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Reviewer #1 

Overall feedback 

This manuscript provides an extensive evaluation of the ADDA-v2 climatological wind 

dataset for North America. The manuscript text is logically structured and well-written 

and the figures are clear. A large set of measurement stations and different aspects 

of the model performance are considered over a range of timescales. The analysis 

goes into sufficient depth and an uncertainty analysis is included. It is also valuable 

that a comparison is done to the widely used dataset used to drive the model runs, i.e. 

ERA5 to see where the downscaled dataset significantly improves on the driving data. 

However, some choices or sections in the manuscript would benefit from changes or 

additions, which I will detail below. 

 
Thank you for the insightful comments which we find valuable in improving our 
manuscript.  We have responded to each of the following general and specific 
comments (in blue font) and will make appropriate adjustments during the revision 
process.   

 

General comments 

1. It would be valuable if the findings of this evaluation (and the ADDA-v2 dataset 

itself) would be compared to other evaluation studies (and other datasets), 

preferably for the region. See also specific comment nr. 2. Hence, some references 

should be added in the discussion section (or somewhere else) to better situate 

this wind product in relation to other datasets and also how the 

evaluation/performance differs from other studies. 

 

We agree and plan to contextualize the added value of ADDA-v2 to existing datasets 

that cover a similar region, including the wind dataset discussed by Draxl et al. 

(2015a, b). Such studies were mentioned in the Introduction (Draxl et al., 2015a, b; 

Gensini et al., 2023; Liu et al., 2017; Rasmussen et al., 2024) but will be readdressed 

in the Discussion to situate ADDA-v2 in relation to these other high-resolution 

datasets. We will also add a discussion about the relative performance of ADDA-v2 

compared to other datasets, as studied in our collaborative work by Sheridan et al. 

2024.  

 

Specific comments 
 

 
1. Page 2, line 40: I recommend adding that fine-scale surface variations (topography, 

land cover, …) are also better represented. 

 

Agree. Will do. 

 

2. Page 2, Line 60: Considering that this wind dataset of Draxl et al. (2015a,b) exists 

and has an even higher spatial resolution, could you add somewhere in the 
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manuscript why this new data product ADDA-v2 is perhaps a better choice going 

forward? 

 

Referring to the response to the general comment, we plan to include a component 

to the discussion that addresses existing datasets and outlines the added merit of 

ADDA-v2 in climatological wind studies or wind-resource assessments. We plan to 

highlight the more extensive temporal coverage of ADDA-v2 as well as the unique 

spatial domain that spans into regions typically outside the domain of other 

datasets, such as Alaska, Mexico, and Caribbean islands. Additionally, the 

ensemble analysis is useful for model uncertainty quantification; and the extensive 

temporal coverage can help examine inter-annual variability.  

 

 
3. Page 3, line 72: 20 years is indeed a substantial length, but climate variability at 

20-year timescales still exist – it could be valuable to mention somewhere in the 

manuscript how the ADDA-v2 dataset can be supplemented to account for this in 

wind resource assessments. 

 

There are indeed variabilities that exist within more climatological timescales, 

modulated by large-scale oscillations. Our data is not long enough to encompass all 

such variabilities. However, ADDA-v2 can be supplemented by other, longer 

datasets, such as CONUS404 (Rasmussen et al., 2024), which covers a period of 

41 years between 1980-2020 to provide a more comprehensive means for 

examining variability on longer timescales. We will add this point to Discussion. 

 

4. Page 4, line 98: Could you provide motivation for the choice of two months of spin-

up? It is rather limited for the soil component as says a publication of Jerez et al 

(2020) [https://doi.org/10.1029/2019MS001945], definitely if simulations start in the 

cold months. 

 

We understand the reviewer’s concern and have read the paper by Jerez et al. 

(2020). Please note that this paper studied the topic of spin-up time when the RCM 

is driven by GCMs. In our practice, when running RCMs driven by GCMs, we use 

at least one-year spin-up time and run the model continuously without re-

initialization. However, the simulation we presented in this manuscript is driven by 

reanalysis ERA5. We have evaluated ERA5’s soil moisture by comparing against 

satellite observations and have found that the soil moisture in ERA5 is realistic (see 

figure below). This indicates that the soil moisture is not of concern in reanalysis 

driven runs as it would be in GCM driven runs. We have also evaluated the ADDA’s 

soil moisture in this these simulations and they look reasonable as well. 

Additionally, there are many previous studies (e.g., Qian et al., 2003; Lucas-Picher 

et al., 2013; Pan et al., 1999) looking at model spin-up times, their impacts on 

model performance, and their effects when compared with using spectral nudging. 

In short, the findings show that reinitialization can reduce the model bias in the long 

term, which can achieve similar performance to spectral nudging. Therefore, in this 

study, due to the additional computational cost, we have not applied the nudging 

technique but instead use reinitialization to reduce potential bias. We will add 

clarification during revision. 
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Pan, Z., Takle, E., Gutowski, W. & Turner, R. Long simulation of regional climate 
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0493(1999)127%3C0308:LSORCA%3E2.0.CO;2 (1999) 
   

 
  

 

5. Page 4, line 122: On such a large domain, why is no spectral nudging employed 

for small wavenumbers? Has it been validated at some point that the properties of 

synoptic systems are indeed adequately reproduced? It would be good to comment 

on this. 

 

Thanks for the comment. During the early stages of testing this model setup, we 
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https://doi.org/10.1175/1520-0493(1999)127%3C0308:LSORCA%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127%3C0308:LSORCA%3E2.0.CO;2
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had tested the effect of spectral nudging using varying wavenumbers, heights at 

and above which to use nudging, and nudging strength (as documented in Wang 

and Kotamarthi (2013)). While nudging is very useful when the spatial resolutions 

are very different between forcing data and RCM (e.g. when we use NCEP-R2 at 

250km), the impacts of nudging for ERA5 for our 4km run were not as significant 

because the ERA5 is already at a very decent resolution (~30km) compared with 

other global reanalysis. Given the additional cost of employing spectral nudging, 

we opted not to use nudging for this simulation. In terms of the model performance 

of properties of synoptic systems, you can refer to the wind roses in Section 3.1.3. 

You can also see our precipitation performance and evaluation in Akinsonola et al. 

(2024) which also demonstrated that our 4km run captures the synoptic patterns 

well. We will add clarification to our revision. 

 

References: 
 

Wang, J., and V. R. Kotamarthi, 2013: Assessment of Dynamical Downscaling in Near-

Surface Fields with Different Spectral Nudging Approaches Using the Nested Regional 

Climate Model (NRCM), Journal of Applied Meteorology and Climatology, 52, 1576–1591 

 

Akinsanola, A. A., Jung, C., Wang, J., & Kotamarthi, V. R. (2024). Evaluation of precipitation 

across the contiguous United States, Alaska, and Puerto Rico in multi-decadal convection-

permitting simulations. Scientific Reports, 14(1), 1238. 

 

6. Page 5, table 1: were there any model options activated to account for subgrid-

scale orography (e.g. topo_wind for YSU PBL scheme or the GWDO scheme) – 

would be good to mention this. 

 

Yes, these were activated for these simulations, and our initial tests show that it 

can improve wind performance over complex terrain. We will mention this during 

revision. 

 

7. Page 5: table 1: can you motivate the choice for 49 vertical levels? Low-level winds 

are usually quite sensitive to this choice. Perhaps sensitivity tests were conducted? 

 

We tested the sensitivity of different vertical level configurations, mostly comparing 
to the choice for our previous, 12km simulations. We found that 50 levels perform 
better than the 38 levels we used previously for the 12km resolution simulations. 
In this simulation we also added many more layers below 1km. We have 18 σ levels 
below 1 km (8, 25, 42, 58, 75, 104, 147, 189, 231, 274, 317, 360, 403, 468, 555, 
643, 777, and 957m above ground level). Depending on the needs and the use of 
this dataset, such as boundary layer physics, urban meteorology, we believe that 
we may be beneficial further with finer vertical resolution at the lower level. We will 
add some discussion during revision.   

 
8. Page 5, line 138: are the observations also corrected for mast flow distortions? 

Perhaps good to comment on this and the implication on observational uncertainty. 

 
 For most of the observations which had only a single anemometer reading, no 

correction for mast flow distortion was performed. The orientation of the 

anemometers with respect to the towers was not commonly provided in the 
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metadata, and we did not wish to make corrective assumptions. For the occasional 

site where there were multiple anemometer readings at the same height, the 

maximum of the two wind speeds at each timestamp was selected to mitigate 

against mast flow distortion. We will add this information in the methodology 

(Section 2.2) 

 

 
9. Page 11, line 267: “As discussed in (Section 3.1)” should be corrected. 
 

Will correct during revision. 

 
10. Page 11, line 277: I would not use “improvement” here. 
 

We agree and will rephrase. 

 
11. Page 13, line 293: So is this the r between the seasonally-averaged values? Or is 

it the seasonally-averaged value of daily r values? Sometimes in the manuscript 

this is not very clear. 

 

The Pearson correlation coefficient in this section is for seasonally averaged 

diurnal cycles, rather than seasonally averaged r values for daily averages. We will 

clarify this. 

 
12. Page 19, section 3.1.3 (wind roses): I agree that a good approximation of the wind 

rose is a first indication that synoptic winds are well captured. However, the 

manuscript would benefit from any additional analysis (or references to related 

studies) which looks at this in more detail. I mainly say this because the domain is 

very large and no nudging is used. If this cannot be provided, it would be good to 

mention that this has not been inspected in full detail. 

 

We agree that the seasonal averaged wind-roses do provide model performance 

at the synoptic scale. Additionally, we argue that the evaluation at hub heights for 

specific locations provides more information than just at the synoptic scale. It 

provides more detailed information about the model’s ability to capture the finer-

scale wind patterns closer to the surface (at much lower heights than 

850hPa/500hPa, where synoptic scale mechanisms are more present). During the 

revision, we plan to look at the diurnal cycles of wind direction in each season to 

add another component to a synoptic perspective. However, we are also open to 

suggestions from the reviewer for ideas for additional analysis.  

 
13. Page 19, line 377: section index 3.1.3 is repeated here.. should be 3.1.4 I think? 
 

Correct. Will fix it during revision. 

 
14. Page 21, line 409: your prior analysis of seasonally-average diurnal cycles shows 

that statistically (not for specific days) the diurnal cycle is captured well. Here you 

seem to suggest to the reader not to use the sub-daily information of ADDA-v2. Is 

this not too critical? If you would feed the diurnal cycles of 500 winter days from 

ADDA-v2 to a wake model to check performance of a wind farm, I don’t feel like 
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the output would not be trustworthy. So maybe rephrase this a bit or provide 

additional clarification. 

 

We appreciate this comment and will clarify the context of this statement in the 

manuscript. We wanted to convey that ADDA-v2 is a climatological dataset and is 

not intended for weather-scale (e.g., day-to-day) evaluations. But for studies like 

the reviewer suggested, we believe the data and this analysis is still valuable. 

 

15. Page 22, figure 6: As surface wind speeds are usually well below 10 ms-1 on 

average, RMSE does not give a good idea of how good the agreement actually is. 

Could you use the rRMSE here? 

 

We agree and will adjust Figure 6 to display rRMSEs instead.  

 

16. Page 22, figure 6: In the introduction you mention that wind datasets are important 

for risk assessments of high winds. Yet, for this surface wind speed evaluation, you 

focus on seasonal RMSE’s. Why not also look at extremes? Is there perhaps a 

reason why this dataset is not intended for looking at extreme winds? Logically, for 

wind energy purposes one would be interested in winds higher up, so I’m curious 

what the surface wind speed output is for. You could add an analysis, or clarify why 

the presented analysis is sufficient. 

 

Thanks for the comment and suggestion. Indeed, one of the motivations for 

developing this high-resolution data was for risk assessments associated with 

extreme weather events. We will include an extremes analysis during revision. 

For example, we can compare the hourly output of ADDA-v2 alongside the hourly 

ASOS data focusing on the 95th percentile of wind speeds to validate ADDA-v2’s 

ability to capture extreme wind events. We are also open to any suggestions from 

the reviewer in terms of additional extreme analyses to the manuscript.  

 

Please also note that we have a separate study that conducted assessments on 

wind extremes using ADDA-v2 focusing on tropical cyclones (TC) in the Atlantic 

basin. Generally, we find that the ADDA-v2 data can accurately capture the TC 

characteristics, including categories, intensities, frequencies and duration. This 

work is currently under review. We agree that, by including an extremes validation 

for inland CONUS, we can further demonstrate ADDA-v2’s utility in wind-related 

risk assessments. 

 

 
17. Page 24, figure 7: These indicators ‘7-2’, ‘5-1’ – where do these come from? These 

should be explained somewhere. 

 

Apologies for the confusion. We will clarify what the indicators such as ‘7-1’ or ‘5-

2’ mean. They refer to the different options for the dynamic vegetation and 

surface drag parameterizations that are provided within the Noah Multi-

Parameterization land surface scheme.  
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18. Page 25, line 498: Instead of saying that high friction velocities correspond to 

weaker winds, could you explain a bit better to the reader why this is the case? 

 

While friction velocity is not a scale for wind speed itself, they tend to have strong 

correlations. Friction velocity quantifies the turbulent momentum flux at the 

surface. Therefore, higher u* values correspond to more of the momentum being 

lost to the surface, leading to weaker wind speeds closer to the ground, especially 

in areas with high surface roughness. We can clarify this so that the connection 

between friction velocity and wind speeds is clear. 

19. Page 26, section 3.4: An interesting addition. However, I am very interested to see 

the importance of the two components of model uncertainty: initialization and 

physics choices. I would expect that the lateral forcing would lead the initialization 

to not matter too much on annual statistics compared to physics parametrization 

choices. Please add this. 

The hypothesis from the reviewer is correct. Over most locations, the choice of 

physics parameterizations shows a larger range of model outcomes when 

compared to the varying initialization conditions. We will be able to add a figure to 

(likely) a supplementary file to show the difference in magnitudes for internal 

variability (varying initialization times) and structure uncertainty (varying model 

physics parameterizations). Some figures highlighting this can be seen below, in 

which the standard deviation between the structure uncertainty ensembles is larger 

than that of the internal variability ensembles: 

 

 

Figure R1. January diurnal cycle of 100m wind speed over four representative 6x6 
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grid regions using 10 ensemble members with varying initial conditions (dates and 

hours). The spread of these lines indicates the internal variability of our model over 

different regions.   

 

Figure R2. Same as Figure R1, but the spread indicates structure uncertainty due 

to physics parameterizations, specifically looking at different land surface model 

and Planetary boundary layer schemes. 

 
20. Page 28, figure 10: Is the inter-annual variability over a specific 2-week period 

something that wind farm operators are concerned about? As expected, this 

variability is very large. I think that the inter-annual variability on seasonal 

timescales might be good to add as well: e.g. how good or how bad a winter period 

can be in terms of wind resource over the lifetime of a wind farm. You could 

motivate your choice or add also the seasonal timescale to this analysis. 

 

Thanks for the comment. We’d like to clarify that the purpose of presenting 

biweekly model variability is mostly driven by the motivation of showing model 

uncertainty. That is, with longer time scales, the model uncertainty will decrease. 

We have calculated model uncertainty for weekly, biweekly and monthly 

timescales, and we chose to show bi-weekly here. The model uncertainty at the 

weekly scale is even larger than bi-weekly scale; contrarily, model uncertainty at 

monthly and seasonal scales are much smaller than the bi-weekly scale. We 

agree with the reviewer that the magnitude of interannual variability for the bi-

weekly timescale might be less useful than seasonal timescales for wind resource 

evaluations. So, we will include interannual variability at seasonal scale likely in a 

supplementary file during revision.  
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21. Page 29, line 553: Is the lower inter-annual variability in summer not simply a 

consequence of lower wind speeds? Relatively speaking, the variability could be 

as large as for winter or even larger. 

 

 We agree with the reviewer on both points they brought up. We can plot maps to 

show the relative values of these interannual variability (to the actual wind speeds) 

 
22. Page 30, line 601: I get a “404 not found” when pasting the link to reach the hub 

height wind data. Please make sure that a reliable pointer is available to access 

the data and that some documentation is available there. Perhaps also for the full 

ADDA-v2 data: include an e-mail / link where to request access. 

 

That is very strange. We double checked and the links were accessible and took 

the user to the intended destination. The following websites are where the links 

should take you:  

 
WTK-LED Climate API | NREL: Developer Network 

WDH: Wind Data Hub 

 

We will ensure that the links are functional during revision. We will also include the 

information necessary to request access to the full ADDA-v2 dataset.  

 

https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-led-climate-v1-0-0-download/
https://wdh.energy.gov/data/wind-energy
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Reviewer #2 

General feedback 
Overall, this manuscript is well written, well-structured and appears carefully worked through with 

nice looking figures. The work describes a new 4km, 20y mesoscale dataset covering North 

America with extensive validation using met towers and surface stations and ensemble analysis 

for a selected period. 

Downscaling of global reanalysis models using mesoscale models like WRF is well covered 

in the literature as well as the improvements it provides relative to the global models. Hence, the 

novelty of the approach in this manuscript may be disputed given that it has poorer resolution 

compared to the previous work of Draxl et al. (2015). 

However, the open access to the large dataset and the extensive validation effort including 

ensemble analysis justifies the publication. 

 

We appreciate all the insightful comments which we believe will further improve our 
manuscript. Please find our response to each individual reviewer’s comment in the 
following section.  
 

General comments 
In general, I would like to question if the selected validation metrics for wind speed (r, RMSE, 

rRMSE, OVL) provide sufficient complementary insight. In my view, these metrics overlap too 

much in what they measure and none of them allow for distinction between systematic errors 

(biases) and fluctuating errors. I suggest including a simple metric like mean (bias) error to cover 

this important aspect and re-reconsider if each of the other metrics contribute enough additional 

insight to remain in the paper. A metric should be included only if characteristic error structures can 

be inferred from it – to move beyond being merely descriptive. 

 

Thanks for the comment. We agree that mean bias has been used very commonly in wind 

data evaluation studies, and it is very effective if there is a systematic model bias. For 

example, in our model configuration, we found that there is a systematic high bias when 

using Noah Land surface model (compared with NoahMP) over the Midwest region. In this 

case, using this error metric can effectively show systematic bias. However, in the case of 

locations or regions that do not exhibit such systematic bias, and the model bias varies with 

time - for example, one year shows negative bias, and another year shows positive bias - our 

concern was that the mean bias may be smoothed out and may show a misleading 

conclusion that the model performs well. We will investigate this in depth and compare mean 

bias with RMSEs and see whether they have similar conclusions over different regions of our 

model domain. In fact, our collaborative study by Sheridan et al. 2024 has looked at the 

ADDA-v2 data and many other datasets over coastal regions of US, employing mean bias as 

an error metric. This study will help with the investigation as well. We will add discussion with 

any interesting findings. 

 

Regarding the metrics employed in this study, each was chosen to offer a unique component 

to the validation. Initially, looking at the full distribution of wind speeds, the PDFs paired with 

these overlap ratios (OVLs) were used to demonstrate the degree of similarity between 

model and observational wind speeds without considering the time dimension. These PDFs 

can visually convey any systematic biases present within the model.  
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Next, RMSEs and rRMSEs were then paired with the diurnal cycle plots, which now consider 

the time dimension, unlike the PDFs. We chose RMSEs to test how close ADDA-v2’s wind 

speeds were to observations in the absolute sense and include rRMSE to show the 

magnitude of error relative to the wind speeds themselves.  In addition, while RMSEs could 

demonstrate that the model performs very well in terms of magnitude, it is not able to show 

whether the model captures the correct timing of the wind speed minimums and maximums. 

Thus, we also use Pearson’s correlation coefficient. Further, we use wind-roses to examine 

the wind speed and corresponding wind direction to ensure the model captures the physics 

and the seasonality correctly. 

 

I suggest reducing the mostly summarising parts (section 3) with long descriptions and lists of 

numbers in the text. Please also consider additional summary table(s) for better overview and 

readability. 

Thanks for the comments. Following your suggestion, we will try to condense the result 

section during revision. Regarding the summary table, all error metrics that were calculated 

and mentioned from Section 3.1.1 to Section 3.1.3 are summarized in Table 3.  If the reviewer 

has any other suggestions about how to revise this table, we would be happy to address.  

 

The paper should include consideration/discussion of the effect of not accounting 

microscale effects. A 4km model effectively resolves scales from 20-30km and up. How is this 

expected to affect presented results, when validating the model against 

measurements that include significant effects on finer scales, which may be very strong at 10m 

agl.? 

 

Thank you for the insight. We agree that, although the model is at a grid spacing of 4km, it is 

not able to resolve the energy at scales finer than 10-20km, as discussed in Müller et al. (2024, 

Figure 11) Skamarock (2004) and Larsén et al. (2012). This means that our model can capture 
wind variability at 10-20km scale but cannot resolve the wind variability at 4-10km scale that 
exists within the observational data, especially at the near-surface level. Thus, the bias we see 
in our analysis is not only due to model physics or configuration, but also the fact that the model 
at this spatial resolution is not able to resolve the variability at such fine scales. We will add a 
discussion acknowledging such limitations in our model evaluations.  

 
Reference: 

Skamarock, W. C.: Evaluating mesoscale NWP models using kinetic energy spectra, Mon. 

Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1, 2004 

 

Larsén, X. G., Ott, S., Badger, J., Hahmann, A. N., and Mann, J.: Recipes for correcting the 

impact of effective mesoscale resolution on the estimation of extreme winds, J. Appl. 

Meteorol. Clim., 51, 521–533, https://doi.org/10.1175/JAMC-D-11-090.1, 2012. 

 

Müller, S., Larsén, X. G., and Verelst, D. R.: Tropical cyclone low-level wind speed, shear, 

and veer: sensitivity to the boundary layer parametrization in the Weather Research and 

Forecasting model, Wind Energy. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-

2024, 2024.  

https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
https://doi.org/10.1175/MWR2830.1
https://doi.org/10.1175/JAMC-D-11-090.1
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Argumentation that the selected ensemble runs represent model uncertainty should be 

strengthened, this currently is an implied assumption. Does the spread across the 

selected and boot-strapped ensamples really represent actual model uncertainty? 

 

Thanks for the question. We agree that it is very challenging for numerical simulations at such 
a high resolution over a large domain to capture all model uncertainty. So, we aimed to design 
the presented model configurations to represent a robust sample of model uncertainty. We 
chose to perturb the Planetary Boundary Layer Scheme and the land surface model for the 
“structure uncertainty” simulations because they have the most significant influence on 
generating variability within near-surface winds (Draxl et al., 2014; Yang et al., 2017). Of 
course, we understand that many other physics parameterizations can cause different model 
solutions as well. For internal variability, we conducted the minimum number required for 
quantifying the uncertainty (Wang et al. 2017).  

 

We can make this clearer in the manuscript by providing a brief discussion justifying the 
selected model configurations used for this model sensitivity analysis. We can also note that 
recent advances in machine-learning (ML) based surrogate model or numerical+ML hybrid 
modeling may provide a more comprehensive means of quantifying model uncertainty (Tunnell 
et al, 2023; Di Santo et al., 2025) given the much faster calculation they can do.  
 

Referring to the response to Reviewer #1, our data, alongside other existing datasets with 
more extensive time periods (albeit more limited domains) can also provide a more 
comprehensive understanding of model uncertainty and variability.  
 

 

References: 

 
Tunnell, M., Bowman, N., & Carrier, E. (2023). Fast Gaussian process emulation of Mars 
Global Climate Model. Earth and Space Science, 10, 
e2022EA002743, https://doi.org/10.1029/2022EA002743 
 

Di Santo, D., He, C., Chen, F., & Giovannini, L. (2025). ML-AMPSIT: Machine Learning-based 
Automated Multi-method Parameter Sensitivity and Importance analysis Tool. Geoscientific 
Model Development, 18, 433–459. https://doi.org/10.5194/gmd-18-433-2025 
 

The limitations and uncertainty of the observations used in the validation should be discussed 

either in section 2.2 or section 4. 

 

We agree and will add a discussion to address this during the revision process. Such 

limitation and uncertainty include representativeness errors, in which there could be a scale 

mismatch between the hyperlocal measurement conditions of the anemometer and the 

broader model grid cell, environmental effects such as land use, obstructions, or elevation 

effects, or the temporal sampling methods of the observational data and the inherent 

uncertainties associated with that. 

 

Reviewer 1 additionally inquired about whether the observations were corrected for mast flow 

distortions. Much of the hub-height observational data we worked with did not have the 

orientation of the anemometers with respect to surrounding structures/towers. Therefore, we 

did not want to make corrective assumptions and potentially incite additional biases into the 

observational data. However, we do agree that it is important to acknowledge the limitations 

of the observational data itself.  

 

https://doi.org/10.1029/2022EA002743
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Some detailed comments 
Page 2, line 63:  It should be mentioned here that ERA5 is initial/boundary model in addition to 

the info in table 1, on page 5. 

Will include this during revision. 

Page 10, line 223: Explain “internal variability” and “structure uncertainty” in more detail, and 

why 10 and 6 ensemble members, respectively, was decided upon. 

We can elaborate on the specific definitions of internal variability and structure uncertainty, 

as well as why both were included in our analysis of model uncertainty. Ensemble members 

testing for internal variability had varying initialization times, but identical physics 

parameterizations, while ensemble members testing for structure uncertainty had the same 

initialization conditions, but varying model physics. We will discuss this in greater detail in 

Section 2.1. Referencing the response to general comment 4, we will also expand upon the 

specific justifications of the selected “structure uncertainty” ensemble members.  

Page 14-15, fig. 3:  A legend is missing for the plots. 

Will add during revision.  

Page 15, line 340: Interpolation in wind direction simply requires conversion of wind direction to 

components which may be interpolated similar to the wind speeds, and 

then converted back to wind directions. 

Thanks for the comment. There have been studies demonstrating that the interpolation 

methods used for windspeed/direction profiles face challenges in regions of heterogeneous 

terrain and rough surfaces (e.g., Lalic et al., 2012). We will test this interpolation for simple 

terrains and then for more complex terrains, in which wind direction profiles are typically 

more complicated. We will add discussions or analysis with any interesting findings.  

Reference 

Lalic, Branislava & Mihailovic, Dragutin & Kapor, Darko. (2012). Limitations and Uncertainties 

in the Logarithmic Wind Profile Above Very Rough Surfaces. 

 

Page 25, line 489:  Friction velocity is denoted using u∗ and not u*. 

Will fix.  

 

Page 26, line 503:  Explain why “high friction velocities correspond to weaker winds” 
 

We can clarify this so that the connection between friction velocity and wind speeds is clear. 

While friction velocity is not a direct scale for wind speed itself, they tend to have strong 

correlations. Friction velocity quantifies the turbulent momentum flux at the surface. 

Therefore, higher u∗ values correspond to more of the momentum being lost to the surface, 

leading to weaker wind speeds closer to the ground, especially in areas with high surface 

roughness. 

 


