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Abstract. This manuscript introduces JHTDB-wind (https://turbulence.idies.jhu.edu/datasets/windfarms), a publicly accessible
database containing large-eddy simulation (LES) data from wind farms. Building on the framework of the Johns Hopkins
Turbulence Database (JHTDB), which hosts direct numerical simulation and some large-eddy simulation datasets of canonical
turbulent flows, JHTDB-wind stores the 4D space-time history of the flow and provides users the ability to access and query
the data via a web-based virtual sensor interface. The initial dataset comprises LES results from a large wind farm with
6 x 10 turbines, modeled using a filtered actuator line method, under conventionally neutral atmospheric conditions. This data
comprises one hour of flow field data (velocity, pressure, potential temperature deviation, subgrid-scale eddy viscosity, and
turbine forces, approximately 15 TB) and wind turbine data—including both turbine-level operational quantities and blade-level
aerodynamic quantities (approximately 1.3 TB)—stored in Zarr and Parquet formats, respectively. Data retrieval is facilitated
by the Giverny Python package, allowing remote users to query the database in Python or Matlab (C and Fortran support
are available for flow field data). This paper details the simulation setup and demonstrates data access through examples that
analyze wind farm flow structures and turbine performance. The framework is extensible to future datasets, including the

JHTDB-wind diurnal cycle simulation analyzed in Xiao et al. (2025).

1 Introduction

Eddy-resolving simulations of atmospheric boundary layer (ABL) phenomena (Porté-Agel et al., 2000; Bou-Zeid et al., 2004;
Kumar et al., 2006) and of wind farms in particular (Calaf et al., 2010; Meyers and Meneveau, 2012; Gebraad et al., 2016;

Stevens and Meneveau, 2017; Zhang et al., 2023) have significantly advanced our understanding of the complex, multi-scale,
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and multi-physics processes involved. Large Eddy Simulations (LES) offer high spatial and temporal resolution, capturing the
dynamics of relatively small and fast turbulent eddies (Churchfield et al., 2012; Chatelain et al., 2013; Yang et al., 2021; Li
et al., 2022). While the range of resolved scales in LES is constrained by computational resources, the number of LES grid-
points in typical simulations continues to increase. However, data handling and post-processing capabilities have not kept pace
with the resulting rapid increase in data volumes. For instance, a single LES of turbulent flow outputting five field variables
(e.g., the three velocity components, potential temperature and pressure) on 2,048 spatial grid points and integrated over,
say, 104 time-steps (McWilliams et al., 1994; Alexakis et al., 2024), can generate Petabytes (PB) of data. As a result, most
studies store only a few selected snapshots and rely heavily on pre-defined run-time diagnostics when time-resolved analysis
is required. This approach reduces storage requirements but limits the ability to revisit data when new questions and concepts
arise, often necessitating costly recomputation. Furthermore, certain analyses —such as backward-in-time particle tracking
from an extreme dissipation event—cannot be performed without the full temporal data.

To address these challenges, modern database technologies have increasingly been applied to preserve and store data from
simulation-based turbulence research (Perlman et al., 2007; Zhang et al., 2018; Chung et al., 2022; Duraisamy et al., 2019).
One example is the Johns Hopkins Turbulence Database (JHTDB, https://turbulence.idies.jhu.edu), an open-access platform
supported by the National Science Foundation (Perlman et al., 2007; Li et al., 2008). JHTDB enables researchers to interact
with easily accessible, large-scale simulation data. The system currently hosts more than 1 PB of direct numerical simulation
(DNS) data for canonical, turbulent flows of fundamental interest (over 2 PB if counting warm backup copies), including
6 space-time resolved datasets and several others with a few snapshots available. Some LES datasets of stably stratified at-
mospheric turbulence are also included in JHTDB. Through web-service-based tools, users can query the database using a
“virtual sensors” interface, specifying spatial and temporal locations for which the system returns properly interpolated field or
derivative values (Li et al., 2008; Yu et al., 2012). A hallmark of the platform is that it allows users to access only the specific
subsets of the data they require, eliminating the need to download massive datasets or manage complex file formats. This ap-
proach has significantly broadened access to high-fidelity eddy-resolving simulation data and has contributed to democratizing
high-performance computational turbulence research. To date, JHTDB data have been used in research reported in over 400
peer-reviewed journal articles.

At the same time, with the growing global demand for renewable energy, enhancing wind energy efficiency has become a
key priority. As wind turbines grow larger and wind farms expand in scale, their interactions with the ABL become increasingly
complex—particularly with respect to wake dynamics, energy extraction, and the redistribution of momentum within the flow.
LES of large wind turbines have emerged as a crucial complement to field measurements, enabling researchers to explore
flow-turbine interactions in detail and to develop engineering models that inform turbine placement strategies and improve
wind farm efficiency. For example, Calaf et al. (2010) used LES with periodic boundary conditions to study the performance
of “infinite” arrays of wind turbines under neutrally-stratified conditions. Abkar and Porté-Agel (2013, 2014) examined how
wind farm density and free-atmosphere stability influence kinetic energy fluxes in a conventionally neutral boundary layer
(CNBL) - defined as neutrally-stratified surface layers capped by stably-stratified free atmospheres (Zilitinkevich et al., 2002).

Allaerts and Meyers (2015) explored the effect of capping inversion profile on wind farm performance. Numerous additional
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LES-based studies have further advanced the field (Yang et al., 2014; Aitken et al., 2014; Martinez-Tossas et al., 2015; Stevens
et al., 2018; Gharaati et al., 2022, 2024; Aiyer et al., 2024), highlighting the continued value of high-resolution simulation tools
for understanding and optimizing wind energy systems.

These simulations, like many previous numerical studies of large-scale wind farms, generate extensive datasets. However,
access to these data often remains restricted to the original researchers who conducted the simulations. The data (typically
4D space-time fields of velocity, temperature, etc.) are ephemeral: they must be analyzed in real-time during the simulation,
or, at best, a limited number of snapshots are stored for post-processing, while the large majority of the data is discarded.
As demonstrated in the case of the JHTDB database, providing access to the 4D space-time history of a simulation could
provide substantial benefits for the broader research community. The value of open access to time-resolved numerical datasets
is now being recognized beyond fluid dynamics, particularly in the fields of Geosciences. For example, the recently released
NOW-23 dataset (Bodini et al., 2023) comprises a full year of Weather Research and Forecasting (WRF) model simulations
of off-shore wind conditions over several expansive (100’s km) U.S. coastal regions, offering valuable data for wind farm
developers. However, no equivalent open-access LES datasets currently exist at smaller scales that explicitly include wind
turbine effects—datasets that would be highly valuable for researchers focused on wake interactions, turbine siting, and wind
farm optimization. More in general, the lack of data sharing in the wind energy sector has been recognized to hinder technical
progress and leads to missed opportunities for improving the efficiency of energy markets (Kusiak, 2016)

To begin addressing the need for open access to LES wind farm data, we construct JHTDB-wind (see https://turbulence.idies.
jhu.edu/datasets/windfarms, Zhu et al. (2025)), a publicly accessible turbulence database built on the JHTDB framework. This
paper presents the dataset by detailing the simulation framework (Section 2), and flow configuration—specifically, a CNBL
interacting with a 60-turbine wind farm using National Renewable Energy Laboratory (NREL) SMW reference turbines. Here,
CNBL is chosen because it is a less complicated atmospheric state, observed in nature (Liu and Stevens, 2022), for example,
during the transition period after sunset or on cloudy days with powerful winds (Allaerts and Meyers, 2017; Liu et al., 2024).
Simulation parameters are described in Section 3. The construction of the database system is described in Section 4, followed
by an overview of representative data access methods based on the JHTDB virtual sensor method, illustrated here via Python
examples (Section 5). Conclusions are summarized in Section 6. Further documentation is available directly on the database

website.

2 Large-eddy simulation framework

In this study, we use the open source LES code LESGO (https://lesgo.me.jhu.edu) as a numerical solver to simulate ABL flows
and its interactions with wind turbines (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al.,
2018; Shapiro et al., 2018, 2020; Gharaati et al., 2022; Narasimhan et al., 2022, 2024a, 2025, 2024b; Gharaati et al., 2024;
Ayala et al., 2024). The model represents all variables on a three-dimensional Cartesian grid, with x, y, and z denoting the
streamwise, spanwise, and vertical directions, respectively. In index notation, these are expressed as x; where i = 1, 2, 3. The

corresponding velocities are denoted by u;, or also with u, v, and w for its x, y, and z-direction components, respectively.
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2.1 Governing equations and numerical methods

The turbulent flow is simulated by solving the filtered Navier-Stokes equations in their rotational form with Boussinesq thermal
forcing and Coriolis effects, along with the transport equation for the potential temperature field. The governing equations

include the filtered mass conservation,
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and the filtered heat conservation,
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Here, the tilde indicates filtering at the LES grid scale A = /Ax Ay Az; p is the density of air; ‘L'iSjGS = wju; — i is the

unresolved subgrid-scale (SGS) stress tensor, and TiSjGS’d = Tists — 87505 /3 is the deviatoric (trace-free) part of Tists

8;; is the Kronecker delta; p* = p/p +iiii /2 + ToC> /3 is the pseudo pressure, where j is the resolved pressure; g =9.81 m/s? is

, Where

the gravitational acceleration; 6 is the reference potential temperature scale; and f; is the distributed body force for modeling

the turbine-induced aerodynamic forces on the air flow (see §2.3). In the present study, Tl-SjGS’d
Lilly-Smagorinsky eddy-viscosity type model (Smagorinsky, 1963; Lilly, 1966), i.e., ;> = —2vsgsSj = —2(C,A)?3]Sj;.

where S;; = 0.5(9ii;/dx; + dii;/dx;) is the resolved strain-rate tensor, |S| = 1/28;;S;; is the strain-rate magnitude, and vsgs =
(C;A)?|S] is the modeled SGS eddy viscosity. The coefficient C is dynamically determined using the Lagrangian-averaged

is parameterized using the

scale-dependent dynamic model (Bou-Zeid et al., 2005), which has been successfully applied in several prior LES studies
of wind turbine wake flows (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al., 2018;
Narasimhan et al., 2022; Gharaati et al., 2022; Narasimhan et al., 2024a; Gharaati et al., 2024). In Eq. (3), the term IT; =
uAjé —1i jé is the SGS heat flux whose eddy diffusivity (ksgs) is determined from Ksgs = PrS*GlS VsGs, Where the SGS Prandtl
number of Prggs = 1 (Narasimhan et al., 2022) is prescribed.

The atmospheric boundary layer flow is driven by a geostrophic wind whose pressure gradient is given by —V P./p =
(feVe, —feUy). Here, fo =2Qsing = 10~*s~! is the Coriolis parameter corresponding to a mid-latitude position (specifically
to ¢ = 43.44° with Earth’s rotation rate Q = 7.27 x 10~ rad/s). The quantities Uy, V, are the geostrophic wind velocity com-
ponents along the x and y directions, respectively, with magnitude G = , /Ug + ng, and directed at an angle of o, relative to
the x direction such that U, = Gcos 0, V, = Gsin 0. At each timestep, a proportional-integral (PI) controller is utilized to
control the direction of the geostrophic wind such that the wind flows in the streamwise direction with zero wind veer at the
hub height (Sescu and Meneveau, 2014; Narasimhan et al., 2022).

LESGO uses a Fourier-series-based pseudo-spectral method based on collocated grids for the spatial discretizations in the

horizontal (x and y) directions, and a second-order central-difference method based on staggered grids in the vertical (z)



direction. The 3/2-rule is used to eliminate the aliasing error associated with the pseudo-spectral discretization of the nonlinear
convective terms. The simulation is advanced in time using a fractional-step method. First, the velocity field is advanced in time
by integrating Eq. (2) using the second-order Adams-Bashforth scheme to obtain a predicted velocity field. Then a pressure
Poisson equation is constructed based on the divergence-free constraint Eq. (1) for the new time step and is solved to obtain
the pseudo-pressure field. Lastly, the predicted velocity field is projected to the divergence-free space using the gradient of the
pseudo pressure to obtain the velocity field for the new time step. The above fractional steps are repeated at every time step in
LES to advance the flow field in time. More details of the numerical schemes used in the LESGO solver can be found in the

original references (Albertson, 1996; Albertson and Parlange, 1999).
2.2 Boundary conditions

In the streamwise (x) direction, inflow—outflow boundary conditions are applied using the concurrent precursor simulation
approach (Stevens et al., 2014). Specifically, a separate precursor domain without wind turbines is simulated to generate
realistic turbulent inflow conditions, which are then imposed at the inlet of the wind farm domain. To ensure periodicity, a
fringe region is introduced at the end of the wind farm domain where the outflow is gradually forced to match the inflow
from the mapped region in the precursor domain. More details of the inflow-outflow conditions implemented in the current
pseudo-spectral solver are provided in Stevens et al. (2014). Additionally, the simulation in the precursor domain uses a shifted
periodic boundary condition where the flow field in a spanwise shifting region is shifted to prevent persistent spanwise locking
of large-scale turbulent structures (Munters et al., 2016). Following the recommendation in Munters et al. (2016) a shift of
Ly_snife = 0.25L; is used in this study, where L, is the domain height. In the spanwise (y) direction, periodic boundary conditions
are used. In the vertical (z) direction, the ground surface boundary condition is specified in both the precursor and wind turbine

domains using the Monin-Obukov Similarity Theory (MOST)-based equilibrium surface flux modeling (Monin and Obukhov,

1954). The components of local surface shear stress are computed as a function of the prescribed roughness length according

to
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Here, k = 0.41 is the von Kdrméan constant, zg is the prescribed roughness length, the friction velocity u. is expressed in terms
of the horizontal velocity (5,5) at the first grid-point (z; = 0.5Az), filtered at twice the grid resolution, A=2A (Bou-Zeid et al.,
2005). Since we simulate conventionally neutral conditions, the surface heat flux is set to zero, and thus no stability correction
terms (as used in Xiao et al. (2025)) are included. At the top of the domain, a stress-free boundary condition is imposed. A
sponge or Rayleigh-damping layer (Durran and Klemp, 1983) is included approaching the top boundary, ranging from 0.75L,
to L, with a sponge inverse relaxation time-scale (frequency) parameter of 3.9 x 1073 s~!. In this layer, a damping body force

with a cosine profile is applied to suppress the reflection of gravity waves.



Henceforth, the (-) notation for LES-filtered field variables (e.g., velocity #;, temperature 6) will be omitted for brevity. All
subsequent variables should be interpreted as implicitly filtered quantities obtained from the LES solution, governed by the

equations presented in this Section.
2.3 Wind turbine representation

The aerodynamic forces exerted by wind turbines on the airflow are modeled through the distributed body force term f; in the
momentum transport equations (Eq. (2)). During the initial spin-up phase (i.e, Phase 1), we employ an actuator disk model
(ADM) on a coarse grid for computational efficiency, with the thrust force magnitude calculated as f = PC/T<MT>L21D2 (Calaf
et al., 2010; Howland et al., 2016). Here, p is the air density, (u7), is the local wind velocity averaged over the rotor disk, D is
the diameter of the wind turbine, and C, is the local thrust coefficient (set to a common value C. = 1.33). We recall that C7 is
based on the disk-averaged velocity (ur), which, unlike the far-upstream velocity U, is immediately available in LES (Calaf
et al., 2010).

After the spin-up simulation converges to quasi-steady behavior, the grid is refined to its final resolution, and the actuator
line model (ALM) is adopted (Sgrensen and Shen, 2002; Troldborg, 2009; Jha et al., 2014; Martinez-Tossas et al., 2015). In
ALM, each turbine blade is represented by a collection of actuator points along a line, where forces are applied according to

the velocity field and the angle of attack. The forces per unit width at every actuator point are computed as
fam = 0.5p¢[ Vel |*(CreL + Cpep), (5)

where c is the airfoil chord length, | V| is the magnitude of the relative velocity of the upwind flow to the turbine blade, Cr,
and Cp are lift and drag coefficients obtained from tabulated airfoil data, and e; and ep are unit vectors along the direction of
the lift and drag forces at each actuator point, respectively. These forces are then smeared using a Gaussian kernel to project

them into the computational LES grid:

1 22
nE = 83”3/26 /8 9 (6)

where r is the distance from the grid point to the actuator point, and € denotes the width of the kernel. The kernel width is
chosen to be at least € = Z(AxAyAz)l/ 3, as recommended to avoid numerical instabilities (Troldborg, 2009; Martinez-Tossas
etal., 2015).

The accuracy of the ALM can be sensitive to grid resolution and the choice of €. The optimal &, needed to resolve the
induced velocities is typically much smaller than the € used to avoid numerical instabilities (Martinez-Tossas et al., 2017). To
address this challenge, we use the generalized filtered lifting line theory correction to accurately represent the blade aerody-
namics (Martinez-Tossas and Meneveau, 2019; Martinez-Tossas et al., 2024), including the shedding of unresolved vorticity
leading to missing induced velocities at the blade. The correction accounts for subgrid-scale induced velocity that would be
obtained by using an optimal &y by estimating its contribution and adding it to the resolved velocity in the LES. With the
correction, the ALM provides consistent blade loading predictions across varying grid resolutions.

The NREL-5MW baseline wind turbine (Jonkman et al., 2009) is adopted as our reference model. It is a widely-used

benchmark model developed by NREL to standardize research on wind technologies. The turbine has a diameter of D = 126 m,



three blades, and a hub height at elevation z; = 90m. It reaches a rated electrical power output of 5 MW at a rated wind speed
of approximately 11.4m/s. Its rotor blades utilize the DU (Delft University) and NACA (National Advisory Committee for
Aeronautics) series airfoil profiles optimized for aerodynamic efficiency, structural integrity, and minimal fatigue loads, making
the NREL-5MW turbine an essential tool for evaluating wind turbine performance, control strategies, structural design, and
offshore platform dynamics.

The dataset employs fixed but row-dependent rotor angular velocities determined through an initialization procedure. Ini-
tialization begins with all turbines operating at tip-speed ratio TSR=7.5 (near-optimal for NREL-5MW turbines). In this ini-

tialization simulation (i.e., first part of Phase 2), the angular velocity Q for each turbine is then computed dynamically using:

1.087 Uy

Q=TSR X ———
SR o

(7

where Uy is the disk-averaged velocity; the numerator incorporates an empirical 8.7% correction factor for LES filter-scale
effects (¢ = 16m), validated through single-turbine laminar inflow tests; the induction factor a derives from rotor geometry

(blade number N, = 3, radius R = 63 m, and chord ¢ = 3—4m) and local inflow angle ¢ via:

1
= (4sin’9)/(0,Cy) + 1’ ®

with rotor solidity o, = Nyc¢/(nR) and force coefficient C, = Cy cos ¢ + Cpsin@. After approximately 40 minutes of initial-
ization simulation, the angular velocity Q for each turbine is averaged within its respective row, which serves as the fixed
operational values for the subsequent database simulations.

We also note that LESGO’s ALM implementation includes detailed turbine operation control methods, such as pitching the
blades (feathering) during region III operations, e.g., above rated conditions. In the current simulation we chose to operate all
turbines exclusively at optimal tip-speed ratio, “region I’ (also without including regions 1.5 and 2.5). This choice was made
in order to avoid the need to store additional data relating to blade pitch (curtailment) and other complex turbine control actions.
Since this practice deviates slightly from the reference NREL-5MW nameplate data, we refer to the turbine in our simulations
as the NREL-5SMW+ turbine. Indeed, the front turbines are allowed to rotate slightly faster than the maximum rotation rate of

the original NREL-5MW reference turbine.

3 Simulation parameters

We simulate turbulent flow through a 10 x 6 array of NREL-SMW+ turbines (with diameter D = 126 m) in a 28.224 x 3.78 X
2km? domain, equally split between precursor and wind farm subdomains (each 112D = 14.112km long). Fig. 1 displays
the domain dimensions. The precursor domain includes the region denoted as P of length 5L, /8, mapping region Py of length
L, /8, and spanwise shifting region P of length L, /8. The wind farm domain features 14D of upstream buffer zone, 63D turbine
region, 21D downstream wake recovery region (these three regions combined are denoted as W), and 14D outflow fringe region

(WF). The turbines are spaced 7D (streamwise) and 5D (spanwise), with lateral boundaries 2.5D from the outermost turbines.



Note that the fringe region Wr, as well as the mapping (Py,) and spanwise shifting (Ps) regions, have a length of L, /8, and the
mapping region Py extends from 5L, /8 to 3L, /4. Vertically, a 0.5km Rayleigh damping sponge layer (denoted as R) is located
between 1.5 and 2km (see Figure 1). We adopt 8y = 263.5 K as the reference potential temperature, consistent with the value
chosen in studies by Gadde and Stevens (2021) and our prior simulations of SBL and CNBL flows reported in Narasimhan
et al. (2024a). This reference temperature was inspired by observations from the Beaufort Sea Arctic Stratus Experiment
(BASE) and simulations by Kosovi¢ and Curry (2000). While the value of 0y is relatively low, it serves primarily as a relative
additive reference that does not significantly affect the simulated flow dynamics or the physical interpretation of the results.

For example, if we used 273K, it would change the implied thermal expansion coefficient in our Boussinesq approximation

only by about 3%.
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Figure 1. Schematic representation of the computational simulation domain (not to scale), showing: (a) top view (x—y plane), (b) side view
(x-z plane) and (c) front view (y—z plane). The precursor computational domain consists of the regions denoted as “P”, the precursor mapping
region “Py;”, and the precursor spanwise shifting region “Ps”. The wind farm computational domain includes the wind farm region “W” and
the fringe region “Wg” near the outlet. Both precursor and windfarm computational domains include a Rayleigh damping region at the top

(denoted as“R”). The turbine diameter D = 126 m and hub height z;, = 90 m are also marked.

The turbulent flow is driven by a constant geostrophic wind speed G = 15m/s at &, =~ —22.5° to the x direction, with
the angle controlled by a PI controller (Kp = 10, K; = 0.5) to align hub-height mean wind velocity with the x-axis in the
conventionally neutral boundary layer (Sescu and Meneveau, 2014; Narasimhan et al., 2022). The surface has roughness length

zo = 0.1 m and reference potential temperature 8y = 263.5K. Initial conditions set U, = 15m/s (streamwise) and V, = 0m/s



(spanwise), perturbed by random noise, while potential temperature decreases from 265K at the surface with a 1 K/km lapse
rate, including random perturbations below 1km.
The numerical simulation is conducted in three consecutive phases to ensure proper flow development and statistical con-

vergence.

— Phase 1: Coarse-resolution ADM spin-up: A 10-hour simulation using the ADM is performed to establish a quasi-
stationary atmospheric boundary layer and wind farm wake field. This phase leverages the computational efficiency of

ADM, which approximates turbine forces without resolving actuator line-level aerodynamics.

— Phase 2: Fine-resolution ALM convergence. A 1-hour simulation using the actuator line model at finer spatial res-
olution transitions the flow from ADM-averaged to ALM-resolved turbine representation. Besides the turbine model
update, two additional changes are introduced in this phase: (i) the time-stepping scheme is switched from a constant
Courant—Friedrichs—Lewy (CFL) number of 0.0625 to a fixed time step of Az = 0.025s. This adjustment has negligi-
ble impact on the results because, under these simulation conditions, CFL = 0.0625 corresponds to At ~ 0.03s. The
slightly more restrictive A = 0.025s maintains numerical stability while preserving solution accuracy. (ii) The rotor
control changes from a fixed tip-speed ratio (TSR = 7.5) to fixed rotor angular velocities that vary across turbine rows,
as tabulated in Table 1. This adjustment has a negligible impact on the results because the prescribed angular velocities
closely match the values achieved under TSR = 7.5 conditions (see the calculation method in Section 2.3), ensuring

nearly identical rotor dynamics.

— Phase 3: Fine-resolution simulation for database construction. A final 1-hour simulation is carried out to collect high-
fidelity flow and turbine data. Flow field variables are recorded every 20 LES time steps (i.e., every 0.5s) on a filtered
and subsampled spatial grid (every other grid point in the x—y plane), while wind turbine data—both integral and blade-
resolved—are stored at every LES time step (0.0255s). Note that we purposefully operate the NREL-5MW+ turbine in
“region II”” during the simulation time, in order to avoid having to choose and document additional controller actions.
As a result, during some times some of the turbines operate “above rated conditions” but maintaining self-consistent

aerodynamic behavior of the blades and air-flow.

Table 1. Rotor speed for each row of turbines.

Row No. 1 2 3 4 5 6 7 8 9 10
Q(rad/s) | 1.33 | 1.02 | 1.04 | 1.07 | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | 1.10

The three phases of the simulation are illustrated through the time history of the boundary layer height z; = hapy and the

geostrophic wind angle shown in Fig. 2.



Table 2. Three consecutive phases and computational domain parameters

Domain size Spatial resolution Time grid
Grid Turbine Number of grid points
Phase (2 xLy) x Ly x L, Ax x Ay x Az CFL or At
level model (2 x Ny) x Ny x N,
(km x km x km) (mxmxm) (-ors)
1 Coarse ADM (2x14.112) x3.78 x 2 (2 x512) x 192 x 400 27.56 x 19.69 x5 | CFL=0.0625
ALM
CFL=0.0625
TSR=7.5
2 Fine ALM (2x14.112) x3.78 x 2 (2x1,536) x 384 x 400 9.19x9.84 x5
Ar =0.025s
Q = const
Simulation with
s ALM (2x14.112) x3.78x2 | (2x1536)x384x400 | 9.19x9.84x5 | ar=0.025s
ine
Q =const Sampling over/with
(105844 12.348) x 3.78 x 2 | (576+672) x 192400 | 18.38x 19.68 x5 | Ar=0.5s
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Figure 2. Time history of boundary layer height z; = hap;, and geostrophic wind angle ¢, indicating the three simulation phases (Phase 1:
Coarse-resolution ADM spin-up, Phase 2: Fine-resolution ALM convergence, and Phase 3: Fine-resolution simulation for database construc-

tion).
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4 JHTDB-wind database construction

The LES data from the final 1-hour sampling period are systematically ingested into the database and organized into two
primary data types: (i) flow field data, consisting of 4D space-time fields captured across both simulation domains (precursor
and wind farm domains), providing complete spatiotemporal information about the atmospheric flow; and (ii) turbine data,
which are further subdivided into two subtypes. The first subtype is turbine-level operational data, comprising time histories
of turbine power and thrust. The second subtype is blade-level data, which includes time histories of aerodynamic quantities

sampled at each discrete actuator point along each blade.
4.1 Flow field data
4.1.1 Domain of the dataset

As described in Section 3, the LES is conducted in the domain of dimensions (2 x 14.112) x 3.78 x 2km? (see Table 2).
When compiling the database, we exclude numerically imposed auxiliary regions: specifically, the final L, /4 of the precursor
domain (which includes the precursor spanwise shifting region Ps), and the final L, /8 of the wind farm domain (i.e., the wind
farm fringe region Wr), as visualized in Fig. 1. These regions serve purely numerical functions (periodicity enforcement and
inflow recycling, respectively) without contributing to physical flow dynamics of interest. The resulting database domain has
the extents of (10.584 4 12.348) x 3.78 x 2km?, as shown in Fig. 3. The top 0.5km sponge region is kept in the database for

simplicity of data management and possible interest.

arabase

LY
:L\P  PMD

S precW’
o

sO
avehy

Figure 3. Schematic representation of the database domain (not to scale). This is the physical domain available in the database, merging the
precursor domain (P + Py) up to the end of the mapping region at 3 /4Ly, with the windfarm domain (W) and excluding the fringe region

(Wp). A total of 60 turbines are shown, with only a subset labeled for clarity. The domain dimensions are (10.584 + 12.348) x 3.78 x 2km?.
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4.1.2 Spatial resolution of the dataset

To minimize storage, we applied spectral filtering on x-y planes for flow field data by truncating Fourier modes above Kiax /2,
where Kmax = TT/ALgs is the LES cutoff wavenumber. The filtered fields were then subsampled at every alternate grid point
in the x and y directions, maintaining the original vertical (z) resolution. This approach reduces the dataset size by 75% while
maintaining fidelity in capturing the dynamically significant larger-scale flow structures and turbine wake interactions. Thus
that the flow field data has a grid size of (576 4 672) x 192 x 400.

4.1.3 Temporal resolution of the dataset

Field data are stored at intervals of 0.5s (i.e., every 20 LES steps of 0.0255s), ensuring that fluid parcels advected at the
maximum geostrophic speed (15m/s) travel less than the horizontal grid spacing (Ax ~ 9.19 m) between snapshots. Although
rotor blade tips move across several vertical grid spacings during this interval, the corresponding rotor force field is smooth
(Gaussian filtered at scale € = 16m > 2/AxAyAz), ensuring that the storage frequency of 0.5s remains appropriate. Over the
1-hour simulation period (i.e., 3,600 seconds), the simulation advances through 3,600/0.025=144,000 LES time steps, with
flow fields stored at 144,000/20 = 7,200 consecutive snapshots.

4.1.4 Final structure of the dataset

Consequently, the final stored data dimensions are n, X ny X n; X n; = 1,248 x 192 x 400 x 7,200. At each stored time step, six
spatial fields are recorded: the three velocity components u(x,y,z,t), v(x,,2,t), and w(x,y,z,t); the (kinematic) pressure field
p(x,y,2,t)/p = p*(x,y,z,t) — ur /2 (the SGS stress trace is not available and is anyhow negligible); the potential temperature
field relative to the reference temperature 0’(x,y,z,t) = 6(x,y,z,¢) — 6p; and the subgrid-scale eddy viscosity Vsgs(x,y,z,t).
In addition, the three components of the turbine force field, fi(x,y,z,7), fy(x,y,2,7), and f;(x,y,z,t), are also stored. Unlike
the other flow field variables, these force components are stored only from the ground up to 200m in the vertical direction.
However, they are retained at the original spatial resolution (i.e., not filtered in the x”y planes). The detailed information of
these stored field variables can be found in Table 3. It also needs to be mentioned that the concurrent precursor method ensures
smooth transitions in velocity, potential temperature, and eddy viscosity fields between precursor and wind farm subdomains,
by construction. However, due to the non-local nature of the pressure solution (solved separately in each domain via Poisson
equations) and the velocity-only coupling between domains, the stored pressure field exhibits a minor discontinuity at the
interface. This artifact does not affect the resolved turbulence dynamics or turbine wake interactions, but needs to be taken into
account if computing pressure gradients across the boundary separating the precursor and wind farm domains.

These 4D field variables are stored using the Zarr format (Miles and et al., 2023). In Zarr-based storage, data are organized
into chunks, the smallest units retrieved during a query. To ensure efficient data access, chunk sizes must be large enough to
support common operations, such as differentiations and interpolations, that typically require access to a three-dimensional
neighborhood around the query point, while remaining small enough to avoid excessive memory usage. Based on extensive

testing and prior experience with other JHTDB datasets, a chunk size of 643 grid points provides optimal retrieval speeds
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Table 3. Summary of flow field data variables.

Data resolution

Name of Name in . Data size
No. Symbol Unit Ax X Ay X Az X At
variable dataset Ny X Ny X Nz X 1y
(mX m X m X S)
1 Streamwise velocity u
2 Spanwise velocity velocity v m/s
3 Vertical velocity w
1,248 x 192 x 400 x 7,200 | 18.38 x 19.68 x 5 x 0.5
4 Potential temperature deviation | temperature o’ K
5 Pressure (kinematic) pressure p m?/s?
6 SGS eddy viscosity eddyviscosity VsGs m?/s

Turbine streamwise

force (kinematic)

Turbine spanwise

force (kinematic) force m/s? 871 x 384 x 40 x 7,200 9.19x9.84 x5x0.5

Turbine vertical

force (kinematic)

and performance for typical data access modalities. We chose a similar chunk size but shaped according to 52 x 64 x 80 so
that an integer multiple of the chunk size in each direction fits into the stored domain size. The total amount of data stored is
about 15 Terabytes. These flow field data can be queried using getData (.. .) calls from analysis programs such as Python,

MATLAB, Fortran, or C, in the same manner as with other turbulence datasets available through JHTDB.
4.2 Wind turbine data
4.2.1 Turbine-level data

The turbine-level data are integral quantities characteristic of each turbine operation, which are derived from the actuator line
modeling. This dataset includes high-fidelity time histories of power output, thrust force, and rotor angular velocity, sampled at
At = 0.025s for all 60 turbines, as summarized in Table 4. In the present dataset, the angular velocity is held constant in time,
but for other datasets (e.g., Xiao et al. (2025)), this is not generally the case. For each variable, the dataset consists of 144,000
rows and 2 columns, where the first column represents time and the second column contains the corresponding values of the
recorded variable. The turbine data are stored in files using the Parquet format, which facilitates efficient access and querying
from various programming languages. Turbine-level data can be accessed using the get TurbineData (.. .) function call

from analysis environments such as Python or MATLAB.
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Table 4. Summary of turbine-level data variables. Each dataset is a 2D matrix of size n; x 2, where n; is the number of time steps. Columns

1 and 2 represent time and measured values, respectively.

Name of Name in . Data size Data resolution
No. Symbol | Unit
variable dataset ng X2 At (8)
1 Power power P w
2 Thrust force thrust F N 144,000 x 2 0.025
3 Rotor angular velocity | RotSpeed Q rad/s

Table 4 summarizes the turbine-level data variables. Note that, unlike the field data which are stored in kinematic (density-
independent) units, the force and power data require a specified air density. The value used in the simulations to compute these

forces is Pair = 1.23 kg/m>.
4.2.2 Blade-level data

In addition to the integral quantities characteristic of each turbine’s operation, more detailed information is captured along
each turbine blade to enable blade-resolved aerodynamic analysis. This fine-grained dataset allows users to investigate the
local aerodynamic behavior of blades under unsteady flow conditions, which is critical for understanding load distributions,
fatigue effects, and control optimization strategies. The turbine blade-level dataset includes high-fidelity time histories sampled
at 0.025s for all 180 blades in the wind farm (i.e., 60 turbines x3 blades each), with aerodynamic and geometric quantities
sampled at 100 discrete actuator line points along the blade span. As summarized in Table 5, a total of 19 variables are
sampled and stored, with each variable written to a separate file. For each variable, the dataset has dimensions of 144,000x3
rows and 103 columns. Each time step includes three rows corresponding to the three blades of a turbine, resulting in a total
of 144,000x3 rows. Vertically, the first column represents time in seconds, the second column specifies the turbine number,
and the third column denotes the blade number (blades can be identified by the time-histories of the individual ALM point
positions). The remaining 100 columns contain the values of the selected variables at each of the 100 actuator points from
the blade root to tip. Similar as turbine-level data, blade-level data are stored as Parquet files, allowing efficient access across
multiple programming environments. Blade-level data can be accessed using the getBladeData (. . .) function call from

analysis environments such as Python or MATLAB.
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Table 5. Summary of blade-level data variables. Each dataset is a 2D matrix of size (3 x n;) x 103. Here, 3 X n; represents the total number
of blade-wise samples, formed by concatenating the time series data from each of the 3 blades of a turbine. Columns 1-3 represent time,

turbine number, and columns 4-103 store aerodynamic measurements at 7, = 100 discrete locations along each blade.

Data resolution

Name of Name in . Data size
No. Symbol | Unit At X AL
variable dataset (n x 3) x (ng+3)
(s x m)
1 x-position of ALM point xPos Py
2 y-position of ALM point yPos P, m
3 z-position of ALM point zPos P,

Perturbation velocity at
4 uy_LES1 u; LESI
LES resolution, component 1 v

Perturbation velocity at ,
5 uy_LES2 Uy 1 ES?
LES resolution, component 2 ’

Perturbation velocity at ,
6 uy_optl U opt
optimal resolution (0.25¢), component 1 o

Perturbation velocity at , m/s
7 uy_opt2 Uy, opt
optimal resolution (0.25¢), component 2 '

Perturbation velocity correction ,
8 dul Au

/ o i1 »1
Uy opt — Uy LES> componen

Perturbation velocity correction (144,000 % 3) x (100+3) | 0.025x0.615

9 du2 A,
/ _ t 2 Y,
uy,opl u)x,LES , componen

10 Angle of attack alpha o rad
11 Lift coefficient Cl CL
12 Drag coefficient Cd Cp
13 Lift force per unit length lift Fp/t
N/m

14 Drag force per unit length drag Fp/t
15 Local relative velocity magnitude Vmag Vinag

Axial component of the local relative .
16 Vaxial Vaxi

velocity in blade-oriented coordinates m/s

Tangential component of the local relative .
17 Vtangential Vian

velocity in blade-oriented coordinates

Axial component of .
18 axialForce Foxi

the local force

Tangential component of . N
19 tangentialForce Fan

the local force
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5 Web-accessible virtual sensor data access methods and examples
5.1 Flow field data

A defining feature of the JHTDB database system (Li et al., 2008) is its low entry barrier for data usage, enabling users to
efficiently explore large-scale simulation datasets through Web services and virtual sensor methodology. The JHTDB-wind
system adopts the same approach, allowing access to wind farm data using these established tools. Users can develop analysis
scripts or notebooks in familiar programming languages such as Python and Matlab (as well Fortran and C) to run them
remotely on their own machines or on SciServer, a cloud service dedicated to running code close to the data. Within these
analysis environments, users specify space-time arrays by defining spatial locations (e.g., along a line, across a surface, within
a subvolume, or scattered arbitrarily) and corresponding time instances, i.e., users specify the positions of virtual sensor arrays.
These space-time arrays are then passed to the predefined function, getData (.. .), which returns interpolated values of
the selected variables at defined coordinates. This framework enables targeted, on-demand data access without the need to
download large volumes of raw simulation output.

Figs. 4 and 5 display contour plots of flow field variables at the turbine hub height (z = z;, = 90m) for the precursor and

wind farm domains, respectively.
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3500 3500
3000 3000
2500 = 2500 =
£2000 10g £2000 0 E
>1500 S >1500 =
1000 1000
500 500
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(c) t=1,800.75s (d) t=1,800.75s
0 2.02
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Figure 4. Contour plots of instantaneous flow field variables in part of the precursor domain (here between x = 0m and x = 10,381.875m), at
time r = 1,800.75 s. (a) the streamwise velocity u, (b) the vertical velocity w, (c) the pressure p, and (d) the potential temperature deviation
.

Fig. 6 presents Python code snippets that demonstrate how to query the JHTDB-wind database to extract snapshots of
velocity, pressure, and potential temperature fields at a specific time, approximately in the middle of the stored 1-hour dataset,
namely at t = 1,800.75s. As a first step, an array “points” is populated with spatial coordinates that define a 2D plane: in this

case, an equally spaced grid of 950 x 200 points in the x and y directions at a constant height z = z; = 90m. These query
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points typically do not coincide with the actual simulation grid points, and users are not required to know the grid layout to
access the data. The JHTDB-wind interface provides interpolated field values based on a user-specified interpolation method.
Supported options include no interpolation (it returns the value at the nearest grid point), Lagrange Polynomials of order 4,
6, or 8, and several spline interpolation methods (Li et al., 2008; Graham et al., 2016). In this example, we use 8th-order
Lagrange polynomial interpolation in space. Similarly, if the requested time does not coincide with a stored timestep, temporal
interpolation is applied using third-order Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method (Li et al., 2008).
This user-friendly data access model eliminates the need for downloading and parsing simulation files. Instead, the Python
API (Application Programming Interface) returns arrays with the queried field variables, which can then be visualized directly
within a Jupyter notebook (or Matlab code). This approach was used to generate Figs. 4 and 5. It is important to note that the
full 1-hour dataset (comprising 14,400 timesteps) is available for analysis, allowing users to query any time between ¢t = 0 and

t = 3,600s. For example, Fig. 7 shows a hub-height snapshot over the entire domain at time t = 2,505s.
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Figure 5. Contour plots of instantaneous flow field variables in part of the wind farm domain (here between x = 10,584m and x =
21,921.375m), at time r = 1,800.75 s. (a) the streamwise velocity u, (b) the vertical velocity w, (c) the pressure p, and (d) the potential

temperature deviation @’. The short black lines represent the location of wind turbines.

Similar queries can be made for the values, spatial gradients, and Hessians (second-order derivatives) of all variables listed
in Table 3. For example, Fig. 8(a) and (b) show turbine streamwise force-field f, and the x-direction gradient of the pressure
field (d p/dx), respectively, on a y — z plane intersecting Row 1 (Turbines #1 - #6) at x = 12,348 m (1764 m downstream of the
wind farm domain), at time ¢ = 1000.013s. Fig. 8(c) and (d) present similar results on a plane intersecting Row 9 (Turbines
#49 - #54) at x = 19,404 m (8,820m downstream of the wind farm domain) at another time ¢ = 2,000.67 s. These plots were
generated using the Python code shown in Fig. 9. In these examples, the queried times are intentionally chosen not to coincide
with the stored simulation time steps, demonstrating the temporal interpolation capabilities of JHTDB-wind.

Next, we provide examples of computed mean vertical profiles of fundamental flow quantities within the precursor domain,

which features standard conventionally neutral atmospheric conditions. Fig. 10 shows vertical profiles of horizontal- and time-
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initialize getData parameters (except time and points)

variablel, variable2, variable3, temporal_method, spatial_method, spatial_operator = 'velocity', 'pressure', 'temperature', 'pchip', 'lag8', 'field'

initialize getData times and points

time, nx, ny, n_points = 1800.75, 950, 200, 950 * 200

x_start, x_end, y_start, y_end = 10584, 21921.375, 0, 3789
x_points, y_points, z_points = np.linspace(x_start, x_end, nx, dtype=np.float64), np.linspace(y_start, y_end, ny, dtype=np.float64), 90
points = np.array([[x, y, z_points] for x in x_points for y in y_points], dtype=np.float64)

use the tools and processing gizmos.

# process interpolation/differentiation of points.

resultl = getData(dataset, variablel, time, temporal_method, spatial_method, spatial_operator, points)
result2 = getData(dataset, variable2, time, temporal_method, spatial_method, spatial_operator, points)
result3 = getData(dataset, variable3, time, temporal_method, spatial_method, spatial_operator, points)

Figure 6. Python code snippet used to obtain the data to generate the Fig. 5.

t=12,505s
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Figure 7. Contour plot of instantaneous streamwise velocity u in the entire database domain, ranging from x =0 to x =22,913.625m, at time
t =2,505s. It is noted that although the total length of the database domain is 10,584 4 12,348 = 22,932 m, the data resolution in x-direction
is 18.375 m and the grid points are located at cell centers. Consequently, the last data point is located at 22,932 — 18.375 = 22,913.625 m.

The short black lines represent the location of wind turbines.

averaged mean velocities, subgrid-scale eddy viscosity, and deviations in potential temperature, all obtained by averaging in
the horizontal directions and over time. The data used to produce these profiles is retrieved using the virtual sensor framework,

and an example code snippet demonstrating this process is shown in Fig. 11.
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Figure 8. Instantaneous contours of turbine streamwise (i.e., x-component) force (as projected onto the LES grid using Gaussian smoothing
as part of the ALM method) in y — z planes at (a) First row (i.e., Row 1, x = 12,348 m) and between the relevant vertical range z € [2.5,200] m,
and (c) second-to-last row (i.e., Row 9, x = 19,404 m). Panels (b) and (d) show the x-direction pressure gradient distributions on the same

planes, coincident with the turbines.

initialize getData parameters (except time and points)

variablel, variable2, temporal_method, spatial_methodl, spatial_method2, spatial_operatorl, spatial_operator2 = 'force', 'pressure', 'none', 'none', 'fd4lag4', 'field', 'gradient’

initialize getData times and points

timel, time2, ny, nz, n_points = 1000.013, 2000.67, 384, 40, 384 * 40

y_start, y_end, z_start, z_end = 0, 3780, 2.5, 197.5

first row of wind turbines locates 12348 m downstream of inlet.

second-to-last row of wind turbines locates 19404 m downstream of inlet.

x_pointsl, y_pointsl, z_pointsl = 12348, np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
pointsl = np.array([[x_pointsl, y, z] for y in y_pointsl for z in z_pointsl], dtype=np.float64)

x_points2, y_points2, z_points2 = 19404, np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
points2 = np.array([[x_points2, y, z] for y in y_points2 for z in z_points2], dtype=np.float64)

use the tools and processing gizmos.

# process interpolation/differentiation of points.

result_forcel = getData(dataset, variablel, timel, temporal_method, spatial_methodl, spatial_operatorl, pointsil)
result_force2 = getData(dataset, variablel, time2, temporal_method, spatial_methodl, spatial_operatorl, points2)
result_pressurel = getData(dataset, variable2, timel, temporal_method, spatial_method2, spatial_operator2, pointsl)
result_pressure2 = getData(dataset, variable2, time2, temporal_method, spatial_method2, spatial_operator2, points2)

Figure 9. Python code snippet used to obtain the data to generate the Fig. 8.
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Figure 10. Vertical profiles of horizontal- and time-averaged (a) velocities (u(z))xys, (v(2))xy, and velocity magnitude ¥'(z)xy, =
[((2)xys)* + (D) xyt)?] 1/ 2, (b, bottom axis) subgrid-scale eddy viscosity (Vsgs(z))x,; used in the LES as a result of the Lagrangian
scale-dependent dynamic model, (b, top axis) potential temperature deviation (6’(z))x,y, (i.e., the deviations from a reference temperature

8y = 263.5K).

initialize getData parameters (except time and points)

variable, temporal_method, spatial_method, spatial_operator = 'velocity', 'pchip', 'lag8', 'field'

ialize getData times and points

timel, time2, time3, time4, nx, ny, nz = 900, 1800, 2700, 3598.5, 200, 100, 100

x_start, x_end, y_start, y_end, z_start, z_end = 0, 10584, 0, 3780, 2.5, 1997.5
x_points, y_points, z_points = np.linspace(x_start, x_end, nx, dtype=np.float64), np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
points = np.array([[x, y, z] for x in x_points for y in y_points for z in z_points], dtype=np.float64)

use the tools and processing gizmos.

# Process interpolation/differentiation of points

resultl = getData(dataset, variable, timel, temporal_method, spatial_method, spatial_operator, points)
result2 = getData(dataset, variable, time2, temporal_method, spatial_method, spatial_operator, points)
result3 = getData(dataset, variable, time3, temporal_method, spatial_method, spatial_operator, points)
result4 = getData(dataset, variable, time4, temporal_method, spatial_method, spatial_operator, points)

# Calculate the average
average_result = [
(vi+ v2 +v3 +v4) /4
for v1, v2, v3, v4 in zip(resultl, result2, result3, result4)

Figure 11. Python code snippet used to obtain the data to generate vertical profiles of (u(z))x,y,: for the 250 heights z between z = 0.7m
and z = 2,000m separated by 8m, we query data on a regular mesh (not necessarily coinciding with stored grid points). For statistical

convergence, we average over 4 times covering the entire hour (z = 900; 1,800;2,700;3,600) s.

5.2 Wind turbine data

Wind turbine data, including both the turbine-level and blade-level data, are considerably smaller than the 4D flow field data,

and one possibility would have been to allow users to download these data directly as files. However, such an approach would
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require users to identify specific files, understand naming conventions, and handle formatting, posing a barrier to seamless
integration with flow field queries. To maintain consistency and usability across the platform, we adopt a similar virtual sensor
data access paradigm used for the flow field data. Two dedicated query functions are developed: getTurbineData(...)
for turbine-level quantities and getBladeData (...) for blade-resolved data. For getTurbineData (...), users
specify the turbine number (ranging from 1 to 60) and desired time instances. For getBladeData (...), both turbine
number and blade number (ranging from 1 to 3) need to be specified, along with an array of actuator point indices (ranging
from 1 to 100) and times (ranging from 1 to 3600 s) at which the data are requested. Linear interpolation in time is supported
to provide values between stored simulation time steps.

As an example, Fig. 12 presents the time series of total wind farm power output (Panel a) and of the Row 1 and Row 9 of
six turbines (Panel b). The code snippet specifying the get TurbineData (. ..) call is shown in Fig. 13. Similar calls can

be made to extract any of the turbine specific variables listed in Table 4.

—— total power for turbines #1 - #60
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Figure 12. Time evolution of power from turbines during the 10-minute time interval, i.e., 7 € [1000.33,1600.33]s. (a) shows the total power

from the entire wind farm, while (b) shows the power for the turbines in Row 1 (i.e., Turbines #1-#6) and in Row 9 (i.e., Turbines #49-#54).

Next, we illustrate the use of getBladeData (. ..) in Fig. 14, which shows (a) the time evolution of the lift and drag
coefficients and (b) the lift coefficient as a function of blade angle. The blade angle is computed as {(¢) = arctan[z(r) —
zn)/(x(t) —x1)] over a 60-second period. The results shown are for a particular turbine and blade (Turbine #28 in the central
portion of the wind farm and blade #3, the latter being an arbitrary choice, of course). The Python code snippet shown in Fig.
15 illustrates the use of getBladeData (. . . ), with the queried data plotted directly as a time series within the same script.
Using a similar approach, variable data can be extracted along turbine blades and further processed to compute higher-order

statistics. Fig. 16 shows axial force, tangential force, drag and lift coefficients for an upstream turbine (Blade #1 of Turbine #1)
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initialize getTurbineData parameters

turbines = list(range(1, 61))
turbine_variable = 'power'

initialize time array, below shows the one from 1000.33 s to 1600.33 s and the time interval is 0.025s

time_start, time_end, dt = 1000.33, 1600.33, 0.025

ntime = int((time_end - time_start) / dt)
turbine_times = np.linspace(time_start, time_end, ntime, dtype=np.float64)

use the tools and processing gizmos.
# process turbine data.
turbine_result = getTurbineData(dataset, turbines, turbine_variable, turbine_times)

Figure 13. Python code snippet illustrating the use of the function get TurbineData (. . .

) as part of a loop over all turbines in the wind

farm, and subsequent summation to evaluate time-series of total power used to generate Fig. 12(a).

and a downstream turbine (Blade #1 of Turbine #60) at a specific time of ¢t = 1,500 s. Any of the variables listed in Table 5 can

be similarly queried (also in Matlab).

(a)
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Figure 14. (a) Time evolution of lift and drag coefficients on an ALM point 80% along the span of Blade #3 for Turbine # 28. (b) Polar plot

of lift coefficient for that point as a function of blade angle along its rotation. For this turbine, the rotational speed is fixed at Q = 1.09 rad/s

(as obtained from get TurbineData (. . .)), corresponding to approximately 10.5 revolutions during a 60-second period.
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initialize getBladeData parameters

turbines, blades, blade_variablel, blade_variable2 = [28],

[31,

e,

od®

initialize time array, below shows the one from 1000.33 s to 1600.33 s and the time interval is 0.025s

time_start, time_end, dt = 1000.33, 1600.33, 0.025
ntime = int((time_end - time_start) / dt)
blade_times =

blade_actuator_points = [80]

use the tools and processing gizmos.

# process blade data.
blade_resultl

blade_result2

np.linspace(time_start, time_end, ntime, dtype=np.float64)

Figure 15. Python code snippet used to obtain the data to generate Fig. 14.

getBladeData(dataset, turbines, blades, blade_variablel, blade_times, blade_actuator_points)
getBladeData(dataset, turbines, blades, blade_variable2, blade_times, blade_actuator_points)
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Figure 16. Distributions of ALM quantities along the turbine blade at a specific time (t = 1,500 s for Blade #1 of Turbine #1, blue lines;
and Blade # 1 of Turbine #60, orange lines: (a) Axial component of the local force (on each A? = 0.615m segment) F,,; , (b) Tangential

component of the local force (on each A¢ = 0.615m segment) F;,,, (¢) Lift coefficient C;, (d) Drag coefficient C,;.
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6 Conclusions

In this paper, we have introduced JHTDB-wind, hosting datasets from high-fidelity LES simulations of wind farms. We extend
the standard “virtual sensors” data access methods (Li et al., 2008; Yu et al., 2012; Graham et al., 2016) that have been
successfully used for democratizing access to more fundamental turbulence datasets. Besides velocity, pressure, potential
temperature, and SGS eddy-viscosity fields, JHTDB-wind adds 4D space-time data on aerodynamic turbine force distributions
as seen by the flow as well as time series of turbine and actuator line specific aerodynamic data along each of the turbine blades,
modeled using ALM. We explain the simulation details and provide background on the numerical method and flow parameters,
and provide detailed examples and explanations of the user-friendly data access methodologies. It is hoped that these data will
provide useful insights about the complex fluid dynamic processes occurring in wind farms.

We realize that in generating a dataset for a representative conventionally neutral boundary layer case, with a relatively
large wind farm with 60 turbines, many other choices could have been made (flow parameters, turbine model and control
scheme, usage of a particular LES numerical code, numerical resolution, and so on). We anticipate that different members of
the community would have made different choices, and we look forward to conversations about how to further improve such
datasets. We believe, however, that the case selected is representative of CNBL wind farm dynamics that have been studied by
many others before, with a well-tested numerical code. Hence, the authors hope that the data can be of some use and interest
to researchers in wind energy.

As a final note, we have additionally prepared a second dataset for JHTDB-wind featuring an 8-turbine wind farm over a
full diurnal cycle, capturing both strongly stable and unstable atmospheric boundary layer regimes at different times of the day

and night (Xiao et al., 2025).

7 Code and data availability

The wind farm data is available at the JHTDB-wind website at https://turbulence.idies.jhu.edu/datasets/windfarms (see also
its DOI: https://doi.org/10.26144/DSES-FC15). Various modes of data access are provided (Zhu et al., 2025): (i) Single-point
queries of flow field variables using a browser interface at https://turbulence.idies.jhu.edu/database/query. (ii) Multiple point
queries up to 4096 points at a time: downloading DEMO codes (Python or Matlab) at https://turbulence.idies.jhu.edu/database/
wind and executing the DEMO code on user’s own platforms. Users can then edit the DEMO codes to select different points
and times to query desired data. To access current dataset, the “dataset” variable should be set to “nbl_windfarm”, with times

chosen in the range 0-3600 seconds.

Author contributions. XZ performed the simulations, generated the majority of the data, and assisted in document and figure preparation,
and detailed proof-reading. SX performed the majority of the data transformation into Zarr and Parquet formats, worked on testing data
access methods, and generated many of the figures. GN developed the thermal stratification and initialization methods in the LES code.

LAMT developed and implemented the generalized ALM method in the LES code. MS and HY developed the Giverny backend software
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and Python/Matlab data access codes. GL directed the SciServer and zarr format optimization. AS designed the storage architecture. DG
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and analysis, and document preparation and proof-reading.
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