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Abstract. This manuscript introduces JHTDB-wind (https://turbulence.idies.jhu.edu/datasets/windfarms), a publicly accessible

database containing large-eddy simulation (LES) data from wind farms. Building on the framework of the Johns Hopkins

Turbulence Database (JHTDB), which hosts direct numerical simulation and some large-eddy simulation datasets of canonical

turbulent flows, JHTDB-wind stores the 4D space-time history of the flow and provides users the ability to access and query

the data via a web-based virtual sensor interface. The initial dataset comprises LES results from a large wind farm with

6×10 turbines, modeled using a filtered actuator line method, under conventionally neutral atmospheric conditions. This data

comprises one hour of flow field data (velocity, pressure, potential temperature deviation, subgrid-scale eddy viscosity, and

turbine forces, approximately 15TB) and wind turbine data—including both turbine-level operational quantities and blade-level

aerodynamic quantities (approximately 1.3TB)—stored in Zarr and Parquet formats, respectively. Data retrieval is facilitated

by the Giverny Python package, allowing remote users to query the database in Python or Matlab (C and Fortran support

are available for flow field data). This paper details the simulation setup and demonstrates data access through examples that

analyze wind farm flow structures and turbine performance. The framework is extensible to future datasets, including the

JHTDB-wind diurnal cycle simulation analyzed in Xiao et al. (2025).

1 Introduction

Eddy-resolving simulations of atmospheric boundary layer (ABL) phenomena (Porté-Agel et al., 2000; Bou-Zeid et al., 2004;

Kumar et al., 2006) and of wind farms in particular (Calaf et al., 2010; Meyers and Meneveau, 2012; Gebraad et al., 2016;

Stevens and Meneveau, 2017; Zhang et al., 2023) have significantly advanced our understanding of the complex, multi-scale,
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and multi-physics processes involved. Large Eddy Simulations (LES) offer high spatial and temporal resolution, capturing the

dynamics of relatively small and fast turbulent eddies (Churchfield et al., 2012; Chatelain et al., 2013; Yang et al., 2021; Li

et al., 2022). While the range of resolved scales in LES is constrained by computational resources, the number of LES grid-

points in typical simulations continues to increase. However, data handling and post-processing capabilities have not kept pace

with the resulting rapid increase in data volumes. For instance, a single LES of turbulent flow outputting five field variables

(e.g., the three velocity components, potential temperature and pressure) on 2,0483 spatial grid points and integrated over,

say, 104 time-steps (McWilliams et al., 1994; Alexakis et al., 2024), can generate Petabytes (PB) of data. As a result, most

studies store only a few selected snapshots and rely heavily on pre-defined run-time diagnostics when time-resolved analysis

is required. This approach reduces storage requirements but limits the ability to revisit data when new questions and concepts

arise, often necessitating costly recomputation. Furthermore, certain analyses —such as backward-in-time particle tracking

from an extreme dissipation event—cannot be performed without the full temporal data.

To address these challenges, modern database technologies have increasingly been applied to preserve and store data from

simulation-based turbulence research (Perlman et al., 2007; Zhang et al., 2018; Chung et al., 2022; Duraisamy et al., 2019).

One example is the Johns Hopkins Turbulence Database (JHTDB, https://turbulence.idies.jhu.edu), an open-access platform

supported by the National Science Foundation (Perlman et al., 2007; Li et al., 2008). JHTDB enables researchers to interact

with easily accessible, large-scale simulation data. The system currently hosts more than 1 PB of direct numerical simulation

(DNS) data for canonical, turbulent flows of fundamental interest (over 2 PB if counting warm backup copies), including

6 space-time resolved datasets and several others with a few snapshots available. Some LES datasets of stably stratified at-

mospheric turbulence are also included in JHTDB. Through web-service-based tools, users can query the database using a

“virtual sensors” interface, specifying spatial and temporal locations for which the system returns properly interpolated field or

derivative values (Li et al., 2008; Yu et al., 2012). A hallmark of the platform is that it allows users to access only the specific

subsets of the data they require, eliminating the need to download massive datasets or manage complex file formats. This ap-

proach has significantly broadened access to high-fidelity eddy-resolving simulation data and has contributed to democratizing

high-performance computational turbulence research. To date, JHTDB data have been used in research reported in over 400

peer-reviewed journal articles.

At the same time, with the growing global demand for renewable energy, enhancing wind energy efficiency has become a

key priority. As wind turbines grow larger and wind farms expand in scale, their interactions with the ABL become increasingly

complex—particularly with respect to wake dynamics, energy extraction, and the redistribution of momentum within the flow.

LES of large wind turbines have emerged as a crucial complement to field measurements, enabling researchers to explore

flow-turbine interactions in detail and to develop engineering models that inform turbine placement strategies and improve

wind farm efficiency. For example, Calaf et al. (2010) used LES with periodic boundary conditions to study the performance

of “infinite” arrays of wind turbines under neutrally-stratified conditions. Abkar and Porté-Agel (2013, 2014) examined how

wind farm density and free-atmosphere stability influence kinetic energy fluxes in a conventionally neutral boundary layer

(CNBL) - defined as neutrally-stratified surface layers capped by stably-stratified free atmospheres (Zilitinkevich et al., 2002).

Allaerts and Meyers (2015) explored the effect of capping inversion profile on wind farm performance. Numerous additional
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LES-based studies have further advanced the field (Yang et al., 2014; Aitken et al., 2014; Martínez-Tossas et al., 2015; Stevens

et al., 2018; Gharaati et al., 2022, 2024; Aiyer et al., 2024), highlighting the continued value of high-resolution simulation tools

for understanding and optimizing wind energy systems.

These simulations, like many previous numerical studies of large-scale wind farms, generate extensive datasets. However,

access to these data often remains restricted to the original researchers who conducted the simulations. The data (typically

4D space-time fields of velocity, temperature, etc.) are ephemeral: they must be analyzed in real-time during the simulation,

or, at best, a limited number of snapshots are stored for post-processing, while the large majority of the data is discarded.

As demonstrated in the case of the JHTDB database, providing access to the 4D space-time history of a simulation could

provide substantial benefits for the broader research community. The value of open access to time-resolved numerical datasets

is now being recognized beyond fluid dynamics, particularly in the fields of Geosciences. For example, the recently released

NOW-23 dataset (Bodini et al., 2023) comprises a full year of Weather Research and Forecasting (WRF) model simulations

of off-shore wind conditions over several expansive (100’s km) U.S. coastal regions, offering valuable data for wind farm

developers. However, no equivalent open-access LES datasets currently exist at smaller scales that explicitly include wind

turbine effects—datasets that would be highly valuable for researchers focused on wake interactions, turbine siting, and wind

farm optimization. More in general, the lack of data sharing in the wind energy sector has been recognized to hinder technical

progress and leads to missed opportunities for improving the efficiency of energy markets (Kusiak, 2016)

To begin addressing the need for open access to LES wind farm data, we construct JHTDB-wind (see https://turbulence.idies.

jhu.edu/datasets/windfarms, Zhu et al. (2025)), a publicly accessible turbulence database built on the JHTDB framework. This

paper presents the dataset by detailing the simulation framework (Section 2), and flow configuration—specifically, a CNBL

interacting with a 60-turbine wind farm using National Renewable Energy Laboratory (NREL) 5MW reference turbines. Here,

CNBL is chosen because it is a less complicated atmospheric state, observed in nature (Liu and Stevens, 2022), for example,

during the transition period after sunset or on cloudy days with powerful winds (Allaerts and Meyers, 2017; Liu et al., 2024).

Simulation parameters are described in Section 3. The construction of the database system is described in Section 4, followed

by an overview of representative data access methods based on the JHTDB virtual sensor method, illustrated here via Python

examples (Section 5). Conclusions are summarized in Section 6. Further documentation is available directly on the database

website.

2 Large-eddy simulation framework

In this study, we use the open source LES code LESGO (https://lesgo.me.jhu.edu) as a numerical solver to simulate ABL flows

and its interactions with wind turbines (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al.,

2018; Shapiro et al., 2018, 2020; Gharaati et al., 2022; Narasimhan et al., 2022, 2024a, 2025, 2024b; Gharaati et al., 2024;

Ayala et al., 2024). The model represents all variables on a three-dimensional Cartesian grid, with x, y, and z denoting the

streamwise, spanwise, and vertical directions, respectively. In index notation, these are expressed as xi where i = 1, 2, 3. The

corresponding velocities are denoted by ui, or also with u, v, and w for its x, y, and z-direction components, respectively.
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2.1 Governing equations and numerical methods

The turbulent flow is simulated by solving the filtered Navier-Stokes equations in their rotational form with Boussinesq thermal

forcing and Coriolis effects, along with the transport equation for the potential temperature field. The governing equations

include the filtered mass conservation,

∂ ũi

∂xi
= 0, (1)

the filtered momentum conservation,

∂ ũi

∂ t
+ ũ j

(
∂ ũi

∂x j
−

∂ ũ j

∂xi

)
=−∂ p̃∗

∂xi
+

g
θ0

(θ̃ −θ0)δi3 −
∂τ

SGS,d
i j

∂x j
− fi + fc(ũ2 −Vg)δi1 − fc(ũ1 −Ug)δi2, (2)

and the filtered heat conservation,

∂ θ̃

∂ t
+ ũ j

∂ θ̃

∂x j
=−

∂Π j

∂x j
. (3)

Here, the tilde indicates filtering at the LES grid scale ∆̃ = 3
√

∆x ∆y ∆z; ρ is the density of air; τSGS
i j = ũiu j − ũiũ j is the

unresolved subgrid-scale (SGS) stress tensor, and τ
SGS,d
i j = τSGS

i j −δi jτ
SGS
kk /3 is the deviatoric (trace-free) part of τSGS

i j , where

δi j is the Kronecker delta; p̃∗ = p̃/ρ+ ũkũk/2+τSGS
kk /3 is the pseudo pressure, where p̃ is the resolved pressure; g= 9.81m/s2 is

the gravitational acceleration; θ0 is the reference potential temperature scale; and fi is the distributed body force for modeling

the turbine-induced aerodynamic forces on the air flow (see §2.3). In the present study, τ
SGS,d
i j is parameterized using the

Lilly-Smagorinsky eddy-viscosity type model (Smagorinsky, 1963; Lilly, 1966), i.e., τ
SGS,d
i j = −2νSGSS̃i j = −2(Cs∆̃)

2|S̃|S̃i j,

where S̃i j = 0.5(∂ ũi/∂x j +∂ ũ j/∂xi) is the resolved strain-rate tensor, |S̃|=
√

2S̃i jS̃i j is the strain-rate magnitude, and νSGS =

(Cs∆̃)
2|S̃| is the modeled SGS eddy viscosity. The coefficient Cs is dynamically determined using the Lagrangian-averaged

scale-dependent dynamic model (Bou-Zeid et al., 2005), which has been successfully applied in several prior LES studies

of wind turbine wake flows (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al., 2018;

Narasimhan et al., 2022; Gharaati et al., 2022; Narasimhan et al., 2024a; Gharaati et al., 2024). In Eq. (3), the term Π j =

ũ jθ − ũ jθ̃ is the SGS heat flux whose eddy diffusivity (κSGS) is determined from κSGS = Pr−1
SGSνSGS, where the SGS Prandtl

number of PrSGS = 1 (Narasimhan et al., 2022) is prescribed.

The atmospheric boundary layer flow is driven by a geostrophic wind whose pressure gradient is given by −∇P∞/ρ =

( fcVg,− fcUg). Here, fc = 2Ωsinφ = 10−4 s−1 is the Coriolis parameter corresponding to a mid-latitude position (specifically

to φ = 43.44◦ with Earth’s rotation rate Ω = 7.27×10−5 rad/s). The quantities Ug,Vg are the geostrophic wind velocity com-

ponents along the x and y directions, respectively, with magnitude G =
√

U2
g +V 2

g , and directed at an angle of αG relative to

the x direction such that Ug = GcosαG, Vg = GsinαG. At each timestep, a proportional-integral (PI) controller is utilized to

control the direction of the geostrophic wind such that the wind flows in the streamwise direction with zero wind veer at the

hub height (Sescu and Meneveau, 2014; Narasimhan et al., 2022).

LESGO uses a Fourier-series-based pseudo-spectral method based on collocated grids for the spatial discretizations in the

horizontal (x and y) directions, and a second-order central-difference method based on staggered grids in the vertical (z)
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direction. The 3/2-rule is used to eliminate the aliasing error associated with the pseudo-spectral discretization of the nonlinear

convective terms. The simulation is advanced in time using a fractional-step method. First, the velocity field is advanced in time

by integrating Eq. (2) using the second-order Adams-Bashforth scheme to obtain a predicted velocity field. Then a pressure

Poisson equation is constructed based on the divergence-free constraint Eq. (1) for the new time step and is solved to obtain

the pseudo-pressure field. Lastly, the predicted velocity field is projected to the divergence-free space using the gradient of the

pseudo pressure to obtain the velocity field for the new time step. The above fractional steps are repeated at every time step in

LES to advance the flow field in time. More details of the numerical schemes used in the LESGO solver can be found in the

original references (Albertson, 1996; Albertson and Parlange, 1999).

2.2 Boundary conditions

In the streamwise (x) direction, inflow–outflow boundary conditions are applied using the concurrent precursor simulation

approach (Stevens et al., 2014). Specifically, a separate precursor domain without wind turbines is simulated to generate

realistic turbulent inflow conditions, which are then imposed at the inlet of the wind farm domain. To ensure periodicity, a

fringe region is introduced at the end of the wind farm domain where the outflow is gradually forced to match the inflow

from the mapped region in the precursor domain. More details of the inflow-outflow conditions implemented in the current

pseudo-spectral solver are provided in Stevens et al. (2014). Additionally, the simulation in the precursor domain uses a shifted

periodic boundary condition where the flow field in a spanwise shifting region is shifted to prevent persistent spanwise locking

of large-scale turbulent structures (Munters et al., 2016). Following the recommendation in Munters et al. (2016) a shift of

Ly−shift = 0.25Lz is used in this study, where Lz is the domain height. In the spanwise (y) direction, periodic boundary conditions

are used. In the vertical (z) direction, the ground surface boundary condition is specified in both the precursor and wind turbine

domains using the Monin-Obukov Similarity Theory (MOST)-based equilibrium surface flux modeling (Monin and Obukhov,

1954). The components of local surface shear stress are computed as a function of the prescribed roughness length according

to

τi,3|surf =−u2
∗

̂̃ui√̂̃u2
+̂̃v2

, i = 1,2; and u∗ = κ

√̂̃u2
(0.5∆z)+̂̃v2

(0.5∆z)
ln(0.5∆z/z0)

. (4)

Here, κ = 0.41 is the von Kármán constant, z0 is the prescribed roughness length, the friction velocity u∗ is expressed in terms

of the horizontal velocity (̂̃u,̂̃v) at the first grid-point (z1 = 0.5∆z), filtered at twice the grid resolution, ˆ̃
∆ = 2∆̃ (Bou-Zeid et al.,

2005). Since we simulate conventionally neutral conditions, the surface heat flux is set to zero, and thus no stability correction

terms (as used in Xiao et al. (2025)) are included. At the top of the domain, a stress-free boundary condition is imposed. A

sponge or Rayleigh-damping layer (Durran and Klemp, 1983) is included approaching the top boundary, ranging from 0.75Lz

to Lz, with a sponge inverse relaxation time-scale (frequency) parameter of 3.9×10−3 s−1. In this layer, a damping body force

with a cosine profile is applied to suppress the reflection of gravity waves.

5



Henceforth, the ˜(·) notation for LES-filtered field variables (e.g., velocity ũi, temperature θ̃ ) will be omitted for brevity. All

subsequent variables should be interpreted as implicitly filtered quantities obtained from the LES solution, governed by the

equations presented in this Section.

2.3 Wind turbine representation

The aerodynamic forces exerted by wind turbines on the airflow are modeled through the distributed body force term fi in the

momentum transport equations (Eq. (2)). During the initial spin-up phase (i.e, Phase 1), we employ an actuator disk model

(ADM) on a coarse grid for computational efficiency, with the thrust force magnitude calculated as f = π

8 ρC′
T ⟨uT ⟩2

dD2 (Calaf

et al., 2010; Howland et al., 2016). Here, ρ is the air density, ⟨uT ⟩d is the local wind velocity averaged over the rotor disk, D is

the diameter of the wind turbine, and C′
T is the local thrust coefficient (set to a common value C′

T = 1.33). We recall that C′
T is

based on the disk-averaged velocity ⟨uT ⟩d which, unlike the far-upstream velocity U∞, is immediately available in LES (Calaf

et al., 2010).

After the spin-up simulation converges to quasi-steady behavior, the grid is refined to its final resolution, and the actuator

line model (ALM) is adopted (Sørensen and Shen, 2002; Troldborg, 2009; Jha et al., 2014; Martínez-Tossas et al., 2015). In

ALM, each turbine blade is represented by a collection of actuator points along a line, where forces are applied according to

the velocity field and the angle of attack. The forces per unit width at every actuator point are computed as

falm = 0.5ρc|Vrel|2(CLeL +CDeD), (5)

where c is the airfoil chord length, |Vrel| is the magnitude of the relative velocity of the upwind flow to the turbine blade, CL

and CD are lift and drag coefficients obtained from tabulated airfoil data, and eL and eD are unit vectors along the direction of

the lift and drag forces at each actuator point, respectively. These forces are then smeared using a Gaussian kernel to project

them into the computational LES grid:

ηε =
1

ε3π3/2 e−r2/ε2
, (6)

where r is the distance from the grid point to the actuator point, and ε denotes the width of the kernel. The kernel width is

chosen to be at least ε = 2(∆x∆y∆z)
1/3, as recommended to avoid numerical instabilities (Troldborg, 2009; Martínez-Tossas

et al., 2015).

The accuracy of the ALM can be sensitive to grid resolution and the choice of ε . The optimal εopt needed to resolve the

induced velocities is typically much smaller than the ε used to avoid numerical instabilities (Martínez-Tossas et al., 2017). To

address this challenge, we use the generalized filtered lifting line theory correction to accurately represent the blade aerody-

namics (Martínez-Tossas and Meneveau, 2019; Martínez-Tossas et al., 2024), including the shedding of unresolved vorticity

leading to missing induced velocities at the blade. The correction accounts for subgrid-scale induced velocity that would be

obtained by using an optimal εopt by estimating its contribution and adding it to the resolved velocity in the LES. With the

correction, the ALM provides consistent blade loading predictions across varying grid resolutions.

The NREL-5MW baseline wind turbine (Jonkman et al., 2009) is adopted as our reference model. It is a widely-used

benchmark model developed by NREL to standardize research on wind technologies. The turbine has a diameter of D = 126m,
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three blades, and a hub height at elevation zh = 90m. It reaches a rated electrical power output of 5 MW at a rated wind speed

of approximately 11.4m/s. Its rotor blades utilize the DU (Delft University) and NACA (National Advisory Committee for

Aeronautics) series airfoil profiles optimized for aerodynamic efficiency, structural integrity, and minimal fatigue loads, making

the NREL-5MW turbine an essential tool for evaluating wind turbine performance, control strategies, structural design, and

offshore platform dynamics.

The dataset employs fixed but row-dependent rotor angular velocities determined through an initialization procedure. Ini-

tialization begins with all turbines operating at tip-speed ratio TSR=7.5 (near-optimal for NREL-5MW turbines). In this ini-

tialization simulation (i.e., first part of Phase 2), the angular velocity Ω for each turbine is then computed dynamically using:

Ω = T SR × 1.087 Ud

(1−a)R
, (7)

where Ud is the disk-averaged velocity; the numerator incorporates an empirical 8.7% correction factor for LES filter-scale

effects (ε = 16m), validated through single-turbine laminar inflow tests; the induction factor a derives from rotor geometry

(blade number Nb = 3, radius R = 63m, and chord c = 3–4m) and local inflow angle φ via:

a =
1

(4sin2
φ)/(σrCn)+1

, (8)

with rotor solidity σr = Nbc/(πR) and force coefficient Cn = CL cosφ +CD sinφ . After approximately 40 minutes of initial-

ization simulation, the angular velocity Ω for each turbine is averaged within its respective row, which serves as the fixed

operational values for the subsequent database simulations.

We also note that LESGO’s ALM implementation includes detailed turbine operation control methods, such as pitching the

blades (feathering) during region III operations, e.g., above rated conditions. In the current simulation we chose to operate all

turbines exclusively at optimal tip-speed ratio, “region II” (also without including regions 1.5 and 2.5). This choice was made

in order to avoid the need to store additional data relating to blade pitch (curtailment) and other complex turbine control actions.

Since this practice deviates slightly from the reference NREL-5MW nameplate data, we refer to the turbine in our simulations

as the NREL-5MW+ turbine. Indeed, the front turbines are allowed to rotate slightly faster than the maximum rotation rate of

the original NREL-5MW reference turbine.

3 Simulation parameters

We simulate turbulent flow through a 10×6 array of NREL-5MW+ turbines (with diameter D = 126m) in a 28.224×3.78×
2km3 domain, equally split between precursor and wind farm subdomains (each 112D = 14.112km long). Fig. 1 displays

the domain dimensions. The precursor domain includes the region denoted as P of length 5Lx/8, mapping region PM of length

Lx/8, and spanwise shifting region PS of length Lx/8. The wind farm domain features 14D of upstream buffer zone, 63D turbine

region, 21D downstream wake recovery region (these three regions combined are denoted as W ), and 14D outflow fringe region

(WF ). The turbines are spaced 7D (streamwise) and 5D (spanwise), with lateral boundaries 2.5D from the outermost turbines.
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Note that the fringe region WF , as well as the mapping (PM) and spanwise shifting (PS) regions, have a length of Lx/8, and the

mapping region PM extends from 5Lx/8 to 3Lx/4. Vertically, a 0.5km Rayleigh damping sponge layer (denoted as R) is located

between 1.5 and 2km (see Figure 1). We adopt θ0 = 263.5 K as the reference potential temperature, consistent with the value

chosen in studies by Gadde and Stevens (2021) and our prior simulations of SBL and CNBL flows reported in Narasimhan

et al. (2024a). This reference temperature was inspired by observations from the Beaufort Sea Arctic Stratus Experiment

(BASE) and simulations by Kosović and Curry (2000). While the value of θ0 is relatively low, it serves primarily as a relative

additive reference that does not significantly affect the simulated flow dynamics or the physical interpretation of the results.

For example, if we used 273K, it would change the implied thermal expansion coefficient in our Boussinesq approximation

only by about 3%.

L !
=
3.
78
	k
m

7D7D

R

z h
=
90
m

q(z) 𝑈(𝑧)

L# = 112D = 14.112	km

Precursor simulation domain

L# = 112D = 14.112	km

Wind farm simulation domain
(W+WF)

1.
5	
km

0.
5	
km

(a)

(b)

D
=
12
6m

𝑥
𝑧

R

𝐿$ = 3.78	km

L %
=
2	
km

(c)

21D 𝐿𝑥/87D 7D 7D 7D 7D 7D 7D14D

y
𝑧

𝑥
𝑦

5D
5D

5D
5D

5D
2.
5D

2.
5D

P PM PS W WF

P PM PS WFW

R

5𝐿𝑥/8 𝐿𝑥/8 𝐿𝑥/8 𝐿𝑥/8

Figure 1. Schematic representation of the computational simulation domain (not to scale), showing: (a) top view (x–y plane), (b) side view

(x-z plane) and (c) front view (y–z plane). The precursor computational domain consists of the regions denoted as “P”, the precursor mapping

region “PM”, and the precursor spanwise shifting region “PS”. The wind farm computational domain includes the wind farm region “W” and

the fringe region “WF ” near the outlet. Both precursor and windfarm computational domains include a Rayleigh damping region at the top

(denoted as“R”). The turbine diameter D = 126m and hub height zh = 90m are also marked.

The turbulent flow is driven by a constant geostrophic wind speed G = 15m/s at αg ≈ −22.5◦ to the x direction, with

the angle controlled by a PI controller (KP = 10, KI = 0.5) to align hub-height mean wind velocity with the x-axis in the

conventionally neutral boundary layer (Sescu and Meneveau, 2014; Narasimhan et al., 2022). The surface has roughness length

z0 = 0.1m and reference potential temperature θ0 = 263.5K. Initial conditions set Ug = 15m/s (streamwise) and Vg = 0m/s
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(spanwise), perturbed by random noise, while potential temperature decreases from 265K at the surface with a 1K/km lapse

rate, including random perturbations below 1km.

The numerical simulation is conducted in three consecutive phases to ensure proper flow development and statistical con-

vergence.

– Phase 1: Coarse-resolution ADM spin-up: A 10-hour simulation using the ADM is performed to establish a quasi-

stationary atmospheric boundary layer and wind farm wake field. This phase leverages the computational efficiency of

ADM, which approximates turbine forces without resolving actuator line-level aerodynamics.

– Phase 2: Fine-resolution ALM convergence. A 1-hour simulation using the actuator line model at finer spatial res-

olution transitions the flow from ADM-averaged to ALM-resolved turbine representation. Besides the turbine model

update, two additional changes are introduced in this phase: (i) the time-stepping scheme is switched from a constant

Courant–Friedrichs–Lewy (CFL) number of 0.0625 to a fixed time step of ∆t = 0.025s. This adjustment has negligi-

ble impact on the results because, under these simulation conditions, CFL = 0.0625 corresponds to ∆t ≈ 0.03s. The

slightly more restrictive ∆t = 0.025s maintains numerical stability while preserving solution accuracy. (ii) The rotor

control changes from a fixed tip-speed ratio (TSR = 7.5) to fixed rotor angular velocities that vary across turbine rows,

as tabulated in Table 1. This adjustment has a negligible impact on the results because the prescribed angular velocities

closely match the values achieved under TSR = 7.5 conditions (see the calculation method in Section 2.3), ensuring

nearly identical rotor dynamics.

– Phase 3: Fine-resolution simulation for database construction. A final 1-hour simulation is carried out to collect high-

fidelity flow and turbine data. Flow field variables are recorded every 20 LES time steps (i.e., every 0.5s) on a filtered

and subsampled spatial grid (every other grid point in the x–y plane), while wind turbine data—both integral and blade-

resolved—are stored at every LES time step (0.025s). Note that we purposefully operate the NREL-5MW+ turbine in

“region II” during the simulation time, in order to avoid having to choose and document additional controller actions.

As a result, during some times some of the turbines operate “above rated conditions” but maintaining self-consistent

aerodynamic behavior of the blades and air-flow.

Table 1. Rotor speed for each row of turbines.

Row No. 1 2 3 4 5 6 7 8 9 10

Ω (rad/s) 1.33 1.02 1.04 1.07 1.09 1.09 1.09 1.09 1.09 1.10

The three phases of the simulation are illustrated through the time history of the boundary layer height zi = hABL and the

geostrophic wind angle shown in Fig. 2.
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Table 2. Three consecutive phases and computational domain parameters

Phase
Grid

level

Turbine

model

Domain size

(2 ×Lx)×Ly ×Lz

(km×km×km)

Number of grid points

(2 ×Nx)×Ny ×Nz

Spatial resolution

∆x×∆y×∆z

(m×m×m)

Time grid

CFL or ∆t

(- or s)

1 Coarse ADM (2×14.112)×3.78×2 (2×512)×192×400 27.56×19.69×5 CFL=0.0625

2 Fine

ALM

(2×14.112)×3.78×2 (2×1,536)×384×400 9.19×9.84×5

CFL=0.0625
TSR=7.5

ALM

Ω = const
∆t = 0.025s

3 Fine
ALM

Ω =const

Simulation with

(2×14.112)×3.78×2 (2×1,536)×384×400 9.19×9.84×5 ∆t = 0.025s

Sampling over/with

(10.584+12.348)×3.78×2 (576+672)×192×400 18.38×19.68×5 ∆t = 0.5s

Phase 1 Phase 2

• Fine resolution

• ALM

TSR = 7.5 Ω = c

Sampling 

Flow convergence

ALM convergence

t (h)

h
A

B
L

 (
k

m
)

∆t = 0.025 sCFL = 0.0625

α
 (rad

)

• Coarse resolution

• ADM

Phase 3

Figure 2. Time history of boundary layer height zi = hABL, and geostrophic wind angle α , indicating the three simulation phases (Phase 1:

Coarse-resolution ADM spin-up, Phase 2: Fine-resolution ALM convergence, and Phase 3: Fine-resolution simulation for database construc-

tion).
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4 JHTDB-wind database construction

The LES data from the final 1-hour sampling period are systematically ingested into the database and organized into two

primary data types: (i) flow field data, consisting of 4D space-time fields captured across both simulation domains (precursor

and wind farm domains), providing complete spatiotemporal information about the atmospheric flow; and (ii) turbine data,

which are further subdivided into two subtypes. The first subtype is turbine-level operational data, comprising time histories

of turbine power and thrust. The second subtype is blade-level data, which includes time histories of aerodynamic quantities

sampled at each discrete actuator point along each blade.

4.1 Flow field data

4.1.1 Domain of the dataset

As described in Section 3, the LES is conducted in the domain of dimensions (2× 14.112)× 3.78× 2km3 (see Table 2).

When compiling the database, we exclude numerically imposed auxiliary regions: specifically, the final Lx/4 of the precursor

domain (which includes the precursor spanwise shifting region PS), and the final Lx/8 of the wind farm domain (i.e., the wind

farm fringe region WF ), as visualized in Fig. 1. These regions serve purely numerical functions (periodicity enforcement and

inflow recycling, respectively) without contributing to physical flow dynamics of interest. The resulting database domain has

the extents of (10.584+12.348)×3.78×2km3, as shown in Fig. 3. The top 0.5km sponge region is kept in the database for

simplicity of data management and possible interest.

!9
"

Figure 3. Schematic representation of the database domain (not to scale). This is the physical domain available in the database, merging the

precursor domain (P+PM) up to the end of the mapping region at 3/4Lx, with the windfarm domain (W ) and excluding the fringe region

(WF ). A total of 60 turbines are shown, with only a subset labeled for clarity. The domain dimensions are (10.584+12.348)×3.78×2km3.
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4.1.2 Spatial resolution of the dataset

To minimize storage, we applied spectral filtering on x-y planes for flow field data by truncating Fourier modes above κmax/2,

where κmax = π/∆LES is the LES cutoff wavenumber. The filtered fields were then subsampled at every alternate grid point

in the x and y directions, maintaining the original vertical (z) resolution. This approach reduces the dataset size by 75% while

maintaining fidelity in capturing the dynamically significant larger-scale flow structures and turbine wake interactions. Thus

that the flow field data has a grid size of (576+672)×192×400.

4.1.3 Temporal resolution of the dataset

Field data are stored at intervals of 0.5s (i.e., every 20 LES steps of 0.025s), ensuring that fluid parcels advected at the

maximum geostrophic speed (15m/s) travel less than the horizontal grid spacing (∆x ≈ 9.19m) between snapshots. Although

rotor blade tips move across several vertical grid spacings during this interval, the corresponding rotor force field is smooth

(Gaussian filtered at scale ε = 16m > 2 3
√

∆x∆y∆z), ensuring that the storage frequency of 0.5s remains appropriate. Over the

1-hour simulation period (i.e., 3,600 seconds), the simulation advances through 3,600/0.025=144,000 LES time steps, with

flow fields stored at 144,000/20 = 7,200 consecutive snapshots.

4.1.4 Final structure of the dataset

Consequently, the final stored data dimensions are nx ×ny ×nz ×nt = 1,248×192×400×7,200. At each stored time step, six

spatial fields are recorded: the three velocity components u(x,y,z, t), v(x,y,z, t), and w(x,y,z, t); the (kinematic) pressure field

p(x,y,z, t)/ρ = p∗(x,y,z, t)−ukuk/2 (the SGS stress trace is not available and is anyhow negligible); the potential temperature

field relative to the reference temperature θ ′(x,y,z, t) = θ(x,y,z, t)− θ0; and the subgrid-scale eddy viscosity νSGS(x,y,z, t).

In addition, the three components of the turbine force field, fx(x,y,z, t), fy(x,y,z, t), and fz(x,y,z, t), are also stored. Unlike

the other flow field variables, these force components are stored only from the ground up to 200m in the vertical direction.

However, they are retained at the original spatial resolution (i.e., not filtered in the x˘y planes). The detailed information of

these stored field variables can be found in Table 3. It also needs to be mentioned that the concurrent precursor method ensures

smooth transitions in velocity, potential temperature, and eddy viscosity fields between precursor and wind farm subdomains,

by construction. However, due to the non-local nature of the pressure solution (solved separately in each domain via Poisson

equations) and the velocity-only coupling between domains, the stored pressure field exhibits a minor discontinuity at the

interface. This artifact does not affect the resolved turbulence dynamics or turbine wake interactions, but needs to be taken into

account if computing pressure gradients across the boundary separating the precursor and wind farm domains.

These 4D field variables are stored using the Zarr format (Miles and et al., 2023). In Zarr-based storage, data are organized

into chunks, the smallest units retrieved during a query. To ensure efficient data access, chunk sizes must be large enough to

support common operations, such as differentiations and interpolations, that typically require access to a three-dimensional

neighborhood around the query point, while remaining small enough to avoid excessive memory usage. Based on extensive

testing and prior experience with other JHTDB datasets, a chunk size of 643 grid points provides optimal retrieval speeds
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Table 3. Summary of flow field data variables.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nx ×ny ×nz ×nt

Data resolution

∆x×∆y×∆z×∆t

(m× m × m × s)

1 Streamwise velocity

velocity

u

m/s

1,248×192×400×7,200 18.38×19.68×5×0.5

2 Spanwise velocity v

3 Vertical velocity w

4 Potential temperature deviation temperature θ ′ K

5 Pressure (kinematic) pressure p m2/s2

6 SGS eddy viscosity eddyviscosity νSGS m2/s

7
Turbine streamwise

force (kinematic)

force

fx

m/s2 871×384×40×7,200 9.19×9.84×5×0.5
8

Turbine spanwise

force (kinematic)
fy

9
Turbine vertical

force (kinematic)
fz

and performance for typical data access modalities. We chose a similar chunk size but shaped according to 52× 64× 80 so

that an integer multiple of the chunk size in each direction fits into the stored domain size. The total amount of data stored is

about 15 Terabytes. These flow field data can be queried using getData(...) calls from analysis programs such as Python,

MATLAB, Fortran, or C, in the same manner as with other turbulence datasets available through JHTDB.

4.2 Wind turbine data

4.2.1 Turbine-level data

The turbine-level data are integral quantities characteristic of each turbine operation, which are derived from the actuator line

modeling. This dataset includes high-fidelity time histories of power output, thrust force, and rotor angular velocity, sampled at

∆t = 0.025s for all 60 turbines, as summarized in Table 4. In the present dataset, the angular velocity is held constant in time,

but for other datasets (e.g., Xiao et al. (2025)), this is not generally the case. For each variable, the dataset consists of 144,000

rows and 2 columns, where the first column represents time and the second column contains the corresponding values of the

recorded variable. The turbine data are stored in files using the Parquet format, which facilitates efficient access and querying

from various programming languages. Turbine-level data can be accessed using the getTurbineData(...) function call

from analysis environments such as Python or MATLAB.
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Table 4. Summary of turbine-level data variables. Each dataset is a 2D matrix of size nt ×2, where nt is the number of time steps. Columns

1 and 2 represent time and measured values, respectively.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nt ×2

Data resolution

∆t (s)

1 Power power P W

144,000×2 0.0252 Thrust force thrust Ft N

3 Rotor angular velocity RotSpeed Ω rad/s

Table 4 summarizes the turbine-level data variables. Note that, unlike the field data which are stored in kinematic (density-

independent) units, the force and power data require a specified air density. The value used in the simulations to compute these

forces is ρair = 1.23 kg/m3.

4.2.2 Blade-level data

In addition to the integral quantities characteristic of each turbine’s operation, more detailed information is captured along

each turbine blade to enable blade-resolved aerodynamic analysis. This fine-grained dataset allows users to investigate the

local aerodynamic behavior of blades under unsteady flow conditions, which is critical for understanding load distributions,

fatigue effects, and control optimization strategies. The turbine blade-level dataset includes high-fidelity time histories sampled

at 0.025s for all 180 blades in the wind farm (i.e., 60 turbines ×3 blades each), with aerodynamic and geometric quantities

sampled at 100 discrete actuator line points along the blade span. As summarized in Table 5, a total of 19 variables are

sampled and stored, with each variable written to a separate file. For each variable, the dataset has dimensions of 144,000×3

rows and 103 columns. Each time step includes three rows corresponding to the three blades of a turbine, resulting in a total

of 144,000×3 rows. Vertically, the first column represents time in seconds, the second column specifies the turbine number,

and the third column denotes the blade number (blades can be identified by the time-histories of the individual ALM point

positions). The remaining 100 columns contain the values of the selected variables at each of the 100 actuator points from

the blade root to tip. Similar as turbine-level data, blade-level data are stored as Parquet files, allowing efficient access across

multiple programming environments. Blade-level data can be accessed using the getBladeData(...) function call from

analysis environments such as Python or MATLAB.
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Table 5. Summary of blade-level data variables. Each dataset is a 2D matrix of size (3×nt)×103. Here, 3×nt represents the total number

of blade-wise samples, formed by concatenating the time series data from each of the 3 blades of a turbine. Columns 1-3 represent time,

turbine number, and columns 4-103 store aerodynamic measurements at nℓ = 100 discrete locations along each blade.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

(nt ×3)× (nℓ+3)

Data resolution

∆t ×∆ℓ

(s × m)

1 x-position of ALM point xPos Px

m

(144,000×3)× (100+3) 0.025×0.615

2 y-position of ALM point yPos Py

3 z-position of ALM point zPos Pz

4
Perturbation velocity at

LES resolution, component 1
uy_LES1 u′y,LES1

m/s

5
Perturbation velocity at

LES resolution, component 2
uy_LES2 u′y,LES2

6
Perturbation velocity at

optimal resolution (0.25c), component 1
uy_opt1 u′y,opt

7
Perturbation velocity at

optimal resolution (0.25c), component 2
uy_opt2 u′y,opt

8
Perturbation velocity correction

u′y,opt −u′y,LES, component 1
du1 ∆u′y,1

9
Perturbation velocity correction

u′y,opt −u′y,LES, component 2
du2 ∆u′y,2

10 Angle of attack alpha α rad

11 Lift coefficient Cl CL
-

12 Drag coefficient Cd CD

13 Lift force per unit length lift FL/ℓ
N/m

14 Drag force per unit length drag FD/ℓ

15 Local relative velocity magnitude Vmag Vmag

m/s
16

Axial component of the local relative

velocity in blade-oriented coordinates
Vaxial Vaxi

17
Tangential component of the local relative

velocity in blade-oriented coordinates
Vtangential Vtan

18
Axial component of

the local force
axialForce Faxi

N
19

Tangential component of

the local force
tangentialForce Ftan
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5 Web-accessible virtual sensor data access methods and examples

5.1 Flow field data

A defining feature of the JHTDB database system (Li et al., 2008) is its low entry barrier for data usage, enabling users to

efficiently explore large-scale simulation datasets through Web services and virtual sensor methodology. The JHTDB-wind

system adopts the same approach, allowing access to wind farm data using these established tools. Users can develop analysis

scripts or notebooks in familiar programming languages such as Python and Matlab (as well Fortran and C) to run them

remotely on their own machines or on SciServer, a cloud service dedicated to running code close to the data. Within these

analysis environments, users specify space-time arrays by defining spatial locations (e.g., along a line, across a surface, within

a subvolume, or scattered arbitrarily) and corresponding time instances, i.e., users specify the positions of virtual sensor arrays.

These space-time arrays are then passed to the predefined function, getData(...), which returns interpolated values of

the selected variables at defined coordinates. This framework enables targeted, on-demand data access without the need to

download large volumes of raw simulation output.

Figs. 4 and 5 display contour plots of flow field variables at the turbine hub height (z = zh = 90m) for the precursor and

wind farm domains, respectively.

Figure 4. Contour plots of instantaneous flow field variables in part of the precursor domain (here between x = 0m and x = 10,381.875m), at

time t = 1,800.75 s. (a) the streamwise velocity u, (b) the vertical velocity w, (c) the pressure p, and (d) the potential temperature deviation

θ ′.

Fig. 6 presents Python code snippets that demonstrate how to query the JHTDB-wind database to extract snapshots of

velocity, pressure, and potential temperature fields at a specific time, approximately in the middle of the stored 1-hour dataset,

namely at t = 1,800.75s. As a first step, an array “points” is populated with spatial coordinates that define a 2D plane: in this

case, an equally spaced grid of 950× 200 points in the x and y directions at a constant height z = zh = 90m. These query
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points typically do not coincide with the actual simulation grid points, and users are not required to know the grid layout to

access the data. The JHTDB-wind interface provides interpolated field values based on a user-specified interpolation method.

Supported options include no interpolation (it returns the value at the nearest grid point), Lagrange Polynomials of order 4,

6, or 8, and several spline interpolation methods (Li et al., 2008; Graham et al., 2016). In this example, we use 8th-order

Lagrange polynomial interpolation in space. Similarly, if the requested time does not coincide with a stored timestep, temporal

interpolation is applied using third-order Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method (Li et al., 2008).

This user-friendly data access model eliminates the need for downloading and parsing simulation files. Instead, the Python

API (Application Programming Interface) returns arrays with the queried field variables, which can then be visualized directly

within a Jupyter notebook (or Matlab code). This approach was used to generate Figs. 4 and 5. It is important to note that the

full 1-hour dataset (comprising 14,400 timesteps) is available for analysis, allowing users to query any time between t = 0 and

t = 3,600s. For example, Fig. 7 shows a hub-height snapshot over the entire domain at time t = 2,505s.

Figure 5. Contour plots of instantaneous flow field variables in part of the wind farm domain (here between x = 10,584m and x =

21,921.375m), at time t = 1,800.75 s. (a) the streamwise velocity u, (b) the vertical velocity w, (c) the pressure p, and (d) the potential

temperature deviation θ ′. The short black lines represent the location of wind turbines.

Similar queries can be made for the values, spatial gradients, and Hessians (second-order derivatives) of all variables listed

in Table 3. For example, Fig. 8(a) and (b) show turbine streamwise force-field fx and the x-direction gradient of the pressure

field (∂ p/∂x), respectively, on a y− z plane intersecting Row 1 (Turbines #1 - #6) at x = 12,348m (1764 m downstream of the

wind farm domain), at time t = 1000.013s. Fig. 8(c) and (d) present similar results on a plane intersecting Row 9 (Turbines

#49 - #54) at x = 19,404m (8,820m downstream of the wind farm domain) at another time t = 2,000.67s. These plots were

generated using the Python code shown in Fig. 9. In these examples, the queried times are intentionally chosen not to coincide

with the stored simulation time steps, demonstrating the temporal interpolation capabilities of JHTDB-wind.

Next, we provide examples of computed mean vertical profiles of fundamental flow quantities within the precursor domain,

which features standard conventionally neutral atmospheric conditions. Fig. 10 shows vertical profiles of horizontal- and time-
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Figure 6. Python code snippet used to obtain the data to generate the Fig. 5.

Figure 7. Contour plot of instantaneous streamwise velocity u in the entire database domain, ranging from x = 0 to x = 22,913.625m, at time

t = 2,505s. It is noted that although the total length of the database domain is 10,584+12,348 = 22,932 m, the data resolution in x-direction

is 18.375 m and the grid points are located at cell centers. Consequently, the last data point is located at 22,932−18.375 = 22,913.625 m.

The short black lines represent the location of wind turbines.

averaged mean velocities, subgrid-scale eddy viscosity, and deviations in potential temperature, all obtained by averaging in

the horizontal directions and over time. The data used to produce these profiles is retrieved using the virtual sensor framework,

and an example code snippet demonstrating this process is shown in Fig. 11.
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Figure 8. Instantaneous contours of turbine streamwise (i.e., x-component) force (as projected onto the LES grid using Gaussian smoothing

as part of the ALM method) in y−z planes at (a) First row (i.e., Row 1, x = 12,348m) and between the relevant vertical range z ∈ [2.5,200]m,

and (c) second-to-last row (i.e., Row 9, x = 19,404m). Panels (b) and (d) show the x-direction pressure gradient distributions on the same

planes, coincident with the turbines.

Figure 9. Python code snippet used to obtain the data to generate the Fig. 8.
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Figure 10. Vertical profiles of horizontal- and time-averaged (a) velocities ⟨u(z)⟩x,y,t , ⟨v(z)⟩x,y,t and velocity magnitude V (z)x,y,t =[
⟨u(z)x,y,t⟩2 + ⟨v(z)x,y,t⟩2]1/2, (b, bottom axis) subgrid-scale eddy viscosity ⟨νSGS(z)⟩x,y,t used in the LES as a result of the Lagrangian

scale-dependent dynamic model, (b, top axis) potential temperature deviation ⟨θ ′(z)⟩x,y,t (i.e., the deviations from a reference temperature

θ0 = 263.5K).

Figure 11. Python code snippet used to obtain the data to generate vertical profiles of ⟨u(z)⟩x,y,t : for the 250 heights z between z = 0.7m

and z = 2,000m separated by 8m, we query data on a regular mesh (not necessarily coinciding with stored grid points). For statistical

convergence, we average over 4 times covering the entire hour (t = 900;1,800;2,700;3,600)s.

5.2 Wind turbine data

Wind turbine data, including both the turbine-level and blade-level data, are considerably smaller than the 4D flow field data,

and one possibility would have been to allow users to download these data directly as files. However, such an approach would
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require users to identify specific files, understand naming conventions, and handle formatting, posing a barrier to seamless

integration with flow field queries. To maintain consistency and usability across the platform, we adopt a similar virtual sensor

data access paradigm used for the flow field data. Two dedicated query functions are developed: getTurbineData(...)

for turbine-level quantities and getBladeData(...) for blade-resolved data. For getTurbineData (...), users

specify the turbine number (ranging from 1 to 60) and desired time instances. For getBladeData (...), both turbine

number and blade number (ranging from 1 to 3) need to be specified, along with an array of actuator point indices (ranging

from 1 to 100) and times (ranging from 1 to 3600 s) at which the data are requested. Linear interpolation in time is supported

to provide values between stored simulation time steps.

As an example, Fig. 12 presents the time series of total wind farm power output (Panel a) and of the Row 1 and Row 9 of

six turbines (Panel b). The code snippet specifying the getTurbineData(...) call is shown in Fig. 13. Similar calls can

be made to extract any of the turbine specific variables listed in Table 4.

Figure 12. Time evolution of power from turbines during the 10-minute time interval, i.e., t ∈ [1000.33,1600.33]s. (a) shows the total power

from the entire wind farm, while (b) shows the power for the turbines in Row 1 (i.e., Turbines #1-#6) and in Row 9 (i.e., Turbines #49-#54).

Next, we illustrate the use of getBladeData(...) in Fig. 14, which shows (a) the time evolution of the lift and drag

coefficients and (b) the lift coefficient as a function of blade angle. The blade angle is computed as ζ (t) = arctan[z(t)−
zh)/(x(t)− xT )] over a 60-second period. The results shown are for a particular turbine and blade (Turbine #28 in the central

portion of the wind farm and blade #3, the latter being an arbitrary choice, of course). The Python code snippet shown in Fig.

15 illustrates the use of getBladeData(...), with the queried data plotted directly as a time series within the same script.

Using a similar approach, variable data can be extracted along turbine blades and further processed to compute higher-order

statistics. Fig. 16 shows axial force, tangential force, drag and lift coefficients for an upstream turbine (Blade #1 of Turbine #1)
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Figure 13. Python code snippet illustrating the use of the function getTurbineData(...) as part of a loop over all turbines in the wind

farm, and subsequent summation to evaluate time-series of total power used to generate Fig. 12(a).

and a downstream turbine (Blade #1 of Turbine #60) at a specific time of t = 1,500 s. Any of the variables listed in Table 5 can

be similarly queried (also in Matlab).

Figure 14. (a) Time evolution of lift and drag coefficients on an ALM point 80% along the span of Blade #3 for Turbine # 28. (b) Polar plot

of lift coefficient for that point as a function of blade angle along its rotation. For this turbine, the rotational speed is fixed at Ω = 1.09 rad/s

(as obtained from getTurbineData(...)), corresponding to approximately 10.5 revolutions during a 60-second period.
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Figure 15. Python code snippet used to obtain the data to generate Fig. 14.

Figure 16. Distributions of ALM quantities along the turbine blade at a specific time (t = 1,500 s for Blade #1 of Turbine #1, blue lines;

and Blade # 1 of Turbine #60, orange lines: (a) Axial component of the local force (on each ∆ℓ = 0.615m segment) Faxi , (b) Tangential

component of the local force (on each ∆ℓ= 0.615m segment) Ftan, (c) Lift coefficient Cl , (d) Drag coefficient Cd .
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6 Conclusions

In this paper, we have introduced JHTDB-wind, hosting datasets from high-fidelity LES simulations of wind farms. We extend

the standard “virtual sensors” data access methods (Li et al., 2008; Yu et al., 2012; Graham et al., 2016) that have been

successfully used for democratizing access to more fundamental turbulence datasets. Besides velocity, pressure, potential

temperature, and SGS eddy-viscosity fields, JHTDB-wind adds 4D space-time data on aerodynamic turbine force distributions

as seen by the flow as well as time series of turbine and actuator line specific aerodynamic data along each of the turbine blades,

modeled using ALM. We explain the simulation details and provide background on the numerical method and flow parameters,

and provide detailed examples and explanations of the user-friendly data access methodologies. It is hoped that these data will

provide useful insights about the complex fluid dynamic processes occurring in wind farms.

We realize that in generating a dataset for a representative conventionally neutral boundary layer case, with a relatively

large wind farm with 60 turbines, many other choices could have been made (flow parameters, turbine model and control

scheme, usage of a particular LES numerical code, numerical resolution, and so on). We anticipate that different members of

the community would have made different choices, and we look forward to conversations about how to further improve such

datasets. We believe, however, that the case selected is representative of CNBL wind farm dynamics that have been studied by

many others before, with a well-tested numerical code. Hence, the authors hope that the data can be of some use and interest

to researchers in wind energy.

As a final note, we have additionally prepared a second dataset for JHTDB-wind featuring an 8-turbine wind farm over a

full diurnal cycle, capturing both strongly stable and unstable atmospheric boundary layer regimes at different times of the day

and night (Xiao et al., 2025).

7 Code and data availability

The wind farm data is available at the JHTDB-wind website at https://turbulence.idies.jhu.edu/datasets/windfarms (see also

its DOI: https://doi.org/10.26144/D8ES-FC15). Various modes of data access are provided (Zhu et al., 2025): (i) Single-point

queries of flow field variables using a browser interface at https://turbulence.idies.jhu.edu/database/query. (ii) Multiple point

queries up to 4096 points at a time: downloading DEMO codes (Python or Matlab) at https://turbulence.idies.jhu.edu/database/

wind and executing the DEMO code on user’s own platforms. Users can then edit the DEMO codes to select different points

and times to query desired data. To access current dataset, the “dataset” variable should be set to “nbl_windfarm”, with times

chosen in the range 0–3600 seconds.
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and detailed proof-reading. SX performed the majority of the data transformation into Zarr and Parquet formats, worked on testing data
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LAMT developed and implemented the generalized ALM method in the LES code. MS and HY developed the Giverny backend software
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