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Abstract. This manuscript introduces JHTDB-wind (https://turbulence.idies.jhu.edu/datasets/windfarms), a publicly accessible1

database containing large-eddy simulation (LES) data from wind farms. Building on the framework of the Johns Hopkins2

Turbulence Database (JHTDB), which hosts direct numerical and some large-eddy simulation datasets of canonical turbulent3

flows, JHTDB-wind stores the full space-time (4D) history of the flow and provides users the ability to access and query4

the data via a web-based virtual sensor interface. The initial dataset comprises LES results from a large wind farm with5

6× 10 turbines, modeled using a filtered actuator line method, under conventionally neutral atmospheric conditions. This6

data comprises one hour of flow field data (velocity, pressure, potential temperature, and others, approximately 15TB) and7

wind turbine data—including both turbine-level operational quantities and blade-level aerodynamic quantities (approximately8

1.3TB)—stored in Zarr and Parquet formats, respectively. Data retrieval is facilitated by the Giverny Python package, allowing9

remote users to query the database in Python or Matlab (C and Fortran support are available for flow field data). This paper10

details the simulation setup and demonstrates data access through examples that analyze wind farm flow structures and turbine11

performance. The framework is extensible to future datasets, including the JHTDB-wind diurnal cycle simulation analyzed in12

Xiao et al. (2025).13

1 Introduction14

Eddy-resolving simulations of atmospheric boundary layer phenomena (Porté-Agel et al., 2000; Bou-Zeid et al., 2004; Kumar15

et al., 2006) and of wind farms in particular (Calaf et al., 2010; Meyers and Meneveau, 2012; Gebraad et al., 2016; Stevens16

and Meneveau, 2017; Zhang et al., 2023) have significantly advanced our understanding of the complex, multi-scale, and17
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multi-physics processes involved. Large Eddy Simulations (LES) offer high spatial and temporal resolution, capturing the18

dynamics of relatively small and fast turbulent eddies (Churchfield et al., 2012; Chatelain et al., 2013; Yang et al., 2021; Li19

et al., 2022). While the range of resolved scales in LES is constrained by computational resources, the number of LES grid-20

points in typical simulations continues to increase. However, data handling and post-processing capabilities have not kept pace21

with the resulting rapid increase in data volumes. For instance, a single LES of turbulent flow outputting five field variables22

(e.g., the three velocity components, potential temperature and pressure) on 2,0483 spatial grid points and integrated over,23

say, 104 time-steps (McWilliams et al., 1994; Alexakis et al., 2024), can generate Petabytes (PB) of data. As a result, most24

studies store only a few selected snapshots and rely heavily on pre-defined run-time diagnostics when time-resolved analysis25

is required. This approach reduces storage requirements but limits the ability to revisit data when new questions and concepts26

arise, often necessitating costly recomputation. Furthermore, certain analyses —such as backward-in-time particle tracking27

from an extreme dissipation event—cannot be performed without the full temporal data.28

To address these challenges, modern database technologies have increasingly been applied to preserve and store data from29

simulation-based turbulence research. (Perlman et al., 2007; Zhang et al., 2018; Chung et al., 2022; Duraisamy et al., 2019).30

One example is the Johns Hopkins Turbulence Database (JHTDB, https://turbulence.idies.jhu.edu) (Perlman et al., 2007; Li31

et al., 2008), an open-access platform supported by the National Science Foundation. JHTDB enables researchers to interact32

with easily accessible, large-scale simulation data. The system currently hosts more than 1 PB of DNS data (over 2 PB if33

counting warm backup copies), including 6 space-time resolved data sets and several others with a few snapshots available.34

Through web-service-based tools, users can query the database using a “virtual sensors” interface, specifying spatial and35

temporal locations for which the system returns properly interpolated field or derivative values (Li et al., 2008; Yu et al., 2012).36

A hallmark of the platform is that it allows users to access only the specific subsets of the data they require, eliminating the37

need to download massive datasets or manage complex file formats. This approach has significantly broadened access to high-38

fidelity DNS data and has contributed to democratizing high-performance computational turbulence research. To date, JHTDB39

data have been used in research reported in over 400 peer-reviewed journal articles.40

At the same time, with the growing global demand for renewable energy continuing to rise, enhancing wind energy efficiency41

has become a key priority. As wind turbines grow larger and wind farms expand in scale, their interactions with the atmospheric42

boundary layer (ABL) become increasingly complex—particularly with respect to wake dynamics, energy extraction, and43

the redistribution of momentum within the flow. LES of large wind turbines have emerged as a crucial complement to field44

measurements, enabling researchers to explore flow-turbine interactions in detail and to develop engineering models that inform45

turbine placement strategies and improve wind farm efficiency. For example, Calaf et al. (2010) used LES with periodic46

boundary conditions to study the performance of “infinite” arrays of wind turbines under neutrally-stratified conditions. Abkar47

and Porté-Agel (2013, 2014) examined how wind farm density and free-atmosphere stability influence kinetic energy fluxes48

in a conventionally neutral boundary layer (CNBL) - defined as neutrally-stratified surface layers capped by stably-stratified49

free atmospheres (Zilitinkevich et al., 2002). Allaerts and Meyers (2015) explored the effect of capping inversion profile on50

wind farm performance. Numerous additional LES-based studies have further advanced the field (Yang et al., 2014; Aitken51
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et al., 2014; Martínez-Tossas et al., 2015; Stevens et al., 2018; Gharaati et al., 2022, 2024; Aiyer et al., 2024), highlighting the52

continued value of high-resolution simulation tools for understanding and optimizing wind energy systems.53

These simulations, like many previous numerical studies of large-scale wind farms, generate extensive datasets. However,54

access to these data often remains restricted to the original researchers who conducted the simulations. The data (typically55

4D space-time fields of velocity, temperature, etc.) are ephemeral: they must be analyzed in real-time during the simulation,56

or, at best, a limited number of snapshots are stored for post-processing, while the large majority of the data is discarded. As57

demonstrated in the case of the JHTDB-DNS database, providing access to the full time-history of a simulation could provide58

substantial benefits for the broader wind energy research community. The value of open access to time-resolved numerical59

datasets is now being recognized beyond fluid dynamics, particularly in the fields of Geosciences. For example, the recently60

released NOW-23 dataset (Bodini et al., 2023) comprises a full year of Weather Research and Forecasting (WRF) model61

simulations of off-shore wind conditions over several expansive (100’s km) U.S. coastal regions, offering valuable data for62

wind farm developers. However, no equivalent open-access LES datasets currently exist at smaller scales that explicitly include63

wind turbine effects—datasets that would be highly valuable for researchers focused on wake interactions, turbine siting, and64

wind farm optimization. More in general, the lack of data sharing in the wind energy sector has been recognized to hinder65

technical progress and leads to missed opportunities for improving the efficiency of energy markets (Kusiak, 2016)66

To begin addressing the need for open access to LES wind farm data, we construct JHTDB-wind (see https://turbulence.idies.67

jhu.edu/datasets/windfarms, Zhu et al. ((2025)), a publicly accessible turbulence database built on the JHTDB framework. This68

paper presents the dataset by detailing the simulation methodology (Section 2), and flow configuration—specifically, a CNBL69

interacting with a 60-turbine wind farm using National Renewable Energy Laboratory (NREL) 5MW reference turbines. Here,70

CNBL is chosen because it is a less complicated atmospheric state, observed in nature (Liu and Stevens, 2022), for example,71

during the transition period after sunset or on cloudy days with powerful winds (Allaerts and Meyers, 2017; Liu et al., 2024).72

Simulation parameters are described in Section 3. The construction of the database system is described in Section 4, followed73

by an overview of representative data access methods based on the JHTDB virtual sensor method, illustrated here via Python74

examples (Section 5). Conclusions are summarized in Section 6. Further documentation is available directly on the database75

website.76

2 Large-eddy simulation framework77

In this study, we use the open source LES code LESGO (https://lesgo.me.jhu.edu) as a numerical solver to simulate ABL flows78

and its interactions with wind turbines (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens et al.,79

2018; Shapiro et al., 2018, 2020; Gharaati et al., 2022; Narasimhan et al., 2022, 2024a, b, c; Gharaati et al., 2024; Ayala et al.,80

2024). The model represents all variables on a three-dimensional Cartesian grid, with x, y, and z denoting the streamwise,81

spanwise, and vertical directions, respectively. In index notation, these are expressed as xi where i = 1, 2, 3. The corresponding82

velocities are denoted by ui, or also with u, v, and w for its x, y, and z-direction components, respectively.83
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2.1 Governing equations and numerical methods84

The turbulent flow is simulated by solving the filtered Navier-Stokes equations in their rotational form with Boussinesq thermal85

forcing and Coriolis effects, along with the transport equation for the potential temperature field. The governing equations86

include the filtered mass conservation,87

∂ ũi

∂xi
= 0, (1)88

the filtered momentum conservation,89

∂ ũi

∂ t
+ ũ j

(
∂ ũi

∂x j
− ∂ ũ j

∂xi

)
=−∂ p̃∗

∂xi
+

g
θ0

(θ̃ − θ̃0)δi3−
∂τSGS,d

i j

∂x j
− fi + fc(ũ2−Vg)δi1− fc(ũ1−Ug)δi2, (2)90

and the filtered heat conservation,91

∂ θ̃
∂ t

+ ũ j
∂ θ̃
∂x j

=−∂Π j

∂x j
. (3)92

Here, the tilde indicates filtering at the LES grid scale ∆̃ = 3
√

∆x ∆y ∆z; ρ is the density of air; τSGS
i j = ũiu j− ũiũ j is the unre-93

solved subgrid-scale (SGS) stress tensor, and τSGS,d
i j = τSGS

i j − δi jτSGS
kk /3 is the deviatoric (trace-free) part of τSGS

i j , where δi j94

is the Kronecker delta; p̃∗ = p̃/ρ + ũkũk/2 + τSGS
kk /3 is the pseudo pressure, where p̃ is the resolved pressure; g = 9.81m/s295

is the gravitational acceleration; θ̃0 = 263.5K is the reference potential temperature scale; and fi is the distributed body force96

for modeling the turbine-induced aerodynamic forces on the air flow (see §2.3). In the present study, τSGS,d
i j is parameter-97

ized using the Lilly-Smagorinsky eddy-viscosity type model (Smagorinsky, 1963; Lilly, 1966), i.e., τSGS,d
i j = −2νSGSS̃i j =98

−2(Cs∆̃)2|S̃|S̃i j, where S̃i j = 0.5(∂ ũi/∂x j + ∂ ũ j/∂xi) is the resolved strain-rate tensor, |S̃| =
√

2S̃i jS̃i j is the strain-rate mag-99

nitude, and νSGS = (Cs∆̃)2|S̃| is the modeled SGS eddy viscosity. The coefficient Cs is dynamically determined using the100

Lagrangian-averaged scale-dependent dynamic model (Bou-Zeid et al., 2005), which has been successfully applied in several101

prior LES studies of wind turbine wake flows (Calaf et al., 2010; Stevens and Meneveau, 2017; Martinez et al., 2017; Stevens102

et al., 2018; Narasimhan et al., 2022; Gharaati et al., 2022; Narasimhan et al., 2024a; Gharaati et al., 2024). In Eq. 3, the term103

Π j = ũ jθ − ũ jθ̃ is the SGS heat flux whose eddy diffusivity (κSGS) is determined from κSGS = Pr−1
SGSνSGS, where the SGS104

Prandtl number of PrSGS = 1 (Narasimhan et al., 2022) is prescribed.105

The atmospheric boundary layer flow is driven by a geostrophic wind whose pressure gradient is given by −∇P∞/ρ =106

( fcVg,− fcUg). Here, fc = 2Ωsinφ = 10−4 s−1 is the Coriolis parameter corresponding to a mid-latitude position (specifically107

to φ = 43.44◦ with Earth’s rotation rate Ω = 7.27×10−5 rad/s). The quantities Ug,Vg are the geostrophic wind velocity com-108

ponents along the x and y directions, respectively, with magnitude G =
√

U2
g +V 2

g , and directed at an angle of αG relative to109

the x direction such that Ug = GcosαG, Vg = GsinαG. At each timestep, a proportional-integral (PI) controller is utilized to110

control the direction of the geostrophic wind such that the wind flows in the streamwise direction with zero wind veer at the111

hub height (Sescu and Meneveau, 2014; Narasimhan et al., 2022).112

LESGO uses a Fourier-series-based pseudo-spectral method based on collocated grids for the spatial discretizations in the113

horizontal (x and y) directions, and a second-order central-difference method based on staggered grids in the vertical (z)114
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direction. The 3/2-rule is used to eliminate the aliasing error associated with the pseudo-spectral discretization of the nonlinear115

convective terms. The simulation is advanced in time using a fractional-step method. First, the velocity field is advanced in time116

by integrating Eq. (2) using the second-order Adams-Bashforth scheme to obtain a predicted velocity field. Then a pressure117

Poisson equation is constructed based on the divergence-free constraint Eq. (1) for the new time step and is solved to obtain118

the pseudo-pressure field. Lastly, the predicted velocity field is projected to the divergence-free space using the gradient of the119

pseudo pressure to obtain the velocity field for the new time step. The above fractional steps are repeated at every time step in120

LES to advance the flow field in time. More details of the numerical schemes used in the LESGO solver can be found in the121

original references (Albertson, 1996; Albertson and Parlange, 1999).122

2.2 Boundary conditions123

In the x (nominally the streamwise) direction, inflow–outflow boundary conditions are applied using the concurrent precursor124

simulation approach (Stevens et al., 2014). Specifically, a separate precursor domain without wind turbines is simulated to125

generate realistic turbulent inflow conditions, which are then imposed at the inlet of the wind farm domain. To ensure peri-126

odicity, a fringe region is introduced at the end of the wind farm domain where the outflow is gradually forced to match the127

inflow from the mapped region in the precursor domain. More details of the inflow-outflow conditions implemented in the128

current pseudo-spectral solver are provided in Stevens et al. (2014). Additionally, the simulation in the precursor domain uses a129

shifted periodic boundary condition where the flow field in a spanwise shifting region is shifted to prevent persistent spanwise130

locking of large-scale turbulent structures (Munters et al., 2016). Following the recommendation in Munters et al. (2016) a131

shift of Ly−shift = 0.25Lz is used in this study, where Lz is the domain height. In the spanwise (y) direction, periodic boundary132

conditions are used. In the vertical (z) direction, the ground surface boundary condition is specified in both the precursor and133

wind turbine domains using the Monin-Obukov Similarity Theory (MOST)-based equilibrium surface flux modeling (Monin134

and Obukhov, 1954). The components of local surface shear stress are computed as a function of the prescribed roughness135

length according to136

τi,3|surf =−u2
∗

̂̃ui√
̂̃u2

+̂̃v2
, i = 1,2; and u∗ = κ

√
̂̃u2

(0.5∆z)+̂̃v2
(0.5∆z)

ln(0.5∆z/z0)
. (4)137

Here, κ = 0.41 is the von Kármán constant, z0 is the prescribed roughness length, the friction velocity u∗ is expressed in terms138

of the horizontal velocity (̂̃u,̂̃v) at the first grid-point (z1 = 0.5∆z), filtered at twice the grid resolution, ˆ̃∆ = 2∆̃ (Bou-Zeid et al.,139

2005). Since we simulate conventionally neutral conditions, the surface heat flux is set to zero, and thus no stability correction140

terms (as used in Xiao et al. (2025)) are included. At the top of the domain, a stress-free boundary condition is imposed. A141

sponge or Rayleigh-damping layer (Durran and Klemp, 1983) is included approaching the top boundary, ranging from 0.75Lz142

to Lz, with a sponge inverse relaxation time-scale (frequency) parameter of 3.9×10−3 1/s. In this layer, a damping body force143

with a cosine profile is applied to suppress the reflection of gravity waves.144
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2.3 Wind turbine representation145

The aerodynamic forces exerted by wind turbines on the airflow are modeled through the distributed body force term fi in146

the momentum transport equations (Eq. 2). During the initial spin-up phase, we employ an actuator disk model (ADM) on a147

coarse grid for computational efficiency, with the thrust force magnitude calculated as f = π
8 ρC′T ⟨uT ⟩2dD2 (Calaf et al., 2010;148

Howland et al., 2016). Here, ρ is the air density, C′T is the local thrust coefficient set to a common value C′T = 1.33, ⟨uT ⟩d is149

the local wind velocity averaging over the rotor disk, and D is the diameter of the wind turbine.150

After the spin-up simulation converges to quasi-steady behavior, the grid is refined to its final resolution, and the actuator151

line model (ALM) is adopted (Sørensen and Shen, 2002; Troldborg, 2009; Jha et al., 2014; Martínez-Tossas et al., 2015). In152

ALM, each turbine blade is represented by a collection of actuator points along a line, where forces are applied according to153

the velocity field and the angle of attack. The forces per unit width at every actuator point are computed as154

falm = 0.5ρc|Vrel|2(CLeL +CDeD), (5)155

where c is the airfoil chord length, |Vrel| is the magnitude of the relative velocity of the upwind flow to the turbine blade, CL156

and CD are lift and drag coefficients obtained from tabulated airfoil data, and eL and eD are unit vectors along the direction of157

the lift and drag forces at each actuator point, respectively. These forces are then smeared using a Gaussian kernel to project158

them into the computational LES grid:159

ηε =
1

ε3π3/2 e−r2/ε2
(6)160

where r is the distance from the grid point to the actuator point, and ε denotes the width of the kernel. The kernel width is161

chosen to be at least ε = 2(∆x∆y∆z)1/3, as recommended to avoid numerical instabilities (Troldborg, 2009; Martínez-Tossas162

et al., 2015).163

The accuracy of the ALM can be sensitive to grid resolution and the choice of ε . The optimal εopt needed to resolve the164

induced velocities is typically much smaller than the ε used to avoid numerical instabilities (Martínez-Tossas et al., 2017). To165

address this challenge, we use the generalized filtered lifting line theory correction to accurately represent the blade aerody-166

namics (Martínez-Tossas and Meneveau, 2019; Martínez-Tossas et al., 2024), including the shedding of unresolved vorticity167

leading to missing induced velocities at the blade. The correction accounts for subgrid-scale induced velocity that would be168

obtained by using an optimal εopt by estimating its contribution and adding it to the resolved velocity in the LES. With the169

correction, the ALM provides consistent blade loading predictions across varying grid resolutions.170

The NREL 5 MW baseline wind turbine (Jonkman, 2009) is adopted as our reference model. It is a widely-used benchmark171

model developed by NREL to standardize research on wind technologies. The turbine has a diameter of D = 126m, three172

blades, and a hub height at elevation zh = 90m. It reaches a rated electrical power output of 5 MW at a rated wind speed173

of approximately 11.4m/s. Its rotor blades utilize the DU (Delft University) and NACA (National Advisory Committee for174

Aeronautics) series airfoil profiles optimized for aerodynamic efficiency, structural integrity, and minimal fatigue loads, making175

the NREL 5 MW turbine an essential tool for evaluating wind turbine performance, control strategies, structural design, and176

offshore platform dynamics.177
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The dataset employs fixed but row-dependent rotor angular velocities determined through an initialization procedure. Initial-178

ization begins with all turbines operating at TSR=7.5 (near-optimal for NREL 5MW turbines). In this initialization simulation,179

the angular velocity Ω for each turbine is then computed dynamically using:180

Ω = T SR × 1.087 Ud

(1−a)R
. (7)181

where Ud is the disk-averaged velocity; the numerator incorporates an empirical 8.7% correction factor for LES filter-scale182

effects (ε = 16m), validated through single-turbine laminar inflow tests; the induction factor a derives from rotor geometry183

(blade number Nb = 3, radius R = 63m, and chord c = 3–4m) and local inflow angle φ via:184

a =
1

(4sin2 φ)/(σrCn)+1
, (8)185

with rotor solidity σr = Nbc/(πR) and force coefficient Cn =CL cosφ +CD sinφ . After approximately 30 minutes of simulation,186

the angular velocity Ω for each turbine is averaged within its respective row, which serves as the fixed operational values for187

the subsequent database simulations.188

Henceforth, the ˜(·) notation for LES-filtered field variables (e.g., velocity ũi, temperature θ̃ ) will be omitted for brevity. All189

subsequent variables should be interpreted as implicitly filtered quantities obtained from the LES solution, governed by the190

equations presented in this Section.191

3 Simulation parameters192

We simulate turbulent flow through a 10× 6 array of NREL 5MW turbines (with diameter D = 126m) in a 28.224× 3.78×193

2km3 domain, equally split between precursor and wind farm subdomains (each 112D = 14.112km long). Figure 1 displays194

the domain dimensions. The precursor domain includes the region denoted as P of length 5Lx/8, mapping region PM (Lx/8),195

and spanwise shifting region PS (Lx/8). The wind farm domain features 14D of upstream buffer zone, 63D turbine region, 21D196

downstream wake recovery region (these three regions combined are denoted as W ), and 14D outflow fringe region (WF ). The197

turbines are spaced 7D (streamwise) and 5D (spanwise), with lateral boundaries 2.5D from the outermost turbines. Note that198

the fringe region WF , as well as the mapping (PM) and spanwise shifting (PS) regions, have a length of Lx/8, and the mapping199

region PM extends from 5Lx/8 to 3Lx/4. Vertically, a 0.5km a Rayleigh damping sponge layer (denoted as R) is located between200

1.5 and 2km(see Figure 1).201
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Figure 1. Schematic representation of the computational simulation domain (not to scale), showing: (a) top view (x–y plane), (b) side view

(x-z plane) and (c) front view (y–z plane). The precursor computational domain consists of the regions denoted as “P”, the precursor mapping

region “PM”, and the precursor spanwise shifting region “PS”. The wind farm computational domain includes the wind farm region “W” and

the fringe region “WF ” near the outlet. Both precursor and windfarm computational domains include a Rayleigh damping region at the top

(region “R”). The turbine diameter D = 126m and hub height zh = 90m are also marked.

The turbulent flow is driven by a constant geostrophic wind speed G = 15m/s at αg ≈ −22.5◦ to the x direction, with202

the angle controlled by a PI controller (KP = 10, KI = 0.5) to align hub-height mean wind velocity with the x-axis in the203

conventionally neutral boundary layer (Sescu and Meneveau, 2014; Narasimhan et al., 2022). The surface has roughness length204

z0 = 0.1m and reference potential temperature θ0 = 263.5K. Initial conditions set Ug = 15m/s (streamwise) and Vg = 0m/s205

(spanwise), perturbed by random noise, while potential temperature decreases from 265K at the surface with a 1K/km lapse206

rate, including random perturbations below 1km.207

The numerical simulation is conducted in three consecutive phases to ensure proper flow development and statistical con-208

vergence.209

– Phase 1: Coarse-resolution ADM spin-up: A 10-hour simulation using the ADM is performed to establish a quasi-210

stationary atmospheric boundary layer and wind farm wake field. This phase leverages the computational efficiency of211

ADM, which approximates turbine forces without resolving actuator line-level aerodynamics.212
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– Phase 2: Fine-resolution ALM convergence. A 1-hour simulation using the actuator line model at finer spatial res-213

olution transitions the flow from ADM-averaged to ALM-resolved turbine representation. Besides the turbine model214

update, two additional changes are introduced in this phase: (i) the time-stepping scheme is switched from a constant215

Courant–Friedrichs–Lewy (CFL) number of 0.0625 to a fixed time step of ∆t = 0.025s. This adjustment has negligi-216

ble impact on the results because, under these simulation conditions, CFL = 0.0625 corresponds to ∆t ≈ 0.03s. The217

slightly more restrictive ∆t = 0.025s maintains numerical stability while preserving solution accuracy. (ii) The rotor218

control changes from a fixed tip-speed ratio (TSR = 7.5) to fixed rotor angular velocities that vary across turbine rows,219

as tabulated in Table 1. This adjustment has a negligible impact on the results because the prescribed angular velocities220

closely match the values achieved under TSR = 7.5 conditions (see the calculation method in Section 2.3), ensuring221

nearly identical rotor dynamics.222

– Phase 3: Fine-resolution simulation for database construction. A final 1-hour simulation is carried out to collect high-223

fidelity flow and turbine data. Flow field variables are recorded every 20 LES time steps (i.e., every 0.5s) on a filtered224

and subsampled spatial grid (every other grid point in the x–y plane), while wind turbine data—both integral and blade-225

resolved—are stored at every LES time step (0.025s). Note that we purposefully operate the NREL 5MW turbine in226

“region II” during the simulation time, in order to avoid having to choose and document additional controller actions such227

as curtailment or cut-off conditions. Such operations would add additional complexity to the required characterization228

of the turbine operations. As a result, during some times some of the turbines operate “above rated conditions” but229

maintaining self-consistent aerodynamic behavior of the blades and air-flow.230

Table 1. Rotor speed for each row of turbines.

Row No. 1 2 3 4 5 6 7 8 9 10

Ω (rad/s) 1.33 1.02 1.04 1.07 1.09 1.09 1.09 1.09 1.09 1.10

The three phases of the simulation are illustrated through the time history of the boundary layer height and the geostrophic231

wind angle shown in Figure 2.232
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Table 2. Three consecutive phases and computational domain parameters

Phase
Grid

level

Turbine

model

Domain size

2Lx×Ly×Lz

(km×km×km)

Number of grid points

2Nx×Ny×Nz

Spatial resolution

∆x×∆y×∆z

(m×m×m)

Time grid

CFL or ∆t

(- or s)

1 Coarse ADM 2×14.112×3.78×2 2×512×192×400 27.56×19.69×5 CFL=0.0625

2 Fine

ALM

2×14.112×3.78×2 2×1,536×384×400 9.19×9.84×5

CFL=0.0625
TSR=7.5

ALM

Ω = const
∆t = 0.025s

3 Fine
ALM

Ω =const

Simulation with

2×14.112×3.78×2 2×1,536×384×400 9.19×9.84×5 ∆t = 0.025s

Sampling over/with

(10.584+12.348)×3.78×2 (576+672)×192×400 18.38×19.68×5 ∆t = 0.5s

Phase 1 Phase 2

• Fine resolution

• ALM

TSR = 7.5 Ω = c

Sampling 

Flow convergence

ALM convergence

t (h)

h
A

B
L

 (
k

m
)

∆t = 0.025 sCFL = 0.0625

α
 (rad

)

• Coarse resolution

• ADM

Phase 3

Figure 2. Time history of boundary layer height hABL, and geostrophic wind angle α , indicating the three simulation phases (phase 1: Coarse-

resolution ADM spin-up, phase 2: Fine-resolution ALM convergence, and phase 3: Fine-resolution simulation for database construction).
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4 JHTDB-wind database construction233

The LES data from the final 1-hour sampling period are systematically ingested into the database and organized into two pri-234

mary data types: (i) flow field data, consisting of 4D space-time fields (3D spatial + temporal) captured across both simulation235

domains (precursor and wind farm domains), providing complete spatiotemporal information about the atmospheric flow; and236

(ii) turbine data, which are further subdivided into two subtypes. The first subtype is turbine integral operational data, com-237

prising time histories of turbine power and thrust. The second subtype is turbine blade data, which includes time histories of238

aerodynamic quantities sampled at each discrete actuator point along each blade.239

4.1 Flow field data240

4.1.1 Domain of the dataset241

As described in Section 3, the LES is conducted in the domain of dimensions 2×14.112×3.78×2km3 (see Table 2). When242

compiling the database, we exclude numerically imposed auxiliary regions: the precursor spanwise shifting region PS (final243

Lx/4 of the precursor domain) and the wind farm fringe region WF (final Lx/8 of the wind farm domain), as visualized in244

Fig. 1. These regions serve purely numerical functions (periodicity enforcement and inflow recycling, respectively) without245

contributing to physical flow dynamics of interest. The resulting database domain has the extents of (10.584 + 12.348)×246

3.78×2km3, as shown in Fig. 3. The top 0.5km sponge region is kept in the database for simplicity of data management and247

possible interest.248

!9
"

Figure 3. Schematic representation of the database domain (not to scale). This is the physical domain available in the database, merging the

precursor domain (P + PM) up to the end of the mapping region at 3/4Lx, with the windfarm domain (W ) and excluding the fringe region

(WF ). Turbines are numbered from 1 to 60 as shown. The domain dimensions are (10.584+12.348)×3.78×2km3.
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4.1.2 Spatial resolution of the dataset249

To minimize storage, we applied spectral filtering on x-y planes for flow field data by truncating Fourier modes above κmax/2,250

where κmax = π/∆LES is the LES cutoff wavenumber. The filtered fields were then subsampled at every alternate grid point251

in the x and y directions, maintaining the original vertical (z) resolution. This approach reduces the dataset size by 75% while252

maintaining fidelity in capturing the dynamically significant larger-scale flow structures and turbine wake interactions. Thus253

that the flow field data has a grid size of (576+672)×192×400.254

4.1.3 Temporal resolution of the dataset255

Field data are stored at intervals of 0.5s (every 20 LES steps of 0.025s), ensuring that fluid parcels advected at the maximum256

geostrophic speed (15m/s) travel less than the horizontal grid spacing (∆x≈ 9.19m) between snapshots. Although rotor blade257

tips move across several vertical grid spacings during this interval, the corresponding rotor force field is smooth (Gaussian258

filtered at scale ε = 16m > 2 3
√

∆x∆y∆z), ensuring that the storage frequency of 0.5s remains appropriate. Over the 1-hour259

simulation period (i.e., 3,600 seconds, the simulation advances through 3,600/0.025=144,000 LES time steps, with flow fields260

stored at 144,000/20 = 7,200 consecutive snapshots.261

4.1.4 Final structure of the dataset262

Consequently, the final stored data dimensions are nx×ny×nz×nt = 1,248×192×400×7,200. At each stored time step, six263

spatial fields are recorded: the three velocity components u(x,y,z, t), v(x,y,z, t), and w(x,y,z, t); the (kinematic) pressure field264

p(x,y,z, t)/ρ = p∗(x,y,z, t)−ukuk/2 (the SGS stress trace is not available and is anyhow negligible); the potential temperature265

field θ(x,y,z, t); and the subgrid-scale eddy viscosity νSGS(x,y,z, t). In addition, the three components of the turbine force266

field, fx(x,y,z, t), fy(x,y,z, t), and fz(x,y,z, t), are also stored. Unlike the other flow field variables, these force components are267

stored only from the ground (z = 2.5m) up to 200m in the vertical direction. However, they are retained at the original spatial268

resolution. The detailed information of these stored field variables can be found in Table 3. It also needs to be mentioned that the269

concurrent precursor method ensures smooth transitions in velocity, potential temperature, and eddy viscosity fields between270

precursor and wind farm subdomains, by construction. However, due to the non-local nature of the pressure solution (solved271

separately in each domain via Poisson equations) and the velocity-only coupling between domains, the stored pressure field272

exhibits a minor discontinuity at the interface. This artifact does not affect the resolved turbulence dynamics or turbine wake273

interactions, but needs to be taken into account if computing pressure gradients across the boundary separating the precursor274

and wind farm domains.275

These 4D field variables are stored using the Zarr format (Miles and et al., 2023). In Zarr-based storage, data are organized276

into chunks, the smallest units retrieved during a query. To ensure efficient data access, chunk sizes must be large enough to277

support common operations, such as differentiations and interpolations, that typically require access to a three-dimensional278

neighborhood around the query point, while remaining small enough to avoid excessive memory usage. Based on extensive279

testing and prior experience with other JHTDB datasets, a chunk size of 643 grid points provides optimal retrieval speeds280
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Table 3. Summary of flow field variables.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nx×ny×nz×nt

Data resolution

∆x×∆y×∆z×∆t

(m× m × m × s)

1 Streamwise velocity

velocity

u

m/s

1,248×192×400×7,200 18.38×19.68×5×0.5

2 Spanwise velocity v

3 Vertical velocity w

4 Potential temperature temperature θ K

5 Pressure (kinematic) pressure p m2/s2

6 SGS eddy viscosity eddyviscosity νSGS m2/s

7
Turbine streamwise

force (kinematic)

force

fx

m/s2 871×384×40×7,200 9.19×9.84×5×0.5
8

Turbine spanwise

force (kinematic)
fy

9
Turbine vertical

force (kinematic)
fz

and performance for typical data access modalities. We chose a similar chunk size but shaped according to 52× 64× 80 so281

that an integer multiple of the chunk size in each direction fits into the stored domain size. The total amount of data stored is282

about 15 Terabytes. These flow field data can be queried using getData(...) calls from analysis programs such as Python,283

MATLAB, Fortran, or C, in the same manner as with other turbulence datasets available through JHTDB.284

4.2 Wind turbine data285

4.2.1 Turbine-level data286

The turbine-level data are integral quantities characteristic of each turbine operation, which are derived from the actuator line287

modeling. This dataset includes high-fidelity time histories of power output, thrust force, and rotor angular velocity, sampled288

at ∆t = 0.025s all 60 turbines, as summarized in Table 4. In the present dataset, the angular velocity is held constant in time,289

but for other datasets (e.g. Xiao et al. (2025)), this is not generally the case. For each variable, the dataset consists of 144,000290

rows and 2 columns, where the first column represents time and the second column contains the corresponding values of the291

recorded variable. The turbine data are stored in files using the Parquet format, which facilitates efficient access and querying292

from various programming languages. Turbine-level data can be accessed using the getTurbineData(...) function call293

from analysis environments such as Python or MATLAB.294
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Table 4. Summary of turbine-level variables. Each dataset is an nt×2 matrix, where nt is the number of time steps. Columns 1 and 2 represent

time and measured values, respectively.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

nt ×2

Data resolution

∆t (s)

1 Power power P W

144,000×2 0.0252 Thrust force thrust Ft N

3 Rotor angular velocity RotSpeed Ω rad/s

4.2.2 Blade-level data295

In addition to the integral quantities characteristic of each turbine’s operation, more detailed information is captured along296

each turbine blade to enable blade-resolved aerodynamic analysis. This fine-grained dataset allows users to investigate the297

local aerodynamic behavior of blades under unsteady inflow conditions, which is critical for understanding load distributions,298

fatigue effects, and control optimization strategies. The turbine blade-level dataset includes high-fidelity time histories sampled299

at 0.025s for all 180 blades in the wind farm (60 turbines×3 blades each), with aerodynamic and geometric quantities sampled300

at 100 discrete actuator line points along the blade span. As summarized in Table 5, a total of 19 variables are sampled and301

stored, with each variable written to a separate file. For each variable, the dataset has dimensions of 144,000×3 rows and 103302

columns. Each time step includes three rows corresponding to the three blades of a turbine, resulting in a total of 144,000×3303

rows. Vertically, the first column represents time in seconds, the second column specifies the turbine number, and the third304

column denotes the blade number (blades can be identified by the time-histories of the individual ALM point positions). The305

remaining 100 columns contain the values of the selected variables at each of the 100 actuator points from the blade root to tip.306

Similar as turbine-level data, blade-level data are stored as Parquet files, allowing efficient access across multiple programming307

environments. Blade-level data can be accessed using the getBladeData(...) function call from analysis environments308

such as Python or MATLAB.309
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Table 5. Summary of blade-level variables. Each dataset is an (nt×3)×103 matrix, where nt is the number of time steps and 3 represents the

turbine blades. Columns 1-3 represent time, turbine number, and columns 4-103 store aerodynamic measurements at 100 discrete locations

along each blade.

No.
Name of

variable

Name in

dataset
Symbol Unit

Data size

(nt ×3)× (nℓ +3)

Data resolution

∆t×∆ℓ

(s × m)

1 ALM point x-position xPos Px

m

(144,000×3)× (100+3) 0.025×0.615

2 ALM point y-position yPos Py

3 ALM point z-position zPos Pz

4
Perturbation velocity at

LES resolution, component 1
uy_LES1 u′y,LES1

m/s

5
Perturbation velocity at

LES resolution, component 2
uy_LES2 u′y,LES2

6
Perturbation velocity at

optimal resolution (0.25c), component 1
uy_opt1 u′y,opt

7
Perturbation velocity at

optimal resolution (0.25c), component 2
uy_opt2 u′y,opt

8
Perturbation velocity correction

u′y,opt−u′y,LES, component 1
du1 ∆u′y,1

9
Perturbation velocity correction

u′y,opt−u′y,LES, component 2
du2 ∆u′y,2

10 Angle of attack alpha α rad

11 Lift coefficient Cl CL
-

12 Drag coefficient Cd CD

13 Lift force per unit length lift FL/ℓ
N/m

14 Drag force per unit length drag FD/ℓ

15 Local relative velocity magnitude Vmag Vmag

m/s
16

Axial component of the local relative

velocity in blade-oriented coordinates
Vaxial Vaxi

17
Tangential component of the local relative

velocity in blade-oriented coordinates
Vtangential Vtan

18
Axial component of

the local force
axialForce Faxi

N
19

Tangential component of

the local force
tangentialForce Ftan
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5 Web-accessible virtual sensor data access methods and examples310

5.1 Flow field data311

A defining feature of the JHTDB database system (Li et al., 2008) is its low entry barrier for data usage, enabling users to312

efficiently explore large-scale simulation datasets through Web Services and the virtual sensor methodology. The JHTDB-313

wind system adopts the same approach, allowing access to wind farm data using these established tools. Users can develop314

analysis scripts or notebooks in familiar programming languages such as Python and Matlab (as well Fortran and C) to run315

them remotely on their own machines or on SciServer, a cloud service dedicated to running code close to the data. Within these316

analysis environments, users specify space-time arrays by defining spatial locations (e.g., along a line, across a surface, within317

a subvolume, or scattered arbitrarily) and corresponding time instances, i.e. users specify the positions of virtual sensor arrays.318

These space-time arrays are then passed to the predefined function, getData(...), which returns interpolated values of319

the selected variables at defined coordinates. This framework enables targeted, on-demand data access without the need to320

download large volumes of raw simulation output.321

Figures 4 and 5 display contour plots of flow field variables at the turbine hub height (z = zh = 90m) for the precursor and322

wind farm domains, respectively.323

Figure 4. Contour plots of instantaneous flow field variables in the precursor domain between x = 0m and x = 10,381.875m. (a) the

streamwise velocity, (b) the vertical velocity, (c) the pressure, and (d) the potential temperature deviation.

Fig. 6 presents Python code snippets that demonstrate how to query the JHTDB-wind database to extract snapshots of324

velocity, pressure, and potential temperature fields at a specific time, approximately in the middle of the stored 1-hour dataset,325

namely at t = 1,800.75s. As a first step, an array “points” is populated with spatial coordinates that define a 2D plane: in this326

case, an equally spaced grid of 950× 200 points in the x and y directions at a constant height z = zh = 90m. These query327

points typically do not coincide with the actual simulation grid points, and users are not required to know the grid layout to328
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access the data. The JHTDB-wind interface provides interpolated field values based on a user-specified interpolation method.329

Supported options include no interpolation (it returns the value at the nearest grid point), Lagrange Polynomials of order 4,330

6, or 8, and several spline interpolation methods (Li et al., 2008; Graham et al., 2016). In this example, we use 8th-order331

Lagrange polynomial interpolation in space. Similarly, if the requested time does not coincide with a stored timestep, temporal332

interpolation is applied using third-order Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method (Li et al., 2008).333

This user-friendly data access model eliminates the need for downloading and parsing simulation files. Instead, the Python334

API returns arrays with the queried field variables, which can then be visualized directly within a Jupyter notebook (or Matlab335

code). This approach was used to generate Figs. 4 and 5. It is important to note that the full one-hour dataset (comprising336

14,400 timesteps) is available for analysis, allowing users to query any time between t = 0 and t = 3,600s. For example, Fig.337

7 shows a hub-height snapshot over the entire domain at time t = 2,505s.338

Figure 5. Contour plots of instantaneous snapshots of field variables in the wind farm domain between x = 10,584m and x = 21,921.375m.

(a) the streamwise velocity, (b) the vertical velocity, (c) the pressure, and (d) the potential temperature deviation. The black solid lines

represent the location of wind turbines.

Similar queries can be made for the values, spatial gradients, and Hessians (second-order derivatives) of all variables listed339

in Table 3. For example, Fig. 8(a) and (b) show x-component of the turbine force-field fx and the x-direction gradient of340

the pressure field (∂ p/∂x), respectively, on a y− z plane intersecting Row 1 (Turbines #1 - #6) at x = 12,348m (1764 m341

downstream of the wind farm domain), at time t = 1000.013s. Fig. 8(c) and (d) present similar results on a plane intersecting342

Row 9 (Turbines #49 - #54) at x = 19,404m (8,820m downstream of the wind farm domain) at another time t = 2,000.67s.343

These plots were generated using the Python code shown in Fig. 9. In these examples, the queried times are intentionally chosen344

not to coincide with the stored simulation time steps, demonstrating the temporal interpolation capabilities of JHTDB-wind.345

Next, we provide examples of computed mean vertical profiles of fundamental flow quantities within the precursor domain,346

which features standard conventionally neutral atmospheric conditions. Figure 10 shows vertical profiles of horizontal- and347

time-averaged mean velocities, subgrid-scale eddy viscosity, and deviations in potential temperature, all obtained by averag-348
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Figure 6. Python code snippet used to obtain the data to generate the Fig. 5.

Figure 7. Contour plot of instantaneous snapshot of streamwise velocity in the entire database domain, ranging from x = 0 to x =

22,913.625m, at time t = 2,505s. As before, the black solid lines represent the location of wind turbines.

ing in the horizontal directions and over time. The data used to produce these profiles is retrieved using the virtual sensor349

framework, and an example code snippet demonstrating this process is shown in Figure 11.350
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Figure 8. Instantaneous contours of x-direction turbine force (as projected onto the LES grid using Gaussian smoothing as part of the ALM

method) in y− z planes at (a) Row 1 (x = 12,348m) and between the relevant vertical range z ∈ [2.5,200]m, and (b) Row 9 (x = 19,404m).

Panels (c) and (d) show the x-direction pressure gradient distributions on the same planes, coincident with the turbines.

Figure 9. Python code snippet used to obtain the data to generate the Fig. 8.

351
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Figure 10. Vertical profiles of horizontal- and time-averaged (a) velocities ⟨u(z)⟩x,y,t , ⟨v(z)⟩x,y,t and velocity magnitude V (z)x,y,t =
[
⟨u(z)x,y,t⟩2 + ⟨v(z)x,y,t⟩2

]1/2, (b, bottom axis) subgrid-scale eddy viscosity ⟨νSGS(z)⟩x,y,t used in the LES as a result of the Lagrangian

scale-dependent dynamic model, (b, top axis) potential temperature deviation ⟨θ ′(z)⟩x,y,t (i.e., the deviations from a reference temperature

θ0 = 263.5K).

Figure 11. Python code snippet used to obtain the data to generate vertical profiles of ⟨u(z)⟩x,y,t : for the 250 heights z between z = 0.7m

and z = 2,000m separated by 8m, we query data on a regular mesh (not necessarily coinciding with stored grid points). For statistical

convergence, we average over 4 times covering the entire hour (t = 900;1,800;2,700;3,600)s.

5.2 Wind turbine data352

Wind turbine data, including both the turbine-level and blade-level data, are considerably smaller than the 4D flow fields, and353

one possibility would have been to allow users to download them directly as files. However, such an approach would require354
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users to identify specific files, understand naming conventions, and handle formatting, posing a barrier to seamless integration355

with flow field queries. To maintain consistency and usability across the platform, we adopt a similar virtual sensor data356

access paradigm used for the flow field data. Two dedicated query functions are developed: getTurbineData(...) for357

turbine-level quantities and getBladeData(...) for blade-resolved data. For getTurbineData (...), users specify358

the turbine number (ranging from 1 and 60) and desired time instances. For getBladeData (...), both turbine and blade359

numbers need to be specified, along with an array of actuator point indices (1 to 100) and times at which the data are requested.360

Linear interpolation in time is supported to provide values between stored simulation steps.361

As an example, Fig. 12 show a time series of total power generated by the wind farm (a), as well as by the first and second-362

to-last row of 6 turbines (b). The code snippet specifying the getTurbineData(...) call is shown in Fig. 13. Similar calls363

can be made to extract any of the turbine specific variables listed in 4.364

Figure 12. Time evolution of power from turbines during the 10-minute time interval t ∈ [1000.33,1600.33]s. (a) shows the total power from

the entire wind farm, while (b) shows the power for the turbines in Row 1 (i.e., Turbines #1-#6) and in Row 9 (i.e., Turbines #49-#54).

Next, we illustrate the use of getBladeData(...) in Fig. 14, showing time histories of the lift and drag coefficients365

(a), as well as the lift coefficient as function of blade angle (b), computed according to ζ (t) = arctan[z(t)− zh)/(x(t)− xT )],366

during a shorter time period of 60 seconds. The results shown are for a particular turbine and blade (Turbine #28 in the central367

portion of the wind farm and blade #3, the latter being an arbitrary choice, of course). The Python code snippet shown in Fig.368

14 illustrates how the call to getBladeData(...) is made, and again, the queried data are simply plotted as a time-369

series plot as part of the same code. Using a similar approach, variable data can be extracted along turbine blades and further370

processed to compute higher-order statistics. Figure 16 shows axial force, tangential force, drag and lift coefficients for an371

upstream turbine (Turbine #1, blade #1) and a downstream turbine (Turbine #60, blade #1) at a specific time of t = 1,500 s.372

Any of the variables listed in Table 5 can be similarly queried (also in Matlab).373
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Figure 13. Python code snippet illustrating the use of the function getTurbineData(...) as part of a loop over all turbines in the wind

farm, and subsequent summation to evaluate time-series of total power used to generate Fig. 12(a).

Figure 14. (a) Time evolution of lift and drag coefficients on an ALM point 80% along the span of blade #3 for Turbine # 28. (b) Polar plot

of lift coefficient for that point as a function of blade angle along its rotation. With a fixed Ω of (1.09 rad/s) for this turbine (obtained via a

call to getTurbineData(...), there are around 10.5 revolutions within the 60 seconds queried.

6 Conclusions374

In this paper, we have introduced JHTDB-wind, hosting datasets from high-fidelity LES simulations of wind farms. We extend375

the standard “virtual sensors” data access methods (Li et al., 2008; Yu et al., 2012; Graham et al., 2016) that have been success-376

fully used for democratizing access to more fundamental turbulence datasets. Besides velocity, pressure, potential temperature,377

and SGS eddy-viscosity fields, JHTDB-wind adds full 4D (space-time) data on aerodynamic turbine force distributions as378

seen by the flow as well as time series of turbine and actuator line specific aerodynamic data along each of the turbine blades,379

modeled using ALM. We explain the simulation details and provide background on the numerical method and flow parameters,380

and provide detailed examples and explanations of the user-friendly data access methodologies. It is hoped that these data will381

provide useful insights about the complex fluid dynamic processes occurring in wind farms.382

We realize that in generating a dataset for a representative conventionally neutral boundary layer case, with a relatively383

large wind farm with 60 turbines, many other choices could have been made (flow parameters, turbine model and control384

scheme, usage of a particular LES numerical code, numerical resolution, and so on). We anticipate that different members of385

the community would have made different choices, and we look forward to conversations about how to further improve such386
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Figure 15. Python code snippet used to obtain the data to generate Fig. 14.

Figure 16. Distributions of ALM quantities along the turbine blade at a specific time (t = 1,500 s for two turbines (Turbine #1, blade #1;

blue lines; Turbine #60, blade # 1, orange lines): (a) Axial component of the local force (on each ∆ℓ = 0.615m segment), (b) Tangential

component of the local force (on each ∆ℓ = 0.615m segment), (c) Lift coefficient, (d) Drag coefficient.

datasets. We believe, however, that the case selected is representative of CNBL wind farm dynamics that have been studied by387

many others before, with a well-tested numerical code. Hence, the authors hope that the data can be of some use and interest388

to researchers in wind energy.389
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As a final note, we have additionally prepared a second dataset for JHTDB-wind featuring an 8-turbine wind farm over a390

full diurnal cycle, capturing both strongly stable and unstable atmospheric boundary layer regimes at different times of the day391

and night (Xiao et al., 2025).392

7 Code and data availability393

The wind farm data is available at the JHTDB-wind website at https://turbulence.idies.jhu.edu/datasets/windfarms (see also its394

DOI: https://doi.org/10.26144/D8ES-FC15). Various modes of data access are provided (Zhu et al., (2025): (i) Single-point395

queries of flow field variables using a browser interface at https://turbulence.idies.jhu.edu/database/query. (ii) Multiple point396

queries up to 4096 points at a time: downloading DEMO codes (Python or Matlab) at https://turbulence.idies.jhu.edu/database/397

wind and executing the DEMO code on user’s own platforms. Users can then edit the DEMO codes to select different points398

and times to query desired data. Default DEMO codes provided are set up for accessing the diurnal cycle wind farm dataset.399

To access the conventionally neutral dataset, users can change the “dataset” variable to “nbl_windfarm” and select times to the400

range between 0 and 3600 seconds.401
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