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Abstract. Assessing the availability of key wind resources requires augmenting observations to support the implementation 

of wind energy infrastructure. However, observations are limited, necessitating the development of high resolution, long-term 

gridded datasets. This study presents a robust, dynamically downscaled climatological dataset, offering 20 years of hourly 

wind data at a 4-km spatial resolution across North America, and evaluates its performance against observations, including 

meteorological towers and Automated Surface Observing Stations (ASOS), as well as a coarse-resolution reanalysis data 一 15 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5). Results demonstrate that the 

downscaled high resolution wind data outperforms ERA5 in regions of complex terrain and coastal areas, with improved 

overlap coefficients for wind data distributions and reduced root mean square errors (RMSE) for hub-height and near-surface 

diurnal wind patterns. The downscaled simulation also reasonably captures the synoptic drivers of seasonal wind direction 

patterns, indicated by high wind rose similarity indices. This study also provides an analysis of interannual variability, utilizing 20 

the dataset’s full 20-year period, and model uncertainty, generated by varying model initial conditions and physics 

parameterizations across 1-year ensemble members, which are key considerations for wind resource assessment in wind farm 

development.  

 

1 Introduction 25 

Wind is a key factor in shaping a region's complex climate, influencing both environmental and economic sectors. 

Understanding local and regional wind variability is vital for assessing wind energy potential, which aids in the efficient 

implementation and operation of wind farms (Millstein et al., 2019; Couto & Estanquiero, 2021). Additionally, evaluating 

wind speed and direction is essential for conducting accurate climatological assessments to determine the long-term changes 

in regional wind patterns. However, the spatiotemporal coverage of current wind measurements remains very limited, 30 
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particularly over complex terrains (e.g., western US), offshore, and at hub-heights, where wind energy resource assessments 

are crucial.  

To bridge the gap between limited observational data and the need for accurate wind resource assessments, global 

and regional reanalysis datasets, such as Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2), the North American Regional Reanalysis (NARR), and the European Centre for Medium-Range Weather 35 

Forecasts Reanalysis version 5 (ERA5), are commonly used (Hersbach et al., 2020; Gelaro et al., 2017; Mesinger et al., 2006). 

These reanalysis datasets provide valuable insights into wind patterns, variability, and long-term trends, and are also crucial 

for capturing climatological oscillations and large-scale circulations that influence wind characteristics (e.g., Sheridan et al., 

2022a). While these datasets typically have higher horizontal resolution than global climate models (GCMs), they still lack the 

resolution necessary to explicitly resolve convection and represent fine-scale surface variations, which is essential for capturing 40 

convectively driven precipitation and wind (Murakami, 2014; Jones et al., 2021). Additionally, validating these reanalysis 

datasets is essential for determining their viability for wind resource assessments. (Sheridan et al., 2020, 2024; Lee et al., 

2014). For example, Sheridan et al. (2022b) found that ERA5 generally underestimates wind speed diurnal cycles based on 62 

sites at a variety of heights above ground across the continental United States (CONUS). This underestimation is most 

prominent in late afternoon, caused primarily by the underestimation of convectively driven strong winds. Similarly, Chen at 45 

al. (2024) and Wilczak et al. (2024) found that ERA5 showed significant negative biases for wind speeds in areas of complex 

terrain, especially over the Rocky Mountains.   

To achieve the necessary high resolution to capture finer scale wind patterns over large spatial areas and extended 

time periods, researchers employ a technique called dynamical downscaling. This technique involves using initial and 

boundary conditions from the global or regional reanalysis data to force simulations at finer resolutions using a regional climate 50 

model. Regional climate modeling at a convection-permitting (CP) resolution, with a horizontal grid spacing of less than 

approximately 4 km, has become a promising approach for delivering more reliable climate information at regional and local 

levels. By directly resolving deep convective processes rather than relying on parameterization, these models demonstrate 

significant enhancements (e.g., Prein et al., 2015 and the references therein). Due to recent breakthroughs in computational 

capacity and data management, several studies have been able to perform convection-permitting regional climate model (RCM) 55 

simulations. These simulations, especially those concentrating on the CONUS, (e.g., Draxl et al., 2015b; Gensini et al., 2022, 

Liu et al., 2017; Rasmussen et al., 2024) have shown substantial progress in depicting precipitation, wind, and high-impact 

weather from national to regional spatial scales. Among these, Draxl et al. (2015a, b) presented the largest, freely available 

wind dataset at the time of its development, serving the Wind Integration National Dataset (WIND) Toolkit for wind resource 

assessment and grid integration studies. The data provides time series of meteorological variables every 5 min and 2km across 60 

the CONUS in the 7 years from 2007 to 2013. 
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This study builds upon previous efforts by presenting an additional high-resolution, long-term dataset, along with 

ensemble simulations for quantifying model uncertainty, for utilization in climatological wind assessments. The dataset was 

generated by a regional climate model using the Weather Research and Forecasting (WRF) model. With 4 km, 20-year, hourly 

output, and a model domain spanning the majority of North America and surrounding oceans, this dataset provides a 65 

spatiotemporal extension to existing climatological wind analyses. With large geographic coverage, this data product also 

offers insight into more remote, topographically complex regions, potentially highlighting viable areas for wind energy outside 

of CONUS. By leveraging a single large spatial domain, the model evolved as one system, developing its own natural 

variability without being constrained by the forcing data. This dataset has been leveraged by the latest WIND Toolkit Long-

term Ensemble Dataset (WTK-LED), as documented by Draxl et al. (2024), serving as the WTK-LED Climate dataset (Table 70 

ES-1 in Draxl et al. 2024). Ultimately, this high-resolution dataset aims to combine the climatological significance of an 

extensive temporal length with the wind-resource-utility advantages of a large spatial domain. 

Our study validates the dynamically downscaled model wind speeds and wind directions against various observational 

data at both the near-surface and at turbine-heights at mostly inland and onshore locations, investigating model performance 

at different temporal scales (diurnal, seasonal, interannual variability). Especially in the context of wind energy, both speed 75 

and direction are crucial components to consider when maximizing the efficacy and operability of wind farms, as speed largely 

determines the amount of power generated while direction can incite microscale differences in wake effects. A complementary 

study evaluating the same dataset but focusing on CONUS coastal areas has been documented by Sheridan et al. (2024). Our 

validation is also performed on the forcing data - ERA5 reanalysis (Hersbach et al., 2020), aiming to understand the added 

value of the dynamically downscaled model to its coarser resolution forcing data. Additionally, this study seeks to augment 80 

insights on model uncertainty within wind simulations that are brought about by varying model configurations.  

This manuscript is organized in the following structure: the methodology, including model description, observational 

datasets used for validation, and analysis metrics used for evaluation are outlined in Section 2. The results of the model’s 

performance at hub-heights and near surface are presented in Section 3.1 and 3.2, with an exploration of model bias in Section 

3.3. Interannual variability and model uncertainty are quantified in Section 3.4 with the context of wind energy implications. 85 

Lastly, a summary of our findings and avenues for future research are discussed in Section 4. 

 

2 Methods and Datasets 

2.1 Model Setup  

The wind validation performed in this study was based on a 20-year (2001-2020) climatological dataset produced by the WRF 90 

model (Powers et al., 2017) version 4.2.1 with the Advanced Research WRF dynamic core (Skamarock & Klemp, 2008): the 

Argonne Downscaled Data Archive version 2 (ADDA-v2). With a domain of 2050 x 1750 grid points at a 4-km grid spacing 
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(8200 km x 7000 km), the model featured over 3.5 million grid cells, horizontally spanning across the majority of North 

America and the Caribbean Islands (Fig. 1a in Akinsanola et al., 2024). The model was run with 50 unevenly spaced sigma 

levels, 18 of which were within the lowest 1km (8, 25, 42, 58, 75, 104, 147, 189, 231, 274, 317, 360, 403, 468, 555, 643, 777, 95 

and 957m above ground level), and 10 of them are below 300m above the ground to ensure the hub-height winds are calculated 

directly by the model. Initial and lateral boundary conditions were determined by ERA5. The model was reinitialized for each 

year on November 1, ultimately producing a series of 20, 14-month simulations covering the period from 2001-2020. The first 

two months (November and December) of each year were discarded as spin-time time and not used for the data analysis. The 

reinitialization approach was chosen since the RCM was driven by high-resolution reanalysis data, instead of coarse resolution 100 

GCMs which usually require at least one year of spin up time. While soil moisture is typically a concern when reinitializing 

models during the cold months, the soil moisture of both the ERA5 forcing data and ADDA-v2 was validated and found to be 

realistic (Akinsanola et al., 2024).  

The Yonsei University (YSU) PBL scheme was used for these simulations, which runs with topographic correction 

for surface winds (topo_wind=1 WRF; Jiménez & Dudhia, 2012; Skamarock et al., 2019) to represent extra drag from subgrid 105 

topography and enhanced flow at hilltops. The surface layer scheme used was the MM5 similarity scheme, which follows the 

Monin-Obukhov similarity theory (Monin & Obukhov, 1954) alongside the Carlson-Boland similarity functions (Carlson and 

Boland, 1978). The Unified Noah land-surface model was used for the land surface processes, which employs a 4-layer soil 

temperature and moisture scheme, as well as fractional snow cover and frozen soil physics (Tewari et al., 2004). A full list of 

model parameterizations can be found in Table 1. No internal grid nudging nor spectral nudging was employed for these 110 

simulations because it requires additional computational resources (20-30% more for our configuration), and the ERA5 forcing 

data is at a relatively higher resolution than other reanalysis datasets, which can provide good boundary conditions and allow 

the model to develop its own spatiotemporal variability. Model output data for the most used meteorological variables, such 

as air temperature, wind speed and direction, and precipitation, were saved at hourly intervals for the full domain from 2001-

2020. Other variables less frequently used were saved at 3-hour intervals.  115 

 

2.2 Model Uncertainty 

There are multiple sources of model uncertainty in regional weather and climate models (Hawkins & Sutton, 2009). The 

dominant uncertainty for near-term simulations includes model internal variability and structure uncertainty. The internal 

variability is caused by varying initial conditions, while structure uncertainty is generated by various physics 120 

parameterizations. To study the model's internal variability, we conducted ten additional 1-year (ENSO neutral year - 2018) 

ensemble runs, all with the same model setup as described in Section 2.1, but different initial conditions (Wang et al., 2018). 

This was achieved by running each of the ten ensemble members 12 hours apart, with the first being initialized on November 

1, 2017, at 00 UTC and the last being initialized on November 5, 2017, at 12 UTC. Thus, the slightly different initial conditions 
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at each respective start time acted as the catalyst to generate differences between the ensemble members. The number of 125 

internal variability ensembles was chosen based on the logic of Wang et al. (2017), which demonstrated that 10 ensemble 

members with varying initialization times was the minimum number needed to capture the internal variability of the model.  

To investigate the model’s structure uncertainty arising from important physics parameterizations for wind, namely 

the PBL and land surface model (LSM), an additional six ensemble members were generated for the same neutral year 2018. 

Each ensemble member shared the same domain and spatial resolution but employed two different and widely used PBL 130 

schemes (YSU and MYNN) and LSMs (Noah and NoahMP) for wind energy applications (Draxl et al., 2014; Yang et al., 

2017). The MYNN PBL scheme is a level 2.5 closure scheme for turbulence and implicitly solves for turbulence using 

parametric equations. It gives estimates of TKE and dissipation rates within the boundary layer of the atmosphere (Nakanishi 

& Niino, 2009). Noah-MP is an improved version of the Noah LSM and provides better representations of terrestrial 

biophysical and hydrological processes (Niu et al., 2011). A major physical mechanism enhancement includes improved 135 

treatment of soil moisture. Two dynamic vegetation options and two surface layer drag coefficient calculation options were 

also perturbed within the Noah-MP LSM. Thus, in total we had ten combinations with five LSM options and two PBL options. 

We experimented with these ten runs for a subregion over Southern Great Plains (with various topographic characteristics) 

and determined that six of the ten runs were able to capture the range of model uncertainty across the domain. Then, we used 

these six representative combinations for the entire North American domain and entire year of 2018. While the 16 ensemble 140 

members do not capture all model uncertainty, they do represent a robust range of model variability due to these perturbations 

in initial conditions and key physics parameterizations (see more details in Draxl et al., 2024).   

 

Table 1: WRF model setup and ensemble runs used in ADDA_v2 simulations 

Regional Climate Model WRF v4.2.1 

Initial and Boundary Conditions ERA5 at 0.25 deg, every 3 hours 

Horizontal Grid Spacing and Timesteps 4km; adaptive time stepping 

Number of Grid Cells 2050 (west-to-east) x 1750 (south-to-north) x 49 (top-to-bottom) 

Simulation Period January 1, 2001, to December 31, 2020 

Microphysics Scheme Morrison double moment (Morrison et al., 2005) 

Land Surface Scheme Unified Noah (Tewari et al., 2004), Noah-

MultiParameterization (NoahMP, Niu et al., 2011) with two 

options for dynamic vegetation and surface  

Planetary Boundary Layer Scheme Yonnsei University (Hong et al., 2006), Mellor-Yamada-

Nakanishi-Niino (MYNN, Nakanishi & Niino, 2009) 

Short and Long-wave Radiation Scheme Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et 

al., 2008) 
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2.3 Observational Datasets Used for Validation  

The validation performed on ADDA-v2 used wind speed observational data taken within 100 meters above ground level. The 

first collection of observations focused on hub-height wind speeds and wind directions. These observations were taken from 

multiple meteorological towers hosted by the US Department of Energy National Laboratories (Argonne National Laboratory, 

Brookhaven National Laboratory, NREL, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Savannah 150 

River National Laboratory), and the National Oceanic and Atmospheric Administration (National Centers for Environmental 

Information, National Data Buoy Center). In total, 26 meteorological towers were sampled and quality controlled for this 

analysis, with wind speed observations taken anywhere from 10m to 100m above ground level. Observations were quality 

controlled through the process of removing atypical or unphysical reported wind speeds (less than 0 m s−1, greater than 50 m s−1, 

or non-varying values over periods of time greater than 3h), based on Sheridan et al. (2024). Mast flow distortion corrections 155 

were not implemented since most locations had only one anemometer reading. For sites with multiple anemometer readings, 

instrumentation metadata, such as anemometer orientation with respect to nearby structures, was not included, and we did not 

want to make corrective assumptions. While different factors, such as instrument precision, environmental effects such as land 

use, obstructions, or elevation effects, and the temporal sampling methods can introduce uncertainty into the collected 

observational wind, the quality control procedures conducted here maximize the integrity and reliability of the data used for 160 

this validation.  

Temporal coverage for the meteorological towers varied between 2-20 years, with an average of ~8.1 years. 

Observations covered a diverse range of geographies, including mountainous, coastal (east and west coast of the CONUS), the 

Great Lakes, and plains regions; Alaska and Puerto Rico (Caribbean) were denoted as separate geographic regions.  For 19 of 

these meteorological towers, the exact locations, anemometer heights, and temporal coverages of wind observations can be 165 

found in Table 2. The remaining 7 are proprietary data, in which exact locations could not be specified. While turbine-height 

wind speed and wind direction data are sparse, we have leveraged all the publicly available resources that we have access to 

and performed a thorough validation over diverse geospatial areas.  

 The second part of this evaluation explores an expansive collection of 10 m wind speed data sourced from a 

network of Automated Surface Observing Stations (ASOS). These stations monitor and report various meteorological variables 170 

and are operated by the United States National Weather Service, the Federal Aviation Administration, and the Department of 

Defense. The specific dataset used for this validation was collected from the Iowa Environmental Mesonet (IEM) and 

subsequently quality controlled by the Data Archive and Portal (DAP) Platform. The dataset hosts over 2,000 sites across 

CONUS and Alaska and covers a temporal period from 1 January 2000 – 31 December 2021, offering a spatiotemporally 

comprehensive means for performing a thorough validation of ADDA-v2’s 10m wind. Additionally, wind speed data from 175 

four additional ASOS stations over Puerto Rico were downloaded from the Iowa Environmental Mesonet (IEM) to spatially  
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Figure 1. Locations of in-situ observations sampled from meteorological towers across CONUS and Alaska, along with an ASOS location 
over Puerto Rico. The zoomed in area, with stars representing each dataset, indicates the capability of ADDA-v2’s higher resolution to more 180 
closely match the exact location of the in-situ data. The 2000+ sites over CONUS are not included here but can be seen in Fig. 6. 

 

expand the model validation and gain a more comprehensive understanding of model performance over areas of sparse data 

availability and complex terrain.   

To demonstrate the potential added value of ADDA-v2 to its coarse resolution forcing data, we also included ERA5 185 

reanalysis in all near-surface and hub-height evaluations. ERA5 outputs only two levels of wind (10m and 100m), so to evaluate 

winds at heights between these levels, an interpolation method was required. At each timestamp, the ADDA-v2 and ERA5 
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wind speeds were adjusted to the observational heights via the power law using the model wind speeds at surrounding output 

heights to the observation height. While this interpolation method may induce some bias in both ADDA-v2 and ERA5, the 

differences between these datasets are driven mostly by the difference in spatial resolution and the added value by ADDA-v2. 190 

This approach was selected based on the analysis of Duplyakin et al. (2021), who found that the power law minimized errors 

due to vertical adjustment of wind dataset output heights to observation heights.     

 

2.4 Statistics for Validation 

The wind speed validation in this study utilizes several statistical error metrics to evaluate how well ADDA-v2 performs 195 

against observations. Root mean square error (RMSE), Pearson correlation coefficients (r), overlap coefficients (OVLs), and 

wind rose similarity indices (WRSIs) are used.  

The RMSE gives a metric for the overall accuracy of the model, with lower RMSE’s indicating improved model 

performance. RMSE is taken as the square root of the average of the squared differences between simulated wind speeds and 

the observed wind speeds at various timescales (seasonal, monthly, diurnal), given by Eq. (1). This metric is effective at 200 

highlighting instances of larger errors in the model and demonstrates the overall magnitude of model inaccuracy. Here, 𝒏 

represents the number of wind speed observations (in time), 𝒗𝐦𝐨𝐝 represents the modeled wind speed, and 𝒗𝐨𝐛𝐬 denotes the 

observed wind speed. Relative RMSE (rRMSE) was also considered, Eq. (2), by dividing the RMSE by the average of the 

observed wind speed. This gives a general sense of the magnitude of error in relation to the magnitude of the wind speeds 

themselves. 205 

 RMSE = √
1

𝑛
∑ (𝑣mod,𝑖 − 𝑣obs,𝑖)

2𝑛
𝑖=0       (1) 

                

 rRMSE =
RMSE

𝑣̅obs
         (2) 

 

The mean bias error (MBE) is used to assess the overall bias of the modeled wind compared to the observational wind 210 

speeds. It is taken as the average difference between the modeled wind speeds and the observed wind speeds. Values can be 

negative or positive and indicate any systematic biases present within the model. For example, a negative bias would indicate 

that the model systematically underestimates wind speeds and vice versa. Zero indicates either the model performs realistically 

or there is equal amount of positive and negative biases. In Eq. (3) below 𝒗𝒎𝒐𝒅 represents the modeled wind speeds and 𝒗𝒐𝒃𝒔 

represents the observed wind speeds. Relative MBE (rMBE) was also considered, Eq. (4), by dividing the MBE by the average  215 

    



9 
 

Table 2. Information for the hub-height wind data sourced from meteorological towers across CONUS. The number listed for each location 
corresponds to the numbers in Fig. 1, identifying the geographic positions of the meteorological towers. Location coordinates for proprietary 
data were excluded. 

Geography Location Coordinates Temporal 

Coverage 

Anemometer 

Height 

W. Coast  Megler, WA (1) 46.27°N, -123.88°W 2010-2018 53m 

Martinez, CA (3) 38.04°N, -122.12°W 2014-2020 100m 

Los Angeles Pier J, CA (4) 33.73°N, -118.19°W 2014-2020 31m 

Mountain Wasco, OR (2) 45.50°N, -120.77°W 2005-2018 30m 

NWTC, CO (5) 39.91°N, -105.24°W 2002-2020 50m 

Plains Site A, KS (6) - 2006-2008 49m 

SGP Observatory, OK (7) 36.61°N, -97.49°W 2012-2020 65m 

Site A, TX (8) - 2008-2013 50m 

Site B, TX (9) - 2009-2013 51m 

Site A, MN (10) - 2007-2011 80m 

Site A, AR (11) - 2011-2012 53m 

Argonne National Lab, IL (12) 41.70°N, -87.99°W 2007-2013 60m 

Site A, IN (13) - 2018-2019 90m 

Site A, OH (14) - 2017-2018 90m 

Great Lakes Dunkirk, NY (17) 42.49°N, -79.35°W 2001-2017 20m 

E. Coast Edith Hammock, AL (15) 30.23°N, -88.02°W 2008-2013 36m 

Fowey Rock, FL (16) 25.59°N, -80.09°W 2001-2020 44m 

Spiderweb, SC (18) 33.41°N, -81.83°W 2009-2012 34m 

East Point, FL (19) 29.41°N, -84.86, °W 2004-2020 35m 

Cape Henry, VA (20) 36.93°N, -76.01°W 2007-2020 28m 

Brookhaven, NY (21) 40.87°N, -72.89°W 2007-2013 50m 

Alaska Red Dog Dock, AK (22) 67.58°N, -164.07°W 2018-2020 13m 

Bligh Reef, AK (23) 60.84°N, -146.88°W 2013-2020 22m 

Juneau Dock, AK (24) 58.29°N, -134.39°W 2018-2020 18m 

Five Fingers, AK (25) 57.27°N, -133.63°W 2013-2020 22m 

Puerto Rico San Juan, PR (26) 18.43°N, -66.01°W 2001-2020 10m 
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of the observed wind speed. This gives a general sense of the magnitude of bias in relation to the magnitude of the wind speeds 220 

themselves. 

  𝑀𝐵𝐸 =
1

𝑛
∑ (𝑣𝑚𝑜𝑑,𝑖 − 𝑣𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1                   (3) 

  𝑟𝑀𝐵𝐸 =
𝑀𝐵𝐸

𝑣̅𝑜𝑏𝑠
         (4) 

The Pearson correlation coefficient (r) measures the degree of linear correlation in time between model wind speeds 

and observational wind speeds. Values range from -1 to 1, with -1 indicating a perfect negative correlation, 1 indicating a 225 

perfect positive correlation, and 0 indicating no correlation.  In Eq. (4) below, 𝒗̅𝐦𝐨𝐝 is the mean of the modeled wind speeds 

and 𝒗̅𝐨𝐛𝐬 is the mean of the observed wind speeds. 

 𝑟 =  
∑ (𝑣mod,𝑖−𝑣̅mod)(𝑣obs,𝑖−𝑣̅obs

𝑛
𝑖=1 )

√∑ (𝑣mod,𝑖−𝑣̅mod)2𝑛
𝑖=1 ∑ (𝑣obs,𝑖−𝑣̅obs)2𝑛

𝑖=1

     (5) 

 

Lastly, overlap coefficients (OVLs) were calculated between the probability density functions for the modeled and 230 

observed wind speed distributions, using Eq. (5). Functions were estimated using kernel density estimations, specifying Scott’s 

rule (Scott, 2015) for bandwidth smoothing. Once functions were drawn, OVLs were calculated using the following formula, 

in which 𝒇𝒗𝐦𝐨𝐝
(𝒙) is the estimated density function for the model wind speeds and 𝒇𝒗𝐨𝐛𝐬

(𝒙) is the estimated density function 

for the observed wind speeds. The result of this calculation yields a value from 0 to 1, in which 0 indicates no overlap and 1 

denotes complete overlap between the estimated functions for observations and model wind speeds.  235 

OVL = ∫ (𝑓𝑣mod
(𝑥), 𝑓𝑣obs

(𝑥))  d𝑥
∞

−∞
                                                                                     (6)                                         

In addition to wind speed evaluations, we also conducted wind direction validations using wind roses. This is 

important for examining the model’s performance in capturing the seasonality of wind direction, as well as for investigating 

the covariance of wind speed and direction (Wu et al., 2022b). For these wind roses, similarity indices (WRSIs) were also 

calculated by taking the sum of the minimum frequencies between model and observations for each discrete wind direction 240 

bin, using Eq. (6). Here, 𝒇𝒅𝐦𝐨𝐝
(𝒊) and 𝒇𝒅𝐨𝐛𝐬

(𝒊) represent the frequency of wind directions for each bin i.  

 WRSI = ∑ min( 𝑓𝑑mod
(𝑖), 𝑓𝑑obs

(𝑖)) 𝑛
𝑖        (7) 

 



11 
 

2.5 Uncertainty Quantification  

To quantify model uncertainty due to internal variability and structure uncertainty as described in Section 2.2, statistical 245 

bootstrapping was employed on the sixteen 1-year simulations to generate 500 augmented ensemble members. This was done 

by randomly selecting data for each hour from one of the sixteen ensembles, ultimately building an entirely new ensemble 

with the same spatial and temporal domain. This technique allows for a more comprehensive look at the statistical distribution 

of data and the underlying variability that drives model uncertainty. Time averages were then performed across the model 

domain on each of the 500 resampled ensembles to gauge how the degree of model uncertainty is influenced by different 250 

timescales; this included monthly, bi-weekly, weekly, and daily averages, as well as daytime (21 UTC) and nighttime (06 

UTC) monthly averages. To represent model uncertainty, 5th and 95th percentiles were taken at the different time scale averages 

(e.g., weekly and biweekly) across the 500 augmented ensembles to determine the upper and lower bounds of temporally 

averaged wind speeds. Then, the difference between these two percentiles (95th - 5th) served to demonstrate the degree of 

ensemble spread. These percentiles were calculated for every grid point and at each timescale average to reveal spatiotemporal 255 

patterns present for model uncertainty. Interannual variability was calculated as well to compare with model uncertainty. The 

same timescale averages were taken before computing the same percentiles (5th and 95th) across the 20-year period. 

 

3 Results 

3.1 Hub-Height Wind speed and Wind Direction Validations 260 

We start with a model validation for wind speeds at hub-heights (Section 2.2) over the 26 locations (Fig. 1) to assess ADDA-

v2’s utility for wind energy applications. We used several metrics and statistics to quantify model performance, including 

probability density functions (PDFs), mean biases, seasonally averaged wind speed diurnal cycles, wind roses, time-scale 

dependent RMSEs and correlation coefficients. For each figure, locations from the different geographies listed in Table 2 were 

chosen to assess ADDA-v2’s performance in different regions; where possible, at least one figure representing each geographic 265 

characteristic was displayed.  

 

3.1.1 Probability Density Functions 

PDFs effectively compare data distributions without considering the time dimension, aiming to visualize any biases between 

model and observation. Across the 26 hub-height locations, ADDA-v2’s PDFs had a higher average OVL of 0.85 with the 270 

observational PDFs, while ERA5’s PDFs had an average OVL of 0.78. Similarities between ADDA-v2 and ERA5 distributions 

and observed wind speeds were spatially variable, with ADDA-v2 performing better than ERA5 for 18 of the 26 sites 

considered. In particular, ADDA-v2’s higher resolution was able to capture the finer scale wind speed patterns in mountainous 

regions, with OVLs significantly higher than ERA5’s over the Cascades and the Rockies (Fig. 2c, d). ADDA-v2 was able to 
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modestly outperform ERA5 across the Plains region. The average OVLs for ADDA-v2 across the nine locations was 0.86, 275 

while ERA5 saw an average OVL of 0.79. There were a couple locations where both datasets struggled to capture the hub-

height wind speed distribution. For example, both ADDA-v2 and ERA5 demonstrated strong overestimations (Fig. 2j) for 

Spiderweb, South Carolina. As will be discussed in Section 3.3, ADDA-v2’s positive bias can be partly attributed to the land 

surface model (LSM) used for these simulations, as well as the positive bias inherited by ERA5. Both datasets also struggled 

with the hub-height wind speeds at Brookhaven, New York. However, the overestimations seen for this location by both 280 

datasets may be attributed to its unique geographic position; it is located on Long Island, New York, equidistant from Long 

Island Sound and the Atlantic Ocean, where land sea interactions on either side may incite complexities in the local wind 

patterns. Across the four Alaska locations, ADDA-v2 saw an overage OVL of 0.88 compared to ERA5’s 0.70 (Fig. 2k). 

ERA5’s coarser resolution can contribute to these errors, especially across Alaska, where complex topography incites stark 

spatial changes in wind patterns. For San Juan, Puerto Rico, ADDA-v2 and ERA5 saw decent performance in capturing wind 285 

speed patterns, although both depicting modest overestimations (Fig. 2l).  
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Figure 2. Probability density functions (PDFs) of ADDA-v2 and ERA5 simulated wind speeds alongside observations over Los Angeles 290 
Pier J, California (a), Martinez, California (b), Wasco, Oregon (c), NWTC, Colorado (d), Site A, Kansas (e), Site A, Arkansas (f) Site A, 

Minnesota (g), Dunkirk, New York (h), Edith Hammock, Alabama (i), Spiderweb, South Carolina (j), Five Fingers, Alaska (k), and San 
Juan, Puerto Rico. 
 
 295 
3.1.2 Mean Bias  

 

While PDFs provide a general view of model’s systematic bias, they do not evaluate the time dimension.  Mean bias is therefore 

examined here to identify any systematic errors present within our models when considering the time dimension. Here, the 

entire overlapping time periods between ADDA-v2, ERA5, and the observations were taken. At each daily-averaged (Table 300 

3), monthly-averaged, and seasonally averaged timestep, the bias was taken between each dataset and observations. The 

interquartile range and the minimums/maximums of these bias values were then plotted in Fig. 3.  

Across most of the locations, ADDA-v2’s median biases are either centralized around 0 or slightly larger than zero, 

indicating that ADDA-v2 performs reasonably well with slight overestimations. However, ERA5 demonstrated clear 

underestimations across the locations sampled. For example, for the mountainous location Wasco, Oregon, ERA5 saw a strong 305 

negative MBE (Fig. 3a). Similarly for the Great Plains location, Site A, Kansas, ERA5 saw an equally large negative MBE of 

-2.79 m s-1. ADDA-v2 had smaller MBEs for both locations at 0.67 m s-1 and -0.07 m s-1, respectively.  The East Coast and 

Caribbean locations, Fowey Rock, FL and San Juan, Puerto Rico saw minimal MBEs of 0.32 m s-1 and 0.02 m s-1 for ADDA-

v2, and -1.66 m s-1 and -0.79 m s-1 for ERA5 (Fig. 3a). For Five Fingers, Alaska, MBE ranges were large for both ADDA-v2 

and ERA5 at the daily timescale. ADDA-v2 outperformed ERA5 for this location, demonstrating a small positive bias 310 
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compared to ERA5’s modest underestimation. Lastly, both datasets had minimal MBEs for Los Angeles Pier J, California, 

with relatively small IQRs (Fig 3a).  

 

 

 315 

 

Figure 3. Distribution of mean biases computed between ADDA-v2 (red) and observations and between ERA5 and observations (blue) 

during the overlapping time periods, plotted as box-and-whiskers for Wasco, Oregon, Site A, Kansas, Fowey Rock, Florida, Five Fingers, 

Alaska, San Juan, Puerto Rico, and Los Angeles Pier J, California at the daily (a), monthly (b), and seasonal (c) timescales.  

 320 
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3.1.3 Diurnal Cycles 

While PDFs and mean biases are useful in understanding the overall distribution and temporal accuracy of model simulated 

wind speeds, it is particularly crucial to understand how well the model captures diurnal variability of wind, especially when 

planning hybrid renewable energy assessments between wind and solar energies. Therefore, seasonally averaged wind speed 

diurnal cycles are considered in this analysis for each hub-height location to evaluate how well ADDA-v2 captures intraday 325 

wind speed patterns. Specifically, an average was taken for each hour of the day (00, 01, 02, etc.) across each season. Ten-

meter wind speeds were also included for some of these locations because they have more pronounced diurnal patterns. 

Pearson’s r and RMSE values are used to validate the seasonally averaged model diurnal cycles.  

 

Across all locations (Fig. 1), ADDA-v2’s diurnal wind speed patterns had an average Pearson’s r of 0.67 with 330 

observations, while ERA5’s average was considerably lower, at approximately r = 0.35. Similarly, ADDA-v2 had a lower 

average RMSE of 1.02 m s-1 compared to the 1.36 m s-1 RMSE of ERA5. Both datasets saw improved performance when there 

was a strong diurnal signature in wind speed magnitudes, as summarized in Table 3. This was especially the case for southern 

locations, especially with coastal geographies, where the greater surface heating at lower latitudes modulates diurnal wind 

speed patterns more significantly (Elliott et al. 2004). For East Coast locations like East Point, Florida, Fowey Rock, Florida, 335 

and Edith Hammock, Alabama, Pearson’s r were at or above 0.85 for ADDA-v2. ERA5 Pearson’s r were also high overall, 

but the dataset struggled with Fowey Rock in particular (Fig. 4b). Overall, ADDA-v2 performed better for the wind speed 

diurnal pattern for the West Coast region (Fig. 4a) with an average Pearson’s r of 0.74 compared to ERA5’s 0.64. However, 

ADDA-v2 did tend to overestimate wind speeds for Martinez, California and Wasco, Oregon, leading to higher RMSE values 

compared to ERA5.  For regions with flat terrain, ADDA-v2 performed much better than ERA5. Correlation coefficients for 340 

plain-like geographies, on average, were r = 0.76 for ADDA-v2 and r = 0.27 for ERA5. For mountainous regions, both ADDA-

v2 and ERA5 struggled significantly to capture diurnal wind speed patterns (Fig. 4c), with an average Pearson’s r of 0.32 and 

0.24 respectively. The high elevations of these locations have more complex responses to diurnal changes in solar heating and 

thus do not have very clear wind speed patterns throughout the day, especially during the winter (Fig. 4c). Across the four 

Alaska locations, both datasets struggled to capture the diurnal pattern, with an average Pearson’s r of 0.46 for ADDA-v2 and 345 

0.12 for ERA5. Lastly, for San Juan, Puerto Rico, both datasets were able to capture the dramatic diurnal wind speed pattern 

observed (Fig. 4e).  However, ADDA-v2 was much more precis accurately simulating intraday wind speed minimums and 

maximums. 
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Figure 4. Seasonally averaged diurnal wind speeds (summer, winter) for Los Angeles Pier J, California (a), Fowey Rock, Florida (b), Wasco, 355 
Oregon (c), Red Dog Dock, Alaska (d), and San Juan, Puerto Rico (e). 
 

3.1.4 Wind Roses 

Previous sections focus on assessing model performance for wind speeds, but it is also important to assess model performance 

for wind direction to indicate whether the model can capture synoptic scale phenomena that drive these seasonal changes in 360 

wind direction. Wind direction is also important for understanding the wake effect in a large wind farm. This section employs 

wind roses to visualize seasonal wind direction distributions for each hub-height location between model and observations.  

Across the 19 locations that had available wind direction data, both ADDA-v2 and ERA5 were able to reasonably 

capture the climatological synoptic mechanisms driving seasonal changes in wind directions, with WRSI at 0.75 and 0.74 

respectively. No single geographic region within ADDA-v2 significantly outperformed another, as summarized in Table 3.  365 
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 370 

Figure 5. Seasonally averaged wind speed and wind direction distributions for Los Angeles, Pier J, California (a), Dunkirk, New York (b), 
Argonne, Illinois (c), and Cape Henry, Virginia (d). Values on each concentric circle (e.g., 4, 8, 12, 16) within the wind rose are used to 
measure the normalized frequency of each wind direction wedge. Windrose wedge positions indicate the direction from which the wind is 

blowing.  
 375 
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However, ADDA-v2 outperformed ERA5 for the mountainous location, NWTC, Colorado, with WRSIs of 0.90 and 0.69, 

respectively. Here, ADDA-v2 was able to accurately capture the predominantly west winds in the fall, winter, and spring, 

generated by mid-latitude cyclones and the more mesoscale chinook winds that occur on the leeward sides of mountain ranges 380 

(Lackman, 2011; Markowsi & Richardson, 2010).  Diurnal patterns of wind direction were also evaluated (Fig. S1). While 

both ADDA-v2 and ERA5 captured the intraday wind direction patterns of these locations examined, ADDA-v2 is able to 

more correctly simulate the wind direction shift ERA5 in the afternoon during the summer when wind direction has more 

abrupt changes due to diurnal heating and cooling.  

Across the Alaska locations, ADDA-v2 performed moderately well, with wind direction WRSIs at Bligh Reef, Five 385 

Fingers, Juneau Dock, and Red Dog Dock (Fig. 5d) at 0.72, 0.81, 0.79, and 0.66. For coastal locations, like Red Dock, Alaska, 

summer wind directions can be influenced by sea breezes, indicated by the high frequency of southerly flow during the summer 

(Fig. 5d).  

 

3.1.5 Model Performance Across Various Time Scales 390 

The model setup for ADDA-v2 is designed for capturing climatological statistics rather than predicting day-to-day weather 

(Appendix A in Wang et al., 2014). However, it can still be used to understand average intraday wind speed patterns for 

different regions. This section tests ADDA-v2’s capacity to represent wind speeds at different timescales using RMSEs and 

correlations, aiming to demonstrate the timescale in which the model can be useful for wind energy resource assessments.  

For almost all hub-height locations analyzed, RMSEs decreased, and correlations increased as the time scale averages 395 

became coarser. On average across the 26 locations considered, rRMSEs at the daily, weekly, biweekly, and monthly scale 

were 46%, 29%, 25%, and 22% respectively, indicating improvement at each transition to a coarser timescale (Fig. 6f). 

Pearson’s r showed a similar trend, at r = 0.48, r = 0.63, r = 0.68, and r = 0.75 (Fig. 6f), consistently growing when calculated 

at increasingly coarse timescales. Also, the largest error improvement occurred when going from daily averages to weekly 

averages. For example, this can be seen for the 60m wind speeds at Site A, Arkansas (Fig. 6b), where rRMSEs were at 37% at 400 

the daily timescale, before dropping to 20%, 16%, and 13% at the weekly, biweekly, and monthly timescales. Pearson’s r also 

improved from 0.57 at the daily time scale to 0.89 at the monthly time scale. Similarly, Fowey Rock, FL (Fig. 6b) sees a drastic 

improvement from daily to weekly averaged wind speeds, with rRMSEs dropping from 40% to 23%, and Pearson’s r steadily 

climbing between timescale averages. This trend is seen for the Alaska and Puerto Rico locations as well, with ADDA-v2 

struggling to capture specific-day wind speeds, but performing well at coarser, more climatological time scales (Fig. 6c, d)405 
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Table 3 Statistical metrics for each of the 26 hub-height observational locations. 

Geography  Location Wind speed OVL Wind speed 

Diurnal 

Correlation 

Wind speed Diurnal 

RMSE (m s-1) 

WRSI Wind speed MBE 

(m s-1) 

  ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 

W. Coast Megler, 

WA 

0.82 0.94 0.85 0.35 1.45 0.40 0.68 0.73 1.44 -0.15 

Martinez, 

CA 

0.79 0.87 0.39 0.64 1.64 0.86 0.61 - 1.38 -0.66 

Los 

Angeles 

Pier J, CA 

0.90 0.85 0.97 0.94 0.64 0.90 0.69 0.72 -0.02 -0.70 

Average 0.84 0.89 0.74 0.64 1.24 0.72 0.66 0.73 0.93 -0.50 

Mountain Wasco, 

OR 

0.91 0.64 0.69 0.4 0.78 2.53 0.63 0.65 0.67 -0.07 

NWTC, 

CO 

0.87 0.75 -0.05 0.07 1.64 1.86 0.90 0.69 1.65 -1.78 

Average 0.89 0.69 0.32 0.24 1.21 2.2 0.77 0.67 1.08 -0.78 

Plains Site A, KS 0.97 0.6 0.89 0.03 0.40 2.88 - - -0.07 -2.79 

SGP 

Observator

y, OK 

0.90 0.89 0.83 0.89 0.52 0.76 0.79 0.77 0.85 -0.96 

Site A, TX 0.83 0.63 0.91 -0.30 1.18 3.14 - - -1.12 -2.99 

Site B, TX 0.97 0.8 0.75 0.89 0.46 1.37 - - 0.07 -1.28 

Site A, 

MN 

0.83 0.82 0.90 -0.38 1.62 1.59 0.83 - 1.46 -1.39 

Site A, AR 0.92 0.74 0.48 0.40 0.72 1.66 - - 0.58 -1.62 

Argonne, 

IL 

0.76 0.89 0.64 0.55 1.15 0.35 0.82 0.81 1.12 -0.07 

Site A, IN 0.76 0.93 0.59 0.41 1.66 0.60 0.68 - 1.39 0 

Site A, OH 0.82 0.81 0.82 -0.08 1.40 1.33 0.78 - 1.33 -1.07 

Average 0.86 0.79 0.76 0.27 1.01 1.52 0.78 0.79 0.62 -1.35 

Great 

Lakes 

Dunkirk, 

NY 

0.93 0.82 0.82 -0.33 0.67 0.63 0.83 0.81 -0.65 0.36 

E. Coast Edith 

Hammock, 

AL 

0.93 0.96 0.86 0.93 0.59 0.31 0.72 0.76 0.57 -0.27 
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Fowey 

Rock, FL 

0.95 0.77 0.85 0.51 0.54 1.70 0.77 0.69 0.32 -1.66 

Spiderweb, 

SC 

0.54 0.77 0.62 0.23 2.09 0.84 - - 2.03 0.34 

East Point, 

FL 

0.92 0.95 0.92 0.95 0.68 0.31 0.70 0.73 0.64 -0.26 

Cape 

Henry, VA 

0.85 0.82 0.54 0.55 0.85 0.77 0.80 0.79 0.70 0.67 

Brookhave

n, NY 

0.63 0.56 0.51 0.49 2.36 2.88 - - 2.18 2.51 

Average 0.80 0.81 0.72 0.61 1.19 1.14 0.75 0.74 1.07 0.22 

Alaska Red Dog 

Dock, AK 

0.85 0.69 0.57 -0.11 0.70 1.20 0.66 - -0.67 1.14 

Bligh 

Reef, AK 

0.90 0.86 0.39 0.25 0.55 0.96 0.72 - 0.26 -0.79 

Juneau 

Dock, AK 

0.83 0.47 0.48 0.33 0.90 2.90 0.79 - -0.40 -2.86 

Five 

Fingers, 

AK 

0.93 0.77 0.40 0.01 0.60 1.50 0.81 - 0.59 -1.33 

Average 0.88 0.70 0.47 0.12 0.69 1.64 0.75 - -0.06 -0.96 

Caribbean San Juan, 

PR 

0.71 0.78 0.95 0.62 0.62 1.15 0.88 - 0.02 -0.79 

All Average 0.85 0.78 0.67 0.35 1.02 1.36 0.75 0.74 0.63 -0.80 
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Figure 6. ADDA-v2 RMSEs, rRMSEs, and Pearson correlation coefficients at different timescale averages for Site A, Arkansas (b), Fowey 
Rock, Florida (c), San Juan, Five Fingers, Alaska (d), Puerto Rico (e), along with average metrics across all 26 meteorological towers (f). 
The number on each bar represents the value for each respective statistic, with time scales becoming coarser from left to right. 410 

 

3.2 Near-surface Wind speed Evaluation 

ADDA-v2 near-surface validations were initially performed using wind speed observations taken from 2,000+ ASOS stations 

across CONUS, Alaska, and Puerto Rico. While the full temporal domain (2001-2020) of ADDA-v2 was used in this analysis, 

statistics for each ASOS station were dependent on the maximum overlap in data availability between ADDA-v2 and 415 

observations. Seasonal means were taken across the available temporal period before calculating relative mean bias error 

(rMBE) and RMSE values for each ASOS station.  



24 
 

 

 

Figure 7. ADDA-v2 and ERA5 seasonal rMBEs calculated against 2,000+ ASOS locations across CONUS and Alaska. 420 

 

ADDA-v2 performs well for the majority of ASOS stations evaluated, with rMBE values falling between -10-10% 

across much the western and central portions of the model domain. However, ERA5 struggles significantly in these same 

regions, especially in the spring and summer (rMBEs upwards of -60%). This has been documented in past studies (Chen et 

al., 2024; Wilczak et al., 2024), which highlight ERA5’s tendency to underestimate wind speeds in areas of complex terrain 425 

(i.e., the Rockies).  

For the eastern half of CONUS, both ADDA-v2 and ERA5 show similar spatiotemporal patterns for error magnitudes. 

Specifically, both datasets demonstrate notable rMBE values across the Southeast (60-80%), most notably during the fall and 

winter. This systematic error is predominantly attributed to model overestimation during nighttime hours (00-12 UTC), when 
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observational wind speeds are very low (0-1 m s-1), which is at a scale typical of model uncertainty. Thus, when the model 430 

simulates wind speeds of about 1.5-2 m/s, the relative error appears significant. Interestingly, ADDA-v2 also shows higher 

rMBE values for the upper Midwest during the fall and winter, when wind speeds are seasonally stronger; this bias is analyzed 

more in depth in Section 3.3. For most other regions, namely the central/lower Midwest, Texas, and the Northeast, ADDA-v2 

and ERA5 accurately capture seasonal wind speeds, indicated by lower rMBE values.  

 When specifically looking at the ASOS stations over Alaska (Fig. 7), ADDA-v2 and ERA5 generally capture coastal 435 

wind speeds well with rMBEs around -15-15% but struggle more in areas with complex topography. For some locations of 

Alaska’s mountainous interior, rMBE values are much higher than surrounding locations (rMBEs around 60%, especially 

during the winter). Overall, average RMSEs across Alaska for each season were 1.65, 1.08, 0.9, and 0.95 m s-1 for ADDA-v2 

and 1.14, 1.23, 1.17, and 0.96 m s-1 for ERA5. Similarly to CONUS, ADDA-v2 was able to more accurately capture Alaska’s 

wind speeds during the summer and fall but had a notable spike in RMSE magnitudes during the winter, especially for inland 440 

locations.  

3.3 Sensitivity of Wind speed Biases to Physics Parameterizations  

Given all the evaluations in previous sections, this section investigates some potential drivers of model bias over various 

regions which can be used to implement solutions. Most notably, ADDA-v2 sees positive wind speed biases across the 

Southeast United States, as well as for some parts of the Upper Midwest. This bias is seen for both the near-surface winds and 445 

the hub-height winds (Fig. 7, 2e). Part of these overestimations can be attributed to the biases within the forcing data ERA5. 

Depicted in Figure 7, ERA5 primarily overestimates wind speeds for southeast CONUS, especially during nighttime hours. 

Another potential reason for the overestimated wind speeds during night could be attributed to the model’s capacity to respond 

to atmospheric stability. It has been documented that Noah-YSU (the PBL and LSM schemes used to run ADDA-v2 

simulations) has an enhanced performance for wind speeds in unstable conditions but struggles in a very stable atmosphere 450 

(Hong et al. 2006, Draxl et al. 2014, Wang and Jin 2014). Thus, the very low wind speeds present during stable conditions 

may not be accurately captured by models employing these schemes. 

The overestimation of wind speeds over the Upper Midwest, however, does not seem to be inherited from ERA5. 

Instead, it is likely due to the model’s physics parameterization. Various ASOS locations were chosen in the Midwest where 

ADDA-v2 showed high error magnitudes to examine whether different physics parameterizations minimized these errors.  455 

Seasonally averaged diurnal cycles were studied for these locations using the six structure uncertainty ensemble members 

(Section 2.2) with varying PBL and LSM schemes against observations. Error metrics were calculated and the most accurate 

ensemble, indicated by the highest correlation coefficient or the lowest RMSE, was noted (Fig. 8).  
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Figure 8. Seasonally averaged diurnal cycles for each of the structure uncertainty ensemble members (Section 2.4) against observed wind 460 
speeds in regions where ADDA-v2 demonstrated a positive bias. Each ensemble label is denoted by its LSM-PBL scheme, and the options 
for dynamic vegetation and surface layer drag coefficient calculation (e.g., 5-1 means dveg=5  and opt_sfc=1 in namelist.input if NoahMP 
was used). 

 

For each location that demonstrated a positive near-surface wind speed bias, the Noah-MP land surface model 465 

outperformed the Noah land surface model, as seen in the diurnal cycles plotted for a Wisconsin ASOS station (Fig. 8). It is 

also apparent that the greatest error occurs during the overnight hours (00-12 UTC), in which none of the six ensemble members 

come close to representing the observed wind speeds. Contrarily, during the daytime hours (12-00 UTC), all ensemble 

members more accurately capture wind speed magnitudes, although still demonstrating some degree of overestimation. 

Furthermore, in all but one metric, the MYNN PBL scheme outperformed the YSU PBL scheme. Of the statistical metrics 470 

considered for each season, the MYNN PBL scheme almost always showed the lowest RMSE value and the highest correlation 
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coefficient. However, it is important to acknowledge that no individual model configuration was able to solve the positive bias 

seen for these locations.  

Considering the effects that different LSM schemes have on simulated wind speeds, we further analyzed how specific 

LSM parameterizations drive differences in near-surface winds. One of the most important considerations is the friction 475 

velocity, typically denoted by u*. Friction velocity quantifies the turbulent momentum flux at the surface. Therefore, higher u* 

values correspond to more of the momentum being lost to the surface, leading to weaker wind speeds closer to the ground.  

 

 

Figure 9. Vertical profile of wind for a location in which ADDA-v2 overestimated wind speeds, comparing averaged winds between the 480 
2018 simulations using the NoahMP and Noah LSMs. Wind speed profiles correspond to the leftmost y-axis while the ratios of both wind 
speed and friction velocity use the rightmost y-axis. 
 

We analyzed u* between the Noah-MP and Noah LSM schemes and found that friction velocity generally tends to be larger in 

model simulations that employ Noah-MP (Fig. 9), especially at the locations that saw positive near-surface wind speed biases. 485 

In some cases, the friction velocity was as much as 20-25% larger in NoahMP than Noah. As a result, as shown in Fig. 9, wind 

speed ratios between NoahMP and Noah, specifically within the first ~10m AGL, were as high as 1.15 (Fig. 9). At greater 

heights (e.g., 25m and above), this ratio decreases as friction has a diminishing influence on momentum fluxes with increasing 

height as wind speeds get stronger overall. Therefore, while the NoahMP LSM saw improved performance in simulating near-

surface winds, it still did not fully resolve the positive bias observed. 490 
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3.4 Interannual Variability and Model Uncertainty   

Interannual variability across ADDA-v2’s 20-year temporal period was calculated across the entire spatial domain. 

Additionally, model uncertainty was quantified by investigating the spread across 500 augmented ensembles, varying in their 

physics parameterizations (structure uncertainty) and initial conditions (internal variability). While the model uncertainty 495 

brought about by structure uncertainty was larger than that generated by the internal variability (Fig. S2), both were considered 

here to encompass a comprehensive look at all model uncertainty. The magnitudes and spatiotemporal patterns of each of these 

variabilities are then investigated here. Intuitively, the degree of model uncertainty is significantly influenced by the timescale 

being analyzed. This can be seen in Fig. 10, in which the magnitude of uncertainty scales inversely with the length of the 

timescale. The biweekly, weekly and daily timescales see overall uncertainty values of approximately 0.4-0.7 m s-1, 0.7-1.1 m 500 

s-1 , and greater than 2.5 m/s, respectively, across much of North America (Fig.10, 11). This concept is similar to the improved 

performance of ADDA-v2 at coarser resolution timescales (Section 3.1.4). We also found that nighttime uncertainties were 

slightly higher than daytime uncertainties in regions of complex topography, especially over the Rocky Mountains.  

In terms of spatial patterns of model uncertainty, the mountainous regions generally demonstrate higher uncertainty values, by 

about 0.5 m s-1, when compared to adjacent regions with simpler topography (Fig. 10, Fig. 11a, b). This indicates that complex 505 

terrain introduces more unpredictable interactions between the physical mechanisms that drive near-surface and low-level 

wind (Wu et al., 2022a; Helbig et al., 2017). These interactions post challenges for the model to produce reasonable solutions. 

Thus, small changes in model initial conditions or parameterizations can influence these mechanisms and cause significant 

variability within the simulated wind. It is also interesting to note that large lake features also observed high degrees of model 

uncertainty, specifically during the summer months, indicating model’s inadequacy of solving the air-lake interactions and the 510 

needs of a fully coupled lake-atmosphere model (Kayastha et al. 2023). 

In the context of wind energy applications, model uncertainty is integral when mapping ideal locations for wind farm 

siting. However, it needs to be paired alongside spatiotemporal patterns of interannual variability to understand the full scope  

of wind resource reliability and potential risks associated with long-term power generation. Ideally, both model uncertainty 

and interannual variability need to be low for optimal and consistent power generation. As seen in Fig. 11a,b, the relative 515 

magnitude scale of interannual variability and model uncertainty is very different for all seasons. For example, the interannual 

variability of biweekly averaged 100 m wind speeds can be as high as 70-80% of the wind speed themselves. This is observed 

especially during the winter months, when highly variable synoptic-scale features strongly influence wind patterns. 

Alternatively, model uncertainty exists on a smaller magnitude, typically in the range of about 10-20% of the mean wind speed.  

The interannual variability in summer is smaller, with typical magnitudes ranging from 30-40% of the mean wind speed, likely 520 

attributed to the more consistent synoptic patterns present during summer. At coarser timescales (e.g. seasonal), both 

interannual variability and model uncertainty decrease considerably. Across much of North America, seasonal interannual  

 

 



29 
 

 525 

Figure 10. Model uncertainty at different timescale averages (daily, weekly and biweekly), represented by the difference between the 95th 
and 5th percentiles of the wind speed distributions. 

 

variability is 15-25% of the mean wind speed. But, consistent with any timescale, these values can get as high 40-50% in 

regions of complex topography (Fig. S3). 530 

The short-term ensemble simulations can be leveraged with the long-term simulations to identify key regions that 

have an optimal combination of moderately strong wind speeds and relatively low model uncertainty and interannual 

variability. Ultimately, this will maximize energy output potential for optimally sited wind farms.   
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 535 

Figure 11. Relative interannual variability and relative model uncertainty for one biweekly averaged period for a winter month (January) 
and a summer month (July) for 100m wind speeds. Relative uncertainty and relative interannual variability were taken as the difference 
between the 95th and 5th percentiles of the wind speed distributions, divided by the mean wind speed for that respective period.  
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4 Discussion and Concluding Remarks    540 

The validation of the Argonne Downscaled Data Archive Version 2 (ADDA-v2) dataset presented in this study underscores 

its utility in wind resource assessments and climatological applications. This section synthesizes the key findings and compares 

the performance of ADDA-v2 with ERA5, highlighting ADDA-v2’s added value to its coarser resolution forcing data.  

ADDA-v2 demonstrated significant advantages over ERA5 in capturing fine-scale wind variability across diverse 

geographies. The dataset performed particularly well in regions with complex terrain, such as the Rocky Mountains and Alaska, 545 

where high-resolution modeling captured localized wind phenomena more effectively. This is especially critical when 

assessing the consistency in wind power generation throughout the day, with potential implications for hybrid style energy 

generation. Additionally, ADDA-v2’s ability to reduce errors at coarser temporal scales (e.g., weekly and monthly averages) 

reinforces its applicability for long-term climatological studies and resource planning. However, challenges remain, 

particularly in regions where both ADDA-v2 and ERA5 struggled, such as the Southeast United States and areas characterized 550 

by stable atmospheric conditions. These limitations highlight the need for targeted improvements in existing and new 

parameterizations (e.g., PBL and LSM) to address specific biases. Additionally, while this validation focused more on inland 

regions, Sheridan et al. (2025) has evaluated ADDA-v2’s performance over coastal locations. Tobias-Tarsh et al. (2025) has 

evaluated ADDA-v2’s performance in wind-related extremes in the context of tropical cyclones over the North Atlantic Basin.  

Other studies exist that introduce wind datasets and validate them against observations. For instance, Draxl et al. 555 

(2015) documented a 7-year wind dataset with a grid spacing of 2km, primarily focused on wind power evaluations over 

CONUS and included a limited meteorological validation using 6 tall masts and 3 buoys. Rasmussen et al. (2024) performed 

validations on a 42-year period, 4km dataset on its near-surface (10m) wind speeds with underestimation especially over 

complex terrain. While these datasets provide their own unique utility, ADDA-v2 offers a powerful combination of a 

reasonably long time period with a large spatial domain containing unique geographic regions. By comprehensively validating 560 

ADDA-v2’s wind speeds and directions using an extensive network of near-surface observations and a diverse set of hub-

height observations, this evaluation can provide insight for both climatological studies and wind resource assessments.  Yet, 

all these datasets can be used collectively, complementing one another with their unique characteristics and allowing for a 

more comprehensive view of model uncertainty and longer-term variability.  

However, even with all these datasets developed thus far, it is challenging for high-resolution numerical simulations 565 

covering such large domains to capture all model uncertainty and variability. The experiments presented here aim to deliver a 

relatively robust sample of model uncertainty, but there are many other physics parameterizations that can generate different 

model solutions. Recent advances in machine-learning (ML) based surrogate model or hybrid model may provide a more 

comprehensive means of quantifying model uncertainty (Tunnell et al, 2023; Di Santo et al., 2025; Pringle et al. 2025) given 

faster calculations they can perform.  570 

While this evaluation demonstrates the capabilities of ADDA-v2 in capturing climatological features using multiple 

metrics over various geospatial locations, some other features can be investigated in future work. One of them is the spatial 
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and temporal variability captured by the model. As demonstrated by past studies (e.g., Müller et al. 2024, 

Skamarock 2004, and Larsén et al. 2012), atmospheric models with spatial resolution Δx can only capture the energy spectrum 

at wavelengths ~4-6 Δx. Thus, at a 4km model resolution, the inherent variability and turbulence of the atmosphere can only 575 

accurately be simulated at ~20 km scales (Kolmogorov, 1941; Durran, 2010; Skamarock et al., 2008). Evaluation of such 

variability would require continuous gridded observational data, such as those from radar, lidar or satellites (Müller et al. 

2024). Another consideration for future work is to make the evaluations more robust by including multiple model grid cells 

surrounding each observation site, rather than using only the closest grid cell, as we did in this study. This would allow us to 

characterize a range of modelled winds around the observation sites and better represent model spatial variability. Lastly, while 580 

this study prioritizes climatology inland, future work is needed for analyzing ADDA-v2’s capability of capturing extreme 

winds, which can provide insight into storm-related (e.g., derechos) risk assessments (Li et al. 2025). 

 

 

 585 

Code and Data Availability 

All datasets used in this study are freely available, except for the selected proprietary hub-height data. ERA5 reanalysis data 

is accessible through Climate Data Store: https://cds.climate.copernicus.eu/. ADDA-V2 data is located on the ALCF high-

performance storage system and is available upon request; request can be made to cjung2@anl.gov. A subset of the ADDA-

v2 dataset is hosted by the National Renewable Energy Laboratory, providing access to hub-height wind speed data 590 

(https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-led-climate-v1-0-0-download/). The public in-situ data can be found 

on Data Archive and Portal (DAP) Platform (https://a2e.energy.gov/data) and the IEM Mesonet 

(https://mesonet.agron.iastate.edu/ASOS/). Data processing scripts were written in python and can be made available upon 

request. 
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