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Abstract. This manuscript introduces JHTDB-wind (https://turbulence.idies.jhu.edu/datasets/windfarms), a publicly accessible1

database containing large-eddy simulation (LES) data from wind farms. Building on the framework of the Johns Hopkins2

Turbulence Database (JHTDB), which hosts direct numerical and some large-eddy simulation datasets of canonical turbulent3

flows, JHTDB-wind stores the full space-time (4D) history of the flow and provides users the ability to access and query4

the data via a web-based virtual sensor interface. The initial dataset comprises LES results from a large wind farm with5

6 × 10 turbines, modeled using a filtered actuator line method, under conventionally neutral atmospheric conditions. This6

data comprises one hour of flow field data (velocity, pressure, potential temperature, and others, approximately 15TB) and7

wind turbine data—including both turbine-level operational quantities and blade-level aerodynamic quantities (approximately8

1.3TB)—stored in Zarr and Parquet formats, respectively. Data retrieval is facilitated by the Giverny Python package, allowing9

remote users to query the database in Python or Matlab (C and Fortran support are available for flow field data). This paper10

details the simulation setup and demonstrates data access through examples that analyze wind farm flow structures and turbine11

performance. The framework is extensible to future datasets, including the JHTDB-wind diurnal cycle simulation analyzed in12

Xiao et al. (2025).13

1 Introduction14

Eddy-resolving simulations of atmospheric boundary layer phenomena (Porté-Agel et al., 2000; Bou-Zeid et al., 2004; Kumar15

et al., 2006) and of wind farms in particular (Calaf et al., 2010; Meyers and Meneveau, 2012; Gebraad et al., 2016; Stevens16

and Meneveau, 2017; Zhang et al., 2023) have significantly advanced our understanding of the complex, multi-scale, and17
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multi-physics processes involved. Large Eddy Simulations (LES) offer high spatial and temporal resolution, capturing the18

dynamics of relatively small and fast turbulent eddies (Churchfield et al., 2012; Chatelain et al., 2013; Yang et al., 2021; Li19

et al., 2022). While the range of resolved scales in LES is constrained by computational resources, the number of LES grid-20

points in typical simulations continues to increase. However, data handling and post-processing capabilities have not kept pace21

with the resulting rapid increase in data volumes. For instance, a single LES of turbulent flow outputting five field variables22

(e.g., the three velocity components, potential temperature and pressure) on 2,0483 spatial grid points and integrated over,23

say, 104 time-steps (McWilliams et al., 1994; Alexakis et al., 2024), can generate Petabytes (PB) of data. As a result, most24

studies store only a few selected snapshots and rely heavily on pre-defined run-time diagnostics when time-resolved analysis25

is required. This approach reduces storage requirements but limits the ability to revisit data when new questions and concepts26

arise, often necessitating costly recomputation. Furthermore, certain analyses —such as backward-in-time particle tracking27

from an extreme dissipation event—cannot be performed without the full temporal data.28

To address these challenges, modern database technologies have increasingly been applied to preserve and store data from29

simulation-based turbulence research (Perlman et al., 2007; Zhang et al., 2018; Chung et al., 2022; Duraisamy et al., 2019).30

One example is the Johns Hopkins Turbulence Database (JHTDB, https://turbulence.idies.jhu.edu), an open-access platform31

supported by the National Science Foundation (Perlman et al., 2007; Li et al., 2008). JHTDB enables researchers to interact with32

easily accessible, large-scale simulation data. The system currently hosts more than 1 PB of DNS data for canonical, turbulent33

flows of fundamental interest (over 2 PB if counting warm backup copies), including 6 space-time resolved data sets and34

several others with a few snapshots available. Some LES datasets of stably stratified atmospheric turbulence are also included35

in JHTDB. Through web-service-based tools, users can query the database using a “virtual sensors” interface, specifying spatial36

and temporal locations for which the system returns properly interpolated field or derivative values (Li et al., 2008; Yu et al.,37

2012). A hallmark of the platform is that it allows users to access only the specific subsets of the data they require, eliminating38

the need to download massive datasets or manage complex file formats. This approach has significantly broadened access to39

high-fidelity eddy-resolving simulation data and has contributed to democratizing high-performance computational turbulence40

research. To date, JHTDB data have been used in research reported in over 400 peer-reviewed journal articles.41

At the same time, with the growing global demand for renewable energy continuing to rise, enhancing wind energy efficiency42

has become a key priority. As wind turbines grow larger and wind farms expand in scale, their interactions with the atmospheric43

boundary layer (ABL) become increasingly complex—particularly with respect to wake dynamics, energy extraction, and44

the redistribution of momentum within the flow. LES of large wind turbines have emerged as a crucial complement to field45

measurements, enabling researchers to explore flow-turbine interactions in detail and to develop engineering models that inform46

turbine placement strategies and improve wind farm efficiency. For example, Calaf et al. (2010) used LES with periodic47

boundary conditions to study the performance of “infinite” arrays of wind turbines under neutrally-stratified conditions. Abkar48

and Porté-Agel (2013, 2014) examined how wind farm density and free-atmosphere stability influence kinetic energy fluxes49

in a conventionally neutral boundary layer (CNBL) - defined as neutrally-stratified surface layers capped by stably-stratified50

free atmospheres (Zilitinkevich et al., 2002). Allaerts and Meyers (2015) explored the effect of capping inversion profile on51

wind farm performance. Numerous additional LES-based studies have further advanced the field (Yang et al., 2014; Aitken52
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et al., 2014; Martínez-Tossas et al., 2015; Stevens et al., 2018; Gharaati et al., 2022, 2024; Aiyer et al., 2024), highlighting the53

continued value of high-resolution simulation tools for understanding and optimizing wind energy systems.54

These simulations, like many previous numerical studies of large-scale wind farms, generate extensive datasets. However,55

access to these data often remains restricted to the original researchers who conducted the simulations. The data (typically56

4D space-time fields of velocity, temperature, etc.) are ephemeral: they must be analyzed in real-time during the simulation,57

or, at best, a limited number of snapshots are stored for post-processing, while the large majority of the data is discarded.58

As demonstrated in the case of the JHTDB database, providing access to the full time-history of a simulation could provide59

substantial benefits for the broader wind energy research community. The value of open access to time-resolved numerical60

datasets is now being recognized beyond fluid dynamics, particularly in the fields of Geosciences. For example, the recently61

released NOW-23 dataset (Bodini et al., 2023) comprises a full year of Weather Research and Forecasting (WRF) model62

simulations of off-shore wind conditions over several expansive (100’s km) U.S. coastal regions, offering valuable data for63

wind farm developers. However, no equivalent open-access LES datasets currently exist at smaller scales that explicitly include64

wind turbine effects—datasets that would be highly valuable for researchers focused on wake interactions, turbine siting, and65

wind farm optimization. More in general, the lack of data sharing in the wind energy sector has been recognized to hinder66

technical progress and leads to missed opportunities for improving the efficiency of energy markets (Kusiak, 2016)67

To begin addressing the need for open access to LES wind farm data, we construct JHTDB-wind (see https://turbulence.idies.68

jhu.edu/datasets/windfarms, Zhu et al. ((2025)), a publicly accessible turbulence database built on the JHTDB framework. This69

paper presents the dataset by detailing the simulation methodology (Section 2), and flow configuration—specifically, a CNBL70

interacting with a 60-turbine wind farm using National Renewable Energy Laboratory (NREL) 5MW reference turbines. Here,71

CNBL is chosen because it is a less complicated atmospheric state, observed in nature (Liu and Stevens, 2022), for example,72

during the transition period after sunset or on cloudy days with powerful winds (Allaerts and Meyers, 2017; Liu et al., 2024).73

Simulation parameters are described in Section 3. The construction of the database system is described in Section 4, followed74

by an overview of representative data access methods based on the JHTDB virtual sensor method, illustrated here via Python75

examples (Section 5). Conclusions are summarized in Section 6. Further documentation is available directly on the database76

website.77

2 Large-eddy simulation framework78

In this study, we use the open source LES code LESGO (https://lesgo.me.jhu.edu) as a numerical solver to simulate ABL flows79

and its interactions with wind turbines (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al.,80

2018; Shapiro et al., 2018, 2020; Gharaati et al., 2022; Narasimhan et al., 2022, 2024a, b, c; Gharaati et al., 2024; Ayala et al.,81

2024). The model represents all variables on a three-dimensional Cartesian grid, with x, y, and z denoting the streamwise,82

spanwise, and vertical directions, respectively. In index notation, these are expressed as xi where i = 1, 2, 3. The corresponding83

velocities are denoted by ui, or also with u, v, and w for its x, y, and z-direction components, respectively.84

3

https://turbulence.idies.jhu.edu/datasets/windfarms
https://turbulence.idies.jhu.edu/datasets/windfarms
https://turbulence.idies.jhu.edu/datasets/windfarms
https://lesgo.me.jhu.edu


2.1 Governing equations and numerical methods85

The turbulent flow is simulated by solving the filtered Navier-Stokes equations in their rotational form with Boussinesq thermal86

forcing and Coriolis effects, along with the transport equation for the potential temperature field. The governing equations87

include the filtered mass conservation,88

∂ ũi

∂xi
= 0, (1)89

the filtered momentum conservation,90

∂ ũi

∂ t
+ ũ j

(
∂ ũi

∂x j
−

∂ ũ j

∂xi

)
=−∂ p̃∗

∂xi
+

g
θ0

(θ̃ −θ0)δi3 −
∂τ

SGS,d
i j

∂x j
− fi + fc(ũ2 −Vg)δi1 − fc(ũ1 −Ug)δi2, (2)91

and the filtered heat conservation,92

∂ θ̃

∂ t
+ ũ j

∂ θ̃

∂x j
=−

∂Π j

∂x j
. (3)93

Here, the tilde indicates filtering at the LES grid scale ∆̃ = 3
√

∆x ∆y ∆z; ρ is the density of air; τSGS
i j = ũiu j − ũiũ j is the94

unresolved subgrid-scale (SGS) stress tensor, and τ
SGS,d
i j = τSGS

i j −δi jτ
SGS
kk /3 is the deviatoric (trace-free) part of τSGS

i j , where95

δi j is the Kronecker delta; p̃∗ = p̃/ρ+ ũkũk/2+τSGS
kk /3 is the pseudo pressure, where p̃ is the resolved pressure; g= 9.81m/s2 is96

the gravitational acceleration; θ0 is the reference potential temperature scale; and fi is the distributed body force for modeling97

the turbine-induced aerodynamic forces on the air flow (see §2.3). In the present study, τ
SGS,d
i j is parameterized using the98

Lilly-Smagorinsky eddy-viscosity type model (Smagorinsky, 1963; Lilly, 1966), i.e., τ
SGS,d
i j = −2νSGSS̃i j = −2(Cs∆̃)

2|S̃|S̃i j,99

where S̃i j = 0.5(∂ ũi/∂x j +∂ ũ j/∂xi) is the resolved strain-rate tensor, |S̃|=
√

2S̃i jS̃i j is the strain-rate magnitude, and νSGS =100

(Cs∆̃)
2|S̃| is the modeled SGS eddy viscosity. The coefficient Cs is dynamically determined using the Lagrangian-averaged101

scale-dependent dynamic model (Bou-Zeid et al., 2005), which has been successfully applied in several prior LES studies102

of wind turbine wake flows (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al., 2018;103

Narasimhan et al., 2022; Gharaati et al., 2022; Narasimhan et al., 2024a; Gharaati et al., 2024). In Eq. 3, the term Π j =104

ũ jθ − ũ jθ̃ is the SGS heat flux whose eddy diffusivity (κSGS) is determined from κSGS = Pr−1
SGSνSGS, where the SGS Prandtl105

number of PrSGS = 1 (Narasimhan et al., 2022) is prescribed.106

The atmospheric boundary layer flow is driven by a geostrophic wind whose pressure gradient is given by −∇P∞/ρ =107

( fcVg,− fcUg). Here, fc = 2Ωsinφ = 10−4 s−1 is the Coriolis parameter corresponding to a mid-latitude position (specifically108

to φ = 43.44◦ with Earth’s rotation rate Ω = 7.27×10−5 rad/s). The quantities Ug,Vg are the geostrophic wind velocity com-109

ponents along the x and y directions, respectively, with magnitude G =
√

U2
g +V 2

g , and directed at an angle of αG relative to110

the x direction such that Ug = GcosαG, Vg = GsinαG. At each timestep, a proportional-integral (PI) controller is utilized to111

control the direction of the geostrophic wind such that the wind flows in the streamwise direction with zero wind veer at the112

hub height (Sescu and Meneveau, 2014; Narasimhan et al., 2022).113

LESGO uses a Fourier-series-based pseudo-spectral method based on collocated grids for the spatial discretizations in the114

horizontal (x and y) directions, and a second-order central-difference method based on staggered grids in the vertical (z)115
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direction. The 3/2-rule is used to eliminate the aliasing error associated with the pseudo-spectral discretization of the nonlinear116

convective terms. The simulation is advanced in time using a fractional-step method. First, the velocity field is advanced in time117

by integrating Eq. (2) using the second-order Adams-Bashforth scheme to obtain a predicted velocity field. Then a pressure118

Poisson equation is constructed based on the divergence-free constraint Eq. (1) for the new time step and is solved to obtain119

the pseudo-pressure field. Lastly, the predicted velocity field is projected to the divergence-free space using the gradient of the120

pseudo pressure to obtain the velocity field for the new time step. The above fractional steps are repeated at every time step in121

LES to advance the flow field in time. More details of the numerical schemes used in the LESGO solver can be found in the122

original references (Albertson, 1996; Albertson and Parlange, 1999).123

2.2 Boundary conditions124

In the x (nominally the streamwise) direction, inflow–outflow boundary conditions are applied using the concurrent precursor125

simulation approach (Stevens et al., 2014). Specifically, a separate precursor domain without wind turbines is simulated to126

generate realistic turbulent inflow conditions, which are then imposed at the inlet of the wind farm domain. To ensure peri-127

odicity, a fringe region is introduced at the end of the wind farm domain where the outflow is gradually forced to match the128

inflow from the mapped region in the precursor domain. More details of the inflow-outflow conditions implemented in the129

current pseudo-spectral solver are provided in Stevens et al. (2014). Additionally, the simulation in the precursor domain uses a130

shifted periodic boundary condition where the flow field in a spanwise shifting region is shifted to prevent persistent spanwise131

locking of large-scale turbulent structures (Munters et al., 2016). Following the recommendation in Munters et al. (2016) a132

shift of Ly−shift = 0.25Lz is used in this study, where Lz is the domain height. In the spanwise (y) direction, periodic boundary133

conditions are used. In the vertical (z) direction, the ground surface boundary condition is specified in both the precursor and134

wind turbine domains using the Monin-Obukov Similarity Theory (MOST)-based equilibrium surface flux modeling (Monin135

and Obukhov, 1954). The components of local surface shear stress are computed as a function of the prescribed roughness136

length according to137

τi,3|surf =−u2
∗

̂̃ui√̂̃u2
+̂̃v2

, i = 1,2; and u∗ = κ

√̂̃u2
(0.5∆z)+̂̃v2

(0.5∆z)
ln(0.5∆z/z0)

. (4)138

Here, κ = 0.41 is the von Kármán constant, z0 is the prescribed roughness length, the friction velocity u∗ is expressed in terms139

of the horizontal velocity (̂̃u,̂̃v) at the first grid-point (z1 = 0.5∆z), filtered at twice the grid resolution, ˆ̃
∆ = 2∆̃ (Bou-Zeid et al.,140

2005). Since we simulate conventionally neutral conditions, the surface heat flux is set to zero, and thus no stability correction141

terms (as used in Xiao et al. (2025)) are included. At the top of the domain, a stress-free boundary condition is imposed. A142

sponge or Rayleigh-damping layer (Durran and Klemp, 1983) is included approaching the top boundary, ranging from 0.75Lz143

to Lz, with a sponge inverse relaxation time-scale (frequency) parameter of 3.9×10−3 1/s. In this layer, a damping body force144

with a cosine profile is applied to suppress the reflection of gravity waves.145
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Henceforth, the ˜(·) notation for LES-filtered field variables (e.g., velocity ũi, temperature θ̃ ) will be omitted for brevity. All146

subsequent variables should be interpreted as implicitly filtered quantities obtained from the LES solution, governed by the147

equations presented in this Section.148

2.3 Wind turbine representation149

The aerodynamic forces exerted by wind turbines on the airflow are modeled through the distributed body force term fi in150

the momentum transport equations (Eq. 2). During the initial spin-up phase, we employ an actuator disk model (ADM) on a151

coarse grid for computational efficiency, with the thrust force magnitude calculated as f = π

8 ρC′
T ⟨uT ⟩2

dD2 (Calaf et al., 2010;152

Howland et al., 2016). Here, ρ is the air density, ⟨uT ⟩d is the local wind velocity averaged over the rotor disk, D is the diameter153

of the wind turbine, and C′
T is the local thrust coefficient (set to a common value C′

T = 1.33). We recall (Calaf et al., 2010) that154

C′
T is based on the disk-averaged velocity ⟨uT ⟩d which, unlike the far-upstream velocity U∞, is immediately available in LES.155

After the spin-up simulation converges to quasi-steady behavior, the grid is refined to its final resolution, and the actuator156

line model (ALM) is adopted (Sørensen and Shen, 2002; Troldborg, 2009; Jha et al., 2014; Martínez-Tossas et al., 2015). In157

ALM, each turbine blade is represented by a collection of actuator points along a line, where forces are applied according to158

the velocity field and the angle of attack. The forces per unit width at every actuator point are computed as159

falm = 0.5ρc|Vrel|2(CLeL +CDeD), (5)160

where c is the airfoil chord length, |Vrel| is the magnitude of the relative velocity of the upwind flow to the turbine blade, CL161

and CD are lift and drag coefficients obtained from tabulated airfoil data, and eL and eD are unit vectors along the direction of162

the lift and drag forces at each actuator point, respectively. These forces are then smeared using a Gaussian kernel to project163

them into the computational LES grid:164

ηε =
1

ε3π3/2 e−r2/ε2
(6)165

where r is the distance from the grid point to the actuator point, and ε denotes the width of the kernel. The kernel width is166

chosen to be at least ε = 2(∆x∆y∆z)
1/3, as recommended to avoid numerical instabilities (Troldborg, 2009; Martínez-Tossas167

et al., 2015).168

The accuracy of the ALM can be sensitive to grid resolution and the choice of ε . The optimal εopt needed to resolve the169

induced velocities is typically much smaller than the ε used to avoid numerical instabilities (Martínez-Tossas et al., 2017). To170

address this challenge, we use the generalized filtered lifting line theory correction to accurately represent the blade aerody-171

namics (Martínez-Tossas and Meneveau, 2019; Martínez-Tossas et al., 2024), including the shedding of unresolved vorticity172

leading to missing induced velocities at the blade. The correction accounts for subgrid-scale induced velocity that would be173

obtained by using an optimal εopt by estimating its contribution and adding it to the resolved velocity in the LES. With the174

correction, the ALM provides consistent blade loading predictions across varying grid resolutions.175

The NREL 5 MW baseline wind turbine (Jonkman, 2009) is adopted as our reference model. It is a widely-used benchmark176

model developed by NREL to standardize research on wind technologies. The turbine has a diameter of D = 126m, three177
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blades, and a hub height at elevation zh = 90m. It reaches a rated electrical power output of 5 MW at a rated wind speed178

of approximately 11.4m/s. Its rotor blades utilize the DU (Delft University) and NACA (National Advisory Committee for179

Aeronautics) series airfoil profiles optimized for aerodynamic efficiency, structural integrity, and minimal fatigue loads, making180

the NREL 5 MW turbine an essential tool for evaluating wind turbine performance, control strategies, structural design, and181

offshore platform dynamics.182

The dataset employs fixed but row-dependent rotor angular velocities determined through an initialization procedure. Initial-183

ization begins with all turbines operating at TSR=7.5 (near-optimal for NREL 5MW turbines). In this initialization simulation,184

the angular velocity Ω for each turbine is then computed dynamically using:185

Ω = T SR × 1.087 Ud

(1−a)R
. (7)186

where Ud is the disk-averaged velocity; the numerator incorporates an empirical 8.7% correction factor for LES filter-scale187

effects (ε = 16m), validated through single-turbine laminar inflow tests; the induction factor a derives from rotor geometry188

(blade number Nb = 3, radius R = 63m, and chord c = 3–4m) and local inflow angle φ via:189

a =
1

(4sin2
φ)/(σrCn)+1

, (8)190

with rotor solidity σr =Nbc/(πR) and force coefficient Cn =CL cosφ +CD sinφ . After approximately 30 minutes of simulation,191

the angular velocity Ω for each turbine is averaged within its respective row, which serves as the fixed operational values for192

the subsequent database simulations.193

We also note that LESGO’s ALM implementation includes detailed turbine operation control methods, such as pitching the194

blades (feathering) during region III operations, e.g. above rated conditions. In the current simulation we chose to operate all195

turbines exclusively at optimal tip-speed ratio, “region II” (also without including regions 1.5 and 2.5). This choice was made196

in order to avoid the need to store additional data relating to blade pitch (curtailment) and other complex turbine control actions.197

Since this practice deviates slightly from the reference NREL-5MW nameplate data, we refer to the turbine in our simulations198

as the NREL-5MW+ turbine. Indeed, the front turbines are allowed to rotate slightly faster than the maximum rotation rate of199

the original NREL-5MW reference turbine.200

3 Simulation parameters201

We simulate turbulent flow through a 10×6 array of NREL-5MW+ turbines (with diameter D = 126m) in a 28.224×3.78×202

2km3 domain, equally split between precursor and wind farm subdomains (each 112D = 14.112km long). Figure 1 displays203

the domain dimensions. The precursor domain includes the region denoted as P of length 5Lx/8, mapping region PM (Lx/8),204

and spanwise shifting region PS (Lx/8). The wind farm domain features 14D of upstream buffer zone, 63D turbine region, 21D205

downstream wake recovery region (these three regions combined are denoted as W ), and 14D outflow fringe region (WF ). The206

turbines are spaced 7D (streamwise) and 5D (spanwise), with lateral boundaries 2.5D from the outermost turbines. Note that the207

fringe region WF , as well as the mapping (PM) and spanwise shifting (PS) regions, have a length of Lx/8, and the mapping region208
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PM extends from 5Lx/8 to 3Lx/4. Vertically, a 0.5km Rayleigh damping sponge layer (denoted as R) is located between 1.5 and209

2km (see Figure 1). We adopt θ0 = 263.5 K as the reference potential temperature, consistent with the value chosen in studies210

by Gadde and Stevens (2021) and our prior simulations of SBL and CNBL flows reported in Narasimhan et al. (2024a). This211

reference temperature was inspired by observations from the Beaufort Sea Arctic Stratus Experiment (BASE) and simulations212

by Kosović and Curry (2000). While the value of θ0 is relatively low, it serves primarily as a relative additive reference that213

does not significantly affect the simulated flow dynamics or the physical interpretation of the results. For example, if we used214

273K, it would change the implied thermal expansion coefficient in our Boussinesq approximation only by about 3%.215

L !
=
3.
78
	k
m

7D7D

R

z h
=
90
m

q(z) 𝑈(𝑧)

L# = 112D = 14.112	km

Precursor simulation domain

L# = 112D = 14.112	km

Wind farm simulation domain
(W+WF)

1.
5	
km

0.
5	
km

(a)

(b)

D
=
12
6m

𝑥
𝑧

R
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=
2	
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21D 𝐿𝑥/87D 7D 7D 7D 7D 7D 7D14D

y
𝑧

𝑥
𝑦
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5D
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5D
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5D

2.
5D

P PM PS W WF

P PM PS WFW

R

5𝐿𝑥/8 𝐿𝑥/8 𝐿𝑥/8 𝐿𝑥/8

Figure 1. Schematic representation of the computational simulation domain (not to scale), showing: (a) top view (x–y plane), (b) side view

(x-z plane) and (c) front view (y–z plane). The precursor computational domain consists of the regions denoted as “P”, the precursor mapping

region “PM”, and the precursor spanwise shifting region “PS”. The wind farm computational domain includes the wind farm region “W” and

the fringe region “WF ” near the outlet. Both precursor and windfarm computational domains include a Rayleigh damping region at the top

(region “R”). The turbine diameter D = 126m and hub height zh = 90m are also marked.

The turbulent flow is driven by a constant geostrophic wind speed G = 15m/s at αg ≈ −22.5◦ to the x direction, with216

the angle controlled by a PI controller (KP = 10, KI = 0.5) to align hub-height mean wind velocity with the x-axis in the217

conventionally neutral boundary layer (Sescu and Meneveau, 2014; Narasimhan et al., 2022). The surface has roughness length218

z0 = 0.1m and reference potential temperature θ0 = 263.5K. Initial conditions set Ug = 15m/s (streamwise) and Vg = 0m/s219

(spanwise), perturbed by random noise, while potential temperature decreases from 265K at the surface with a 1K/km lapse220

rate, including random perturbations below 1km.221
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The numerical simulation is conducted in three consecutive phases to ensure proper flow development and statistical con-222

vergence.223

– Phase 1: Coarse-resolution ADM spin-up: A 10-hour simulation using the ADM is performed to establish a quasi-224

stationary atmospheric boundary layer and wind farm wake field. This phase leverages the computational efficiency of225

ADM, which approximates turbine forces without resolving actuator line-level aerodynamics.226

– Phase 2: Fine-resolution ALM convergence. A 1-hour simulation using the actuator line model at finer spatial res-227

olution transitions the flow from ADM-averaged to ALM-resolved turbine representation. Besides the turbine model228

update, two additional changes are introduced in this phase: (i) the time-stepping scheme is switched from a constant229

Courant–Friedrichs–Lewy (CFL) number of 0.0625 to a fixed time step of ∆t = 0.025s. This adjustment has negligi-230

ble impact on the results because, under these simulation conditions, CFL = 0.0625 corresponds to ∆t ≈ 0.03s. The231

slightly more restrictive ∆t = 0.025s maintains numerical stability while preserving solution accuracy. (ii) The rotor232

control changes from a fixed tip-speed ratio (TSR = 7.5) to fixed rotor angular velocities that vary across turbine rows,233

as tabulated in Table 1. This adjustment has a negligible impact on the results because the prescribed angular velocities234

closely match the values achieved under TSR = 7.5 conditions (see the calculation method in Section 2.3), ensuring235

nearly identical rotor dynamics.236

– Phase 3: Fine-resolution simulation for database construction. A final 1-hour simulation is carried out to collect high-237

fidelity flow and turbine data. Flow field variables are recorded every 20 LES time steps (i.e., every 0.5s) on a filtered238

and subsampled spatial grid (every other grid point in the x–y plane), while wind turbine data—both integral and blade-239

resolved—are stored at every LES time step (0.025s). Note that we purposefully operate the NREL-5MW+ turbine in240

“region II” during the simulation time, in order to avoid having to choose and document additional controller actions.241

As a result, during some times some of the turbines operate “above rated conditions” but maintaining self-consistent242

aerodynamic behavior of the blades and air-flow.243

Table 1. Rotor speed for each row of turbines.

Row No. 1 2 3 4 5 6 7 8 9 10

Ω (rad/s) 1.33 1.02 1.04 1.07 1.09 1.09 1.09 1.09 1.09 1.10

The three phases of the simulation are illustrated through the time history of the boundary layer height zi = hABL and the244

geostrophic wind angle shown in Figure 2.245
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Table 2. Three consecutive phases and computational domain parameters

Phase
Grid

level

Turbine

model

Domain size

2Lx ×Ly ×Lz

(km×km×km)

Number of grid points

2Nx ×Ny ×Nz

Spatial resolution

∆x×∆y×∆z

(m×m×m)

Time grid

CFL or ∆t

(- or s)

1 Coarse ADM 2×14.112×3.78×2 2×512×192×400 27.56×19.69×5 CFL=0.0625

2 Fine

ALM

2×14.112×3.78×2 2×1,536×384×400 9.19×9.84×5

CFL=0.0625
TSR=7.5

ALM

Ω = const
∆t = 0.025s

3 Fine
ALM

Ω =const

Simulation with

2×14.112×3.78×2 2×1,536×384×400 9.19×9.84×5 ∆t = 0.025s

Sampling over/with

(10.584+12.348)×3.78×2 (576+672)×192×400 18.38×19.68×5 ∆t = 0.5s

Phase 1 Phase 2

• Fine resolution

• ALM

TSR = 7.5 Ω = c

Sampling 

Flow convergence

ALM convergence

t (h)

h
A

B
L

 (
k

m
)

∆t = 0.025 sCFL = 0.0625

α
 (rad

)

• Coarse resolution

• ADM

Phase 3

Figure 2. Time history of boundary layer height zi = hABL, and geostrophic wind angle α , indicating the three simulation phases (phase 1:

Coarse-resolution ADM spin-up, phase 2: Fine-resolution ALM convergence, and phase 3: Fine-resolution simulation for database construc-

tion).
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4 JHTDB-wind database construction246

The LES data from the final 1-hour sampling period are systematically ingested into the database and organized into two pri-247

mary data types: (i) flow field data, consisting of 4D space-time fields (3D spatial + temporal) captured across both simulation248

domains (precursor and wind farm domains), providing complete spatiotemporal information about the atmospheric flow; and249

(ii) turbine data, which are further subdivided into two subtypes. The first subtype is turbine integral operational data, com-250

prising time histories of turbine power and thrust. The second subtype is turbine blade data, which includes time histories of251

aerodynamic quantities sampled at each discrete actuator point along each blade.252

4.1 Flow field data253

4.1.1 Domain of the dataset254

As described in Section 3, the LES is conducted in the domain of dimensions 2×14.112×3.78×2km3 (see Table 2). When255

compiling the database, we exclude numerically imposed auxiliary regions: the precursor spanwise shifting region PS (final256

Lx/4 of the precursor domain) and the wind farm fringe region WF (final Lx/8 of the wind farm domain), as visualized in257

Fig. 1. These regions serve purely numerical functions (periodicity enforcement and inflow recycling, respectively) without258

contributing to physical flow dynamics of interest. The resulting database domain has the extents of (10.584+ 12.348)×259

3.78×2km3, as shown in Fig. 3. The top 0.5km sponge region is kept in the database for simplicity of data management and260

possible interest.261

!9
"

Figure 3. Schematic representation of the database domain (not to scale). This is the physical domain available in the database, merging the

precursor domain (P+PM) up to the end of the mapping region at 3/4Lx, with the windfarm domain (W ) and excluding the fringe region

(WF ). Turbines are numbered from 1 to 60 as shown. The domain dimensions are (10.584+12.348)×3.78×2km3.
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4.1.2 Spatial resolution of the dataset262

To minimize storage, we applied spectral filtering on x-y planes for flow field data by truncating Fourier modes above κmax/2,263

where κmax = π/∆LES is the LES cutoff wavenumber. The filtered fields were then subsampled at every alternate grid point264

in the x and y directions, maintaining the original vertical (z) resolution. This approach reduces the dataset size by 75% while265

maintaining fidelity in capturing the dynamically significant larger-scale flow structures and turbine wake interactions. Thus266

that the flow field data has a grid size of (576+672)×192×400.267

4.1.3 Temporal resolution of the dataset268

Field data are stored at intervals of 0.5s (every 20 LES steps of 0.025s), ensuring that fluid parcels advected at the maximum269

geostrophic speed (15m/s) travel less than the horizontal grid spacing (∆x ≈ 9.19m) between snapshots. Although rotor blade270

tips move across several vertical grid spacings during this interval, the corresponding rotor force field is smooth (Gaussian271

filtered at scale ε = 16m > 2 3
√

∆x∆y∆z), ensuring that the storage frequency of 0.5s remains appropriate. Over the 1-hour272

simulation period (i.e., 3,600 seconds, the simulation advances through 3,600/0.025=144,000 LES time steps, with flow fields273

stored at 144,000/20 = 7,200 consecutive snapshots.274

4.1.4 Final structure of the dataset275

Consequently, the final stored data dimensions are nx ×ny ×nz ×nt = 1,248×192×400×7,200. At each stored time step, six276

spatial fields are recorded: the three velocity components u(x,y,z, t), v(x,y,z, t), and w(x,y,z, t); the (kinematic) pressure field277

p(x,y,z, t)/ρ = p∗(x,y,z, t)−ukuk/2 (the SGS stress trace is not available and is anyhow negligible); the potential temperature278

field279

These 4D field variables are stored using the Zarr format (Miles and et al., 2023). In Zarr-based storage, data are organized280

into chunks, the smallest units retrieved during a query. To ensure efficient data access, chunk sizes must be large enough to281

support common operations, such as differentiations and interpolations, that typically require access to a three-dimensional282

neighborhood around the query point, while remaining small enough to avoid excessive memory usage. Based on extensive283

testing and prior experience with other JHTDB datasets, a chunk size of 643 grid points provides optimal retrieval speeds284

and performance for typical data access modalities. We chose a similar chunk size but shaped according to 52× 64× 80 so285

that an integer multiple of the chunk size in each direction fits into the stored domain size. The total amount of data stored is286

about 15 Terabytes. These flow field data can be queried using getData(...) calls from analysis programs such as Python,287

MATLAB, Fortran, or C, in the same manner as with other turbulence datasets available through JHTDB.288

12



Table 3. Summary of flow field variables.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nx ×ny ×nz ×nt

Data resolution

∆x×∆y×∆z×∆t

(m× m × m × s)

1 Streamwise velocity

velocity

u

m/s

1,248×192×400×7,200 18.38×19.68×5×0.5

2 Spanwise velocity v

3 Vertical velocity w

4 Potential temperature deviation temperature θ ′ K or C

5 Pressure (kinematic) pressure p m2/s2

6 SGS eddy viscosity eddyviscosity νSGS m2/s

7
Turbine streamwise

force (kinematic)

force

fx

m/s2 871×384×40×7,200 9.19×9.84×5×0.5
8

Turbine spanwise

force (kinematic)
fy

9
Turbine vertical

force (kinematic)
fz

4.2 Wind turbine data289

4.2.1 Turbine-level data290

The turbine-level data are integral quantities characteristic of each turbine operation, which are derived from the actuator line291

modeling. This dataset includes high-fidelity time histories of power output, thrust force, and rotor angular velocity, sampled at292

∆t = 0.025s for all 60 turbines, as summarized in Table 4. In the present dataset, the angular velocity is held constant in time,293

but for other datasets (e.g. Xiao et al. (2025)), this is not generally the case. For each variable, the dataset consists of 144,000294

rows and 2 columns, where the first column represents time and the second column contains the corresponding values of the295

recorded variable. The turbine data are stored in files using the Parquet format, which facilitates efficient access and querying296

from various programming languages. Turbine-level data can be accessed using the getTurbineData(...) function call297

from analysis environments such as Python or MATLAB.298

Note that unlike field data that are all stored in kinematic (density-independent) units, force and power data require specifying299

air density. The valur used in the simulations to evaluate forces is ρair = 1.23 kg/m3.300

4.2.2 Blade-level data301

In addition to the integral quantities characteristic of each turbine’s operation, more detailed information is captured along302

each turbine blade to enable blade-resolved aerodynamic analysis. This fine-grained dataset allows users to investigate the303

local aerodynamic behavior of blades under unsteady inflow conditions, which is critical for understanding load distributions,304
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Table 4. Summary of turbine-level variables. Each dataset is an nt ×2 matrix, where nt is the number of time steps. Columns 1 and 2 represent

time and measured values, respectively.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nt ×2

Data resolution

∆t (s)

1 Power power P W

144,000×2 0.0252 Thrust force thrust Ft N

3 Rotor angular velocity RotSpeed Ω rad/s

fatigue effects, and control optimization strategies. The turbine blade-level dataset includes high-fidelity time histories sampled305

at 0.025s for all 180 blades in the wind farm (60 turbines ×3 blades each), with aerodynamic and geometric quantities sampled306

at 100 discrete actuator line points along the blade span. As summarized in Table 5, a total of 19 variables are sampled and307

stored, with each variable written to a separate file. For each variable, the dataset has dimensions of 144,000×3 rows and 103308

columns. Each time step includes three rows corresponding to the three blades of a turbine, resulting in a total of 144,000×3309

rows. Vertically, the first column represents time in seconds, the second column specifies the turbine number, and the third310

column denotes the blade number (blades can be identified by the time-histories of the individual ALM point positions). The311

remaining 100 columns contain the values of the selected variables at each of the 100 actuator points from the blade root to tip.312

Similar as turbine-level data, blade-level data are stored as Parquet files, allowing efficient access across multiple programming313

environments. Blade-level data can be accessed using the getBladeData(...) function call from analysis environments314

such as Python or MATLAB.315
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Table 5. Summary of blade-level variables. Each dataset is an (nt ×3)×103 matrix, where nt is the number of time steps and 3 represents the

turbine blades. Columns 1-3 represent time, turbine number, and columns 4-103 store aerodynamic measurements at 100 discrete locations

along each blade.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

(nt ×3)× (nℓ+3)

Data resolution

∆t ×∆ℓ

(s × m)

1 ALM point x-position xPos Px

m

(144,000×3)× (100+3) 0.025×0.615

2 ALM point y-position yPos Py

3 ALM point z-position zPos Pz

4
Perturbation velocity at

LES resolution, component 1
uy_LES1 u′y,LES1

m/s

5
Perturbation velocity at

LES resolution, component 2
uy_LES2 u′y,LES2

6
Perturbation velocity at

optimal resolution (0.25c), component 1
uy_opt1 u′y,opt

7
Perturbation velocity at

optimal resolution (0.25c), component 2
uy_opt2 u′y,opt

8
Perturbation velocity correction

u′y,opt −u′y,LES, component 1
du1 ∆u′y,1

9
Perturbation velocity correction

u′y,opt −u′y,LES, component 2
du2 ∆u′y,2

10 Angle of attack alpha α rad

11 Lift coefficient Cl CL
-

12 Drag coefficient Cd CD

13 Lift force per unit length lift FL/ℓ
N/m

14 Drag force per unit length drag FD/ℓ

15 Local relative velocity magnitude Vmag Vmag

m/s
16

Axial component of the local relative

velocity in blade-oriented coordinates
Vaxial Vaxi

17
Tangential component of the local relative

velocity in blade-oriented coordinates
Vtangential Vtan

18
Axial component of

the local force
axialForce Faxi

N
19

Tangential component of

the local force
tangentialForce Ftan
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5 Web-accessible virtual sensor data access methods and examples316

5.1 Flow field data317

A defining feature of the JHTDB database system (Li et al., 2008) is its low entry barrier for data usage, enabling users to318

efficiently explore large-scale simulation datasets through Web Services and the virtual sensor methodology. The JHTDB-319

wind system adopts the same approach, allowing access to wind farm data using these established tools. Users can develop320

analysis scripts or notebooks in familiar programming languages such as Python and Matlab (as well Fortran and C) to run321

them remotely on their own machines or on SciServer, a cloud service dedicated to running code close to the data. Within these322

analysis environments, users specify space-time arrays by defining spatial locations (e.g., along a line, across a surface, within323

a subvolume, or scattered arbitrarily) and corresponding time instances, i.e. users specify the positions of virtual sensor arrays.324

These space-time arrays are then passed to the predefined function, getData(...), which returns interpolated values of325

the selected variables at defined coordinates. This framework enables targeted, on-demand data access without the need to326

download large volumes of raw simulation output.327

Figures 4 and 5 display contour plots of flow field variables at the turbine hub height (z = zh = 90m) for the precursor and328

wind farm domains, respectively.329

Figure 4. Contour plots of instantaneous flow field variables in the precursor domain between x = 0m and x = 10,381.875m. (a) the

streamwise velocity, (b) the vertical velocity, (c) the pressure, and (d) the potential temperature deviation.

Fig. 6 presents Python code snippets that demonstrate how to query the JHTDB-wind database to extract snapshots of330

velocity, pressure, and potential temperature fields at a specific time, approximately in the middle of the stored 1-hour dataset,331

namely at t = 1,800.75s. As a first step, an array “points” is populated with spatial coordinates that define a 2D plane: in this332

case, an equally spaced grid of 950× 200 points in the x and y directions at a constant height z = zh = 90m. These query333

points typically do not coincide with the actual simulation grid points, and users are not required to know the grid layout to334
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access the data. The JHTDB-wind interface provides interpolated field values based on a user-specified interpolation method.335

Supported options include no interpolation (it returns the value at the nearest grid point), Lagrange Polynomials of order 4,336

6, or 8, and several spline interpolation methods (Li et al., 2008; Graham et al., 2016). In this example, we use 8th-order337

Lagrange polynomial interpolation in space. Similarly, if the requested time does not coincide with a stored timestep, temporal338

interpolation is applied using third-order Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method (Li et al., 2008).339

This user-friendly data access model eliminates the need for downloading and parsing simulation files. Instead, the Python340

API returns arrays with the queried field variables, which can then be visualized directly within a Jupyter notebook (or Matlab341

code). This approach was used to generate Figs. 4 and 5. It is important to note that the full one-hour dataset (comprising342

14,400 timesteps) is available for analysis, allowing users to query any time between t = 0 and t = 3,600s. For example, Fig.343

7 shows a hub-height snapshot over the entire domain at time t = 2,505s.344

Figure 5. Contour plots of instantaneous snapshots of field variables in the wind farm domain between x = 10,584m and x = 21,921.375m.

(a) the streamwise velocity, (b) the vertical velocity, (c) the pressure, and (d) the potential temperature deviation. The black solid lines

represent the location of wind turbines.

Similar queries can be made for the values, spatial gradients, and Hessians (second-order derivatives) of all variables listed345

in Table 3. For example, Fig. 8(a) and (b) show x-component of the turbine force-field fx and the x-direction gradient of346

the pressure field (∂ p/∂x), respectively, on a y− z plane intersecting Row 1 (Turbines #1 - #6) at x = 12,348m (1764 m347

downstream of the wind farm domain), at time t = 1000.013s. Fig. 8(c) and (d) present similar results on a plane intersecting348

Row 9 (Turbines #49 - #54) at x = 19,404m (8,820m downstream of the wind farm domain) at another time t = 2,000.67s.349

These plots were generated using the Python code shown in Fig. 9. In these examples, the queried times are intentionally chosen350

not to coincide with the stored simulation time steps, demonstrating the temporal interpolation capabilities of JHTDB-wind.351

Next, we provide examples of computed mean vertical profiles of fundamental flow quantities within the precursor domain,352

which features standard conventionally neutral atmospheric conditions. Figure 10 shows vertical profiles of horizontal- and353

time-averaged mean velocities, subgrid-scale eddy viscosity, and deviations in potential temperature, all obtained by averag-354
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Figure 6. Python code snippet used to obtain the data to generate the Fig. 5.

Figure 7. Contour plot of instantaneous snapshot of streamwise velocity in the entire database domain, ranging from x = 0 to x =

22,913.625m, at time t = 2,505s. As before, the black solid lines represent the location of wind turbines.

ing in the horizontal directions and over time. The data used to produce these profiles is retrieved using the virtual sensor355

framework, and an example code snippet demonstrating this process is shown in Figure 11.356
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Figure 8. Instantaneous contours of x-direction turbine force (as projected onto the LES grid using Gaussian smoothing as part of the ALM

method) in y− z planes at (a) Row 1 (x = 12,348m) and between the relevant vertical range z ∈ [2.5,200]m, and (b) Row 9 (x = 19,404m).

Panels (c) and (d) show the x-direction pressure gradient distributions on the same planes, coincident with the turbines.

Figure 9. Python code snippet used to obtain the data to generate the Fig. 8.

357
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Figure 10. Vertical profiles of horizontal- and time-averaged (a) velocities ⟨u(z)⟩x,y,t , ⟨v(z)⟩x,y,t and velocity magnitude V (z)x,y,t =[
⟨u(z)x,y,t⟩2 + ⟨v(z)x,y,t⟩2]1/2, (b, bottom axis) subgrid-scale eddy viscosity ⟨νSGS(z)⟩x,y,t used in the LES as a result of the Lagrangian

scale-dependent dynamic model, (b, top axis) potential temperature deviation ⟨θ ′(z)⟩x,y,t (i.e., the deviations from a reference temperature

θ0 = 263.5K).

Figure 11. Python code snippet used to obtain the data to generate vertical profiles of ⟨u(z)⟩x,y,t : for the 250 heights z between z = 0.7m

and z = 2,000m separated by 8m, we query data on a regular mesh (not necessarily coinciding with stored grid points). For statistical

convergence, we average over 4 times covering the entire hour (t = 900;1,800;2,700;3,600)s.

5.2 Wind turbine data358

Wind turbine data, including both the turbine-level and blade-level data, are considerably smaller than the 4D flow fields, and359

one possibility would have been to allow users to download them directly as files. However, such an approach would require360
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users to identify specific files, understand naming conventions, and handle formatting, posing a barrier to seamless integration361

with flow field queries. To maintain consistency and usability across the platform, we adopt a similar virtual sensor data362

access paradigm used for the flow field data. Two dedicated query functions are developed: getTurbineData(...) for363

turbine-level quantities and getBladeData(...) for blade-resolved data. For getTurbineData (...), users specify364

the turbine number (ranging from 1 and 60) and desired time instances. For getBladeData (...), both turbine and blade365

numbers need to be specified, along with an array of actuator point indices (1 to 100) and times at which the data are requested.366

Linear interpolation in time is supported to provide values between stored simulation steps.367

As an example, Fig. 12 show a time series of total power generated by the wind farm (a), as well as by the first and second-368

to-last row of 6 turbines (b). The code snippet specifying the getTurbineData(...) call is shown in Fig. 13. Similar calls369

can be made to extract any of the turbine specific variables listed in 4.370

Figure 12. Time evolution of power from turbines during the 10-minute time interval t ∈ [1000.33,1600.33]s. (a) shows the total power from

the entire wind farm, while (b) shows the power for the turbines in Row 1 (i.e., Turbines #1-#6) and in Row 9 (i.e., Turbines #49-#54).

Next, we illustrate the use of getBladeData(...) in Fig. 14, showing time histories of the lift and drag coefficients371

(a), as well as the lift coefficient as function of blade angle (b), computed according to ζ (t) = arctan[z(t)− zh)/(x(t)− xT )],372

during a shorter time period of 60 seconds. The results shown are for a particular turbine and blade (Turbine #28 in the central373

portion of the wind farm and blade #3, the latter being an arbitrary choice, of course). The Python code snippet shown in Fig.374

14 illustrates how the call to getBladeData(...) is made, and again, the queried data are simply plotted as a time-375

series plot as part of the same code. Using a similar approach, variable data can be extracted along turbine blades and further376

processed to compute higher-order statistics. Figure 16 shows axial force, tangential force, drag and lift coefficients for an377

upstream turbine (Turbine #1, blade #1) and a downstream turbine (Turbine #60, blade #1) at a specific time of t = 1,500 s.378

Any of the variables listed in Table 5 can be similarly queried (also in Matlab).379
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Figure 13. Python code snippet illustrating the use of the function getTurbineData(...) as part of a loop over all turbines in the wind

farm, and subsequent summation to evaluate time-series of total power used to generate Fig. 12(a).

Figure 14. (a) Time evolution of lift and drag coefficients on an ALM point 80% along the span of blade #3 for Turbine # 28. (b) Polar plot

of lift coefficient for that point as a function of blade angle along its rotation. With a fixed Ω of (1.09 rad/s) for this turbine (obtained via a

call to getTurbineData(...), there are around 10.5 revolutions within the 60 seconds queried.

6 Conclusions380

In this paper, we have introduced JHTDB-wind, hosting datasets from high-fidelity LES simulations of wind farms. We extend381

the standard “virtual sensors” data access methods (Li et al., 2008; Yu et al., 2012; Graham et al., 2016) that have been success-382

fully used for democratizing access to more fundamental turbulence datasets. Besides velocity, pressure, potential temperature,383

and SGS eddy-viscosity fields, JHTDB-wind adds full 4D (space-time) data on aerodynamic turbine force distributions as384

seen by the flow as well as time series of turbine and actuator line specific aerodynamic data along each of the turbine blades,385

modeled using ALM. We explain the simulation details and provide background on the numerical method and flow parameters,386

and provide detailed examples and explanations of the user-friendly data access methodologies. It is hoped that these data will387

provide useful insights about the complex fluid dynamic processes occurring in wind farms.388

We realize that in generating a dataset for a representative conventionally neutral boundary layer case, with a relatively389

large wind farm with 60 turbines, many other choices could have been made (flow parameters, turbine model and control390

scheme, usage of a particular LES numerical code, numerical resolution, and so on). We anticipate that different members of391

the community would have made different choices, and we look forward to conversations about how to further improve such392
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Figure 15. Python code snippet used to obtain the data to generate Fig. 14.

Figure 16. Distributions of ALM quantities along the turbine blade at a specific time (t = 1,500 s for two turbines (Turbine #1, blade #1;

blue lines; Turbine #60, blade # 1, orange lines): (a) Axial component of the local force (on each ∆ℓ = 0.615m segment), (b) Tangential

component of the local force (on each ∆ℓ= 0.615m segment), (c) Lift coefficient, (d) Drag coefficient.

datasets. We believe, however, that the case selected is representative of CNBL wind farm dynamics that have been studied by393

many others before, with a well-tested numerical code. Hence, the authors hope that the data can be of some use and interest394

to researchers in wind energy.395
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As a final note, we have additionally prepared a second dataset for JHTDB-wind featuring an 8-turbine wind farm over a396

full diurnal cycle, capturing both strongly stable and unstable atmospheric boundary layer regimes at different times of the day397

and night (Xiao et al., 2025).398

7 Code and data availability399

The wind farm data is available at the JHTDB-wind website at https://turbulence.idies.jhu.edu/datasets/windfarms (see also its400

DOI: https://doi.org/10.26144/D8ES-FC15). Various modes of data access are provided (Zhu et al., (2025): (i) Single-point401

queries of flow field variables using a browser interface at https://turbulence.idies.jhu.edu/database/query. (ii) Multiple point402

queries up to 4096 points at a time: downloading DEMO codes (Python or Matlab) at https://turbulence.idies.jhu.edu/database/403

wind and executing the DEMO code on user’s own platforms. Users can then edit the DEMO codes to select different points404

and times to query desired data. Default DEMO codes provided are set up for accessing the diurnal cycle wind farm dataset.405

To access the conventionally neutral dataset, users can change the “dataset” variable to “nbl_windfarm” and select times to the406

range between 0 and 3600 seconds.407
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