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Reviewer #1 

Overall feedback 

This manuscript provides an extensive evaluation of the ADDA-v2 climatological wind 

dataset for North America. The manuscript text is logically structured and well-written 

and the figures are clear. A large set of measurement stations and different aspects 

of the model performance are considered over a range of timescales. The analysis 

goes into sufficient depth and an uncertainty analysis is included. It is also valuable 

that a comparison is done to the widely used dataset used to drive the model runs, i.e. 

ERA5 to see where the downscaled dataset significantly improves on the driving data. 

However, some choices or sections in the manuscript would benefit from changes or 

additions, which I will detail below. 

 
Thank you for the insightful comments which we find valuable in improving our manuscript.  
We have responded to each of the following general and specific comments (in blue font) 
and have made appropriate adjustments during the revision process.   

 

General comments 

1. It would be valuable if the findings of this evaluation (and the ADDA-v2 dataset 

itself) would be compared to other evaluation studies (and other datasets), 

preferably for the region. See also specific comment nr. 2. Hence, some references 

should be added in the discussion section (or somewhere else) to better situate 

this wind product in relation to other datasets and also how the 

evaluation/performance differs from other studies. 

 
We agree and have contextualized the added value of ADDA-v2 to existing datasets that 

cover a similar region, including the wind dataset discussed by Draxl et al. (2015a, b). Such 

studies were already mentioned in the Introduction (Draxl et al., 2015a, b; Gensini et al., 

2023; Liu et al., 2017; Rasmussen et al., 2024) but we have readdressed it in Section 4 

Discussion to situate ADDA-v2 in relation to these other high-resolution datasets. We’ve also 

added a discussion mentioning complementary studies of ADDA-v2 and its performance in 

other wind-related contexts, including coastal locations and offshore for tropical cyclones.  

 

Passage taken from manuscript that demonstrates these discussions:  

 

“Additionally, while this validation focused more on inland regions, Sheridan et al. (2025) has 

evaluated ADDA-v2’s performance over coastal locations. Tobias-Tarsh et al. (2025) has evaluated ADDA-v2’s 

performance in wind-related extremes in the context of tropical cyclones over the North Atlantic Basin.  

Other studies exist that introduce wind datasets and validate them against observations. For instance, 

Draxl et al. (2015) documented a 7-year wind dataset with a grid spacing of 2km, primarily focused on wind power 

evaluations over CONUS and included a limited meteorological validation using 6 tall masts and 3 buoys. 

Rasmussen et al. (2024) performed validations on a 42-year period, 4km dataset on its near-surface (10m) wind 

speeds with underestimation especially over complex terrain. While these datasets provide their own unique utility, 

ADDA-v2 offers a powerful combination of a reasonably long time period with a large spatial domain. By 

comprehensively validating ADDA-v2’s wind speeds and directions using an extensive network of near-surface 

observations and a diverse set of hub-height observations, this evaluation can provide insight for both 
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climatological studies and wind resource assessments.  Yet, all these datasets can be used collectively, 

complementing one another with their unique characteristics and allowing for a more comprehensive view of 

model uncertainty and longer-term variability.” 

 

Specific comments 
 

 
1. Page 2, line 40: I recommend adding that fine-scale surface variations (topography, 

land cover, …) are also better represented. 

 

We agree and have added this. 

 

2. Page 2, Line 60: Considering that this wind dataset of Draxl et al. (2015a,b) exists 

and has an even higher spatial resolution, could you add somewhere in the 

manuscript why this new data product ADDA-v2 is perhaps a better choice going 

forward? 

 
Referring to the response to the general comment, we have included a component to the 

discussion that addresses existing datasets and outlines the added merit of ADDA-v2 in 

climatological wind studies or wind-resource assessments. We plan to highlight the more 

extensive temporal coverage of ADDA-v2 as well as the unique spatial domain that spans 

into regions typically outside the domain of other datasets, such as Alaska, Mexico, and 

Caribbean islands. Additionally, the ensemble analysis is useful for model uncertainty 

quantification; and the extensive temporal coverage can help examine inter-annual 

variability.  

 
3. Page 3, line 72: 20 years is indeed a substantial length, but climate variability at 

20-year timescales still exist – it could be valuable to mention somewhere in the 

manuscript how the ADDA-v2 dataset can be supplemented to account for this in 

wind resource assessments. 

 

There are indeed variabilities that exist within more climatological timescales, modulated by 

large-scale oscillations. Our data is not long enough to encompass all such variabilities. 

However, ADDA-v2 can be supplemented by other, longer datasets, such as CONUS404 

(Rasmussen et al., 2024), which covers a period of 41 years between 1980-2020 to provide 

a more comprehensive means for examining variability on longer timescales. We will add 

this point to Discussion. 

 

4. Page 4, line 98: Could you provide motivation for the choice of two months of spin-

up? It is rather limited for the soil component as says a publication of Jerez et al 

(2020) [https://doi.org/10.1029/2019MS001945], definitely if simulations start in the 

cold months. 

 
We understand the reviewer’s concern and have read the paper by Jerez et al. (2020). 

Please note that this paper studied the topic of spin-up time when the RCM is driven by 

GCMs. In our practice, when running RCMs driven by GCMs, we use at least one-year 

spin-up time and run the model continuously without re-initialization. However, the 

simulation we presented in this manuscript is driven by reanalysis ERA5. We have 

evaluated  ERA5’s soil moisture by comparing against satellite observations and have 
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found that the soil moisture in ERA5 is realistic (see figure below). This indicates that the 

soil moisture is not of concern in reanalysis driven runs as it would be in GCM driven runs. 

We have also evaluated the ADDA’s soil moisture in this these simulations and they look 

reasonable as well. Additionally, there are many previous studies (e.g., Qian et al., 2003; 

Lucas-Picher et al., 2013; Pan et al., 1999) looking at model spin-up times, their impacts 

on model performance, and their effects when compared with using spectral nudging. In 

short, the findings show that reinitialization can reduce the model bias in the long term, 

which can achieve similar performance to spectral nudging. Therefore, in this study, due 

to the additional computational cost, we have not applied the nudging technique but 

instead use reinitialization to reduce potential bias. We will add clarification during revision. 

 

 
Figure R1. Seasonal averages of soil moisture across CONUS for ADDA-v2 (2nd column) and ERA5 

(3rd column) compared against gridded observational data (1st column) for the year 2005. 

 

 

 

 

 

 
References: 

 

Qian, S. S., King, R. S. & Richardson, C. J. Two statistical methods for the detection of 

environmental thresholds. Ecol. Model. 166, 87–97. https://doi.org/10.1016/S0304-

3800(03)00097-8 (2003). 

 

Lucas-Picher, P., Boberg, F., Christensen, J. H. & Berg, P. Dynamical downscaling with 

reinitializations: A method to generate fine scale climate datasets suitable for impact studies. J. 

Hydrometeorol. 14, 1159–1174. https://doi.org/10.1175/JHM-D-12-063.1 (2013). 
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Pan, Z., Takle, E., Gutowski, W. & Turner, R. Long simulation of regional climate as a sequence of 

short segments. Mon. Weather Rev. 127, 308–321. https://doi.org/10.1175/1520-

0493(1999)127%3C0308:LSORCA%3E2.0.CO;2 (1999) 

    

 
5. Page 4, line 122: On such a large domain, why is no spectral nudging employed 

for small wavenumbers? Has it been validated at some point that the properties of 

synoptic systems are indeed adequately reproduced? It would be good to comment 

on this. 

 
Thanks for the comment. During the early stages of testing this model setup, we had tested 

the effect of spectral nudging using varying wavenumbers, heights at and above which to 

use nudging, and nudging strength (as documented in Wang and Kotamarthi (2013)). 

While nudging is very useful when the spatial resolutions are very different between forcing 

data and RCM (e.g. when we use NCEP-R2 at 250km), the impacts of nudging for ERA5 

for our 4km run were not as significant because the ERA5 is already at a very decent 

resolution (~30km) compared with other global reanalysis. Given the additional cost of 

employing spectral nudging, we opted not to use nudging for this simulation. In terms of 

the model performance of properties of synoptic systems, you can refer to the wind roses 

in Section 3.1.3. You can also see our precipitation performance and evaluation in 

Akinsonola et al. (2024) which also demonstrated that our 4km run captures the synoptic 

patterns well. We will add clarification to our revision. 

 

 
References: 

 

Wang, J., and V. R. Kotamarthi, 2013: Assessment of Dynamical Downscaling in Near-Surface Fields 

with Different Spectral Nudging Approaches Using the Nested Regional Climate Model 

(NRCM), Journal of Applied Meteorology and Climatology, 52, 1576–1591 

 

Akinsanola, A. A., Jung, C., Wang, J., & Kotamarthi, V. R. (2024). Evaluation of precipitation across 

the contiguous United States, Alaska, and Puerto Rico in multi-decadal convection-permitting 

simulations. Scientific Reports, 14(1), 1238. 

 
6. Page 5, table 1: were there any model options activated to account for subgrid-

scale orography (e.g. topo_wind for YSU PBL scheme or the GWDO scheme) – 

would be good to mention this. 

 
Yes, these were activated for these simulations, and our initial tests show that it can 

improve wind performance over complex terrain. We have added this information to the 

method section. 

7. Page 5: table 1: can you motivate the choice for 49 vertical levels? Low-level winds 

are usually quite sensitive to this choice. Perhaps sensitivity tests were conducted? 

 
We tested the sensitivity of different vertical level configurations, mostly comparing to the 
choice for our previous setup for 12km simulations. We found that 50 levels perform better 
than the 38 levels we used previously. In this simulation we also added many more layers 
below 1km. We have 18 σ levels below 1 km (8, 25, 42, 58, 75, 104, 147, 189, 231, 274, 
317, 360, 403, 468, 555, 643, 777, and 957m above ground level) to make sure the hub-
height winds are calculated instead of extrapolated. Depending on the needs and the use 
of this dataset, such as boundary layer physics, urban meteorology, it may be beneficial 

https://doi.org/10.1175/1520-0493(1999)127%3C0308:LSORCA%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127%3C0308:LSORCA%3E2.0.CO;2
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to have this higher vertical resolution at the lower level. We have added this information in 
the methodology (Section 2.2).   

 

 

8. Page 5, line 138: are the observations also corrected for mast flow distortions? 

Perhaps good to comment on this and the implication on observational uncertainty. 

 
 For most of the observations which had only a single anemometer reading, no correction 

for mast flow distortion was performed. The orientation of the anemometers with respect 

to the towers was not commonly provided in the metadata, and we did not wish to make 

corrective assumptions. For the occasional site where there were multiple anemometer 

readings at the same height, the maximum of the two wind speeds at each timestamp was 

selected to mitigate against mast flow distortion. We’ve added this information in the 

methodology (Section 2.2) 

 

 
9. Page 11, line 267: “As discussed in (Section 3.1)” should be corrected. 
 

Corrected 

 
10. Page 11, line 277: I would not use “improvement” here. 
 

Rephrased 

 
11. Page 13, line 293: So is this the r between the seasonally-averaged values? Or is 

it the seasonally-averaged value of daily r values? Sometimes in the manuscript 

this is not very clear. 

 
The Pearson correlation coefficient in this section is for seasonally averaged diurnal 

cycles, rather than seasonally averaged r values for daily averages. We have included 

clarification at the start of Section 3.1.2 

 

 
12. Page 19, section 3.1.3 (wind roses): I agree that a good approximation of the wind 

rose is a first indication that synoptic winds are well captured. However, the 

manuscript would benefit from any additional analysis (or references to related 

studies) which looks at this in more detail. I mainly say this because the domain is 

very large and no nudging is used. If this cannot be provided, it would be good to 

mention that this has not been inspected in full detail. 

 
We agree that the seasonal averaged wind-roses do provide an indication of model 

performance at the synoptic scale. Additionally, we argue that the evaluation at hub heights 

for specific locations provides more information than just at the synoptic scale. It provides 

more detailed information about the model’s ability to capture the finer-scale wind patterns 

closer to the surface (at much lower heights than 850hPa/500hPa (where synoptic scale 

mechanisms are more present). During the revision, we have also plotted diurnal cycles of 

wind direction in each season to add another component to a synoptic perspective. 

However, we are also open to suggestions from the reviewer for ideas for additional 

analysis.  

 

You can find our diurnal wind direction subplots that correspond to each of the wind rose 
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subplots in the Supplemental document. 

 

 
13. Page 19, line 377: section index 3.1.3 is repeated here.. should be 3.1.4 I think? 
 

Corrected 

 
14. Page 21, line 409: your prior analysis of seasonally-average diurnal cycles shows 

that statistically (not for specific days) the diurnal cycle is captured well. Here you 

seem to suggest to the reader not to use the sub-daily information of ADDA-v2. Is 

this not too critical? If you would feed the diurnal cycles of 500 winter days from 

ADDA-v2 to a wake model to check performance of a wind farm, I don’t feel like 

the output would not be trustworthy. So maybe rephrase this a bit or provide 

additional clarification. 

 
We appreciate this comment. We wanted to convey that ADDA-v2 is a climatological 

dataset and is not intended for weather-scale (e.g., day-to-day) evaluations. But for studies 

like the reviewer suggested, we believe the data and this analysis is still valuable. We have 

added a couple sentences to the beginning of Section 3.1.5 to express this.  

 

 
15. Page 22, figure 6: As surface wind speeds are usually well below 10 ms-1 on 

average, RMSE does not give a good idea of how good the agreement actually is. 

Could you use the rRMSE here? 

 
We agree and have adjusted the figure to show relative mean biases instead.   

 
16. Page 22, figure 6: In the introduction you mention that wind datasets are important 

for risk assessments of high winds. Yet, for this surface wind speed evaluation, you 

focus on seasonal RMSE’s. Why not also look at extremes? Is there perhaps a 

reason why this dataset is not intended for looking at extreme winds? Logically, for 

wind energy purposes one would be interested in winds higher up, so I’m curious 

what the surface wind speed output is for. You could add an analysis, or clarify why 

the presented analysis is sufficient. 

 
Thanks for the comment and suggestion. Indeed, one of the motivations for developing 

this high-resolution data was for risk assessments associated with extreme weather 

events. We have a separate study that conducted assessments on wind extremes using 

ADDA-v2 focusing on tropical cyclones (TC) in the Northern Atlantic basin (Tobias-Tarsh 

et al. 2025). Generally, we find that the ADDA-v2 data can accurately capture the TC 

characteristics, including categories, intensities, frequencies and duration, and can do a 

much more reasonable job than ERA5 especially when using wind speed to define the 

hurricane category. When using sea level pressure, ERA5 performs reasonably well too. 

We have added this information in the Discussion mentioning this research. We also plan 

to perform more general wind-related extremes assessments over land in future studies. 

This is also mentioned in Section 4 Discussion 

 
References 

 

Tobias-Tarsh, L., Jung, C., Wang, J., Bobde, V., Akinsanola, A. A., and Kotamarthi, V. R.: 

Evaluation of North Atlantic Tropical Cyclones in a Convection-Permitting Regional Climate 



 7 

Simulation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1805, 2025. 

 

 
17. Page 24, figure 7: These indicators ‘7-2’, ‘5-1’ – where do these come from? These 

should be explained somewhere. 

 

Apologies for the confusion. They refer to the different options for the dynamic vegetation 

and surface drag parameterizations that are provided within the Noah Multi-

Parameterization land surface scheme.  

 

We have added a sentence in Section 2.1 explaining that we’ve perturbed the options for 

dynamic vegetation and surface layer drag coefficient calculation within the Noah-MP 

LSM for the sensitivity experiments we conducted. Also, we added a note within the 

figure caption for clarification. 

 

 
18. Page 25, line 498: Instead of saying that high friction velocities correspond to 

weaker winds, could you explain a bit better to the reader why this is the case? 

 

While friction velocity is not a scale for wind speed itself, they tend to have strong 

correlations. Friction velocity quantifies the turbulent momentum flux at the surface. 

Therefore, higher u* values correspond to more of the momentum being lost to the 

surface, leading to weaker wind speeds closer to the ground, especially in areas with 

high surface roughness. We’ve added clarification to the section discussing friction 

velocity so that the connection between friction velocity and wind speeds is clear. 

 

 

19. Page 26, section 3.4: An interesting addition. However, I am very interested to see 

the importance of the two components of model uncertainty: initialization and 

physics choices. I would expect that the lateral forcing would lead the initialization 

to not matter too much on annual statistics compared to physics parametrization 

choices. Please add this. 

The hypothesis from the reviewer is correct. Over most locations, the choice of physics 

parameterization shows a larger range of model outcomes when compared to the varying 

initial times (when the model simulation was initiated). We have added a figure to the 

Supplementary file to show the difference in magnitudes for internal variability (varying 

initialization times) and structure uncertainty (varying model physics parameterizations). 

Some figures highlighting this can be seen below, in which the standard deviation between 

the structure uncertainty ensembles is larger than that of the internal variability ensembles: 

 



 8 

 

Figure R2. January diurnal cycle of 100m wind speed over four representative 6x6 grid regions 

using 10 ensemble members with varying initial conditions (dates and hours). The spread of these 

lines indicates the internal variability of our model over different regions.   
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Figure R3. Same as Figure R2, but the spread indicates structure uncertainty due to physics 

parameterizations, specifically looking at different land surface model and Planetary boundary layer 

schemes. 

 

 
20. Page 28, figure 10: Is the inter-annual variability over a specific 2-week period 

something that wind farm operators are concerned about? As expected, this 

variability is very large. I think that the inter-annual variability on seasonal 

timescales might be good to add as well: e.g. how good or how bad a winter period 

can be in terms of wind resource over the lifetime of a wind farm. You could 

motivate your choice or add also the seasonal timescale to this analysis. 

 
Thanks for the comment. We’d like to clarify that the purpose of presenting biweekly 

model variability is mostly driven by the motivation of showing how model uncertainty 

changes with time scales. That is, with longer time scales, the model uncertainty will 

decrease. We have calculated model uncertainty for weekly, biweekly and monthly 

timescales, and we chose to show bi-weekly here. The model uncertainty at the weekly 

scale is even larger than bi-weekly scale; contrarily, model uncertainty at monthly and 

seasonal scales are much smaller than the bi-weekly scale. We agree with the reviewer 

that the magnitude of interannual variability for the bi-weekly timescale might be less 

useful than seasonal timescales for wind resource evaluations. So, we have included 

interannual variability at seasonal scale in the supplementary file during revision. 

Findings are also included in the result section (Section 3.4).  

21. Page 29, line 553: Is the lower inter-annual variability in summer not simply a 

consequence of lower wind speeds? Relatively speaking, the variability could be 

as large as for winter or even larger. 

 
 We agree with the reviewer on both points they brought up. We have plotted maps to show 

the relative values of interannual variability (to the actual wind speeds) 

 

 
22. Page 30, line 601: I get a “404 not found” when pasting the link to reach the hub 

height wind data. Please make sure that a reliable pointer is available to access 

the data and that some documentation is available there. Perhaps also for the full 

ADDA-v2 data: include an e-mail / link where to request access. 

 
That is very strange. We double checked and the links were accessible and took the user 

to the intended destination. The following websites are where the links should take you:

  

 
WTK-LED Climate API | NREL: Developer Network 

WDH: Wind Data Hub 

 

We have ensured that the links are functional. We will also include the information 

necessary to request access to the full ADDA-v2 dataset.  

 

https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-led-climate-v1-0-0-download/
https://wdh.energy.gov/data/wind-energy
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Reviewer #2 

General feedback 
Overall, this manuscript is well written, well-structured and appears carefully worked through with 

nice looking figures. The work describes a new 4km, 20y mesoscale dataset covering North 

America with extensive validation using met towers and surface stations and ensemble analysis 

for a selected period. 

Downscaling of global reanalysis models using mesoscale models like WRF is well covered 

in the literature as well as the improvements it provides relative to the global models. Hence, the 

novelty of the approach in this manuscript may be disputed given that it has poorer resolution 

compared to the previous work of Draxl et al. (2015). 

However, the open access to the large dataset and the extensive validation effort including 

ensemble analysis justifies the publication. 

 

We appreciate all the insightful comments which we believe have improved our 
manuscript. Please find our response to each individual reviewer’s comment in the 
following section. We have also significantly reduced the text in the results yet 
maintained the highlights of discussion. 
 

General comments 
In general, I would like to question if the selected validation metrics for wind speed (r, RMSE, 

rRMSE, OVL) provide sufficient complementary insight. In my view, these metrics overlap too 

much in what they measure and none of them allow for distinction between systematic errors 

(biases) and fluctuating errors. I suggest including a simple metric like mean (bias) error to cover 

this important aspect and re-reconsider if each of the other metrics contribute enough additional 

insight to remain in the paper. A metric should be included only if characteristic error structures can 

be inferred from it – to move beyond being merely descriptive. 

 

Thanks for the comment. We agree that mean bias has been used very commonly in wind 

data evaluation studies, and it is very effective if there is a systematic model bias. For 

example, in our model configuration, we found that there is a systematic high bias in near-

surface wind when using Noah Land surface model (compared with NoahMP) over the 

Midwest region (as shown in Figure 8). In this case, using this error metric can effectively 

show systematic bias. However, in the case of locations or regions that do not exhibit such 

systematic bias, and the model bias varies with time - for example, one year shows negative 

bias, and another year shows positive bias - our concern was that the mean bias may be 

smoothed out and may show a misleading conclusion that the model performs well. While we 

had this concern, we investigated this in depth during revision and compared mean bias with 

our other metrics. We found the mean bias shows similar conclusion with PDFs about the 

systematic underestimation of ERA5. However, because mean bias was calculated with the 

time dimension, it does add value on top of PDFs to allow us to better understand model 

bias. There is not much systematic bias in ADDA-v2 but a slight overestimation over some 

sites. We have added a section and a figure with 3 panels about this analysis in Section 

3.1.2.  

 

Regarding the other metrics employed in this study, each was chosen to offer a unique 

component to the validation. Initially, looking at the full distribution of wind speeds, the PDFs 
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paired with these overlap ratios (OVLs) were used to demonstrate the degree of similarity 

between model and observational wind speeds without considering the time dimension. 

These PDFs can visually convey any systematic biases present within the model.  

Next, RMSEs and rRMSEs were then paired with the diurnal cycle plots, which now consider 

the time dimension, unlike the PDFs. We chose RMSEs to test how close ADDA-v2’s wind 

speeds were to observations in the absolute sense and include rRMSE to show the 

magnitude of error relative to the wind speeds themselves.  In addition, while RMSEs could 

demonstrate that the model performs very well in terms of magnitude, it is not able to show 

whether the model captures the correct timing of the wind speed minimums and maximums. 

Thus, we also use Pearson’s correlation coefficient. Further, we use wind-roses to examine 

the wind speed and corresponding wind direction to ensure the model captures the physics 

and the seasonality correctly. 

 

I suggest reducing the mostly summarising parts (section 3) with long descriptions and lists of 

numbers in the text. Please also consider additional summary table(s) for better overview and 

readability. 

Thanks for the comments. Following your suggestion, we have significantly reduced the text 

and description in the result section while still highlighting model performance in 

representative regions (e.g., flat, mountains, Alaska and Puerto Rico). While the text is 

condensed, statistics are still summarized in Table 3 for all metrics, providing detailed 

evaluations for both ADDA and ERA5 datasets.  

 

The paper should include consideration/discussion of the effect of not accounting 

microscale effects. A 4km model effectively resolves scales from 20-30km and up. How is this 

expected to affect presented results, when validating the model against 

measurements that include significant effects on finer scales, which may be very strong at 10m 

agl.? 

Thank you for the insight. We agree that, although the model uses a grid spacing of 4km, it 
cannot fully resolve the energy spectrum or variability at scales finer than 10-20km, as 

discussed in Müller et al. (2024, Figure 11), Skamarock (2004) and Larsén et al. (2012). This 

means that our model cannot capture the wind variability at 4-10km scale that exists within 
observations data, particularly at the near-surface level where variability tends to be larger. 
Capturing such variability in observations would require continuous gridded data, such as 
those from radar or satellites. However, the observational data we use are from individual point 
locations and do not represent spatial variability in the surrounding area. To make the 
evaluations more robust, we could expand the current approach to include multiple model grid 
cells surrounding each observation site, rather than using only the closest grid cell. This would 
allow us to characterize a range of modeled winds around the observation sites and better 
represent model spatial variability. An example of this approach is shown by Müller (2025) for 
typhoon evaluation using mesoscale models and lidar data. We have added a discussion of 
this in the revised manuscript.  

https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
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Figure R3: Top: Simulated track of Typhoon Maysak (2020) according to the JMA best track 

dataset (black solid line) and as obtained by a mesoscale simulation (black dashed line). 

The red and blue triangles indicate the locations of the two lidars. Black 

dots surrounded the red and blue triangles are grid points from a mesoscale simulation. Bottom: time 

series of wind speeds from lidars, and model simulations. dark red line is from the closest grid point, 

while the gray lines are from the surrounded grid points which show a large variability in wind speeds. 

Source: Müller (2025) 

 

Reference: 

Skamarock, W. C.: Evaluating mesoscale NWP models using kinetic energy spectra, Mon. 

Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1, 2004 

 

Larsén, X. G., Ott, S., Badger, J., Hahmann, A. N., and Mann, J.: Recipes for correcting the 

impact of effective mesoscale resolution on the estimation of extreme winds, J. Appl. 

Meteorol. Clim., 51, 521–533, https://doi.org/10.1175/JAMC-D-11-090.1, 2012. 

 

Müller, S., Larsén, X. G., and Verelst, D. R.: Tropical cyclone low-level wind speed, shear, 

and veer: sensitivity to the boundary layer parametrization in the Weather Research and 

Forecasting model, Wind Energy. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-

2024, 2024.  

 

Müller 2025. Typhoon wind and turbulence structure, and its impact on wind energy 
application. PhD thesis. Department of Wind and Energy Systems, DTU Wind. 

Argumentation that the selected ensemble runs represent model uncertainty should be 

strengthened, this currently is an implied assumption. Does the spread across the 

https://doi.org/10.1175/MWR2830.1
https://doi.org/10.1175/JAMC-D-11-090.1
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selected and boot-strapped ensamples really represent actual model uncertainty? 

 
Thanks for the question. We agree that it is very challenging for numerical simulations at such 
a high resolution over a large domain to capture all model uncertainty. So, we aimed to design 
the presented model configurations to represent a robust sample of model uncertainty. We 
chose to perturb the Planetary Boundary Layer Scheme and the land surface model for the 
“structure uncertainty” simulations because they have the most significant influence on 
generating variability within near-surface winds (Draxl et al., 2014; Yang et al., 2017). Of 
course, we understand that many other physics parameterizations can cause different model 
solutions as well. For internal variability, we conducted the minimum number required for 
quantifying the uncertainty (Wang et al. 2017).  

 
We have made this clearer in the manuscript by providing a brief discussion justifying the 
selected model configurations used for this model sensitivity analysis. We’ve also noted that 
recent advances in machine-learning (ML) based surrogate model or numerical + ML hybrid 
modeling may provide a more comprehensive means of quantifying model uncertainty (Tunnell 
et al, 2023; Di Santo et al., 2025) given the much faster calculation they can do.  

 

Referring to the response to Reviewer #1, our data, alongside other existing datasets with 
more extensive time periods (albeit more limited domains) can also provide a more 
comprehensive understanding of model uncertainty and variability.  

 

 
References: 

 

Tunnell, M., Bowman, N., & Carrier, E. (2023). Fast Gaussian process emulation of Mars 
Global Climate Model. Earth and Space Science, 10, 
e2022EA002743, https://doi.org/10.1029/2022EA002743 

 

Di Santo, D., He, C., Chen, F., & Giovannini, L. (2025). ML-AMPSIT: Machine Learning-based 
Automated Multi-method Parameter Sensitivity and Importance analysis Tool. Geoscientific 
Model Development, 18, 433–459. https://doi.org/10.5194/gmd-18-433-2025 

 

The limitations and uncertainty of the observations used in the validation should be discussed 

either in section 2.2 or section 4. 

 

We agree and have added a discussion to address this in Section 2.2 (Observational 

datasets). Such limitation and uncertainty include representativeness errors, in which there 

could be a scale mismatch between the hyperlocal measurement conditions of the 

anemometer and the broader model grid cell, environmental effects such as land use, 

obstructions, or elevation effects, or the temporal sampling methods of the observational data 

and the inherent uncertainties associated with that. 

 

Reviewer 1 additionally inquired about whether the observations were corrected for mast flow 

distortions. Much of the hub-height observational data we worked with did not have the 

orientation of the anemometers with respect to surrounding structures/towers. Therefore, we 

did not want to make corrective assumptions and potentially incite additional biases into the 

observational data. However, we do agree that it is important to acknowledge the limitations 

of the observational data itself.  

 

 

 

https://doi.org/10.1029/2022EA002743
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Some detailed comments 
Page 2, line 63:  It should be mentioned here that ERA5 is initial/boundary model in addition to 

the info in table 1, on page 5. 

Done. 

Page 10, line 223: Explain “internal variability” and “structure uncertainty” in more detail, and 

why 10 and 6 ensemble members, respectively, was decided upon. 

Thanks for the suggestion. We have added a section particularly for Model uncertainty 

(section 2.2) to better explain why and how we conduct these uncertainty simulations. The 

uncertainty quantification section (section 2.4) focus on talking about the bootstrapping and 

how to express the uncertainty. 

  

Page 14-15, fig. 3:  A legend is missing for the plots. 

Added. 

Page 15, line 340: Interpolation in wind direction simply requires conversion of wind direction to 

components which may be interpolated similar to the wind speeds, and then converted back to 

wind directions. 

Added wind roses for ERA5 data as well. 

 

Page 25, line 489:  Friction velocity is denoted using u∗ and not u*. 

Fixed.  

Page 26, line 503:  Explain why “high friction velocities correspond to weaker winds” 
 

While friction velocity is not a direct scale for wind speed itself, they tend to have strong 

correlations. Friction velocity quantifies the turbulent momentum flux at the surface. 

Therefore, higher u* values correspond to more of the momentum being lost to the surface, 

leading to weaker wind speeds closer to the ground, especially in areas with high surface 

roughness. We’ve added such clarification before discussing the results. 

 


