic imbalances, or mechanical wear, are most likely to

originate or propagate. By analyzing the vibration signals from these locations, the framework is able to capture a wide range

of potential anomalies.
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(a) (b)

(c) (d)

Figure 3. Sensor layout for wind turbine measurements (Chatzi et al., 2023): (a) diagram of the sensor placement on the nacelle; (b)

accelerometers mounted on the nacelle main frame; (c) accelerometers installed on the bearing housing and generator; (d) accelerometers

positioned on the tower top transition piece.

The analysis uses data from 14 specific vibration channels (Table 2) that are highly relevant to diagnosing the health of

critical turbine components. The multi-location sensor placement ensures robust fault detection for various fault types. The235

complete operational history, including maintenance activities and fault periods, is summarized in the timeline in Figure 4.

This study specifically focuses on three distinct fault scenarios, chosen to represent a diverse set of real-world challenges: a

Table 2. Channel names and corresponding locations of vibration signals used in the analysis.

Location Channel name

Tower L5_ACC_XX_01 L5_ACC_YY_01 L5_ACC_XX_02 L5_ACC_YY_02

Nacelle NMF_ACC_YY_01 NMF_ACC_XX_02 NMF_ACC_YY_02

Main Shaft Bearing MSH_ACC_XX_01 MSH_ACC_ZZ_01 MSB_ACC_XX_01 MSB_ACC_ZZ_02

Generator GEN_ACC_XX_01 GEN_ACC_YY_01 GEN_ACC_ZZ_01

11
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2022-09-03

2022-11-01

2022-11-04

2022-12-172022-12-182022-12-192022-12-20

2022-12-082022-12-112022-12-232022-12-292023-01-042023-01-152023-01-21

2022-01-22 2022-01-23 2022-02-06 2022-02-11 2022-02-14 2022-02-15 2022-02-16 2022-02-25 2022-02-27

2022-12-19

Sudden stop due to pitch 

drive coupling failure

Pitch linear drive replacement

(2022-01-24)

Pitch drive coupling replacement

(2022-02-24)

Clean blades  

No imbalance

Icing 

Aerodynamic imbalance

Figure 4. Timeline of failures and maintenance for Aventa AV-7 ETH Zurich research wind turbine.

Roughness 

tape

(b) (c)(a)

Icing

Broken flexible 

coupling

Figure 5. Illustration of wind turbine events (Chatzi et al., 2023): (a) failure of the pitch drive system caused by a broken flexible coupling;

(b) aerodynamic imbalance due to roughness tape applied to the blade, simulating surface roughness effects; (c) icing on the blade.

mechanical breakdown, a simulated operational anomaly, and an environmental fault. These events, illustrated in Figure 5,

include:

1. Pitch Drive Failure: A mechanical failure of a pitch drive coupling occurred on February 16, 2022, when a flexible240

coupling in the pitch drive system broke, as shown in Figure 5(a). This event led to a complete turbine stop, representing

a critical component failure.
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2. Aerodynamic Imbalance: This condition was intentionally simulated from December 19, 2022, to January 15, 2023.

As depicted in Figure 5(b), roughness tape was applied to the blade, simulating surface roughness effects that alter

aerodynamic efficiency.245

3. Icing Events: Naturally occurring blade icing was recorded during a period of cold weather from December 10 to

December 19, 2022. This environmental fault, shown in Figure 5(c), affects both aerodynamic performance and rotational

balance.

106 timestamps

17 timestamps 15 timestamps 1030 timestamps

Pitch drive failure 

detection

Aerodynamic 
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142  timestamps

17 timestamps 15 timestamps
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2022-11-01

14:00
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00:00

5 timestamps

5 timestamps

Figure 6. Division scheme of the training set, validation set, and the testing set.

Table 3. Number of timestamps and samples for training, validation, and testing datasets in three detection tasks.

Task Training datasets Validation datasets Test datasets

Pitch fault detection
106 timestamps

(6360 samples)

43 timestamps

(2580 samples)

183 timestamps

(10980 samples)

Aerodynamic imbalance detection
17 timestamps

(1020 samples)

5 timestamps

(300 samples)

1045 timestamps

(62700 samples)

Icing detection
17 timestamps

(1020 samples)

5 timestamps

(300 samples)

427 timestamps

(25620 samples)

To prepare the data for the semi-supervised model, the dataset is partitioned into training, validation, and testing sets ac-

cording to the operational timeline (Figure 6). A key aspect of this division is that the training and validation sets consist250
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exclusively of data from confirmed healthy operational periods. This ensures that the VAE learns a true representation of the

turbine’s normal behavior. The test sets, conversely, contain both normal and faulty data, allowing for a robust evaluation of

the framework’s ability to distinguish between these states. The specific size of each dataset split is detailed in Table 3.

4.2 Data Pre-processing

The quality and reliability of the anomaly detection method heavily depend on proper data pre-processing. In this study,255

a comprehensive pipeline is implemented to ensure data quality and prepare raw vibration signals for subsequent feature

extraction and model training. This pipeline includes outlier removal, data segmentation, detrending, and feature normalization.

(a)  Original data (2022-02-11 to 2022-02-15) (b) Filtered data (2022-02-11 to 2022-02-15)

(c)  Original data (2022-09-03 to 2022-11-04) (d) Filtered data (2022-09-03 to 2022-11-04)

Figure 7. Comparison of power curves before and after outlier removal for two time periods.
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4.2.1 Outlier Removal

To ensure that the training and validation datasets accurately represent true healthy operating conditions, anomalies in the

power measurements (e.g., zero or negative values) are systematically identified and removed as outliers. Discarding these260

timestamps ensures that the dataset more accurately represents the normal operating conditions of the wind turbines. Figure 7

clearly illustrates the effectiveness of this step, comparing power curves before (Figure 7(a) and (c)) and after (Figure 7(b) and

(d)) outlier removal for two distinct time periods.

4.2.2 Data Segmentation

Each record or timestamp consists of approximately 10 minutes of vibration data sampled at 200 Hz. To process these data,265

it is divided into 60 non-overlapping sub-samples, with each sub-sample containing 2000 data points (corresponding to 10

seconds of operation). Timestamps with less than 10 minutes of data are excluded to ensure uniformity. For each 10-second

sub-sample, the reconstruction error is calculated. Subsequently, the average of these 60 individual REs is computed to derive

a single ensemble RE for the entire 10-minute record. This ensemble averaging strategy provides a more stable and robust

representation of the turbine’s operational state, effectively minimizing the influence of transient fluctuations on the health270

indicator. The data segmentation process is visually explained in Figure 8.

Ensemble RE

RE #1 RE #2 RE #60

Vibration Data for 

One Timestamp (10 min)

Sample #1 Sample #2 Sample #60...

...

Figure 8. Illustration of the data segmentation process for vibration signals.

4.2.3 Detrending

Unlike typical vibration signals that oscillate around zero, the experimental vibration data from the Aventa AV-7 exhibited

exclusively positive values, likely due to the specific data acquisition settings. To counteract any inherent biases or drifts

that could affect the analysis, detrending is applied to the vibration signals to ensure that the signals oscillate around zero.275
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Specifically, in this work, detrending is achieved by subtracting the mean value of each sample from its own data points. This

ensures that each sample is centered around zero, without any biases introduced by the data acquisition settings.

4.2.4 Feature Normalization

Following extraction of features in the time and frequency domains from detrended vibration signals, min-max scaling is

applied to normalize these features. This standardization step is critical for machine learning models, as it brings all features280

to a comparable scale, preventing features with larger numerical ranges from dominating the learning process. Crucially, the

maximum and minimum values for scaling are computed exclusively from the training dataset, ensuring data consistency and

standardization throughout model training while preventing information leakage from the test set.

4.3 Experimental Results

The performance of the proposed framework is systematically evaluated in three distinct fault scenarios, showcasing its robust285

capabilities to detect various types of anomalies. Each type of fault, including pitch drive failure, aerodynamic imbalance, and

icing event, presents unique challenges in monitoring wind turbine health, thereby providing a comprehensive validation of the

framework.

To demonstrate the effectiveness of the proposed approach, comparative analysis is conducted with several baseline methods

using the same 14-channel vibration signals. The baseline methods include standard autoencoder (AE), denoising autoencoder290

(DAE) (Chen et al., 2020), deep support vector data description (Deep SVDD) (Peng et al., 2025), one-class support vector

machine (OC-SVM) (Ghiasi et al., 2024), and a standard variational autoencoder (VAE). The configurations are as follows:

– To directly evaluate the impact of the input type, AE, DAE, and Deep SVDD are tested with both feature-based (F) and

raw signal (R) inputs.

– The OC-SVM method, which conventionally operates on a feature space, is applied directly to the engineered features,295

referred to as OC-SVMF.

– To create a direct ablation baseline for our framework, a standard VAE is applied to the raw signal (VAER).

For fair comparison, all baseline methods adopt identical network architectures and training procedures. The encoder com-

presses input data through three hidden layers with 128, 64, and 32 neurons, while the decoder symmetrically reconstructs the

input through layers with 32, 64, and 128 neurons. Batch normalization and ReLU activations are applied in both encoder and300

decoder to maintain stability and improve performance. All models are implemented using PyTorch and optimized using the

Adam optimizer with a learning rate of 0.001, batch size of 256, and maximum 100 epochs on an NVIDIA 4060 GPU.
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4.3.1 Case I: Pitch Drive Failure

Figure 9 illustrates the result of the pitch drive failure monitoring using the proposed method. The green dots represent the HI

during the training stage, while the blue dots show the HI values from the validation stage used to set the threshold (horizontal305

red dashed line). The orange dots depict the HI during the monitoring (testing) stage including both normal and faulty data.

The framework demonstrates exceptional early warning capability for this progressive fault. As shown in Figure 9, an alarm

is triggered at 14:32, providing a 2.5-hour lead time before the actual turbine shutdown at 17:12. This substantial lead time

enables proactive maintenance planning and minimizes unexpected downtime.

The performance of baseline methods is detailed in Figure 10. The methods with feature-based input (F) demonstrate superior310

early warning capabilities. Specifically, AEF, DAEF, Deep SVDDF, and OC-SVMF all successfully provide early warnings

approximately 2.5 hours before the actual turbine shutdown with HI values clearly crossing the threshold well in advance of

fault occurrence. In contrast, the methods with raw signal input (R) exhibit significantly inferior performance patterns. AER and

DAER fail to detect the fault entirely. Deep SVDDR and VAER provide fault indication only at the moment of fault occurrence

without early warning capability, while VAER suffers from frequent false alarms during normal operation periods.315

This comparison clearly demonstrates the superior performance of methods using feature-based input over those using raw

signal input for complex fault detection tasks, highlighting the critical importance of proper feature engineering in achieving

reliable early warning capabilities.
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Figure 9. Monitoring result for wind turbine pitch drive failure using the proposed method.
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Figure 10. Health index comparison of baseline methods during Case I pitch drive failure detection. The figure shows (a-d) methods with

feature-based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue dotted

line represents the detection threshold.

4.3.2 Case II: Aerodynamic Imbalance

Figure 11 illustrates the monitoring results for aerodynamic imbalance detection using the proposed method. The red dashed320

threshold line represents the decision boundary for imbalance detection. On December 8, 2022, an imbalance event is accurately

detected, as indicated by the spike in the health index that crosses the threshold line, triggering an immediate alarm. The

proposed method achieves precise detection with no false alarms during normal operation periods and no missed detections

during fault occurrence, demonstrating excellent discrimination capability between normal and faulty conditions.

The performance of the baseline methods, detailed in Figure 12, varies significantly in terms of reliability, even though all325

feature-based methods successfully identify the imbalance event. Specifically, both AEF and OC-SVMF are compromised by

false alarms during normal operational phases. In contrast, Deep SVDDF provides a stable baseline free of false alarms but

suffers from some missed detections during the fault period. Among all baselines, DAEF demonstrates exceptional performance

in this case, achieving a perfect detection record with metrics identical to the proposed method. The methods using raw signal
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Figure 11. Monitoring result for wind turbine aerodynamic imbalance using the proposed method.

input (R variants) proved largely ineffective, suffering from high rates of both false alarms and missed detections. This again330

highlights the proposed framework’s consistent and reliable performance across different conditions.

4.3.3 Case III: Icing Event

The monitoring process for detecting icing events using the proposed method is illustrated in Figure 13. On December 17, 2022,

a significant spike in the EWMA value crosses the red dashed threshold line, triggering an alarm. This rapid increase in the

HI value provides a clear indication of the fault’s occurrence. The results demonstrate that the proposed framework accurately335

identifies the icing event without any false alarms or missed detections, as evidenced by the clear distinction between normal

and faulty conditions in the figure.

The baseline comparison in Figure 14 shows that while most methods could detect the icing event, their reliability varied

significantly. All feature-based methods (F variants) once again provided clear and stable fault signatures. The most notable

deficiency is observed in the raw-signal variants of AE and DAE, where both AER and DAER suffer from high baseline340

variability, leading to numerous false alarms during periods of normal operation. The other baseline methods are able to

identify the fault without this significant false alarm issue. This result further underscores the superiority of the proposed

framework, which delivers accurate fault detection while ensuring a stable and reliable baseline.

4.3.4 Performance metrics

To quantitatively evaluate and compare the fault detection performance of the different HI construction methods, Table 4345

presents a comprehensive quantitative comparison of different methods for aerodynamic imbalance (Case II) and icing events
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Figure 12. Health index comparison of baseline methods during Case II aerodynamic imbalance detection. The figure shows (a-d) methods

with feature-based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue

dotted line represents the detection threshold.

(Case III). These two cases provide clearly defined fault labels based on operational records, enabling precise evaluation of

false alarm rates and missed alarm rates alongside conventional accuracy metrics. Here, Case I (pitch drive failure) is excluded

from this quantitative analysis as it is primarily intended for assessing the early warning capabilities of the models due to its

progressive failure characteristics.350

As shown in Table 4, the proposed framework consistently demonstrates excellent performance, achieving 100% accuracy

with zero false alarm and missed alarm rates in both test scenarios. While the DAEF baseline also achieved a perfect score in

Case II, our method is distinguished by its superior consistency across diverse fault types. This robust and reliable performance

validates the effectiveness of our integrated approach.

Furthermore, the quantitative results confirm the superiority of methods using feature-based input over those using raw355

signal input under identical network architectures. This contrast highlights that well-engineered features can effectively reduce

dimensionality and filter noise, thereby accentuating fault-related information crucial for robust detection from complex multi-

channel vibration signals.
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Figure 13. Monitoring result for wind turbine icing event using the proposed method.

In summary, the comprehensive evaluation validates that by synergizing effective feature engineering with a VAE-based

detector and EWMA smoothing, our framework offers a highly reliable and robust solution with strong potential for practical360

deployment.

Table 4. Performance comparison of different methods on imbalance and icing events.

Case II (Aerodynamic imbalance) Case III (Icing events)

Method Accuracy False alarm rate Missed alarm rate Accuracy False alarm rate Missed alarm rate

AER 0.9474 1.0000 0.0388 0.9649 1.0000 0.0000

DAER 0.9043 1.0000 0.0825 0.9649 1.0000 0.0000

Deep SVDDR 0.5100 0.0000 0.4971 0.9977 0.0000 0.0024

VAER 0.5368 0.0000 0.4699 1.0000 0.0000 0.0000

AEF 0.9990 0.0667 0.0000 0.9977 0.0667 0.0000

DAEF 1.0000 0.0000 0.0000 0.9977 0.0667 0.0000

Deep SVDDF 0.9923 0.0000 0.0078 1.0000 0.0000 0.0000

OC-SVMF 0.9971 0.2000 0.0000 0.9930 0.2000 0.0000

Proposed 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
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Figure 14. Health index comparison of baseline methods during Case III icing event detection. The figure shows (a-d) methods with feature-

based input and (e-h) methods with raw signal input. The red dashed line indicates the fault occurrence time, while the blue dotted line

represents the detection threshold.

4.4 Impact of λ in EWMA

In addition, the impact of the smoothing parameter λ in the EWMA method on the fault detection performance is analyzed.

Table 5 summarizes the performance metrics (accuracy, recall, precision, and F1 score) for different values of the parameter λ

in the context of detection of aerodynamic imbalances.365

Higher values of λ (e.g., 0.45 and 0.4), assign greater weight to recent errors, making the EWMA chart more sensitive to

abrupt deviations. However, this increased sensitivity can result in a higher likelihood of false alarms caused by noise. As λ

decreases to 0.35 and 0.3, the performance improves, achieving near-perfect results with minimal false positives or missed

anomalies. At λ = 0.25, the model achieves perfect scores in all metrics, with the accuracy, recall, precision, and F1 scores

reaching 100%. This trend continues for even smaller values of λ (e.g. 0.2 and 0.15), where the model consistently maintains370

perfect detection performance. The results show that lower values of λ result in a progressively smoother EWMA curve,

reducing false alarms while maintaining accurate and early detection of anomalies. Based on this analysis, a value of λ = 0.2
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Table 5. The performance metrics (accuracy, recall, precision, and F1 score) for different values of λ in the EWMA method for aerodynamic

imbalance.

λ Accuracy Recall Precision F1 Score

0.45 98.76% 98.83% 99.90% 99.37%

0.40 98.95% 99.13% 99.80% 99.46%

0.35 99.23% 99.42% 99.81% 99.61%

0.30 99.90% 100.00% 99.90% 99.95%

0.25 100.00% 100.00% 100.00% 100.00%

0.20 100.00% 100.00% 100.00% 100.00%

0.15 100.00% 100.00% 100.00% 100.00%

is chosen for the proposed framework, ensuring reliable anomaly detection with high and consistent performance in all metrics

evaluated.

4.5 Computational Efficiency375

The computational efficiency of the proposed framework is assessed to ensure its suitability for real-time wind turbine moni-

toring and fault detection, as shown in Table 6. All models are implemented using PyTorch, and training and inference tasks

are executed on hardware with the following specifications: GPU: NVIDIA GeForce RTX 4060, CPU: Intel Core i7-13700K,

Memory: 32 GB RAM. Feature extraction, which involves computing 20 time- and frequency-domain features across 14 vibra-

tion signal channels, requires an average of 2.53 seconds per 10-minute dataset. Model training times vary by task, reflecting380

the size and complexity of the dataset. The inference process, which includes feature extraction, model loading, feature re-

construction, and HI computation for anomaly detection, required an average of 2.56 seconds per 10-minute dataset. These

computational times demonstrate the practical viability of the framework for continuous, near-real-time monitoring applica-

tions in wind turbine operations.

4.6 Discussion385

This section provides a more profound insight into the framework’s ability to interpret and differentiate between various

fault types based on the HI values, particularly focusing on icing events and aerodynamic imbalances. Figure 15 graphically

illustrates the HI values alongside the relevant environmental data.

Rotor icing not only alters the aerodynamic properties of the blades but also introduces mass imbalance, leading to pro-

nounced deviations in vibration signals. These combined effects typically result in higher reconstruction errors and higher HI390

values. In contrast, the aerodynamic imbalance caused by the roughness tape is primarily localized, with less severe effects on

the rotor dynamics, often producing lower HI values. As shown in Figures 15 (a) and (b), HI values during icing events are
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Table 6. Computational efficiency for feature extraction, model training, and inference.

Process Task Time cost Notes

All Tasks

Pitch Drive Failure 6.81 seconds

Aerodynamic Imbalance 1.27 seconds

Icing Detection 1.27 seconds

Inference All Tasks

Feature

Extraction

2.53 seconds per

10-minute dataset

Computation of 20 time-domain and

frequency-domain features for 14 channels.

Model

Training

Trained for 100 epochs on the given

feature dataset.

2.56 seconds per

10-minute dataset

Includes feature extraction, model loading,

feature reconstruction, and HI computation.

generally higher than those observed during aerodynamic imbalance periods, except for the period from December 8 to 11,

2022.

In particular, as can be seen in Figure 15 (b), during the period from December 8 to 11, 2022, highlighted in the green region,395

the framework detected HI values comparable to those observed during the confirmed icing event from December 17 to 20,

2022. Analysis of environmental data, including low temperatures and high humidity (Figure 15 (c) and (d)), suggests that the

conditions were conducive to icing formation. This raises the hypothesis that icing may have co-occurred with aerodynamic

imbalance during this period. Similarly, there are potential indications of icing events on January 15 and 21, 2023, based on

similar environmental conditions.400

This ability to identify periods with high HI values correlating with conducive environmental conditions, even without direct

fault labels, underscores the framework’s potential for proactive and insightful operational diagnostics. If these potential icing

events were to be confirmed, a simple threshold on the HI values could effectively differentiate between icing and aerodynamic

imbalance, based on their distinct HI magnitudes. The results from this analysis highlight the framework’s advanced potential

not only for detecting anomalies but also for contributing to the differentiation of fault types based on their characteristic HI405

signatures.

5 Conclusion

This paper presented a semi-supervised fault detection framework that integrates multi-channel vibration analysis with deep

learning. The core of the methodology is to build a robust model of a wind turbine’s normal operational state using only healthy

data. This is achieved by training a variational autoencoder on a comprehensive set of time-domain and frequency-domain fea-410

tures extracted from vibration signals. An exponentially weighted moving average is then applied to the VAE’s reconstruction

error to create a stable and reliable health index, minimizing the risk of false alarms. The framework’s effectiveness is validated

on the ETH Zurich research turbine dataset, covering three distinct fault types. The experimental results demonstrate a high
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level of performance. Notably, the framework provided a 2.5-hour early warning for a critical pitch drive failure and achieved

perfect (100%) accuracy in detecting both simulated aerodynamic imbalances and naturally occurring icing events. The ex-415

perimental results validate the framework’s effectiveness in providing timely and accurate fault detection, offering sufficient

lead time for proactive maintenance. These findings confirm that the approach provides timely and accurate fault detection, a

capability crucial for enhancing operational reliability and minimizing downtime.

While the framework is highly effective for wind turbine fault detection, it currently does not perform detailed diagnosis.

Future work will therefore focus on extending the methodology to include fault localization and fault identification by analyzing420

the signatures in feature-level and channel-level reconstruction errors.
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trends, and (d) humidity data trends during the monitoring period.
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