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Abstract. Assessing the availability of key wind resources requires augmenting observations to support the implementation 

of wind energy infrastructure. However, observations are limited, necessitating the development of high resolution, long-term 

gridded datasets. This study presents a robust, dynamically downscaled climatological dataset, offering 20 years of hourly 

wind data at a 4-km spatial resolution across North America, and evaluates its performance against observations, including 

meteorological towers and Automated Surface Observing Stations (ASOS), as well as a coarse-resolution reanalysis data 一 15 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5). Results demonstrate that the 

downscaled high resolution wind data outperforms ERA5 in regions of complex terrain and coastal areas, with improved 

overlap coefficients for wind data distributions and reduced root mean square errors (RMSE) for hub-height and near-surface 

diurnal wind patterns. The downscaled simulation also reasonably captures the synoptic drivers of seasonal wind direction 

patterns, indicated by high wind rose similarity indices. This study also provides an analysis of interannual variability, utilizing 20 

the dataset’s full 20-year period, and model uncertainty, generated by varying model initial conditions and physics 

parameterizations across 1-year ensemble members, which are key considerations for wind resource assessment in wind farm 

development.  

 

1 Introduction 25 

Wind is a key factor in shaping a region's complex climate, influencing both environmental and economic sectors. 

Understanding local and regional wind variability is vital for assessing wind energy potential, which aids in the efficient 

implementation and operation of wind farms (Millstein et al., 2019; Couto & Estanquiero, 2021). Additionally, evaluating 

wind speed and direction is essential for conducting accurate riskclimatological assessments for high winds, whether onshore 

or offshore (Li, 2023; Grasu & Liu, 2023; Wu et al., 2022b).to determine the long-term changes in regional wind patterns. 30 
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However, the spatiotemporal coverage of current wind measurements remains very limited, particularly over complex terrains 

(e.g., western US), offshore, and at hub-heights, where wind energy resource assessments are crucial.  

To bridge the gap between limited observational data and the need for accurate wind resource assessments, global 

and regional reanalysis datasets, such as Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2), the North American Regional Reanalysis (NARR), and the European Centre for Medium-Range Weather 35 

Forecasts Reanalysis version 5 (ERA5), are commonly used (Hersbach et al., 2020; Gelaro et al., 2017; Mesinger et al., 2006). 

These reanalysis datasets provide valuable insights into wind patterns, variability, and long-term trends, and are also crucial 

for capturing climatological oscillations and large-scale circulations that influence wind characteristics (e.g., Sheridan et al., 

2022a). While these datasets typically have higher horizontal resolution than global climate models (GCMs), they still lack the 

resolution necessary to explicitly resolve convection and represent fine-scale surface variations, which is essential for capturing 40 

convectively driven precipitation and wind (Murakami, 2014; Jones et al., 2021). Additionally, validating these reanalysis 

datasets is essential for determining their viability for wind resource assessments. (Sheridan et al., 2020, 2024; Lee et al., 

2014). For example, Sheridan et al. (2022b) found that ERA5 generally underestimates wind speed diurnal cycles based on 62 

sites at a variety of heights above ground across the continental United States (CONUS). This underestimation is most 

prominent in late afternoon, caused primarily by the underestimation of convectively driven strong winds. Similarly, Chen at 45 

al. (2024) and Wilczak et al. (2024) found that ERA5 showed significant negative biases for wind speeds in areas of complex 

terrain, especially over the Rocky Mountains.   

To achieve the necessary high resolution to capture finer scale wind patterns over large spatial areas and extended 

time periods, researchers employ a technique called dynamical downscaling. This technique involves using initial and 

boundary conditions from the global or regional reanalysis data to force simulations at finer resolutions using a regional climate 50 

model. Regional climate modeling at a convection-permitting (CP) resolution, with a horizontal grid spacing of less than 

approximately 4 km, has become a promising approach for delivering more reliable climate information at regional and local 

levels. By directly resolving deep convective processes rather than relying on parameterization, these models demonstrate 

significant enhancements (e.g., Prein et al., 2015 and the references therein). Due to recent breakthroughs in computational 

capacity and data management, several studies have been able to perform convection-permitting regional climate model (RCM) 55 

simulations. These simulations, especially those concentrating on the CONUS, (e.g., Draxl et al., 2015b; Gensini et al., 

20232022, Liu et al., 2017; Rasmussen et al., 2024) have shown substantial progress in depicting precipitation, wind, and high-

impact weather from national to regional spatial scales. Among these, Draxl et al. (2015a, b) presented the largest, freely 

available wind dataset at the time of its creationdevelopment, serving the Wind Integration National Dataset (WIND) Toolkit 

for wind resource assessment and grid integration studies. The data provides time series of meteorological variables every 5 60 

min and 2km across the CONUS in the 7 years from 2007 to 2013. 



 

3 
 

This study builds upon previous efforts by presenting an additional high-resolution, long-term dataset, along with 

ensemble simulations for quantifying model uncertainty, for utilization in climatological wind assessments. The dataset was 

generated by a regional climate model using the Weather Research and Forecasting (WRF) model. With 4 km, 20-year, hourly 

output, and a model domain spanning the majority of North America and surrounding oceans, this dataset provides a 65 

spatiotemporal extension to existing climatological wind analyses. With large geographic coverage, this data product also 

offers insight into more remote, topographically complex regions, and high-impact weather phenomena, such as tropical and 

extratropical cyclones (TCs/ETCs) and atmospheric rivers, potentially highlighting viable areas for wind energy and providing 

the means for climate related risk assessments outside of CONUS. By leveraging a single large spatial domain, the model 

evolved as one system, developing its own natural variability without being constrained by the forcing data. This dataset has 70 

been leveraged by the latest WIND Toolkit Long-term Ensemble Dataset (WTK-LED), as documented by Draxl et al. (2024), 

serving as the WTK-LED Climate dataset (Table ES-1 in Draxl et al. 2024). Ultimately, this high-resolution dataset aims to 

combine the climatological significance of an extensive temporal length with the wind-resource-utility advantages of a large 

spatial domain. 

Our study validates the dynamically downscaled model wind speeds and wind directions against various observational 75 

data at both the near-surface and at turbine-heights at mostly inland and onshore locations, investigating model performance 

at different temporal scales (diurnal, seasonal, interannual variability). Especially in the context of wind energy, both speed 

and direction are crucial components to consider when maximizing the efficacy and operability of wind farms, as speed largely 

determines the amount of power generated while direction can incite microscale differences in wake effects. A complementary 

study evaluating the same dataset but focusing on CONUS coastal areas has been documented by Sheridan et al. (2024). Our 80 

validation is also performed on the forcing data —- ERA5 reanalysis (Hersbach et al., 2020), aiming to understand the added 

value of the dynamically downscaled model to its coarser resolution forcing data. Additionally, this study seeks to augment 

insights on model uncertainty within wind simulations that are brought about by varying model configurations.  

This manuscript is organized in the following structure: the methodology, including model description, observational 

datasets used for validation, and analysis metrics used for evaluation are outlined in Section 2. The results of the model’s 85 

performance at hub-heights and near surface are presented in Section 3.1 and 3.2, with an exploration of model bias in Section 
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3.3. Interannual variability and model uncertainty are quantified in Section 3.4 with the context of wind energy implications. 

Lastly, a summary of our findings and avenues for future research are discussed in Section 4. 

 

2 Methods and Datasets 90 

2.1 Model DescriptionSetup  

The wind validation performed in this study was based on a 20-year (2001-2020) climatological dataset produced by the WRF 

model (Powers et al., 2017) version 4.2.1 with the Advanced Research WRF dynamic core (Skamarock & Klemp, 2008): the 

Argonne Downscaled Data Archive version 2 (ADDA-v2). With a domain of 2050 x 1750 grid points at a 4-km grid spacing 

(8200 km x 7000 km), the model featured over 3.5 million grid cells, horizontally spanning across the majority of North 95 

America and the Caribbean Islands (Fig. 1a in Akinsanola et al., 2024). The model was run with 50 unevenly spaced sigma 

levels, 18 of which were within the lowest 1km. The first six layers are below 104 meters above ground level —  (8, 25, 4142, 

58, 75, 104, 147, 189, 231, 274, 317, 360, 403, 468, 555, 643, 777, and 104 meters.957m above ground level), and 10 of them 

are below 300m above the ground to ensure the hub-height winds are calculated directly by the model. Initial and lateral 

boundary conditions were determined by ERA5; 5 variables were taken at each of ERA5’s 37 available pressure levels 100 

alongside 26 single-level variables.. The model was reinitialized for each year on November 1, ultimately producing a series 

of 20, 14-month simulations covering the period from 2001-2020. These individual simulations were allowed a spin-up period 

of The first two months (November and December), which) of each year were eventually discarded as spin-time time and not 

used for the data analysis. To study the model's internal variability, we conducted 10 additional 1-year (ENSO neutral year - 

2018) ensemble runs, all with the same model setupThe reinitialization approach, but different initial conditions (Wang et al., 105 

2018). This was achieved by running each of the ten ensemble members 12 hours apart, withchosen since the first being 

initialized on November 1, 2017, at 00 UTC andRCM was driven by high-resolution reanalysis data, instead of coarse 

resolution GCMs which usually require at least one year of spin up time. While soil moisture is typically a concern when 

reinitializing models during the last being initialized on November 5, 2017, at 12 UTC. Thuscold months, the slightly different 

initial conditions at each respective start time acted as soil moisture of both the catalyst to generate differences between the 110 

ensemble members.ERA5 forcing data and ADDA-v2 was validated and found to be realistic (Akinsanola et al., 2024).  

Generally, WRF simulations employ multiple physics schemes to implicitly represent the sub-grid processes 

occurring within the model domain. The choices specified for different parameterizations can impact how the model simulates 

wind, especially PBL, surface layer schemes, and land surface processes. For the 20-year simulations the Yonsei University 

(YSU) (Hong et al., 2006) PBL scheme is used, which has been studied in multiple model sensitivity experiments that explore 115 

the effects of PBL schemes on wind simulations (Carvalho et al., 2012; Carvalho et al., 2014; Li et al., 2021; Wu et al., 2022a; 

Hahmann et al., 2015; Draxl et al., 2014). Overall, the YSU PBL scheme performs relatively better in unstable conditions than 

stable conditions and represents diurnal variability well (Hong et al., 2006; Draxl et al., 2014). The surface layer schemeThe 
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Yonsei University (YSU) PBL scheme was used for these simulations, which runs with topographic correction for surface 

winds (topo_wind=1 WRF; Jiménez & Dudhia, 2012; Skamarock et al., 2019) to represent extra drag from subgrid topography 120 

and enhanced flow at hilltops. The surface layer scheme used was the MM5 similarity scheme, which follows the Monin-

Obukhov similarity theory (Monin & Obukhov, 1954) alongside the Carlson-Boland similarity functions (Carlson and Boland, 

1978). The Unified Noah land-surface model was used for the land surface processes, which employs a 4-layer soil temperature 

and moisture scheme, as well as fractional snow cover and frozen soil physics (Tewari et al., 2004). A full list of model 

parameterizations can be found in Table 1. No internal grid nudging nor spectral nudging was employed for these simulations 125 

because it requires additional computational resources (20-30% more for our configuration), and the ERA5 forcing data is at 

a relatively higher resolution than other reanalysis datasets, which can provide good boundary conditions and allow the model 

to develop its own spatiotemporal variability. Model output data for the most used meteorological variables, such as air 

temperature, wind speed and direction, and precipitation, were saved at hourly intervals for the full domain from 2001-2020. 

Other variables less frequently used were saved at 3-hour intervals.A full list of the model parameterizations can be found in 130 

Table 1.  

 

2.2 Model Uncertainty 

There are multiple sources of model uncertainty in regional weather and climate models (Hawkins & Sutton, 2009). The 

dominant uncertainty for near-term simulations includes model internal variability and structure uncertainty. The internal 135 

variability is caused by varying initial conditions, while structure uncertainty is generated by various physics 

parameterizations. To study the model's internal variability, we conducted ten additional 1-year (ENSO neutral year - 2018) 

ensemble runs, all with the same model setup as described in Section 2.1, but different initial conditions (Wang et al., 2018). 

This was achieved by running each of the ten ensemble members 12 hours apart, with the first being initialized on November 

1, 2017, at 00 UTC and the last being initialized on November 5, 2017, at 12 UTC. Thus, the slightly different initial conditions 140 

at each respective start time acted as the catalyst to generate differences between the ensemble members. The number of 

internal variability ensembles was chosen based on the logic of Wang et al. (2017), which demonstrated that 10 ensemble 

members with varying initialization times was the minimum number needed to capture the internal variability of the model.  

To investigate the model’s structure uncertainty arising from keyimportant physics parameterizations —for wind, 

namely the PBL and land surface model (LSM) —), an additional six ensemble members were generated for the same neutral 145 

year 2018. Each ensemble member shared the same domain and spatial resolution but employed two different and widely used 

PBL schemes (YSU and MYNN) and LSMs (Noah and NoahMP) for wind energy applications (Draxl et al., 2014; Yang et 

al., 2017). The MYNN PBL scheme is a level 2.5 closure scheme for turbulence and implicitly solves for turbulence using 

parametric equations. It gives estimates of TKE and dissipation rates within the boundary layer of the atmosphere (Nakanishi 

& Niino, 2009). Noah-MP is an improved version of the Noah LSM and provides better representations of terrestrial 150 
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biophysical and hydrological processes (Niu et al., 2011). Major physical mechanism enhancements include improved 

treatment of soil moisture. No internal grid nudging, nor spectral nudging was employed for these simulations to allow the 

model to develop its own spatiotemporal variability. A major physical mechanism enhancement includes improved treatment 

of soil moisture. Two dynamic vegetation options and two surface layer drag coefficient calculation options were also 

perturbed within the Noah-MP LSM. Thus, in total we had ten combinations with five LSM options and two PBL options. We 155 

experimented with these ten runs for a subregion over Southern Great Plains (with various topographic characteristics) and 

determined that six of the ten runs were able to capture the range of model uncertainty across the domain. Then, we used these 

six representative combinations for the entire North American domain and entire year of 2018. While the 16 ensemble members 

do not capture all model uncertainty, they do represent a robust range of model variability due to these perturbations in initial 

conditions and key physics parameterizations (see more details in Draxl et al., 2024). Model output data for the most used 160 

meteorological variables, such as air temperature, wind speed and direction, and precipitation, were saved at hourly intervals 

for the full domain from 2001-2020. Other variables less frequently used were saved at 3-hour intervals.  

 

Table 1: WRF model setup and ensemble runs used in ADDA_v2 simulations 

Regional Climate Model WRF v4.2.1 

Initial and Boundary Conditions ERA5 at 0.25 deg, every 3 hours 

Horizontal Grid Spacing and Timesteps 4km; adaptive time stepping 

Number of Grid Cells 2050 (west-to-east) x 1750 (south-to-north) x 49 (top-to-bottom) 

Simulation Period January 1, 2001, to December 31, 2020 

Microphysics Scheme Morrison double moment (Morrison et al., 2005) 

Land Surface Scheme Unified Noah (Tewari et al., 2004), Noah-

MultiParameterization (NoahMP, Niu et al., 2011) with two 

options for dynamic vegetation and surface  

Planetary Boundary Layer Scheme Yonnsei University (Hong et al., 2006), Mellor-Yamada-

Nakanishi-Niino (MYNN, Nakanishi & Niino, 2009) 

Short and Long-wave Radiation Scheme Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et 

al., 2008) 

 165 

2.23 Observational Datasets Used for Validation  

The validation performed on ADDA-v2 used wind speed observational data taken within 100 meters above ground level. The 

first collection of observations focused on hub-height wind speeds and wind directions. These observations were taken from 

multiple meteorological towers hosted by the US Department of Energy National Laboratories (Argonne National Laboratory, 
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Brookhaven National Laboratory, NREL, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Savannah 170 

River National Laboratory), and the National Oceanic and Atmospheric Administration (National Centers for Environmental 

Information, National Data Buoy Center). In total, 26 meteorological towers were sampled and quality controlled for this 

analysis, with wind speed observations taken anywhere from 10m to 100m above ground level. Observations were quality 

controlled through the process of removing atypical or unphysical reported wind speeds (less than 0 m s−1, greater than 50 m s−1, 

or non-varying values over periods of time greater than 3h), based on Sheridan et al. (2024). Mast flow distortion corrections 175 

were not implemented since most locations had only one anemometer reading. For sites with multiple anemometer readings, 

instrumentation metadata, such as anemometer orientation with respect to nearby structures, was not included, and we did not 

want to make corrective assumptions. While different factors, such as instrument precision, environmental effects such as land 

use, obstructions, or elevation effects, and the temporal sampling methods can introduce uncertainty into the collected 

observational wind, the quality control procedures conducted here maximize the integrity and reliability of the data used for 180 

this validation.  

Temporal coverage for the meteorological towers varied between 2-20 years, with an average of ~8.1 years. 

Observations covered a diverse range of geographies, including mountainous, coastal (east and west coast of the CONUS), the 

Great Lakes, and plains regions; Alaska and Puerto Rico (Caribbean) were denoted as separate geographic regions.  For 19 of 

these meteorological towers, the exact locations, anemometer heights, and temporal coverages of wind observations can be 185 

found in Table 2. The remaining 7 are proprietary data, in which exact locations could not be specified. While turbine-height 

wind speed and wind direction data isare sparse, we have leveraged all the publicly available resources that we have access to 

and performed a thorough validation over diverse geospatial areas.  
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 190 

Figure 1. Locations of in-situ observations sampled from meteorological towers across CONUS and Alaska, along with an ASOS location 
over Puerto Rico. The zoomed in area, with stars representing each dataset, indicates the capability of ADDA-v2’s higher resolution to more 
closely match the exact location of the in-situ data. The 2000+ sites over CONUS are not included here but can be seen in Fig. 6. 

 

The second part of this evaluation explores an expansive collection of 10 m wind speed data sourced from a network 195 

of Automated Surface Observing Stations (ASOS). These stations monitor and report various meteorological variables and are 

operated by the United States National Weather Service, the Federal Aviation Administration, and the Department of Defense. 

The specific dataset used for this validation was collected from the Iowa Environmental Mesonet (IEM) and subsequently 

quality controlled by the Data Archive and Portal (DAP) Platform. The dataset hosts over 2,000 sites across CONUS and 
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Alaska and covers a temporal period from 1 January 2000 – 31 December 2021, offering a spatiotemporally comprehensive 200 

means for performing a thorough validation of ADDA-v2’s 10m wind. Additionally, wind speed data from four additional 

ASOS stations over Puerto Rico were downloaded from the Iowa Environmental Mesonet (IEM) to spatially  

 

 

Figure 1. Locations of in-situ observations sampled from meteorological towers across CONUS and Alaska, along with an ASOS location 205 
over Puerto Rico. The zoomed in area, with stars representing each dataset, indicates the capability of ADDA-v2’s higher resolution to more 
closely match the exact location of the in-situ data. The 2000+ sites over CONUS are not included here but can be seen in Fig. 6. 
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expand the model validation and gain a more comprehensive understanding of model performance over areas of sparse data 

availability and complex terrain.   210 

To demonstrate the potential added value of ADDA-v2 to its coarse resolution forcing data, we also includeincluded 

ERA5 reanalysis in all near-surface and hub-height evaluations. ERA5 outputs only two levels of wind (10m and 100m), so to 

evaluate winds at heights between these levels, an interpolation method was required. At each timestamp, the ADDA-v2 and 

ERA5 wind speeds were adjusted to the observational heights via the power law using the model wind speeds at surrounding 

output heights to the observation height. While this interpolation method may induce some bias in both ADDA-v2 and ERA5, 215 

the differences between these datasets are driven mostly by the difference in spatial resolution and the added value by ADDA-

v2. This approach was selected based on the analysis of Duplyakin et al. (2021), who found that the power law minimized 

errors due to vertical adjustment of wind dataset output heights to observation heights.     

 

2.34 Statistics for Validation 220 

The wind speed validation in this study utilizes several statistical error metrics to evaluate how well ADDA-v2 performs 

against observations. In particular, rootRoot mean square error (RMSE), Pearson correlation coefficients (r), overlap 

coefficients (OVLs), and wind rose similarity indices (WRSIs) are used.  

The RMSE gives a metric for the overall accuracy of the model, with lower RMSE’s indicating improved model 

performance. RMSE is taken as the square root of the average of the squared differences between simulated wind speeds and 225 

the observed wind speeds at various timescales (seasonal, monthly, diurnal), given by Eq. (1). This metric is effective at 

highlighting instances of larger errors in the model and demonstrates the overall magnitude of model inaccuracy. Here, 𝒏 

represents the number of wind speed observations (in time), 𝒗𝐦𝐨𝐝 represents the modeled wind speed, and 𝒗𝐨𝐛𝐬 denotes the 

observed wind speed. Relative RMSE (rRMSE) was also considered, Eq. (2), by dividing the RMSE by the average of the 

observed wind speed. This gives a general sense of the magnitude of error in relation to the magnitude of the wind speeds 230 

themselves. 

 RMSE = √
1

𝑛
∑ (𝑣mod,𝑖 − 𝑣obs,𝑖)

2𝑛
𝑖=0       (1) 

                

 rRMSE =
RMSE

𝑣̅obs
         (2)  

 235 

The mean bias error (MBE) is used to assess the overall bias of the modeled wind compared to the observational wind 

speeds. It is taken as the average difference between the modeled wind speeds and the observed wind speeds. Values can be 
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negative or positive and indicate any systematic biases present within the model. For example, a negative bias would indicate 

that the model systematically underestimates wind speeds and vice versa. Zero indicates either the model performs realistically 

or there is equal amount of positive and negative biases. In Eq. (3) below 𝒗𝒎𝒐𝒅 represents the modeled wind speeds and 𝒗𝒐𝒃𝒔 240 

represents the observed wind speeds. Relative MBE (rMBE) was also considered, Eq. (4), by dividing the MBE by the average  

    

Table 2. Information for the hub-height wind data sourced from meteorological towers across CONUS. The number listed for each location 
corresponds to the numbers in Fig. 1, identifying the geographic positions of the meteorological towers. Location coordinates for proprietary 
data were excluded. 245 

Geography Location Coordinates Temporal 

Coverage 

Anemometer 

Height 

W. Coast  Megler, WA (1) 46.27°N, -123.88°W 2010-2018 53m 

Martinez, CA (3) 38.04°N, -122.12°W 2014-2020 100m 

Los Angeles Pier J, CA (4) 33.73°N, -118.19°W 2014-2020 31m 

Mountain Wasco, OR (2) 45.50°N, -120.77°W 2005-2018 30m 

NWTC, CO (5) 39.91°N, -105.24°W 2002-2020 50m 

Plains Site A, KS (6) - 2006-2008 49m 

SGP Observatory, OK (7) 36.61°N, -97.49°W 2012-2020 65m 

Site A, TX (8) - 2008-2013 50m 

Site B, TX (9) - 2009-2013 51m 

Site A, MN (10) - 2007-2011 80m 

Site A, AR (11) - 2011-2012 53m 

Argonne National Lab, IL (12) 41.70°N, -87.99°W 2007-2013 60m 

Site A, IN (13) - 2018-2019 90m 

Site A, OH (14) - 2017-2018 90m 

Great Lakes Dunkirk, NY (17) 42.49°N, -79.35°W 2001-2017 20m 

E. Coast Edith Hammock, AL (15) 30.23°N, -88.02°W 2008-2013 36m 

Fowey Rock, FL (16) 25.59°N, -80.09°W 2001-2020 44m 

Spiderweb, SC (18) 33.41°N, -81.83°W 2009-2012 34m 

East Point, FL (19) 29.41°N, -84.86, °W 2004-2020 35m 

Cape Henry, VA (20) 36.93°N, -76.01°W 2007-2020 28m 

Brookhaven, NY (21) 40.87°N, -72.89°W 2007-2013 50m 

Alaska Red Dog Dock, AK (22) 67.58°N, -164.07°W 2018-2020 13m 
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Bligh Reef, AK (23) 60.84°N, -146.88°W 2013-2020 22m 

Juneau Dock, AK (24) 58.29°N, -134.39°W 2018-2020 18m 

Five Fingers, AK (25) 57.27°N, -133.63°W 2013-2020 22m 

Puerto Rico San Juan, PR (26) 18.43°N, -66.01°W 2001-2020 10m 

 

of the observed wind speed. This gives a general sense of the magnitude of bias in relation to the magnitude of the wind speeds 

themselves. 

  𝑀𝐵𝐸 =
1

𝑛
∑ (𝑣𝑚𝑜𝑑,𝑖 − 𝑣𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1                   (3) 

  𝑟𝑀𝐵𝐸 =
𝑀𝐵𝐸

𝑣̅𝑜𝑏𝑠
         (4) 250 

The Pearson correlation coefficient (r) measures the degree of linear correlation in time between model wind speeds 

and observational wind speeds. Values range from -1 to 1, with -1 indicating a perfect negative correlation, 1 indicating a 

perfect positive correlation, and 0 indicating no correlation.  In Eq. (34) below, 𝒗̅𝐦𝐨𝐝 is the mean of the modeled wind speeds 

and 𝒗̅𝐨𝐛𝐬 is the mean of the observed wind speeds. 

 𝑟 =  
∑ (𝑣mod,𝑖−𝑣̅mod)(𝑣obs,𝑖−𝑣̅obs

𝑛
𝑖=1 )

√∑ (𝑣mod,𝑖−𝑣̅mod)2𝑛
𝑖=1 ∑ (𝑣obs,𝑖−𝑣̅obs)2𝑛

𝑖=1

     (35) 255 

 

Lastly, overlap coefficients (OVLs) were calculated between the probability density functions for the modeled and 

observed wind speed distributions, using Eq. (45). Functions were estimated using kernel density estimations, specifying 

Scott’s rule (Scott, 2015) for bandwidth smoothing. Once functions were drawn, OVLs were calculated using the following 

formula, in which 𝒇𝒗𝐦𝐨𝐝
(𝒙) is the estimated density function for the model wind speeds and 𝒇𝒗𝐨𝐛𝐬

(𝒙) is the estimated density 260 

function for the observed wind speeds. The result of this calculation yields a value from 0 to 1, in which 0 indicates no overlap 

and 1 denotes complete overlap between the estimated functions for observations and model wind speeds.  

OVL = ∫ (𝑓𝑣mod
(𝑥), 𝑓𝑣obs

(𝑥))  d𝑥
∞

−∞
                                                                                     (46)                                         

In addition to wind speed evaluations, we also conducted wind direction validations using wind roses. This is 

important for examining the model’s performance in capturing the seasonality of wind direction, as well as for investigating 265 

the covariance of wind speed and direction (Wu et al., 2022b). For these wind roses, similarity indices (WRSIs) were also 



 

13 
 

calculated by taking the sum of the minimum frequencies between model and observations for each discrete wind direction 

bin, using Eq. (56). Here, 𝒇𝒅𝐦𝐨𝐝
(𝒊) and 𝒇𝒅𝐨𝐛𝐬

(𝒊) represent the frequency of wind directions for each bin i.  

 WRSI = ∑ min( 𝑓𝑑mod
(𝑖), 𝑓𝑑obs

(𝑖)) 𝑛
𝑖        (57) 

 270 

2.4 Interannual Variability and Model5 Uncertainty Quantification  

This section quantifies the magnitudes of model uncertainty and model interannual variability for simulated wind speeds. By 

exploring the spatiotemporal patterns of both, we can provide crucial insight into wind energy resource applications. 

Specifically, the degree of interannual variability, as well as the magnitude of model uncertainty, significantly impact the 

estimated energy yield of a wind farm, consequently determining the cost of investment capital for new wind projects (Pryor 275 

et al., 2018; Jung et al., 2019). 

Wind, like many other meteorological variables, has interannual variability, driven by climate oscillations and other 

long-range temporal patterns. Long-term climate models can reasonably capture this variability, allowing for a comprehensive 

look at year-to-year fluctuations in wind speeds. Additionally, climate model simulations can generate varying solutions when 

employing different physics parameterizations and initial conditions (Carvalho et al., 2012, 2014; Li et al., 2021; Wu et al., 280 

2022a; Hahmann et al., 2015; Draxl et al. 2014). This study investigates these two types of variability and discusses their 

spatiotemporal magnitudes in the context of wind energy applications.    

 To quantify model uncertainty due to internal variability and structure uncertainty as described in Section 2.2, 

statistical bootstrapping was employed on the sixteen (10 internal variability, 6 structure uncertainty) 1-year simulations to 

generate 500 augmented ensemble members. This was done by randomly selecting data for each hour from one of the sixteen 285 

ensembles, ultimately building an entirely new ensemble with the same spatial and temporal domain. This technique allows 

for a more comprehensive look at the statistical distribution of data and the underlying variability that drives model uncertainty. 

Time averages were then performed across the model domain on each of the 500 resampled ensembles to gauge how the degree 

of model uncertainty is influenced by different timescales; this included monthly, bi-weekly, weekly, and daily averages, as 

well as daytime (21 UTC) and nighttime (06 UTC) monthly averages.  290 

 To represent model uncertainty, 5th and 95th percentiles were taken at the different time scale averages (e.g., weekly 

and biweekly) across the 500 augmented ensembles to determine the upper and lower bounds of temporally averaged wind 

speeds. Then, the difference between these two percentiles (95th - 5th) served to demonstrate the degree of ensemble spread. 

These percentiles were calculated for every grid point and at each timescale average to reveal spatiotemporal patterns present 

for model uncertainty. Interannual variability was calculated by taking the same as well to compare with model uncertainty. 295 

The same timescale averages, then were taken before computing the same percentiles (5th and 95th) across the 20 years of 

ADDA-v2’s full temporal domain. -year period. 
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3 Results 

3.1 Hub-Height Wind speed and Wind Direction Validations 300 

We start with a model validation for wind speeds at hub-heights (Section 2.2) over the 26 locations (Fig. 1) to assess ADDA-

v2’s utility for wind energy applications. We used several metrics and statistics to quantify model performance, including 

probability density functions (PDFs), mean biases, seasonally averaged wind speed diurnal cycles, wind roses, time-scale 

dependent RMSERMSEs and correlation bar chartscoefficients. For each figure, locations from the different geographies listed 

in Table 2 were chosen to assess ADDA-v2’s performance in different regions; where possible, at least one figure representing 305 

each geographic characteristic was displayed.  

 

3.1.1 Probability Density Functions 

PDFs effectively compare data distributions without considering the time dimension, aiming to visualize any biases between 

model and observation. Across the 26 hub-height locations, ADDA-v2’s PDFs had ana higher average OVL of 0.85 with the 310 

observational PDFs, while ERA5’s PDFs had an average OVL of 0.78. Similarities between ADDA-v2 and ERA5 distributions 

and observed wind speeds were spatially variable, with ADDA-v2 performing better than ERA5 for 18 of the 26 sites 

considered. Overall, ADDA-v2 performed well with East Coast CONUS locations, seeing very high OVLs for locations such 

as Fowey Rock (0.95), Florida, East Point, Florida (0.92), Edith Hammock, Alabama (In particular,0.93, Fig. 2i), and Cape 

Henry, Virginia (0.85). ERA5 also did well for these locations (0.77, 0.95, 0.96, and 0.82 respectively), struggling more just 315 

for the Fowey Rock location. For the West Coast of the CONUS, ADDA-v2 and ERA5 on average performed similarly. 

Megler, Washington, Los Angeles Pier J (Fig. 2a), California, and Martinez, California (Fig. 2b) saw OVLs of 0.82, 0.9, and 

0.79 for ADDA-v2 and 0.94, 0.85, and 0.87 for ERA5 respectively.   

Across the Plains region, ADDA-v2 was able to modestly outperform ERA5. The average OVLs for ADDA-v2 across 

the nine locations was 0.86, while ERA5 saw an average OVL of 0.79.  For many of the central U.S. locations, ADDA-v2 320 

wind speed distributions were very close to that of observations, namely Site A, Kansas (Fig. 2e), Site A, Arkansas (Fig. 2f), 

and SGP, Oklahoma. ADDA-v2’s higher resolution was able to capture the finer scale wind speed patterns in mountainous 

regions, with OVLs significantly outperforming ERA5. ADDA-v2 OVLs for the two mountainous regions considered (the 

higher than ERA5’s over the Cascades and the Rockies) were 0.91 and 0.87, while ERA5’s OVLs were considerably lower at 

0.64 and 0.75 (Fig. 2c, d). Additionally, ADDA-v2 was able to modestly outperform ERA5 across the Plains region. The 325 

average OVLs for ADDA-v2 outperformed across the nine locations was 0.86, while ERA5 for the single Great Lakes location 

(Fig. 2h), with saw an average OVL of 0.93 compared to 0.82.  

79. There were a couple locations where both datasets struggled to capture the hub-height wind speed distribution. For example, 

both ADDA-v2 and ERA5 had low OVLs for the southeast locationdemonstrated strong overestimations (Fig. 2j),) for 

Spiderweb, South Carolina. ADDA-v2 demonstrated a strong overestimation and saw its minimum OVL of 0.54, while ERA5 330 
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has a notably better, but still relatively low OVL of 0.77. As will be discussed in (Section 3.1),3, ADDA-v2’s positive bias 

can be partly attributed to the land surface model (LSM) used for these simulations, as well as the positive bias inherited by 

ERA5. Both datasets also struggled with the hub-height wind speeds at Brookhaven, New York, with OVLs at .0.63 (ADDA-

v2) and 0.56 (ERA5). However, the overestimations seen for this location by both datasets may be attributed to its unique 

geographic position; it is located on Long Island, New York, equidistant from Long Island Sound and the Atlantic Ocean, 335 

where land sea interactions on either side may incite complexities in the local wind patterns. Considering regions outside of 

the CONUS, ADDA-v2 performed very well acrossAcross the four Alaska locations, withADDA-v2 saw an averageoverage 

OVL of 0.88, while ERA5 struggled more, with an average OVL of compared to ERA5’s 0.70 (Fig. 2k). ERA5’s coarser 

resolution can contribute to these errors, especially across Alaska, where complex topography incites stark spatial changes in 

wind patterns. Specifically, for the Five Fingers location, on the coast of the Kotzbue Sound, ADDA-v2 sees an OVL of 0.93 340 

while ERA5 sees an OVL of 0.77 (Fig. 2k). For the San Juan, Puerto Rico location, ADDA-v2 and ERA5 saw decent 

performance in capturing wind speed patterns, although ERA5 did demonstrate slight improvement with an OVL of 0.78 

compared to ADDA-v2’s 0.71. both depicting modest overestimations (Fig. 2l).  

 

 345 



 

16 
 

 

Figure 2. Probability density functions (PDFs) of ADDA-v2 and ERA5 simulated wind speeds alongside observations over Los Angeles 
Pier J, California (a), Martinez, California (b), Wasco, Oregon (c), NWTC, Colorado (d), Site A, Kansas (e), Site A, Arkansas (f) Site A, 

Minnesota (g), Dunkirk, New York (h), Edith Hammock, Alabama (i), Spiderweb, South Carolina (j), Five Fingers, Alaska (k), and San 
Juan, Puerto Rico. 350 
 
 

3.1.2 Mean Bias  

 

While PDFs provide a general view of model’s systematic bias, they do not evaluate the time dimension.  Mean bias is therefore 355 

examined here to identify any systematic errors present within our models when considering the time dimension. Here, the 

entire overlapping time periods between ADDA-v2, ERA5, and the observations were taken. At each daily-averaged (Table 

3), monthly-averaged, and seasonally averaged timestep, the bias was taken between each dataset and observations. The 

interquartile range and the minimums/maximums of these bias values were then plotted in Fig. 3.  

Across most of the locations, ADDA-v2’s median biases are either centralized around 0 or slightly larger than zero, 360 

indicating that ADDA-v2 performs reasonably well with slight overestimations. However, ERA5 demonstrated clear 

underestimations across the locations sampled. For example, for the mountainous location Wasco, Oregon, ERA5 saw a strong 

negative MBE (Fig. 3a). Similarly for the Great Plains location, Site A, Kansas, ERA5 saw an equally large negative MBE of 

-2.79 m s-1. ADDA-v2 had smaller MBEs for both locations at 0.67 m s-1 and -0.07 m s-1, respectively.  The East Coast and 

Caribbean locations, Fowey Rock, FL and San Juan, Puerto Rico saw minimal MBEs of 0.32 m s-1 and 0.02 m s-1 for ADDA-365 

v2, and -1.66 m s-1 and -0.79 m s-1 for ERA5 (Fig. 3a). For Five Fingers, Alaska, MBE ranges were large for both ADDA-v2 

and ERA5 at the daily timescale. ADDA-v2 outperformed ERA5 for this location, demonstrating a small positive bias 
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compared to ERA5’s modest underestimation. Lastly, both datasets had minimal MBEs for Los Angeles Pier J, California, 

with relatively small IQRs (Fig 3a).  

 370 

 

 

 

Figure 3. Distribution of mean biases computed between ADDA-v2 (red) and observations and between ERA5 and observations (blue) 

during the overlapping time periods, plotted as box-and-whiskers for Wasco, Oregon, Site A, Kansas, Fowey Rock, Florida, Five Fingers, 375 

Alaska, San Juan, Puerto Rico, and Los Angeles Pier J, California at the daily (a), monthly (b), and seasonal (c) timescales.  
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3.1.3 Diurnal Cycles 

While PDFs and mean biases are useful in understanding the overall distribution of wind speeds, it is important to validateand 

temporal accuracy of model simulated wind speeds. It, it is particularly crucial to understand how well the model captures 380 

diurnal variability of wind, especially when planning hybrid renewable energy assessments. between wind and solar energies. 

Therefore, seasonally averaged wind speed diurnal cycles are considered in this analysis for each hub-height location to 

evaluate how well ADDA-v2 captures intraday wind speed patterns. Specifically, an average was taken for each hour of the 

day (00, 01, 02, etc.) across each season. Ten-meter wind speeds were also included for some of these locations because they 

have more pronounced diurnal patterns. Pearson’s r and RMSE values are used to validate the seasonally averaged model 385 

diurnal cycles against in-situ observations.  

 

Across all locations (Fig. 1), ADDA-v2’s diurnal wind speed patterns had an average Pearson’s r of 0.67 with 

observations, while ERA5’s average was considerably lower, at approximately r = 0.35. Similarly, ADDA-v2 had a lower 

average RMSE of 1.02 m s-1 compared to the 1.36 m s-1 RMSE of ERA5. Both datasets saw improved performance when there 390 

was a strong diurnal signature in wind speed magnitudes., as summarized in Table 3. This was especially the case for southern 

locations, especially with coastal geographies, where the greater surface heating at lower latitudes modulates diurnal wind 

speed patterns more significantly (Elliott et al. 2004). For East Coast locations like East Point, Florida, Fowey Rock, Florida, 

and Edith Hammock, Alabama, Pearson’s r were at or above 0.85 for ADDA-v2. ERA5 Pearson’s r were also high overall, 

but the dataset struggled with Fowey Rock, with r = 0.51 in particular (Fig. 3b). Across all East Coast locations, ADDA-v2 395 

had an average Pearson’s r of 0.72 and an average RMSE of 1.19 m s-1 while ERA5 saw a worse Pearson’s r (0.61), but a 

comparable RMSE (4b).1.14 m s-1). This trend was generally observed for the West Coast locations as well, in which southern 

regions had a clear diurnal wind pattern, namely for Los Angeles Pier J, California (Fig. 3a). Overall, ADDA-v2 performed 

better for the wind speed diurnal pattern for the West Coast region (Fig. 4a) with an average Pearson’s r of 0.74 compared to 

ERA5’s 0.64. However, ADDA-v2 did tend to overestimate wind speeds for Martinez, California and Wasco, Oregon, leading 400 

to higher RMSE values compared to ERA5.   

For more inland regions, namely locations with mountainous or plains geographiesflat terrain, ADDA-v2 performed 

much better than ERA5 in most statistical metrics considered. Correlation coefficients for plain-like geographies, on average, 

were r = 0.76 for ADDA-v2 and r = 0.27 for ERA5. For example, ADDA-v2 excelled at capturing intraday wind patterns 

across the Great Plains locations, such as SGP, Oklahoma, Site A, Texas, and Site A, Kansas, with r = 0.83, r = 0.91, and r = 405 

0.89 respectively. This was especially the case during the warmer months, when wind speeds had notable fluctuations during 

the day. RMSEs generally reflected this trend as well, with average RMSEs for ADDA-v2 at 1.01 m s-1 and 1.51 m s-1 for 

ERA5. For mountainous regions, both ADDA-v2 and ERA5 struggled significantly to capture diurnal wind speed patterns 
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(Fig. 3c4c), with an average Pearson’s r of 0.32 and 0.24 respectively. The high elevations of these locations have more 

complex responses to  410 
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Figure 3. Seasonally averaged diurnal wind speeds (summer, winter) for Los Angeles Pier J, California (a), Fowey Rock, Florida (b), Wasco, 
Oregon (c), Red Dog Dock, Alaska (d), and San Juan, Puerto Rico (e). 
 

diurnal changes in solar heating and thus do not have very clear wind speed patterns throughout the day, especially during the 

winter (Fig. 3c). 4c).ADDA-v2 did outperform ERA5 in the mountainous locations for RMSEs though, with an RMSE value 420 

of 1.21 m s-1 compared to ERA5’s 2.20 m s-1.  

For the three other regions, Great Lakes, Alaska, and the Caribbean, ADDA-v2 performed modestly better overall 

than ERA5 in both diurnal correlations and RMSEs. For the Great Lakes location, Dunkirk, New York, ADDA-v2 saw a 

Pearson’s r of 0.82 while ERA5 saw a negative correlation (r = -0.33). Their RMSEs were comparable though, at 0.67 m s-1 

and 0.63 m s-1 respectively. Across the four Alaska locations, both datasets struggled to capture the diurnal pattern, with an 425 

average Pearson’s r of 0.46 for ADDA-v2 and 0.12 for ERA5. Diurnal patterns for wind speeds in Alaska, especially for the 

winter, are mostly nonexistent (Fig. 3d), contributing to these lower correlation values. ADDA-v2 did see much lower RMSE 

values, at 0.69 m s-1 compared to ERA5, at 1.64 m s-1. Lastly, for San Juan, Puerto Rico, both datasets were able to capture the 

dramatic diurnal wind speed pattern observed (Fig. 3e4e).  However, ADDA-v2 was much more precise, with a correlation 

coefficient of 0.95 compared to ERA5’s correlation of 0.62. ADDA-v2 also had a lower RMSE, at precis accurately simulating 430 

intraday wind speed minimums and maximums0.62 m s-1 compared to that of ERA5 at 1.15 m s-1. 
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Figure 4. Seasonally averaged diurnal wind speeds (summer, winter) for Los Angeles Pier J, California (a), Fowey Rock, Florida (b), Wasco, 
Oregon (c), Red Dog Dock, Alaska (d), and San Juan, Puerto Rico (e). 
 440 

3.1.34 Wind Roses 

PDFs and diurnal cycles were used to assessPrevious sections focus on assessing model performance for wind speeds, but it is 

also important to assess model performance for wind direction to indicate whether the model can capture synoptic scale 

phenomena that drive these seasonal changes in wind direction. Wind direction is also important for understanding the wake 

effect in a large wind farm. This section employs wind roses to visualize seasonal wind direction distributions for each hub-445 

height location between model and observations. ERA5 is not included in this section because of the challenges surrounding 

interpolating wind direction to different heights.  

Across the 19 locations that had available wind direction data, the average wind rose similarity index (WRSI) 

betweenboth ADDA-v2 and observations was 0.75. WRSIs for all observational sitesERA5 were above 0.6, indicating that 

ADDA-v2 was able to reasonably capture the climatological synoptic mechanisms driving seasonal changes in wind directions. 450 

Also, no, with WRSI at 0.75 and 0.74 respectively. No single geographic region within ADDA-v2 significantly outperformed 

another, with average WRSIs at 0.66, 0.77, 0.78, 0.75, and 0.75 for the west coast, mountains, plains, east coast, and Alaska 

respectively. The single locations for the Great Lakes and the Caribbean saw relatively high WRSIs of 0.83 and 0.88as 

summarized in Table 3.  
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A maximum WRSI of 0.90 was seen for the NWTC, Colorado location (Fig. 4b) where 455 

 

 



 

25 
 

 

 

Figure 5. Seasonally averaged wind speed and wind direction distributions for Los Angeles, Pier J, California (a), Dunkirk, New York (b), 460 
Argonne, Illinois (c), and Cape Henry, Virginia (d). Values on each concentric circle (e.g., 4, 8, 12, 16) within the wind rose are used to 
measure the normalized frequency of each wind direction wedge. Windrose wedge positions indicate the direction from which the wind is 

blowing.  
 
 465 
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However, ADDA-v2 outperformed ERA5 for the mountainous location, NWTC, Colorado, with WRSIs of 0.90 and 0.69, 

respectively. Here, ADDA-v2 was able to accurately capture the predominantly west winds in the fall, winter, and spring, 

generated by mid-latitude cyclones and the more mesoscale chinook winds that occur on the leeward sides of mountain ranges 

(Lackman, 2011; Markowsi & Richardson, 2010). It is noteworthy that ADDA-v2 performed the best in a mountainous region, 470 

where wind patterns typically exist at fine spatial scales. ADDA-v2 similarly did well for one of the plains locations, Site A, 

Minnesota (Fig. 4a), with a WRSI of 0.86. Here, ADDA-v2 was able to capture the northwest component of the wind direction 

in the winter, modulated by mid-latitude cyclones and frontal passages that are typical during the season. In the spring and 

summer, ADDA-v2 is able to accurately simulate the more southerly component of wind, generated by mechanisms such as 

low-level jets and the more dominant influence of the Bermuda High that dominates during summer (Lackmann, 2011). Diurnal 475 

patterns of wind direction were also evaluated (Fig. S1). While both ADDA-v2 and ERA5 captured the intraday wind direction 

patterns of these locations examined, ADDA-v2 is able to more correctly simulate the wind direction shift ERA5 in the 

afternoon during the summer when wind direction has more abrupt changes due to diurnal heating and cooling.  

ADDA-v2 also performed well for more tropical climates, such as for the near-surface wind directions for San Juan, 

Puerto Rico (WRSI of 0.88, Fig. 4c), where the winds are driven predominantly by the synoptic-scale Tradewinds over the 480 

Atlantic. ADDA-v2 was able to accurately capture the strong eastern components of the wind direction over Puerto Rico, 

matching observations closely. This was seen for the Fowey Rock, Florida site, where wind direction is also heavily influenced 

by the easterly trade winds in the tropics.  
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Figure 4. Seasonally averaged wind speed and wind direction distributions for Argonne, Illinois (a) and NWTC, Colorado (b). Values on 
each concentric circle (4, 8, 12, 16) within the wind rose are used to measure the normalized frequency of each wind direction wedge. 490 
Windrose wedge positions indicate the direction from which the wind is blowing.  
 

Across the Alaska locations, ADDA-v2 performed moderately well, with wind direction WRSIs at Bligh Reef, Five 

Fingers, Juneau Dock, and Red Dog Dock (Fig. 4d) at 0.72, 0.81, 0.79, and 0.66. In winter, Alaskan winds are influenced by 

the extension of the Siberian High, which can bring northerly/northeasterly winds to the northern portions of Alaska during 495 

the winter (Fig. 4d). During summer, synoptic scale features are weaker, favoring a heavier influence of mesoscale mechanisms 

on wind directions patterns.5d) at 0.72, 0.81, 0.79, and 0.66. For coastal locations, like Red Dock, Alaska, summer wind 

directions can be influenced by sea breezes, indicated by the high frequency of southerly flow during the summer (Fig. 4d5d).  

 

3.1.35 Model Performance Across Various Time Scales 500 

The previous evaluations for hub-height wind speeds and wind direction either eliminate the time dimension (PDFs) or look 

at coarse resolution temporal averages (seasonal diurnal, seasonal wind roses). While there are wind energy applications that 

require high model accuracy for fine temporal resolutions (minutes, hours), setup for ADDA-v2 is a climate dataset and is 

therefore not designed for capturing climatological statistics rather than predicting day-to-day weather or weather forecasting. 

Instead, it is useful for climate scale studies and insightful in understanding climatological patterns for different regions. Thus, 505 

we do not expect the model to be able to capture the hour-to-hour variations seen in the observations (Appendix A in Wang et 

al., 2014). However, thisit can still be used to understand average intraday wind speed patterns for different regions. This 

section tests ADDA-v2’s capacity to represent wind speeds at different timescales using RMSEs and correlations, aiming to 

demonstrate the timescale in which the model can be useful for wind energy resource assessments.  

For almost all hub-height locations analyzed, RMSEs decreased, and correlations increased as the time scale averages 510 

became coarser. On average across the 26 locations considered, rRMSEs at the daily, weekly, biweekly, and monthly scale 

were 46%, 29%, 25%, and 22% respectively, indicating improvement at each transition to a coarser timescale (Fig. 5f6f). 

Pearson’s r showed a similar trend, at r = 0.48, r = 0.63, r = 0.68, and r = 0.75 (Fig. 5f6f), consistently growing when calculated 

at increasingly coarse timescales. Intuitively, the daily time scale almost always saw the greatest error between ADDA-v2 and 

observations, while the monthly time scale performed the best (Fig. 5a-e). Also, the largest error improvement occurred when 515 

going from daily averages to weekly averages. RMSEs and correlations improved from weekly to biweekly and again from 

biweekly to monthly, but not as drastically. For example, this can be seen for the 60m wind speeds at Site A, Arkansas (Fig. 

5b6b), where rRMSEs were at 37% at the daily timescale, before dropping to 20%, 16%, and 13% at the weekly, biweekly, 

and monthly timescales. Pearson’s r also improved from 0.57 at the daily time scale to 0.89 at the monthly timescaletime scale. 

Similarly, Fowey Rock, FL (Fig. 5b6b) sees a drastic improvement from daily to weekly averaged wind speeds, with rRMSEs 520 

dropping from 40% to 23%, and Pearson’s r steadily climbing between timescale averages. This trend is seen for the Alaska 
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and Puerto Rico locations as well, with ADDA-v2 struggling to capture day-tospecific-day wind speeds, but performing well 

at coarser, more climatological time scales (Fig. 5c6c, d). 

)
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Table 2.3 Statistical metrics for each of the 26 hub-height observational locations. 525 

Geography  Location Wind speed OVL Wind speed 

Diurnal 

Correlation 

Wind speed Diurnal 

RMSE (m s-1) 

WRSI Wind speed MBE 

(m s-1) 

  ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 

W. Coast Megler, 

WA 

0.82 0.94 0.85 0.35 1.45 0.40 0.68 0.73 1.44 -0.15 

Martinez, 

CA 

0.79 0.87 0.39 0.64 1.64 0.86 0.61 - 1.38 -0.66 

Los 

Angeles 

Pier J, CA 

0.90 0.85 0.97 0.94 0.64 0.90 0.69 0.72 -0.02 -0.70 

Average 0.84 0.89 0.74 0.64 1.24 0.72 0.66 0.73 0.93 -0.50 

Mountain Wasco, 

OregonOR 

0.91 0.64 0.69 0.4 0.78 2.53 0.63 0.65 0.67 -0.07 

NWTC, 

CO 

0.87 0.75 -0.05 0.07 1.64 1.86 0.90 0.69 1.65 -1.78 

Average 0.89 0.69 0.32 0.24 1.21 2.2 0.77 0.67 1.08 -0.78 

Plains Site A, KS 0.97 0.6 0.89 0.03 0.40 2.88 - - -0.07 -2.79 

SGP 

Observator

y, OK 

0.90 0.89 0.83 0.89 0.52 0.76 0.79 0.77 0.85 -0.96 

Site A, TX 0.83 0.63 0.91 -0.30 1.18 3.14 - - -1.12 -2.99 

Site B, TX 0.97 0.8 0.75 0.89 0.46 1.37 - - 0.07 -1.28 

Site A, 

MN 

0.83 0.82 0.90 -0.38 1.62 1.59 0.83 - 1.46 -1.39 

Site A, AR 0.92 0.74 0.48 0.40 0.72 1.66 - - 0.58 -1.62 

Argonne, 

IL 

0.76 0.89 0.64 0.55 1.15 0.35 0.82 0.81 1.12 -0.07 

Site A, IN 0.76 0.93 0.59 0.41 1.66 0.60 0.68 - 1.39 0 

Site A, OH 0.82 0.81 0.82 -0.08 1.40 1.33 0.78 - 1.33 -1.07 

Average 0.86 0.79 0.76 0.27 1.01 1.52 0.78 0.79 0.62 -1.35 

Great 

Lakes 

Dunkirk, 

NY 

0.93 0.82 0.82 -0.33 0.67 0.63 0.83 0.81 -0.65 0.36 

E. Coast Edith 

Hammock, 

AL 

0.93 0.96 0.86 0.93 0.59 0.31 0.72 0.76 0.57 -0.27 
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Fowey 

Rock, FL 

0.95 0.77 0.85 0.51 0.54 1.70 0.77 0.69 0.32 -1.66 

Spiderweb, 

SC 

0.54 0.77 0.62 0.23 2.09 0.84 - - 2.03 0.34 

East Point, 

FL 

0.92 0.95 0.92 0.95 0.68 0.31 0.70 0.73 0.64 -0.26 

Cape 

Henry, VA 

0.85 0.82 0.54 0.55 0.85 0.77 0.80 0.79 0.70 0.67 

Brookhave

n, NY 

0.63 0.56 0.51 0.49 2.36 2.88 - - 2.18 2.51 

Average 0.80 0.81 0.72 0.61 1.19 1.14 0.75 0.74 1.07 0.22 

Alaska Red Dog 

Dock, AK 

0.85 0.69 0.57 -0.11 0.70 1.20 0.66 - -0.67 1.14 

Bligh 

Reef, AK 

0.90 0.86 0.39 0.25 0.55 0.96 0.72 - 0.26 -0.79 

Juneau 

Dock, AK 

0.83 0.47 0.48 0.33 0.90 2.90 0.79 - -0.40 -2.86 

Five 

Fingers, 

AK 

0.93 0.77 0.40 0.01 0.60 1.50 0.81 - 0.59 -1.33 

Average 0.88 0.70 0.47 0.12 0.69 1.64 0.75 - -0.06 -0.96 

Caribbean San Juan, 

PR 

0.71 0.78 0.95 0.62 0.62 1.15 0.88 - 0.02 -0.79 

All Average 0.85 0.78 0.67 0.35 1.02 1.36 0.75 0.74 0.63 -0.80 
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Figure 56. ADDA-v2 RMSEs, rRMSEs, and Pearson correlation coefficients at different timescale averages for Site A, Arkansas (b), Fowey 
Rock, Florida (c), San Juan, Five Fingers, Alaska (d), Puerto Rico (e), along with average metrics across all 26 meteorological towers (f). 530 
The number on each bar represents the value for each respective statistic, with time scales becoming coarser from left to right. 

 

As mentioned, the climatic nature of this dataset implies the inability to utilize ADDA-v2 at fine temporal scales. 

However, ADDA-v2 captures sub-seasonal scales reasonably well, which can give insightful indications for optimal wind farm 

siting. With ideal siting, higher-resolution models can then be employed to simulate intraday wind patterns to accurately 535 

forecast energy production. 

3.2 Near-surface Wind speed Evaluation 

ADDA-v2 near-surface validations were initially performed using wind speed observations taken from 2,000+ ASOS stations 

across CONUS, Alaska, and Puerto Rico. While the full temporal domain (2001-2020) of ADDA-v2 was used in this analysis, 

statistics for each ASOS station were dependent on the maximum overlap in data availability between ADDA-v2 and 540 

observations. Seasonal means were taken across the available temporal period before calculating relative mean bias error 

(rMBE) and RMSE values for each ASOS station.  
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 545 

Figure 67. ADDA-v2 and ERA5 seasonal RMSEsrMBEs calculated against 2,000+ ASOS locations across CONUS and Alaska. 

 

ADDA-v2 performs well for the majority of ASOS stations evaluated, with RMSErMBE values falling between 0 m 

s-1 and 1 m s-1-10-10% across much the western and central portions of the model domain. Spatially, ADDA-v2 accurately 

captures wind speeds for much of the western portion of CONUS (RMSEs between 0-0.5 m s-1), whereasHowever, ERA5 550 

struggles significantly in these same regions, especially in the spring and summer (RMSEsrMBEs upwards of 3 m s-1).-60%). 

This has been documented in past studies (Chen et al., 2024; Wilczak et al., 2024), which highlight ERA5’s tendency to 

underestimate wind speeds in areas of complex terrain (i.e., the Rockies).  

For the eastern half of CONUS, both ADDA-v2 and ERA5 show similar spatiotemporal patterns for error magnitudes. 

Specifically, both datasets demonstrate moderate RMSEnotable rMBE values across the Southeast (1-2.5 m s-1),60-80%), most 555 
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notably during the fall and winter. This systematic error is predominantly attributed to model overestimation during nighttime 

hours (00-12 UTC), when observational wind speeds are very low (0-1 m s-1).), which is at a scale typical of model uncertainty. 

Thus, when the model simulates wind speeds of about 1.5-2 m/s, the relative error appears significant. Interestingly, ADDA-

v2 also shows higher RMSErMBE values for the upper Midwest during the fall and winter, when wind speeds are seasonally 

stronger; this bias is analyzed more in depth in Section 3.3. For most other regions, namely the central/lower Midwest, Texas, 560 

and the Northeast, ADDA-v2 and ERA5 accurately capture seasonal wind speeds, indicated by low RMSElower rMBE values.  

Overall, ADDA-v2 slightly outperforms ERA5 when considering the mean error across all ASOS stations used in 

this analysis. Across winter, spring, summer, and fall, ADDA-v2 saw average RMSE values at 1.06, 0.87, 0.82, and 1.05 m s-

1 respectively, with a full-year average of 0.95 m s-1. ERA5 saw average RMSE values at 0.96, 1.12, 1.07, and 1.13 respectively, 

with a full-year average of 1.07 m s-1. ADDA-v2 performed best during spring and summer, when wind speed overestimations 565 

were reduced in the Southeast. Alternatively, ERA5 performs best during the winter, when the large error over the West is 

minimized.  

 When specifically looking at the ASOS stations over Alaska (Fig. 67), ADDA-v2 and ERA5 generally capture coastal 

wind speeds well, with rMBEs around -15-15% but struggle more in areas with complex topography. For some locations of 

Alaska’s mountainous interior, RMSErMBE values are much higher than surrounding locations (RMSEs greater than 2.5 m s-570 

1rMBEs around 60%, especially during the winter). Overall, average RMSEs across Alaska for each season were 1.65, 1.08, 

0.9, and 0.95 m s-1 for ADDA-v2 and 1.14, 1.23, 1.17, and 0.96 m s-1 for ERA5. Full-year RMSE averages were almost 

identical, at 1.14 and 1.13 m s-1 for ADDA-v2 and ERA5 respectively. Similarly to CONUS, ADDA-v2 was able to more 

accurately capture Alaska’s wind speeds during the summer and fall but had a notable spike in RMSE magnitudes during the 

winter, especially for inland locations.  575 

 Overall, both ADDA-v2 and ERA5 are able to reasonably capture the seasonal patterns in near-surface wind speeds 

across CONUS. ADDA-v2 does have a slight edge in performance, but both datasets demonstrate some systematic biases. The 

strong underestimation of ERA5 wind speeds over the western region of CONUS is noteworthy and could have significant 

implications to data utilization in that area. Likewise, ADDA-v2 shows an overestimation over the Southeast in the fall and 

winter, when observed wind speeds are very low, especially during the overnight hours.   580 

 

3.3 Sensitivity of Wind speed Biases to Physics Parameterizations  

Given all the evaluations in previous sections, this section investigates some potential drivers of model bias over various 

regions which can be used to implement solutions. Most notably, ADDA-v2 sees positive wind speed biases across the 

Southeast United States, as well as for some parts of the Upper Midwest. This bias is seen for both the near-surface winds and 585 

the hub-height winds (Fig. 67, 2e). Primarily, this isPart of these overestimations can be attributed byto the biases within the 

forcing data used as boundary conditions to run ADDA-v2 simulations.ERA5. Depicted in Fig. 6, ERA5 demonstrates 

relatively higher RMSE values for southeast CONUS, overestimating wind speeds for this region.Figure 7, ERA5 most 
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significantlyprimarily overestimates wind speeds for southeast CONUS, especially during overnightnighttime hours, when 

observational wind speeds fall between 0-1 m s-1. ADDA-v2 inherits this bias and sees wind speeds in . Another potential 590 

reason for the southeast 1-2 m s-1 higher than observations.  

This tendency to overestimateoverestimated wind speeds atduring night may alsocould be attributed to the model’s capacity 

to respond to atmospheric stability. It has been documented that Noah-YSU (the PBL and LSM schemes used to run ADDA-

v2 simulations) has an enhanced performance for wind speeds in unstable conditions but struggles in a very stable atmosphere 

(Hong et al. 2006, Draxl et al. 2014, Wang and Jin 2014). Thus, the very low wind speeds present during stable conditions 595 

may not be accurately captured by models employing these schemes.  

 To further investigate the implicationsThe overestimation of model schemes on simulated wind speeds, we 

validated all structure uncertainty (Section 2.4) ensemble members against observations in regions where ADDA-v2 

experiences positive wind speed biases. This allowed us to test whether an alternate model configuration could achieve 

enhanced performance in areas where ADDA-v2 demonstrated near-surface wind speed overestimations. over the Upper 600 

Midwest, however, does not seem to be inherited from ERA5. Instead, it is likely due to the model’s physics parameterization. 

Various ASOS locations were chosen in areasthe Midwest where ADDA-v2 showed high RMSE values and seasonallyerror 

magnitudes to examine whether different physics parameterizations minimized these errors.  Seasonally averaged diurnal 

cycles were plotted acrossstudied for these locations using the six structure uncertainty ensemble members (Section 2.2) with 

varying PBL and LSM schemes against observations. Error metrics were calculated and the most accurate ensemble, indicated 605 

by the highest correlation coefficient or the lowest RMSE, was noted (Fig. 7). Because the Southeast wind speed 

overestimations can at least be partly attributed to the inherited bias from the ERA5 forcing data, locations were chosen within 

the Midwest region to test the performance of different model configurations.8).  
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 610 

Figure 78. Seasonally averaged diurnal cycles for each of the structure uncertainty ensemble members (Section 2.4) against observed wind 

speeds in regions where ADDA-v2 demonstrated a positive bias. Each ensemble label is denoted by its LSM-PBL scheme, and the options 
for dynamic vegetation and surface layer drag coefficient calculation (e.g., 5-1 means dveg=5  and opt_sfc=1 in namelist.input if NoahMP 
was used). 

 615 

For each location that demonstrated a positive near-surface wind speed bias, the Noah-MP land surface model 

outperformed the Noah land surface model, as seen in the diurnal cycles plotted for a Wisconsin ASOS station. (Fig. 78). It is 

also apparent that the greatest error occurs during the overnight hours (00-12 UTC), in which none of the six ensemble members 

come close to representing the observed wind speeds. Contrarily, during the daytime hours (12-00 UTC), all ensemble 

members are able to more accurately capture wind speed magnitudes, although still demonstrating some degree of 620 

overestimation. Furthermore, in all but one metric, the MYNN PBL scheme outperformed the YSU PBL scheme. Of the 

statistical metrics considered for each season, the MYNN PBL scheme almost always showed the lowest RMSE value and the 
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highest correlation coefficient. However, it is important to acknowledge that no individual model configuration was able to 

solve the positive bias seen for these locations.  

Considering the effects that different LSM schemes have on simulated wind speeds, we further analyzed how specific 625 

LSM parameterizations drive differences in near-surface winds. One of the most important considerations is the friction 

velocity, typically denoted by u*, in which a greater magnitude of this variable corresponds to weaker wind speeds. Friction 

velocity is essential in accurately representing boundary layer processes and is crucial for accurately simulating wind profiles*. 

Friction velocity quantifies the turbulent momentum flux at the surface. Therefore, higher u* values correspond to more of the 

momentum being lost to the surface, leading to weaker wind speeds closer to the ground.  630 

 

 

 

Figure 89. Vertical profile of wind for a location in which ADDA-v2 overestimated wind speeds, comparing averaged winds between the 
2018 simulations using the NoahMP and Noah LSMs. Wind speed profiles correspond to the leftmost y-axis while the ratios of both wind 635 
speed and friction velocity use the rightmost y-axis. 
 

However, in different model configurations, this parameterization can vary. We analyzed thisWe analyzed u* between the 

Noah-MP and Noah LSM schemes and found that friction velocity generally tends to be larger in model simulations that 

employ Noah-MP (Fig. 8). Then, looking specifically9), especially at the locations that saw positive near-surface wind speed 640 

biases, it was discovered that Noah-MP showed a notably greater friction velocity when compared to that of the Noah LSM.. 

In some cases, the friction velocity was as much as 20-25% larger in NoahMP than Noah. This has significant implications on 
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wind speeds close to the surface, where greater friction velocities signify weaker winds and can have significant influences on 

model performance.  

As seena result, as shown in Fig. 7, the NoahMP LSM tended to simulate weaker, and more accurate winds, than its Noah 645 

counterpart. This can be partly attributed to the greater magnitude of the friction velocity coefficient parameterized in the 

NoahMP LSM. This factor was crucial in driving the difference in simulated wind speeds between models employing these 

different LSMs. Wind9, wind speed ratios between NoahMP and Noah, specifically within the first ~10m AGL, were as high 

as 1.15 (Fig. 89). At greater heights, (e.g., 25m and above), this ratio decreases as friction has a diminishing influence on 

momentum fluxes with increasing height andas wind speeds get stronger overall. However, it is important to note 650 

thatTherefore, while the NoahMP LSM saw improved performance in simulating near-surface winds, it still did not fully 

resolve the positive bias observed. 

 

3.4 Interannual Variability and Model Uncertainty   

Interannual variability across ADDA-v2’s 20-year temporal period was calculated across the entire spatial domain. 655 

Additionally, model uncertainty was quantified by investigating the spread across 500 augmented ensembles, varying in their 

physics parameterizations (structure uncertainty) and initial conditions (internal variability). Then, theWhile the model 

uncertainty brought about by structure uncertainty was larger than that generated by the internal variability (Fig. S2), both 

were considered here to encompass a comprehensive look at all model uncertainty. The magnitudes and spatiotemporal patterns 

of each of these variabilities wereare then investigated.  660 

 here. Intuitively, the degree of model uncertainty is significantly influenced by the timescale being analyzed. This 

can be seen in Fig. 910, in which the magnitude of uncertainty scales inversely with the length of the timescale. The biweekly 

timescale sees, weekly and daily timescales see overall uncertainty values of approximately 0.4-0.7 m s-1, 0.7-1.1 m s-1 , and 

greater than 2.5 m/s, respectively, across much of North America (Fig.9, 10). The weekly timescale sees a notable increase in 

the uncertainties observed, with most values falling between 0.7-1.1 m s-1. Lastly, the daily timescale sees the most drastic 665 

increase in uncertainty, with many locations across North America seeing values exceed 2.5 m s-1., 11). This concept is similar 

to the improved performance of ADDA-v2 at coarser resolution timescales (Section 3.1.4). Also, daytime and nighttime 

monthly averages were also analyzed to explore the diurnal signatures of model uncertainty. Both yielded comparable 

uncertainties overall, but nighttime monthly averaged uncertainties were slightly higher than that of daytime monthly averaged 

uncertainties, typically by about 0.2-0.4 m s-1. Nighttime uncertainties were noticeably higher in theWe also found that 670 

nighttime uncertainties were slightly higher than daytime uncertainties in regions of complex topography, especially over the 

Rocky Mountains.  

It is also important to note theIn terms of spatial patterns present forof model uncertainty across the domain. In regions with 

more complex topography, model uncertainty tends to be higher. For the biweekly and weekly timescales, the mountainous 

regions generally demonstrate higher uncertainty values, by about 0.5 m s-1, when compared to adjacent regions with simpler 675 
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topography (Fig. 910, Fig. 10a11a, b). Complex topographyThis indicates that complex terrain introduces more unpredictable 

interactions between the physical mechanisms that drive  

 

 

Figure 9. Model uncertainty at different timescale averages (daily, weekly and biweekly), represented by the difference between the 95th 680 
and 5th percentiles of the wind speed distributions. 

 

near-surface and low-level wind (Wu et al., 2022a; Helbig et al., 2017). These interactions post challenges for the model to 

produce reasonable solutions. Thus, small changes in model initial conditions or parameterizations can influence these 

mechanisms and cause significant variability within the simulated wind. It is also interesting to note though that large lake 685 
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features also observed high degrees of model uncertainty, specifically during the summer months., indicating model’s 

inadequacy of solving the air-lake interactions and the needs of a fully coupled lake-atmosphere model (Kayastha et al. 2023). 

In the context of wind energy applications, model uncertainty is integral when mapping ideal locations for wind farm 

siting. However, it needs to be paired alongside spatiotemporal patterns of interannual variability to understand the full scope  

 690 
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Figure 10. Biweekly averaged interannual variability and model uncertainty for one winter month (January) and one summer month (July). 
Uncertainty and interannual variability were taken as the difference between the 95th and 5th percentiles of the wind speed distributions at 
each timescale average. 695 
of wind resource reliability and potential risks associated with long-term power generation. Ideally, both model uncertainty 

and interannual variability need to be low for optimal and consistent power generation. As seen in Fig. 10a11a,b, the relative 

magnitude scale of interannual variability and model uncertainty is very different. for all seasons. For example, weeklythe 

interannual variability of biweekly averaged 100 m wind speeds can fluctuatebe as muchhigh as 6-7 m s-1 between years,70-

80% of the wind speed themselves. This is observed especially forduring the winter months, when highly variable synoptic-700 

scale features strongly influence wind patterns. Alternatively, model uncertainty isexists on a smaller magnitude, typically in 

the range of about 0.5-1.5 m s-1 for10-20% of the same season and time-scale averagemean wind speed.  

The summer season shows a notable decrease in interannual variability in summer is smaller, with typical magnitudes ranging 

from 3-4 m s-1, most30-40% of the mean wind speed, likely attributed to the more consistent synoptic patterns present during 

summer. Model uncertainty during the summer, however, shows similar magnitudes to that of winter and has a relatively 705 

constant spatial pattern (Fig. 10b). This was seen at otherAt coarser timescales as well (i.(e. biweekly/monthly), in which the 

magnitude and spatial patterns of model uncertainty remained relatively consistent between seasons. As aforementioned, 

topographically complex regions saw much higher magnitudes for model uncertainty, and the spatial patterns of g. seasonal), 

both interannual variability matched this trend as well. For both winter and summer, regions of complex terrain (i.e., the Rocky 

Mountains) saw higher magnitudes of and model uncertainty decrease considerably. Across much of North America, seasonal 710 

interannual  
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Figure 10. Model uncertainty at different timescale averages (daily, weekly and biweekly), represented by the difference between the 95th 715 
and 5th percentiles of the wind speed distributions. 

 

variability than surrounding regions. is 15-25% of the mean wind speed. But, consistent with any timescale, these values can 

get as high 40-50% in regions of complex topography (Fig. S3). 

Altogether, both components of uncertainty, interannual variability and model uncertainty, are integral considerations 720 

for wind resource assessments. This data can be leveragedThe short-term ensemble simulations can be leveraged with the long-
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term simulations to identify key regions that have an optimal combination of moderately strong wind speeds and relatively 

low model uncertainty and interannual variability. Ultimately, this will maximize energy output potential for optimally sited 

wind farms and minimize the risk of unpredictable extreme weather events that can affect wind energy infrastructure. .   
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725 

 

Figure 11. Relative interannual variability and relative model uncertainty for one biweekly averaged period for a winter month (January) 
and a summer month (July) for 100m wind speeds. Relative uncertainty and relative interannual variability were taken as the difference 
between the 95th and 5th percentiles of the wind speed distributions, divided by the mean wind speed for that respective period.  

 730 
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4 Discussion and Concluding Remarks    

The validation of the Argonne Downscaled Data Archive Version 2 (ADDA-v2) dataset presented in this study underscores 

its utility in wind resource assessments and climatological applications. This section synthesizes the key findings and compares 

the performance of ADDA-v2 with ERA5, highlighting ADDA-v2’s added value to its coarser resolution forcing data.  

ADDA-v2 demonstrated significant advantages over ERA5 in capturing fine-scale wind variability across diverse 735 

geographies. The dataset performed particularly well in regions with complex terrain, such as the Rocky Mountains and Alaska, 

where high-resolution modeling captured localized wind phenomena more effectively. Specifically, ADDA-v2 outperformed 

ERA5 in hub-height wind speed distribution evaluations, with an average OVL of 0.85 compared to ERA5’s 0.78. Temporal 

validation further emphasized ADDA-v2’s improved capabilities: ADDA-v2 exhibited strong correlations with observed 

diurnal cycles, indicated by an average correlation of 0.67 across all locations analyzed compared to ERA5’s 0.35. This is 740 

especially critical when assessing the consistency in wind power generation throughout the day, with potential implications 

for hybrid style energy generation. Additionally, ADDA-v2’s ability to reduce errors at coarser temporal scales (e.g., weekly 

and monthly averages) reinforces its applicability for long-term climatological studies and resource planning. 

 However, challenges remain, particularly in regions where both ADDA-v2 and ERA5 struggled, such as the 

Southeast United States and areas influencedcharacterized by stable atmospheric conditions. These limitations highlight the 745 

need for targeted improvements in existing and new parameterizations (e.g., PBL and LSM) to address specific biases. But as 

this analysis found, none of the model configurations tested across the six structure uncertainty ensembles were able to resolve 

the biases, indicating partial attributions to both the inherited bias from the ERA5 forcing data as well as the model’s systematic 

bias, resulting from incomplete parameterizations, such as the specific PBL and LSM parameterizations and limitations in 

capturing complex interactions within the model’s climate system. Future research can look more in depth at the specific 750 

mechanisms within these parameterizations to understand why they are unable to capture certain wind patterns. Additionally, 

while this validation focused more on inland regions, future analysis may expand the validation to offshore locations, 

testingSheridan et al. (2025) has evaluated ADDA-v2’s performance over coastal and oceanic locations. (ResearchTobias-

Tarsh et al. (2025) has been conducted exploringevaluated ADDA-v2’s capability at capturing coastal winds in Sheridan et al. 

(2024).performance in wind-related extremes in the context of tropical cyclones over the North Atlantic Basin.  755 

Ultimately, the validation presented here, coupled with the analysis of model uncertainty and 

interannual variability can provide the framework for useful applications of the ADDA-v2 dataset. By 

providing detailed insights into wind resource variability, ADDA-v2 enables more informed decisions in 

renewable energy planning, risk assessment, and climatological studies. Other studies exist that introduce wind 

datasets and validate them against observations. For instance, Draxl et al. (2015) documented a 7-year wind dataset with a grid 760 

spacing of 2km, primarily focused on wind power evaluations over CONUS and included a limited meteorological validation 

using 6 tall masts and 3 buoys. Rasmussen et al. (2024) performed validations on a 42-year period, 4km dataset on its near-

surface (10m) wind speeds with underestimation especially over complex terrain. While these datasets provide their own 
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unique utility, ADDA-v2 offers a powerful combination of a reasonably long time period with a large spatial domain containing 

unique geographic regions. By comprehensively validating ADDA-v2’s wind speeds and directions using an extensive network 765 

of near-surface observations and a diverse set of hub-height observations, this evaluation can provide insight for both 

climatological studies and wind resource assessments.  Yet, all these datasets can be used collectively, complementing one 

another with their unique characteristics and allowing for a more comprehensive view of model uncertainty and longer-term 

variability.  

However, even with all these datasets developed thus far, it is challenging for high-resolution numerical simulations 770 

covering such large domains to capture all model uncertainty and variability. The experiments presented here aim to deliver a 

relatively robust sample of model uncertainty, but there are many other physics parameterizations that can generate different 

model solutions. Recent advances in machine-learning (ML) based surrogate model or hybrid model may provide a more 

comprehensive means of quantifying model uncertainty (Tunnell et al, 2023; Di Santo et al., 2025; Pringle et al. 2025) given 

faster calculations they can perform.  775 

While this evaluation demonstrates the capabilities of ADDA-v2 in capturing climatological features using multiple 

metrics over various geospatial locations, some other features can be investigated in future work. One of them is the spatial 

and temporal variability captured by the model. As demonstrated by past studies (e.g., Müller et al. 2024, 

Skamarock 2004, and Larsén et al. 2012), atmospheric models with spatial resolution Δx can only capture the energy spectrum 

at wavelengths ~4-6 Δx. Thus, at a 4km model resolution, the inherent variability and turbulence of the atmosphere can only 780 

accurately be simulated at ~20 km scales (Kolmogorov, 1941; Durran, 2010; Skamarock et al., 2008). Evaluation of such 

variability would require continuous gridded observational data, such as those from radar, lidar or satellites (Müller et al. 

2024). Another consideration for future work is to make the evaluations more robust by including multiple model grid cells 

surrounding each observation site, rather than using only the closest grid cell, as we did in this study. This would allow us to 

characterize a range of modelled winds around the observation sites and better represent model spatial variability. Lastly, while 785 

this study prioritizes climatology inland, future work is needed for analyzing ADDA-v2’s capability of capturing extreme 

winds, which can provide insight into storm-related (e.g., derechos) risk assessments (Li et al. 2025). 
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Code and Data Availability 

All datasets used in this study are freely available, except for the selected proprietary hub-height data. ERA5 reanalysis data 

is accessible through Climate Data Store: https://cds.climate.copernicus.eu/. ADDA-V2 data is located on the ALCF high-

performance storage system and is available upon request.; request can be made to cjung2@anl.gov. A subset of the ADDA-

v2 dataset is hosted by the National Renewable Energy Laboratory, providing access to hub-height wind speed data 795 

(https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-led-climate-v1-0-0-download/). The public in-situ data can be found 

on Data Archive and Portal (DAP) Platform (https://a2e.energy.gov/data) and the IEM Mesonet 

https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx52
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
https://wes.copernicus.org/articles/9/1153/2024/#bib1.bibx35
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(https://mesonet.agron.iastate.edu/ASOS/). Data processing scripts were written in python and can be made available upon 

request. 
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