Reviewer #1
Overall feedback

This manuscript provides an extensive evaluation of the ADDA-v2 climatological wind
dataset for North America. The manuscript text is logically structured and well-written
and the figures are clear. A large set of measurement stations and different aspects
of the model performance are considered over a range of timescales. The analysis
goes into sufficient depth and an uncertainty analysis is included. It is also valuable
that a comparison is done to the widely used dataset used to drive the model runs, i.e.
ERADS to see where the downscaled dataset significantly improves on the driving data.
However, some choices or sections in the manuscript would benefit from changes or
additions, which | will detail below.

Thank you for the insightful comments which we find valuable in improving our manuscript.
We have responded to each of the following general and specific comments (in blue font)
and have made appropriate adjustments during the revision process.

General comments

1. It would be valuable if the findings of this evaluation (and the ADDA-v2 dataset
itself) would be compared to other evaluation studies (and other datasets),
preferably for the region. See also specific comment nr. 2. Hence, some references
should be added in the discussion section (or somewhere else) to better situate
this wind product in relation to other datasets and also how the
evaluation/performance differs from other studies.

We agree and have contextualized the added value of ADDA-v2 to existing datasets that
cover a similar region, including the wind dataset discussed by Draxl et al. (2015a, b). Such
studies were already mentioned in the Introduction (Draxl et al., 2015a, b; Gensini et al.,
2023; Liu et al., 2017; Rasmussen et al., 2024) but we have readdressed it in Section 4
Discussion to situate ADDA-v2 in relation to these other high-resolution datasets. We've also
added a discussion mentioning complementary studies of ADDA-v2 and its performance in
other wind-related contexts, including coastal locations and offshore for tropical cyclones.

Passage taken from manuscript that demonstrates these discussions:

“Additionally, while this validation focused more on inland regions, Sheridan et al. (2025) has
evaluated ADDA-v2’s performance over coastal locations. Tobias-Tarsh et al. (2025) has evaluated ADDA-v2’s
performance in wind-related extremes in the context of tropical cyclones over the North Atlantic Basin.

Other studies exist that introduce wind datasets and validate them against observations. For instance,
Draxl et al. (2015) documented a 7-year wind dataset with a grid spacing of 2km, primarily focused on wind power
evaluations over CONUS and included a limited meteorological validation using 6 tall masts and 3 buoys.
Rasmussen et al. (2024) performed validations on a 42-year period, 4km dataset on its near-surface (10m) wind
speeds with underestimation especially over complex terrain. While these datasets provide their own unique utility,
ADDA-v2 offers a powerful combination of a reasonably long time period with a large spatial domain. By
comprehensively validating ADDA-v2’s wind speeds and directions using an extensive network of near-surface

observations and a diverse set of hub-height observations, this evaluation can provide insight for both
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climatological studies and wind resource assessments. Yet, all these datasets can be used collectively,
complementing one another with their unique characteristics and allowing for a more comprehensive view of

model uncertainty and longer-term variability.”

Specific comments

1. Page 2, line 40: | recommend adding that fine-scale surface variations (topography,
land cover, ...) are also better represented.

We agree and have added this.

2. Page 2, Line 60: Considering that this wind dataset of Draxl et al. (2015a,b) exists
and has an even higher spatial resolution, could you add somewhere in the
manuscript why this new data product ADDA-v2 is perhaps a better choice going
forward?

Referring to the response to the general comment, we have included a component to the
discussion that addresses existing datasets and outlines the added merit of ADDA-v2 in
climatological wind studies or wind-resource assessments. We plan to highlight the more
extensive temporal coverage of ADDA-v2 as well as the unique spatial domain that spans
into regions typically outside the domain of other datasets, such as Alaska, Mexico, and
Caribbean islands. Additionally, the ensemble analysis is useful for model uncertainty
quantification; and the extensive temporal coverage can help examine inter-annual
variability.

3. Page 3, line 72: 20 years is indeed a substantial length, but climate variability at
20-year timescales still exist — it could be valuable to mention somewhere in the
manuscript how the ADDA-v2 dataset can be supplemented to account for this in
wind resource assessments.

There are indeed variabilities that exist within more climatological timescales, modulated by
large-scale oscillations. Our data is not long enough to encompass all such variabilities.
However, ADDA-v2 can be supplemented by other, longer datasets, such as CONUS404
(Rasmussen et al., 2024), which covers a period of 41 years between 1980-2020 to provide
a more comprehensive means for examining variability on longer timescales. We will add
this point to Discussion.

4. Page 4, line 98: Could you provide motivation for the choice of two months of spin-
up? It is rather limited for the soil component as says a publication of Jerez et al
(2020) [https://doi.org/10.1029/2019MS001945], definitely if simulations start in the
cold months.

We understand the reviewer’s concern and have read the paper by Jerez et al. (2020).
Please note that this paper studied the topic of spin-up time when the RCM is driven by
GCMs. In our practice, when running RCMs driven by GCMs, we use at least one-year
spin-up time and run the model continuously without re-initialization. However, the
simulation we presented in this manuscript is driven by reanalysis ERA5. We have
evaluated_-ERAS’s soil moisture by comparing against satellite observations and have
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found that the soil moisture in ERAS5 is realistic (see figure below). This indicates that the
soil moisture is not of concern in reanalysis driven runs as it would be in GCM driven runs.
We have also evaluated the ADDA'’s soil moisture in this these simulations and they look
reasonable as well. Additionally, there are many previous studies (e.g., Qian et al., 2003;
Lucas-Picher et al., 2013; Pan et al., 1999) looking at model spin-up times, their impacts
on model performance, and their effects when compared with using spectral nudging. In
short, the findings show that reinitialization can reduce the model bias in the long term,
which can achieve similar performance to spectral nudging. Therefore, in this study, due
to the additional computational cost, we have not applied the nudging technique but
instead use reinitialization to reduce potential bias. We will add clarification during revision.

Soil moisture gridded data
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Figure R1. Seasonal averages of soil moisture across CONUS for ADDA-v2 (2" column) and ERA5
(3 column) compared against gridded observational data (15t column) for the year 2005.
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Page 4, line 122: On such a large domain, why is no spectral nudging employed
for small wavenumbers? Has it been validated at some point that the properties of
synoptic systems are indeed adequately reproduced? It would be good to comment
on this.

Thanks for the comment. During the early stages of testing this model setup, we had tested
the effect of spectral nudging using varying wavenumbers, heights at and above which to
use nudging, and nudging strength (as documented in Wang and Kotamarthi (2013)).
While nudging is very useful when the spatial resolutions are very different between forcing
data and RCM (e.g. when we use NCEP-R2 at 250km), the impacts of nudging for ERA5
for our 4km run were not as significant because the ERAS5 is already at a very decent
resolution (~30km) compared with other global reanalysis. Given the additional cost of
employing spectral nudging, we opted not to use nudging for this simulation. In terms of
the model performance of properties of synoptic systems, you can refer to the wind roses
in Section 3.1.3. You can also see our precipitation performance and evaluation in
Akinsonola et al. (2024) which also demonstrated that our 4km run captures the synoptic
patterns well. We will add clarification to our revision.

References:

Wang, J., and V. R. Kotamarthi, 2013: Assessment of Dynamical Downscaling in Near-Surface Fields
with Different Spectral Nudging Approaches Using the Nested Regional Climate Model
(NRCM), Journal of Applied Meteorology and Climatology, 52, 1576—1591

Akinsanola, A. A., Jung, C., Wang, J., & Kotamarthi, V. R. (2024). Evaluation of precipitation across
the contiguous United States, Alaska, and Puerto Rico in multi-decadal convection-permitting
simulations. Scientific Reports, 14(1), 1238.

Page 5, table 1: were there any model options activated to account for subgrid-
scale orography (e.g. topo_wind for YSU PBL scheme or the GWDO scheme) —
would be good to mention this.

Yes, these were activated for these simulations, and our initial tests show that it can
improve wind performance over complex terrain. We have added this information to the
method section.

Page 5: table 1: can you motivate the choice for 49 vertical levels? Low-level winds
are usually quite sensitive to this choice. Perhaps sensitivity tests were conducted?

We tested the sensitivity of different vertical level configurations, mostly comparing to the
choice for our previous setup for 12km simulations. We found that 50 levels perform better
than the 38 levels we used previously. In this simulation we also added many more layers
below 1km. We have 18 o levels below 1 km (8, 25, 42, 58, 75, 104, 147, 189, 231, 274,
317, 360, 403, 468, 555, 643, 777, and 957m above ground level) to make sure the hub-
height winds are calculated instead of extrapolated. Depending on the needs and the use
of this dataset, such as boundary layer physics, urban meteorology, it may be beneficial
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10.

11.

12.

to have this higher vertical resolution at the lower level. We have added this information in
the methodology (Section 2.2).

Page 5, line 138: are the observations also corrected for mast flow distortions?
Perhaps good to comment on this and the implication on observational uncertainty.

For most of the observations which had only a single anemometer reading, no correction
for mast flow distortion was performed. The orientation of the anemometers with respect
to the towers was not commonly provided in the metadata, and we did not wish to make
corrective assumptions. For the occasional site where there were multiple anemometer
readings at the same height, the maximum of the two wind speeds at each timestamp was
selected to mitigate against mast flow distortion. We’ve added this information in the
methodology (Section 2.2)

Page 11, line 267: “As discussed in (Section 3.1)” should be corrected.

Corrected

Page 11, line 277: 1 would not use “improvement” here.

Rephrased

Page 13, line 293: So is this the r between the seasonally-averaged values? Or is
it the seasonally-averaged value of daily r values? Sometimes in the manuscript
this is not very clear.

The Pearson correlation coefficient in this section is for seasonally averaged diurnal
cycles, rather than seasonally averaged r values for daily averages. We have included
clarification at the start of Section 3.1.2

Page 19, section 3.1.3 (wind roses): | agree that a good approximation of the wind
rose is a first indication that synoptic winds are well captured. However, the
manuscript would benefit from any additional analysis (or references to related
studies) which looks at this in more detail. | mainly say this because the domain is
very large and no nudging is used. If this cannot be provided, it would be good to
mention that this has not been inspected in full detail.

We agree that the seasonal averaged wind-roses do provide an indication of model
performance at the synoptic scale. Additionally, we argue that the evaluation at hub heights
for specific locations provides more information than just at the synoptic scale. It provides
more detailed information about the model’s ability to capture the finer-scale wind patterns
closer to the surface (at much lower heights than 850hPa/500hPa (where synoptic scale
mechanisms are more present). During the revision, we have also plotted diurnal cycles of
wind direction in each season to add another component to a synoptic perspective.
However, we are also open to suggestions from the reviewer for ideas for additional
analysis.

You can find our diurnal wind direction subplots that correspond to each of the wind rose
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13.

14.

15.

16.

subplots in the Supplemental document.

Page 19, line 377: section index 3.1.3 is repeated here.. should be 3.1.4 | think?

Corrected

Page 21, line 409: your prior analysis of seasonally-average diurnal cycles shows
that statistically (not for specific days) the diurnal cycle is captured well. Here you
seem to suggest to the reader not to use the sub-daily information of ADDA-v2. |Is
this not too critical? If you would feed the diurnal cycles of 500 winter days from
ADDA-v2 to a wake model to check performance of a wind farm, | don’t feel like
the output would not be trustworthy. So maybe rephrase this a bit or provide
additional clarification.

We appreciate this comment. We wanted to convey that ADDA-v2 is a climatological
dataset and is not intended for weather-scale (e.g., day-to-day) evaluations. But for studies
like the reviewer suggested, we believe the data and this analysis is still valuable. We have
added a couple sentences to the beginning of Section 3.1.5 to express this.

Page 22, figure 6: As surface wind speeds are usually well below 10 ms-1 on
average, RMSE does not give a good idea of how good the agreement actually is.
Could you use the rRMSE here?

We agree and have adjusted the figure to show relative mean biases instead.

Page 22, figure 6: In the introduction you mention that wind datasets are important
for risk assessments of high winds. Yet, for this surface wind speed evaluation, you
focus on seasonal RMSE’s. Why not also look at extremes? Is there perhaps a
reason why this dataset is not intended for looking at extreme winds? Logically, for
wind energy purposes one would be interested in winds higher up, so I’'m curious
what the surface wind speed output is for. You could add an analysis, or clarify why
the presented analysis is sufficient.

Thanks for the comment and suggestion. Indeed, one of the motivations for developing
this high-resolution data was for risk assessments associated with extreme weather
events. We have a separate study that conducted assessments on wind extremes using
ADDA-v2 focusing on tropical cyclones (TC) in the Northern Atlantic basin (Tobias-Tarsh
et al. 2025). Generally, we find that the ADDA-v2 data can accurately capture the TC
characteristics, including categories, intensities, frequencies and duration, and can do a
much more reasonable job than ERA5 especially when using wind speed to define the
hurricane category. When using sea level pressure, ERA5 performs reasonably well too.
We have added this information in the Discussion mentioning this research. We also plan
to perform more general wind-related extremes assessments over land in future studies.
This is also mentioned in Section 4 Discussion

References
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Evaluation of North Atlantic Tropical Cyclones in a Convection-Permitting Regional Climate
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Page 24, figure 7: These indicators 7-2°, ‘56-1" — where do these come from? These
should be explained somewhere.

Apologies for the confusion. They refer to the different options for the dynamic vegetation
and surface drag parameterizations that are provided within the Noah Multi-
Parameterization land surface scheme.

We have added a sentence in Section 2.1 explaining that we’ve perturbed the options for
dynamic vegetation and surface layer drag coefficient calculation within the Noah-MP
LSM for the sensitivity experiments we conducted. Also, we added a note within the
figure caption for clarification.

Page 25, line 498: Instead of saying that high friction velocities correspond to
weaker winds, could you explain a bit better to the reader why this is the case?

While friction velocity is not a scale for wind speed itself, they tend to have strong
correlations. Friction velocity quantifies the turbulent momentum flux at the surface.
Therefore, higher u- values correspond to more of the momentum being lost to the
surface, leading to weaker wind speeds closer to the ground, especially in areas with
high surface roughness. We’ve added clarification to the section discussing friction
velocity so that the connection between friction velocity and wind speeds is clear.

Page 26, section 3.4: An interesting addition. However, | am very interested to see
the importance of the two components of model uncertainty: initialization and
physics choices. | would expect that the lateral forcing would lead the initialization
to not matter too much on annual statistics compared to physics parametrization
choices. Please add this.

The hypothesis from the reviewer is correct. Over most locations, the choice of physics
parameterization shows a larger range of model outcomes when compared to the varying
initial times (when the model simulation was initiated). We have added a figure to the
Supplementary file to show the difference in magnitudes for internal variability (varying
initialization times) and structure uncertainty (varying model physics parameterizations).
Some figures highlighting this can be seen below, in which the standard deviation between
the structure uncertainty ensembiles is larger than that of the internal variability ensembles:
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Figure R2. January diurnal cycle of 100m wind speed over four representative 6x6 grid regions
using 10 ensemble members with varying initial conditions (dates and hours). The spread of these
lines indicates the internal variability of our model over different regions.
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20.

21.

22.

Figure R3. Same as Figure R2, but the spread indicates structure uncertainty due to physics
parameterizations, specifically looking at different land surface model and Planetary boundary layer
schemes.

Page 28, figure 10: Is the inter-annual variability over a specific 2-week period
something that wind farm operators are concerned about? As expected, this
variability is very large. | think that the inter-annual variability on seasonal
timescales might be good to add as well: e.g. how good or how bad a winter period
can be in terms of wind resource over the lifetime of a wind farm. You could
motivate your choice or add also the seasonal timescale to this analysis.

Thanks for the comment. We’d like to clarify that the purpose of presenting biweekly
model variability is mostly driven by the motivation of showing how model uncertainty_
changes with time scales. That is, with longer time scales, the model uncertainty will
decrease. We have calculated model uncertainty for weekly, biweekly and monthly
timescales, and we chose to show bi-weekly here. The model uncertainty at the weekly
scale is even larger than bi-weekly scale; contrarily, model uncertainty at monthly and
seasonal scales are much smaller than the bi-weekly scale. We agree with the reviewer
that the magnitude of interannual variability for the bi-weekly timescale might be less
useful than seasonal timescales for wind resource evaluations. So, we have included
interannual variability at seasonal scale in the supplementary file during revision.
Findings are also included in the result section (Section 3.4).

Page 29, line 553: Is the lower inter-annual variability in summer not simply a
consequence of lower wind speeds? Relatively speaking, the variability could be
as large as for winter or even larger.

We agree with the reviewer on both points they brought up. We have plotted maps to show
the relative values of interannual variability (to the actual wind speeds)

Page 30, line 601: | get a “404 not found” when pasting the link to reach the hub
height wind data. Please make sure that a reliable pointer is available to access
the data and that some documentation is available there. Perhaps also for the full
ADDA-v2 data: include an e-mail / link where to request access.

That is very strange. We double checked and the links were accessible and took the user
to the intended destination. The following websites are where the links should take you:

WTK-LED Climate API | NREL: Developer Network
WDH: Wind Data Hub

We have ensured that the links are functional. We will also include the information
necessary to request access to the full ADDA-v2 dataset.


https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-led-climate-v1-0-0-download/
https://wdh.energy.gov/data/wind-energy

Reviewer #2

General feedback

Overall, this manuscript is well written, well-structured and appears carefully worked through with
nice looking figures. The work describes a new 4km, 20y mesoscale dataset covering North
America with extensive validation using met towers and surface stations and ensemble analysis
for a selected period.

Downscaling of global reanalysis models using mesoscale models like WRF is well covered
in the literature as well as the improvements it provides relative to the global models. Hence, the
novelty of the approach in this manuscript may be disputed given that it has poorer resolution
compared to the previous work of Draxl et al. (2015).

However, the open access to the large dataset and the extensive validation effort including
ensemble analysis justifies the publication.

We appreciate all the insightful comments which we believe have improved our
manuscript. Please find our response to each individual reviewer's comment in the
following section. We have also significantly reduced the text in the results yet
maintained the highlights of discussion.

General comments
In general, | would like to question if the selected validation metrics for wind speed (r, RMSE,

rRMSE, OVL) provide sufficient complementary insight. In my view, these metrics overlap too
much in whatthey measure and none of them allow for distinction between systematic errors
(biases) and fluctuating errors. | suggest including a simple metric like mean (bias) error to cover
this important aspect and re-reconsider if each of the other metrics contribute enough additional
insight to remain in the paper. A metric should be included only if characteristic error structures can
be inferred from it — to move beyond being merely descriptive.

Thanks for the comment. We agree that mean bias has been used very commonly in wind
data evaluation studies, and it is very effective if there is a systematic model bias. For
example, in our model configuration, we found that there is a systematic high bias in near-
surface wind when using Noah Land surface model (compared with NoahMP) over the
Midwest region (as shown in Figure 8). In this case, using this error metric can effectively
show systematic bias. However, in the case of locations or regions that do not exhibit such
systematic bias, and the model bias varies with time - for example, one year shows negative
bias, and another year shows positive bias - our concern was that the mean bias may be
smoothed out and may show a misleading conclusion that the model performs well. While we
had this concern, we investigated this in depth during revision and compared mean bias with
our other metrics. We found the mean bias shows similar conclusion with PDFs about the
systematic underestimation of ERA5. However, because mean bias was calculated with the
time dimension, it does add value on top of PDFs to allow us to better understand model
bias. There is not much systematic bias in ADDA-v2 but a slight overestimation over some
sites. We have added a section and a figure with 3 panels about this analysis in Section
3.1.2.

Regarding the other metrics employed in this study, each was chosen to offer a unique
component to the validation. Initially, looking at the full distribution of wind speeds, the PDFs
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paired with these overlap ratios (OVLs) were used to demonstrate the degree of similarity
between model and observational wind speeds without considering the time dimension.
These PDFs can visually convey any systematic biases present within the model.

Next, RMSEs and rRMSEs were then paired with the diurnal cycle plots, which now consider
the time dimension, unlike the PDFs. We chose RMSEs to test how close ADDA-v2’s wind
speeds were to observations in the absolute sense and include rRMSE to show the
magnitude of error relative to the wind speeds themselves. In addition, while RMSEs could
demonstrate that the model performs very well in terms of magnitude, it is not able to show
whether the model captures the correct timing of the wind speed minimums and maximums.
Thus, we also use Pearson’s correlation coefficient. Further, we use wind-roses to examine
the wind speed and corresponding wind direction to ensure the model captures the physics
and the seasonality correctly.

| suggest reducing the mostly summarising parts (section 3) with long descriptions and lists of
numbers in the text. Please also consider additional summary table(s) for better overview and
readability.

Thanks for the comments. Following your suggestion, we have significantly reduced the text
and description in the result section while still highlighting model performance in
representative regions (e.g., flat, mountains, Alaska and Puerto Rico). While the text is
condensed, statistics are still summarized in Table 3 for all metrics, providing detailed
evaluations for both ADDA and ERA5 datasets.

The paper should include consideration/discussion of the effect of not accounting

microscale effects. A 4km model effectively resolves scales from 20-30km and up. How is this
expected to affect presented results, when validating the model against

measurements that include significant effects on finer scales, which may be very strong at 10m
agl.?

Thank you for the insight. We agree that, although the model uses a grid spacing of 4km, it
cannot fully resolve the energy spectrum or variability at scales finer than 10-20km, as
discussed in Muller et al. (2024, Figure 11), Skamarock (2004) and Larsén et al. (2012). This
means that our model cannot capture the wind variability at 4-10km scale that exists within
observations data, particularly at the near-surface level where variability tends to be larger.
Capturing such variability in observations would require continuous gridded data, such as
those from radar or satellites. However, the observational data we use are from individual point
locations and do not represent spatial variability in the surrounding area. To make the
evaluations more robust, we could expand the current approach to include multiple model grid
cells surrounding each observation site, rather than using only the closest grid cell. This would
allow us to characterize a range of modeled winds around the observation sites and better
represent model spatial variability. An example of this approach is shown by Miiller (2025) for
typhoon evaluation using mesoscale models and lidar data. We have added a discussion of
this in the revised manuscript.
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Source: Mdller (2025)
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Weather Rev., 132, 3019-3032, https://doi.org/10.1175/MWR2830.1, 2004

Larsén, X. G., Ott, S., Badger, J., Hahmann, A. N., and Mann, J.: Recipes for correcting the
impact of effective mesoscale resolution on the estimation of extreme winds, J. Appl.
Meteorol. Clim., 51, 521-533, https://doi.org/10.1175/JAMC-D-11-090.1, 2012.

Mdiller, S., Larsén, X. G., and Verelst, D. R.: Tropical cyclone low-level wind speed, shear,
and veer: sensitivity to the boundary layer parametrization in the Weather Research and
Forecasting model, Wind Energy. Sci., 9, 1153-1171, https://doi.org/10.5194/wes-9-1153-
2024, 2024.

Muller 2025. Typhoon wind and turbulence structure, and its impact on wind energy
application. PhD thesis. Department of Wind and Energy Systems, DTU Wind.

Argumentation that the selected ensemble runs represent model uncertainty should be
strengthened, this currently is an implied assumption. Does the spread across the
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selected and boot-strapped ensamples really represent actual model uncertainty?

Thanks for the question. We agree that it is very challenging for numerical simulations at such
a high resolution over a large domain to capture all model uncertainty. So, we aimed to design
the presented model configurations to represent a robust sample of model uncertainty. We
chose to perturb the Planetary Boundary Layer Scheme and the land surface model for the
“structure uncertainty” simulations because they have the most significant influence on
generating variability within near-surface winds (Draxl et al., 2014; Yang et al., 2017). Of
course, we understand that many other physics parameterizations can cause different model
solutions as well. For internal variability, we conducted the minimum number required for
quantifying the uncertainty (Wang et al. 2017).

We have made this clearer in the manuscript by providing a brief discussion justifying the
selected model configurations used for this model sensitivity analysis. We’ve also noted that
recent advances in machine-learning (ML) based surrogate model or numerical + ML hybrid
modeling may provide a more comprehensive means of quantifying model uncertainty (Tunnell
et al, 2023; Di Santo et al., 2025) given the much faster calculation they can do.

Referring to the response to Reviewer #1, our data, alongside other existing datasets with
more extensive time periods (albeit more limited domains) can also provide a more
comprehensive understanding of model uncertainty and variability.

References:
Tunnell, M., Bowman, N., & Carrier, E. (2023). Fast Gaussian process emulation of Mars

Global Climate Model. Earth and Space Science, 10,
e2022EA002743, https://doi.org/10.1029/2022EA002743

Di Santo, D., He, C., Chen, F., & Giovannini, L. (2025). ML-AMPSIT: Machine Learning-based
Automated Multi-method Parameter Sensitivity and Importance analysis Tool. Geoscientific
Model Development, 18, 433—459. https://doi.org/10.5194/gmd-18-433-2025

The limitations and uncertainty of the observations used in the validation should be discussed
either in section 2.2 or section 4.

We agree and have added a discussion to address this in Section 2.2 (Observational
datasets). Such limitation and uncertainty include representativeness errors, in which there
could be a scale mismatch between the hyperlocal measurement conditions of the
anemometer and the broader model grid cell, environmental effects such as land use,
obstructions, or elevation effects, or the temporal sampling methods of the observational data
and the inherent uncertainties associated with that.

Reviewer 1 additionally inquired about whether the observations were corrected for mast flow
distortions. Much of the hub-height observational data we worked with did not have the
orientation of the anemometers with respect to surrounding structures/towers. Therefore, we
did not want to make corrective assumptions and potentially incite additional biases into the
observational data. However, we do agree that it is important to acknowledge the limitations
of the observational data itself.
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Some detailed comments
Page 2, line 63: Itshould be mentioned here that ERAS is initial/lboundary model in addition to

theinfointable 1, on page 5.
Done.

Page 10, line 223: Explain “internal variability” and “structure uncertainty” in more detail, and
why 10 and 6 ensemble members, respectively, was decided upon.

Thanks for the suggestion. We have added a section particularly for Model uncertainty
(section 2.2) to better explain why and how we conduct these uncertainty simulations. The
uncertainty quantification section (section 2.4) focus on talking about the bootstrapping and
how to express the uncertainty.

Page 14-15,fig. 3: Alegend is missing for the plots.
Added.

Page 15, line 340: Interpolation in wind direction simply requires conversion of wind direction to
components which may be interpolated similar to the wind speeds, and then converted back to
wind directions.

Added wind roses for ERA5 data as well.

Page 25,1ine 489: Friction velocity is denoted using u. and not u*.

Fixed.

Page 26, line 503:  Explain why “high friction velocities correspond to weaker winds”

While friction velocity is not a direct scale for wind speed itself, they tend to have strong
correlations. Friction velocity quantifies the turbulent momentum flux at the surface.
Therefore, higher u-values correspond to more of the momentum being lost to the surface,
leading to weaker wind speeds closer to the ground, especially in areas with high surface
roughness. We’ve added such clarification before discussing the results.
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