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Abstract. Assessing the availability of key wind resources requires augmenting observations to support the implementation 

of wind energy infrastructure. However, observations are limited, necessitating the development of high resolution, long-term 

gridded datasets. This study presents a robust, dynamically downscaled climatological dataset, offering 20 years of hourly 

wind data at a 4-km spatial resolution across North America, and evaluates its performance against observations, including 

meteorological towers and Automated Surface Observing Stations (ASOS), as well as a coarse-resolution reanalysis data 一 15 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5). Results demonstrate that the 

downscaled high resolution wind data outperforms ERA5 in regions of complex terrain and coastal areas, with improved 

overlap coefficients for wind data distributions and reduced root mean square errors (RMSE) for hub-height and near-surface 

diurnal wind patterns. The downscaled simulation also reasonably captures the synoptic drivers of seasonal wind direction 

patterns, indicated by high wind rose similarity indices. This study also provides an analysis of interannual variability, utilizing 20 

the dataset’s full 20-year period, and model uncertainty, generated by varying model initial conditions and physics 

parameterizations across 1-year ensemble members, which are key considerations for wind resource assessment in wind farm 

development.  

 

1 Introduction 25 

Wind is a key factor in shaping a region's complex climate, influencing both environmental and economic sectors. 

Understanding local and regional wind variability is vital for assessing wind energy potential, which aids in the efficient 

implementation and operation of wind farms (Millstein et al., 2019; Couto & Estanquiero 2021). Additionally, evaluating wind 

speed and direction is essential for conducting accurate risk assessments for high winds, whether onshore or offshore (Li , 2023; 

Grasu & Liu, 2023; Wu et al., 2022b). However, the spatiotemporal coverage of current wind measurements remains very 30 
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limited, particularly over complex terrains (e.g., western US), offshore, and at hub -heights, where wind energy resource 

assessments are crucial.  

To bridge the gap between limited observational data and the need for accurate wind resource assessments, global 

and regional reanalysis datasets, such as Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2), the North American Regional Reanalysis (NARR), and the European Centre for Medium-Range Weather 35 

Forecasts Reanalysis version 5 (ERA5), are commonly used (Hersbach et al., 2020; Gelaro et al., 2017; Mesinger et al., 2006). 

These reanalysis datasets provide valuable insights into wind patterns, variability, and long-term trends, and are also crucial 

for capturing climatological oscillations and large-scale circulations that influence wind characteristics (e.g., Sheridan et al., 

2022a). While these datasets typically have higher horizontal resolution than global climate models (GCMs), they still lack the 

resolution necessary to explicitly resolve convection, which is essential for capturing convectively driven precipitation and 40 

wind (Murakami, 2014; Jones et al., 2021). Additionally, validating these reanalysis datasets is essential for determining their 

viability for wind resource assessments. (Sheridan et al., 2020, 2024; Lee et al., 2014). For example, Sheridan et al. (2022b) 

found that ERA5 generally underestimates wind speed diurnal cycles based on 62 sites at a variety of heights above ground 

across the continental United States (CONUS). This underestimation is most prominent in late afternoon, caused primarily by 

the underestimation of convectively driven strong winds. Similarly, Chen at al. (2024) and Wilczak et al. (2024) found that 45 

ERA5 showed significant negative biases for wind speeds in areas of complex terrain, especially over the Rocky Mountains.   

To achieve the necessary high resolution to capture finer scale wind patterns over large spatial areas and extended 

time periods, researchers employ a technique called dynamical downscaling. This technique involves using initial and 

boundary conditions from the global or regional reanalysis data to force simulations at finer resolutions using a regional climate 

model. Regional climate modeling at a convection-permitting (CP) resolution, with a horizontal grid spacing of less than 50 

approximately 4 km, has become a promising approach for delivering more reliable climate information at regional and local 

levels. By directly resolving deep convective processes rather than relying on parameterization, these models demonstrate 

significant enhancements (e.g., Prein et al., 2015 and the references therein). Due to recent breakthroughs in computational 

capacity and data management, several studies have been able to perform convection-permitting regional climate model (RCM) 

simulations. These simulations, especially those concentrating on the CONUS, (e.g., Draxl et al ., 2015b; Gensini et al., 2023, 55 

Liu et al., 2017; Rasmussen et al., 2024) have shown substantial progress in depicting precipitation, wind, and high -impact 

weather from national to regional spatial scales. Among these, Draxl et al. (2015a, b) presented the largest, freely available 

wind dataset at the time of its creation, serving the Wind Integration National Dataset (WIND) Toolkit for wind resource 

assessment and grid integration studies. The data provides time series of meteorological variables every 5 min and 2km across 

the CONUS in the 7 years from 2007 to 2013. 60 

This study builds upon previous efforts by presenting an additional high -resolution, long-term dataset, along with 

ensemble simulations for quantifying model uncertainty, for utilization in climatological wind assessments. The dataset was 
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generated by a regional climate model using the Weather Research and Forecasting (WRF) model. With 4 km, 20-year, hourly 

output, and a model domain spanning the majority of North America and surrounding oceans, this dataset provides a 

spatiotemporal extension to existing climatological wind analyses. With large geographic coverage, this data product also 65 

offers insight into more remote, topographically complex regions, and high-impact weather phenomena, such as tropical and 

extratropical cyclones (TCs/ETCs) and atmospheric rivers, potentially highlighting viable areas for wind energy and providing 

the means for climate related risk assessments outside of CONUS. By leveraging a single large spatial domain, the model 

evolved as one system, developing its own natural variability without being constrained by the forcing data. This dataset has  

been leveraged by the latest WIND Toolkit Long-term Ensemble Dataset (WTK-LED), as documented by Draxl et al. (2024), 70 

serving as the WTK-LED Climate dataset (Table ES-1 in Draxl et al. 2024). Ultimately, this high-resolution dataset aims to 

combine the climatological significance of an extensive temporal length with the wind-resource-utility advantages of a large 

spatial domain. 

Our study validates the dynamically downscaled model wind speeds against various observational data at both the 

near-surface and at turbine-heights at mostly inland and onshore locations, investigating model performance at different 75 

temporal scales (diurnal, seasonal, interannual variability). A complementary study evaluating the same dataset but focusing 

on CONUS coastal areas has been documented by Sheridan et al. (2024). Our validation is also performed on the forcing data 

—ERA5 reanalysis (Hersbach et al., 2020), aiming to understand the added value of the dynamically downscaled model to its 

coarser resolution forcing data. Additionally, this study seeks to augment insights on model uncertainty within wind 

simulations that are brought about by varying model configurations.  80 

This manuscript is organized in the following structure: the methodology, including model description, observational 

datasets used for validation, and analysis metrics used for evaluation are outlined in Section 2. The results of the model’s 

performance at hub-heights and near surface are presented in Section 3.1 and 3.2, with an exploration of model bias in Section 

3.3. Interannual variability and model uncertainty are quantified in Section 3.4 with the context of wind energy implications. 

Lastly, a summary of our findings and avenues for future research are discussed in Section 4. 85 

 

2 Methods and Datasets 

2.1 Model Description  

The wind validation performed in this study was based on a 20-year (2001-2020) climatological dataset produced by the WRF 

model (Powers et al., 2017) version 4.2.1 with the Advanced Research WRF dynamic core (Skamarock & Klemp, 2008): the 90 

Argonne Downscaled Data Archive version 2 (ADDA-v2). With a domain of 2050 x 1750 grid points at a 4-km grid spacing 

(8200 km x 7000 km), the model featured over 3.5 million grid cells, horizontally spanning across the majority of North 

America and the Caribbean Islands (Fig. 1a in Akinsanola et al., 2024). The model was run with 50 unevenly spaced sigma 
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levels, 18 of which were within the lowest 1km. The first six layers are below 104 meters above ground level — 8, 25, 41, 58, 

75 and 104 meters. Initial and lateral boundary conditions were determined by ERA5; 5 variables were taken at each of ERA5’s 95 

37 available pressure levels alongside 26 single-level variables. The model was reinitialized for each year, ultimately producing 

a series of 20, 14-month simulations covering the period from 2001-2020. These individual simulations were allowed a spin-

up period of two months (November and December), which were eventually discarded and not used for the data analysis. To 

study the model's internal variability, we conducted 10 additional 1-year (ENSO neutral year - 2018) ensemble runs, all with 

the same model setup, but different initial conditions (Wang et al., 2018). This was achieved by running each of the ten 100 

ensemble members 12 hours apart, with the first being initialized on November 1, 2017, at 00 UTC and the last being initialized 

on November 5, 2017, at 12 UTC. Thus, the slightly different initial conditions at each respective start time acted as the catalyst 

to generate differences between the ensemble members.  

Generally, WRF simulations employ multiple physics schemes to implicitly represent the sub -grid processes 

occurring within the model domain. The choices specified for different parameterizations can impact how the model simulates 105 

wind, especially PBL, surface layer schemes, and land surface processes. For the 20-year simulations the Yonsei University 

(YSU) (Hong et al., 2006) PBL scheme is used, which has been studied in multiple model sensitivity experiments that explore 

the effects of PBL schemes on wind simulations (Carvalho et al., 2012; Carvalho et al., 2014; Li et al., 2021; Wu et al., 2022a; 

Hahmann et al., 2015; Draxl et al., 2014). Overall, the YSU PBL scheme performs relatively better in unstable conditions than 

stable conditions and represents diurnal variability well (Hong et al., 2006; Draxl et al., 2014). The surface layer scheme was 110 

the MM5 similarity scheme, which follows the Monin-Obukhov similarity theory (Monin & Obukhov, 1954) alongside the 

Carlson-Boland similarity functions (Carlson and Boland, 1978). The Unified Noah land-surface model was used for the land 

surface processes, which employs a 4-layer soil temperature and moisture scheme, as well as fractional snow cover and frozen 

soil physics (Tewari et al., 2004). A full list of the model parameterizations can be found in Table 1. 

To investigate the model’s structure uncertainty arising from key physics parameterizations — namely the PBL and 115 

land surface model (LSM) — an additional six ensemble members were generated for the same neutral year 2018. Each 

ensemble member shared the same domain and spatial resolution but employed different PBL schemes (YSU and MYNN) and 

LSMs (Noah and NoahMP). The MYNN PBL scheme is a level 2.5 closure scheme for turbulence and implicitly solves for 

turbulence using parametric equations. It gives estimates of TKE and dissipation rates within the boundary layer of the 

atmosphere (Nakanishi & Niino, 2009). Noah-MP is an improved version of the Noah LSM and provides better representations 120 

of terrestrial biophysical and hydrological processes (Niu et al., 2011). Major physical mechanism enhancements include 

improved treatment of soil moisture. No internal grid nudging, nor spectral nudging was employed for these simulations to 

allow the model to develop its own spatiotemporal variability. Model output data for the most used meteorological variables, 

such as air temperature, wind speed and direction, and precipitation, were saved at hourly intervals for the full domain from  

2001-2020. Other variables less frequently used were saved at 3-hour intervals.  125 
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Table 1: WRF model setup and ensemble runs used in ADDA_v2 simulations 

Regional Climate Model WRF v4.2.1 

Initial and Boundary Conditions ERA5 at 0.25 deg, every 3 hours 

Horizontal Grid Spacing and Timesteps 4km; adaptive time stepping 

Number of Grid Cells 2050 (west-to-east) x 1750 (south-to-north) x 49 (top-to-bottom) 

Simulation Period January 1, 2001, to December 31, 2020 

Microphysics Scheme Morrison double moment (Morrison et al., 2005) 

Land Surface Scheme Unified Noah (Tewari et al., 2004), Noah-

MultiParameterization (NoahMP, Niu et al., 2011) with two 

options for dynamic vegetation and surface  

Planetary Boundary Layer Scheme Yonnsei University (Hong et al., 2006), Mellor-Yamada-

Nakanishi-Niino (MYNN, Nakanishi & Niino, 2009) 

Short and Long-wave Radiation Scheme Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et 

al., 2008) 

 

2.2 Observational Datasets Used for Validation  

The validation performed on ADDA-v2 used wind speed observational data taken within 100 meters above ground level. The 130 

first collection of observations focused on hub-height wind speeds and wind directions. These observations were taken from 

multiple meteorological towers hosted by the US Department of Energy National Laboratories (Argonne National Laboratory, 

Brookhaven National Laboratory, NREL, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Savannah 

River National Laboratory), and the National Oceanic and Atmospheric Administration (National Centers for Environmental 

Information, National Data Buoy Center). In total, 26 meteorological towers were sampled and quality controlled for this 135 

analysis, with wind speed observations taken anywhere from 10m to 100m above ground level. Observations were quality 

controlled through the process of removing atypical or unphysical reported wind speeds (less than 0 m s −1, greater than 50 m s−1, 

or non-varying values over periods of time greater than 3h), based on Sheridan et al. (2024). Temporal coverage varied between 

2-20 years, with an average of ~8.1 years. Observations covered a diverse range of geographies, including mountainous, coastal 

(east and west coast of the CONUS), the Great Lakes, and plains regions; Alaska and Puerto Rico (Caribbean) were denoted 140 

as separate geographic regions.  For 19 of these meteorological towers, the exact locations, anemometer heights, and temporal  

coverages of wind observations can be found in Table 2. The remaining 7 are proprietary data, in which exact locations could 

not be specified. While turbine-height wind speed and wind direction data is sparse, we have leveraged all the publicly available 

resources that we have access to and performed a thorough validation over diverse geospatial areas.  

 145 
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Figure 1. Locations of in-situ observations sampled from meteorological towers across CONUS and Alaska, along with an ASOS location 
over Puerto Rico. The zoomed in area, with stars representing each dataset, indicates the capability of ADDA-v2’s higher resolution to more 

closely match the exact location of the in-situ data. The 2000+ sites over CONUS are not included here but can be seen in Fig. 6. 

 150 

The second part of this evaluation explores an expansive collection of 10 m wind speed data sourced from a network 

of Automated Surface Observing Stations (ASOS). These stations monitor and report various meteorological variables and are 

operated by the United States National Weather Service, the Federal Aviation Administration, and the Department of Defense. 

The specific dataset used for this validation was collected from the Iowa Environmental Mesonet (IEM) and subsequently 

quality controlled by the Data Archive and Portal (DAP) Platform. The dataset hosts over 2,000 sites across CONUS and 155 
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Alaska and covers a temporal period from 1 January 2000 – 31 December 2021, offering a spatiotemporally comprehensive 

means for performing a thorough validation of ADDA-v2’s 10m wind. Additionally, wind speed data from four additional 

ASOS stations over Puerto Rico were downloaded from the Iowa Environmental Mesonet (IEM) to spatially expand the model 

validation and gain a more comprehensive understanding of model performance over areas of sparse data availability and 

complex terrain.   160 

To demonstrate the potential added value of ADDA-v2 to its coarse resolution forcing data, we also include ERA5 

reanalysis in all near-surface and hub-height evaluations. ERA5 outputs only two levels of wind (10m and 100m), so to evaluate 

winds at heights between these levels, an interpolation method was required. At each timestamp, the ADDA-v2 and ERA5 

wind speeds were adjusted to the observational heights via the power law using the model wind speeds at sur rounding output 

heights to the observation height. While this interpolation method may induce some bias in both ADDA-v2 and ERA5, the 165 

differences between these datasets are driven mostly by the difference in spatial resolution and the added value by ADDA-v2. 

This approach was selected based on the analysis of Duplyakin et al. (2021), who found that the power law minimized errors 

due to vertical adjustment of wind dataset output heights to observation heights.     

 

2.3 Statistics for Validation 170 

The wind speed validation in this study utilizes several statistical error metrics to evaluate how well ADDA-v2 performs 

against observations. In particular, root mean square error (RMSE), Pearson correlation coefficients (r), overlap coefficients 

(OVLs), and wind rose similarity indices (WRSIs) are used.  

The RMSE gives a metric for the overall accuracy of the model, with lower RMSE’s indicating improved model 

performance. RMSE is taken as the square root of the average of the squared differences between simulated wind speeds and 175 

the observed wind speeds at various timescales (seasonal, monthly, diurnal), given by Eq. (1). This metric is effective at 

highlighting instances of larger errors in the model and demonstrates the overall magnitude of model inaccuracy. Here, 𝑛 

represents the number of wind speed observations (in time), 𝑣mod represents the modeled wind speed, and 𝑣obs denotes the 

observed wind speed. Relative RMSE (rRMSE) was also considered, Eq. (2), by dividing the RMSE by the average of the 

observed wind speed. This gives a general sense of the magnitude of error in relation to the magnitude of the wind speeds 180 

themselves. 

 RMSE = √
1

𝑛
∑ (𝑣mod,𝑖 − 𝑣obs,𝑖)

2𝑛
𝑖=0       (1) 

                

 rRMSE =
RMSE

𝑣obs
         (2) 

    185 
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Table 2. Information for the hub-height wind data sourced from meteorological towers across CONUS. The number listed for each location 

corresponds to the numbers in Fig. 1, identifying the geographic positions of the meteorological towers. Location coordinates for proprietary 

data were excluded. 

Geography Location Coordinates Temporal Coverage Anemometer 

Height 

W. Coast  Megler, WA (1) 46.27°N, -123.88°W 2010-2018 53m 

Martinez, CA (3) 38.04°N, -122.12°W 2014-2020 100m 

Los Angeles Pier J, CA (4) 33.73°N, -118.19°W 2014-2020 31m 

Mountain Wasco, OR (2) 45.50°N, -120.77°W 2005-2018 30m 

NWTC, CO (5) 39.91°N, -105.24°W 2002-2020 50m 

Plains Site A, KS (6) - 2006-2008 49m 

SGP Observatory, OK (7) 36.61°N, -97.49°W 2012-2020 65m 

Site A, TX (8) - 2008-2013 50m 

Site B, TX (9) - 2009-2013 51m 

Site A, MN (10) - 2007-2011 80m 

Site A, AR (11) - 2011-2012 53m 

Argonne National Lab, IL (12) 41.70°N, -87.99°W 2007-2013 60m 

Site A, IN (13) - 2018-2019 90m 

Site A, OH (14) - 2017-2018 90m 

Great Lakes Dunkirk, NY (17) 42.49°N, -79.35°W 2001-2017 20m 

E. Coast Edith Hammock, AL (15) 30.23°N, -88.02°W 2008-2013 36m 

Fowey Rock, FL (16) 25.59°N, -80.09°W 2001-2020 44m 

Spiderweb, SC (18) 33.41°N, -81.83°W 2009-2012 34m 

East Point, FL (19) 29.41°N, -84.86, °W 2004-2020 35m 

Cape Henry, VA (20) 36.93°N, -76.01°W 2007-2020 28m 

Brookhaven, NY (21) 40.87°N, -72.89°W 2007-2013 50m 

Alaska Red Dog Dock, AK (22) 67.58°N, -164.07°W 2018-2020 13m 

Bligh Reef, AK (23) 60.84°N, -146.88°W 2013-2020 22m 

Juneau Dock, AK (24) 58.29°N, -134.39°W 2018-2020 18m 

Five Fingers, AK (25) 57.27°N, -133.63°W 2013-2020 22m 

Puerto Rico San Juan, PR (26) 18.43°N, -66.01°W 2001-2020 10m 
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The Pearson correlation coefficient (r) measures the degree of linear correlation in time between model wind speeds 190 

and observational wind speeds. Values range from -1 to 1, with -1 indicating a perfect negative correlation, 1 indicating a 

perfect positive correlation, and 0 indicating no correlation.  In Eq. (3) below, �̅�mod is the mean of the modeled wind speeds 

and �̅�obs is the mean of the observed wind speeds. 

 𝑟 =  
∑ (𝑣mod,𝑖−�̅�mod)(𝑣obs,𝑖−�̅�obs

𝑛
𝑖=1 )

√∑ (𝑣mod,𝑖−�̅�mod)2𝑛
𝑖=1

∑ (𝑣obs,𝑖−�̅�obs)2𝑛
𝑖=1

     (3) 

 195 

Lastly, overlap coefficients (OVLs) were calculated between the probability density functions for the modeled and 

observed wind speed distributions, using Eq. (4). Functions were estimated using kernel density estimations, specifying Scott’s 

rule (Scott, 2015) for bandwidth smoothing. Once functions were drawn, OVLs were calculated using the following formula, 

in which 𝑓𝑣mod
(𝑥) is the estimated density function for the model wind speeds and 𝑓𝑣obs

(𝑥) is the estimated density function 

for the observed wind speeds. The result of this calculation yields a value from 0 to 1, in which 0 indicates no overlap and 1 200 

denotes complete overlap between the estimated functions for observations and model wind speeds.  

OVL = ∫ (𝑓𝑣mod
(𝑥), 𝑓𝑣obs

(𝑥)) d𝑥
∞

−∞
                                                                                     (4)                                         

In addition to wind speed evaluations, we also conducted wind direction validations using wind roses. This is 

important for examining the model’s performance in capturing the seasonality of wind direction, as well as for investigating 

the covariance of wind speed and direction (Wu et al., 2022b). For these wind roses, similarity indices (WRSIs) were also 205 

calculated by taking the sum of the minimum frequencies between model and observations for each discrete wind direction 

bin, using Eq. (5). Here, 𝑓𝑑mod
(𝑖) and 𝑓𝑑obs

(𝑖) represent the frequency of wind directions for each bin i.  

 WRSI = ∑ min( 𝑓𝑑mod
(𝑖),𝑓𝑑obs

(𝑖)) 𝑛
𝑖        (5) 

 

2.4 Interannual Variability and Model Uncertainty  210 

This section quantifies the magnitudes of model uncertainty and model interannual variability for simulated wind speeds. By 

exploring the spatiotemporal patterns of both, we can provide crucial insight into wind energy resource applications. 

Specifically, the degree of interannual variability, as well as the magnitude of model uncertainty, significantly impact the 

estimated energy yield of a wind farm, consequently determining the cost of investment capital for new wind projects (Pryor 

et al., 2018; Jung et al., 2019). 215 
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Wind, like many other meteorological variables, has interannual variability, driven by climate oscillations and other 

long-range temporal patterns. Long-term climate models can reasonably capture this variability, allowing for a comprehensive 

look at year-to-year fluctuations in wind speeds. Additionally, climate model simulations can generate varying solutions when 

employing different physics parameterizations and initial conditions (Carvalho et al., 2012, 2014; Li et al., 2021; Wu et al., 

2022a; Hahmann et al., 2015; Draxl et al. 2014). This study investigates these two types of variability and discusses their 220 

spatiotemporal magnitudes in the context of wind energy applications.    

 To quantify model uncertainty due to internal variability and structure uncertainty, statistical bootstrapping was 

employed on the sixteen (10 internal variability, 6 structure uncertainty) 1 -year simulations to generate 500 augmented 

ensemble members. This was done by randomly selecting data for each hour from one of the sixteen ensembles, ultimately 

building an entirely new ensemble with the same spatial and temporal domain. This technique allows for a more comprehensive 225 

look at the statistical distribution of data and the underlying variability that drives model uncertainty. Time averages were  then 

performed across the model domain on each of the 500 resampled ensembles to gauge how the degree of model uncertainty is 

influenced by different timescales; this included monthly, bi-weekly, weekly, and daily averages, as well as daytime (21 UTC) 

and nighttime (06 UTC) monthly averages.  

 To represent model uncertainty, 5 th and 95th percentiles were taken at different time scale averages (e.g., weekly and 230 

biweekly) across the 500 augmented ensembles to determine the upper and lower bounds of temporally averaged wind speeds. 

Then, the difference between these two percentiles (95th - 5th) served to demonstrate the degree of ensemble spread. These 

percentiles were calculated for every grid point and at each timescale average to reveal spatiotemporal patterns present for 

model uncertainty. Interannual variability was calculated by taking the same timescale averages, then computing percentiles 

across the 20 years of ADDA-v2’s full temporal domain.  235 

 

3 Results 

3.1 Hub-Height Wind speed and Wind Direction Validations 

We start with a model validation for wind speeds at hub-heights (Section 2.2) over the 26 locations (Fig. 1) to assess ADDA-

v2’s utility for wind energy applications. We used several metrics and statistics to quantify model performance, including 240 

probability density functions (PDFs), seasonally averaged wind speed diurnal cycles, wind roses, time-scale dependent RMSE 

and correlation bar charts. For each figure, locations from the different geographies listed in Table 2 were chosen to assess 

ADDA-v2’s performance in different regions; where possible, at least one figure representing each geographic characteristic 

was displayed.  

 245 
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3.1.1 Probability Density Functions 

PDFs effectively compare data distributions without considering the time dimension, aiming to visualize any biases between 

model and observation. Across the 26 hub-height locations, ADDA-v2’s PDFs had an average OVL of 0.85 with the 

observational PDFs, while ERA5’s PDFs had an average OVL of 0.78. Similarities between ADDA-v2 and ERA5 distributions 

and observed wind speeds were spatially variable, with ADDA-v2 performing better than ERA5 for 18 of the 26 sites 250 

considered. Overall, ADDA-v2 performed well with East Coast CONUS locations, seeing very high OVLs for locations such 

as Fowey Rock (0.95), Florida, East Point, Florida (0.92), Edith Hammock, Alabama (0.93, Fig. 2i), and Cape Henry, Virginia 

(0.85). ERA5 also did well for these locations (0.77, 0.95, 0.96, and 0.82 respectively), struggling more just for the Fowey 

Rock location. For the West Coast of the CONUS, ADDA-v2 and ERA5 on average performed similarly. Megler, Washington, 

Los Angeles Pier J (Fig. 2a), California, and Martinez, California (Fig. 2b) saw OVLs of 0.82, 0.9, and 0.79 for ADDA-v2 and 255 

0.94, 0.85, and 0.87 for ERA5 respectively.   

Across the Plains region, ADDA-v2 was able to modestly outperform ERA5. The average OVLs for ADDA-v2 across 

the nine locations was 0.86, while ERA5 saw an average OVL of 0.79.  For many of the central U.S. locations, ADDA-v2 

wind speed distributions were very close to that of observations, namely Site A, Kansas (Fig. 2e), Site A, Arkansas (Fig. 2f), 

and SGP, Oklahoma. ADDA-v2’s higher resolution was able to capture the finer scale wind speed patterns in mountainous 260 

regions, significantly outperforming ERA5. ADDA-v2 OVLs for the two mountainous regions considered (the Cascades and 

the Rockies) were 0.91 and 0.87, while ERA5’s OVLs were considerably lower at 0.64 and 0.75 (Fig. 2c, d). Additionally, 

ADDA-v2 outperformed ERA5 for the single Great Lakes location (Fig. 2h), with an OVL of 0.93 compared to 0.82.  

There were a couple locations where both datasets struggled to capture the hub-height wind speed distribution. For 

example, both ADDA-v2 and ERA5 had low OVLs for the southeast location (Fig. 2j), Spiderweb, South Carolina. ADDA-265 

v2 demonstrated a strong overestimation and saw its minimum OVL of 0.54, while ERA5 has a notably better, but still 

relatively low OVL of 0.77. As discussed in (Section 3.1), ADDA-v2’s positive bias can be partly attributed to the land surface 

model (LSM) used for these simulations, as well as the positive bias inherited by ERA5. Both datasets also struggled with the 

hub-height wind speeds at Brookhaven, New York, with OVLs at 0.63 (ADDA-v2) and 0.56 (ERA5). However, the 

overestimations seen for this location by both datasets may be attributed to its unique geographic position; it is located on 270 

Long Island, New York, equidistant from Long Island Sound and the Atlantic Ocean, where land sea interactions on either 

side may incite complexities in the local wind patterns. Considering regions outside of the CONUS, ADDA-v2 performed very 

well across the four Alaska locations, with an average OVL of 0.88, while ERA5 struggled more, with an average OVL of 

0.70 (Fig. 2k). ERA5’s coarser resolution can contribute to these errors, especially across Alaska, where complex topography 

incites stark spatial changes in wind patterns. Specifically, for the Five Fingers location, on the coast of the Kotzbue Sound, 275 

ADDA-v2 sees an OVL of 0.93 while ERA5 sees an OVL of 0.77 (Fig. 2k). For the San Juan, Puerto Rico location, ADDA-

v2 and ERA5 saw decent performance in capturing wind speed patterns, although ERA5 did demonstrate slight improvement 

with an OVL of 0.78 compared to ADDA-v2’s 0.71.  
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 280 

Figure 2. Probability density functions (PDFs) of ADDA-v2 and ERA5 simulated wind speeds alongside observations over Los Angeles 
Pier J, California (a), Martinez, California (b), Wasco, Oregon (c), NWTC, Colorado (d), Site A, Kansas (e),  Site A, Arkansas (f) Site A, 
Minnesota (g), Dunkirk, New York (h), Edith Hammock, Alabama (i), Spiderweb, South Carolina (j), Five Fingers, Alaska (k), an d San 

Juan, Puerto Rico. 
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3.1.2 Diurnal Cycles 285 

While PDFs are useful in understanding the overall distribution of wind speeds, it is important to validate temporal accuracy 

of model simulated wind speeds. It is particularly crucial to understand how well the model captures diurnal variability of 

wind, especially when planning hybrid renewable energy assessments. Therefore, seasonally averaged wind speed diurnal 

cycles are considered in this analysis for each hub-height location to evaluate how well ADDA-v2 captures intraday wind 

speed patterns. Ten-meter wind speeds were also included for some of these locations because they have more pronounced 290 

diurnal patterns. Pearson’s r and RMSE values are used to validate model diurnal cycles against in -situ observations.  

 

Across all locations (Fig. 1), ADDA-v2’s diurnal wind speed patterns had an average Pearson’s r of 0.67 with 

observations, while ERA5’s average was considerably lower, at approximately r = 0.35. Similarly, ADDA-v2 had a lower 

average RMSE of 1.02 m s-1 compared to the 1.36 m s-1 RMSE of ERA5. Both datasets saw improved performance when there 295 

was a strong diurnal signature in wind speed magnitudes. This was especially the case for southern locations, especially with 

coastal geographies, where the greater surface heating at lower latitudes modulates diurnal wind speed patterns more 

significantly (Elliott et al. 2004). For East Coast locations like East Point, Florida, Fowey Rock, Florida, and Edith Hammock, 

Alabama, Pearson’s r were at or above 0.85 for ADDA-v2. ERA5 Pearson’s r were also high overall, but the dataset struggled 

with Fowey Rock, with r = 0.51 (Fig. 3b). Across all East Coast locations, ADDA-v2 had an average Pearson’s r of 0.72 and 300 

an average RMSE of 1.19 m s-1 while ERA5 saw a worse Pearson’s r (0.61), but a comparable RMSE (1.14 m s-1). This trend 

was generally observed for the West Coast locations as well, in which southern regions had a clear diurnal wind pattern, namely 

for Los Angeles Pier J, California (Fig. 3a). Overall, ADDA-v2 performed better for the wind speed diurnal pattern for the 

West Coast region with an average Pearson’s r of 0.74 compared to ERA5’s 0.64. However, ADDA-v2 did tend to overestimate 

wind speeds for Martinez, California and Wasco, Oregon, leading to higher RMSE values compared to ERA5.   305 

For more inland regions, namely locations with mountainous or plains geographies, ADDA-v2 performed much better 

than ERA5 in most statistical metrics considered. Correlation coefficients for plain-like geographies, on average, were r = 0.76 

for ADDA-v2 and r = 0.27 for ERA5. For example, ADDA-v2 excelled at capturing intraday wind patterns across the Great 

Plains locations, such as SGP, Oklahoma, Site A, Texas, and Site A, Kansas, with r = 0.83, r = 0.91, and r = 0.89 respectively. 

This was especially the case during the warmer months, when wind speeds had notable fluctuations during the day. RMSEs 310 

generally reflected this trend as well, with average RMSEs for ADDA-v2 at 1.01 m s-1 and 1.51 m s-1 for ERA5. For 

mountainous regions, both ADDA-v2 and ERA5 struggled significantly to capture diurnal wind speed patterns (Fig. 3c), with 

an average Pearson’s r of 0.32 and 0.24 respectively. The high elevations of these locations have more complex responses to  
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Figure 3. Seasonally averaged diurnal wind speeds (summer, winter) for Los Angeles Pier J, California (a), Fowey Rock, Florida (b), Wasco, 

Oregon (c), Red Dog Dock, Alaska (d), and San Juan, Puerto Rico (e). 320 
 

diurnal changes in solar heating and thus do not have very clear wind speed patterns throughout the day, especially during the 

winter (Fig. 3c). ADDA-v2 did outperform ERA5 in the mountainous locations for RMSEs though, with an RMSE value of 

1.21 m s-1 compared to ERA5’s 2.20 m s-1.  

For the three other regions, Great Lakes, Alaska, and the Caribbean, ADDA-v2 performed modestly better overall 325 

than ERA5 in both diurnal correlations and RMSEs. For the Great Lakes location, Dunkirk, New York , ADDA-v2 saw a 

Pearson’s r of 0.82 while ERA5 saw a negative correlation (r = -0.33). Their RMSEs were comparable though, at 0.67 m s-1 

and 0.63 m s-1 respectively. Across the four Alaska locations, both datasets struggled to capture the diurnal pattern, with 

average Pearson’s r of 0.46 for ADDA-v2 and 0.12 for ERA5. Diurnal patterns for wind speeds in Alaska, especially for the 

winter, are mostly nonexistent (Fig. 3d), contributing to these lower correlation values. ADDA-v2 did see much lower RMSE 330 
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values, at 0.69 m s-1 compared to ERA5, at 1.64 m s-1. Lastly, for San Juan, Puerto Rico, both datasets were able to capture the 

dramatic diurnal wind speed pattern observed (Fig. 3e).  However, ADDA-v2 was much more precise, with a correlation 

coefficient of 0.95 compared to ERA5’s correlation of 0.62. ADDA-v2 also had a lower RMSE, at 0.62 m s-1 compared to that 

of ERA5 at 1.15 m s-1. 

 335 

3.1.3 Wind Roses 

PDFs and diurnal cycles were used to assess model performance for wind speeds, but it is also important to assess model 

performance for wind direction to indicate whether the model can capture synoptic scale phenomena that drive these seasonal 

changes in wind direction. This section employs wind roses to visualize seasonal wind dir ection distributions for each hub-

height location between model and observations. ERA5 is not included in this section because of the challenges surrounding 340 

interpolating wind direction to different heights.  

Across the 19 locations that had available wind direction data, the average wind rose similarity index (WRSI) between 

ADDA-v2 and observations was 0.75. WRSIs for all observational sites were above 0.6, indicating that ADDA-v2 was able 

to reasonably capture the climatological synoptic mechanisms driving seasonal changes in wind directions. Also, no single 

geographic region significantly outperformed another, with average WRSIs at 0.66, 0.77, 0.78, 0.75, and 0.75 for the west 345 

coast, mountains, plains, east coast, and Alaska respectively. The single locations for the Great Lakes and the Caribbean saw 

relatively high WRSIs of 0.83 and 0.88.  

A maximum WRSI of 0.90 was seen for the NWTC, Colorado location (Fig. 4b) where ADDA-v2 was able to 

accurately capture the predominantly west winds in the fall, winter, and spring, generated by mid -latitude cyclones and the 

more mesoscale chinook winds that occur on the leeward sides of mountain ranges (Lackman, 2011; Markowsi & Richardson, 350 

2010). It is noteworthy that ADDA-v2 performed the best in a mountainous region, where wind patterns typically exist at fine 

spatial scales. ADDA-v2 similarly did well for one of the plains locations, Site A, Minnesota (Fig. 4a), with a WRSI of 0.86. 

Here, ADDA-v2 was able to capture the northwest component of the wind direction in the winter, modulated by mid -latitude 

cyclones and frontal passages that are typical during the season. In the spring and summer, ADDA-v2 is able to accurately 

simulate the more southerly component of wind, generated by mechanisms such as low-level jets and the more dominant 355 

influence of the Bermuda High that dominates during summer (Lackmann, 2011).  

ADDA-v2 also performed well for more tropical climates, such as for the near-surface wind directions for San Juan, 

Puerto Rico (WRSI of 0.88, Fig. 4c), where the winds are driven predominantly by the synoptic-scale Tradewinds over the 

Atlantic. ADDA-v2 was able to accurately capture the strong eastern components of the wind direction over Puerto Rico, 

matching observations closely. This was seen for the Fowey Rock, Florida site, where wind direction is also heavily influenced 360 

by the easterly trade winds in the tropics.  
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Figure 4. Seasonally averaged wind speed and wind direction distributions for Argonne, Illinois (a) and NWTC, Colorado (b). Values on 

each concentric circle (4, 8, 12, 16) within the wind rose are used to measure the normalized frequency of each wind directio n wedge. 

Windrose wedge positions indicate the direction from which the wind is blowing.  
 370 

Across the Alaska locations, ADDA-v2 performed moderately well, with wind direction WRSIs at Bligh Reef, Five 

Fingers, Juneau Dock, and Red Dog Dock (Fig. 4d) at 0.72, 0.81, 0.79, and 0.66. In winter, Alaskan winds are influenced by 

the extension of the Siberian High, which can bring northerly/northeasterly winds to the northern portions of Alaska during 

the winter (Fig. 4d). During summer, synoptic scale features are weaker, favoring a heavier influence of mesoscale mechanisms 

on wind directions patterns. For coastal locations, like Red Dock, Alaska, summer wind directions can be influenced by sea 375 

breezes, indicated by the high frequency of southerly flow during the summer (Fig. 4d).  

 

3.1.3 Model Performance Across Various Time Scales 

The previous evaluations for hub-height wind speeds and wind direction either eliminate the time dimension (PDFs) or look 

at coarse resolution temporal averages (seasonal diurnal, seasonal wind roses). While there are wind energy applications that  380 

require high model accuracy for fine temporal resolutions (minutes, hours), ADDA-v2 is a climate dataset and is therefore not 

designed for predicting day-to-day weather or weather forecasting. Instead, it is useful for climate scale studies and insightful 

in understanding climatological patterns for different regions. Thus, we do not expect the model to be able to capture the hour-

to-hour variations seen in the observations (Appendix A in Wang et al., 2014). However, this section tests ADDA-v2’s capacity 

to represent wind speeds at different timescales, aiming to demonstrate the timescale in which the model can be useful for 385 

wind energy resource assessments.  

For almost all hub-height locations analyzed, RMSEs decreased, and correlations increased as the time scale averages 

became coarser. On average across the 26 locations considered, rRMSEs at the daily, weekly, biweekly, and monthly scale 

were 46%, 29%, 25%, and 22% respectively, indicating improvement at each transition to a coarser timescale ( Fig. 5f). 

Pearson’s r showed a similar trend, at r = 0.48, r = 0.63, r = 0.68, and r = 0.75 (Fig. 5f), consistently growing when calculated 390 

at increasingly coarse timescales. Intuitively, the daily time scale almost always saw the greatest error between ADDA-v2 and 

observations, while the monthly time scale performed the best (Fig. 5a-e). Also, the largest error improvement occurred when 

going from daily averages to weekly averages. RMSEs and correlations improved from weekly to biweekly and again from 

biweekly to monthly, but not as drastically. For example, this can be seen for the 60m wind speeds at Site A, Arkansas (Fig. 

5b), where rRMSEs were at 37% at the daily timescale, before dropping to 20%, 16%, and 13% at the weekly, biweekly, and 395 

monthly timescales. Pearson’s r also improved from 0.57 at the daily time scale to 0.89 at the monthly timescale. Similarly, 

Fowey Rock, FL (Fig. 5b) sees a drastic improvement from daily to weekly averaged wind speeds, with rRMSEs dropping 

from 40% to 23%, and Pearson’s r steadily climbing between timescale averages. This trend is seen for the Alaska and Puerto 

Rico locations as well, with ADDA-v2 struggling to capture day-to-day wind speeds, but performing well at coarser time 

scales (Fig. 5c, d). 400 
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Table 2. Statistical metrics for each of the 26 hub-height observational locations. 

Geography  Location Wind speed OVL Wind speed Diurnal 

Correlation 

Wind speed Diurnal 

RMSE (m s-1) 

WRSI 

  ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 ERA5 ADDA-v2 

W. Coast Megler, WA 0.82 0.94 0.85 0.35 1.45 0.40 0.68 

Martinez, CA 0.79 0.87 0.39 0.64 1.64 0.86 0.61 

Los Angeles Pier J, CA 0.90 0.85 0.97 0.94 0.64 0.90 0.69 

Average 0.84 0.89 0.74 0.64 1.24 0.72 0.66 

Mountain Wasco, Oregon 0.91 0.64 0.69 0.4 0.78 2.53 0.63 

NWTC, CO 0.87 0.75 -0.05 0.07 1.64 1.86 0.90 

Average 0.89 0.69 0.32 0.24 1.21 2.2 0.77 

Plains Site A, KS 0.97 0.6 0.89 0.03 0.40 2.88 - 

SGP Observatory, OK 0.90 0.89 0.83 0.89 0.52 0.76 0.79 

Site A, TX 0.83 0.63 0.91 -0.30 1.18 3.14 - 

Site B, TX 0.97 0.8 0.75 0.89 0.46 1.37 - 

Site A, MN 0.83 0.82 0.90 -0.38 1.62 1.59 0.83 

Site A, AR 0.92 0.74 0.48 0.40 0.72 1.66 - 

Argonne, IL 0.76 0.89 0.64 0.55 1.15 0.35 0.82 

Site A, IN 0.76 0.93 0.59 0.41 1.66 0.60 0.68 

Site A, OH 0.82 0.81 0.82 -0.08 1.40 1.33 0.78 

Average 0.86 0.79 0.76 0.27 1.01 1.52 0.78 

Great Lakes Dunkirk, NY 0.93 0.82 0.82 -0.33 0.67 0.63 0.83 

E. Coast Edith Hammock, AL 0.93 0.96 0.86 0.93 0.59 0.31 0.72 

Fowey Rock, FL 0.95 0.77 0.85 0.51 0.54 1.70 0.77 

Spiderweb, SC 0.54 0.77 0.62 0.23 2.09 0.84 - 

East Point, FL 0.92 0.95 0.92 0.95 0.68 0.31 0.70 

Cape Henry, VA 0.85 0.82 0.54 0.55 0.85 0.77 0.80 

Brookhaven, NY 0.63 0.56 0.51 0.49 2.36 2.88 - 

Average 0.80 0.81 0.72 0.61 1.19 1.14 0.75 

Alaska Red Dog Dock, AK 0.85 0.69 0.57 -0.11 0.70 1.20 0.66 

Bligh Reef, AK 0.90 0.86 0.39 0.25 0.55 0.96 0.72 

Juneau Dock, AK 0.83 0.47 0.48 0.33 0.90 2.90 0.79 

Five Fingers, AK 0.93 0.77 0.40 0.01 0.60 1.50 0.81 

Average 0.88 0.70 0.47 0.12 0.69 1.64 0.75 

Caribbean San Juan, PR 0.71 0.78 0.95 0.62 0.62 1.15 0.88 

All Average 0.85 0.78 0.67 0.35 1.02 1.36 0.75 
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Figure 5. ADDA-v2 RMSEs, rRMSEs, and Pearson correlation coefficients at different timescale averages for Site A, Arkansas (b), Fowey 405 
Rock, Florida (c), San Juan, Five Fingers, Alaska (d), Puerto Rico (e), along with average metrics across all 26 meteorologic al towers (f). 
The number on each bar represents the value for each respective statistic, with time scales becoming coarser from le ft to right. 

 

As mentioned, the climatic nature of this dataset implies the inability to utilize ADDA-v2 at fine temporal scales. 

However, ADDA-v2 captures sub-seasonal scales reasonably well, which can give insightful indications for optimal wind farm 410 

siting. With ideal siting, higher-resolution models can then be employed to simulate intraday wind patterns to accurately 

forecast energy production. 

3.2 Near-surface Wind speed Evaluation 

ADDA-v2 near-surface validations were initially performed using wind speed observations taken from 2,000+ ASOS stations 

across CONUS, Alaska, and Puerto Rico. While the full temporal domain (2001-2020) of ADDA-v2 was used in this analysis, 415 

statistics for each ASOS station were dependent on the maximum overlap in data availability between ADDA-v2 and 

observations. Seasonal means were taken across the available temporal period before calculating RMSE values for each ASOS 

station.  
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Figure 6. ADDA-v2 and ERA5 seasonal RMSEs calculated against 2,000+ ASOS locations across CONUS and Alaska.  420 

 

ADDA-v2 performs well for the majority of ASOS stations evaluated, with RMSE values falling between 0 m s-1 and 

1 m s-1 across much of the model domain. Spatially, ADDA-v2 accurately captures wind speeds for much of the western 

portion of CONUS (RMSEs between 0-0.5 m s-1), whereas ERA5 struggles significantly, especially in the spring and summer 

(RMSEs upwards of 3 m s-1). This has been documented in past studies (Chen et al., 2024; Wilczak et al., 2024), which 425 

highlight ERA5’s tendency to underestimate wind speeds in areas of complex terrain (i.e., the Rockies).  

For the eastern half of CONUS, both ADDA-v2 and ERA5 show similar spatiotemporal patterns for error magnitudes. 

Specifically, both datasets demonstrate moderate RMSE values across the Southeast (1-2.5 m s-1), most notably during the fall 

and winter. This systematic error is predominantly attributed to model overestimation during nighttime hours (00 -12 UTC), 

when observational wind speeds are very low (0-1 m s-1). Interestingly, ADDA-v2 also shows higher RMSE values for the 430 

upper Midwest during the fall and winter, when wind speeds are seasonally stronger; this bias is analyzed more in depth in 

https://doi.org/10.5194/wes-2025-13
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



23 
 

Section 3.3. For most other regions, namely the central/lower Midwest, Texas, and the Northeast, ADDA-v2 and ERA5 

accurately capture seasonal wind speeds, indicated by low RMSE values.  

Overall, ADDA-v2 slightly outperforms ERA5 when considering the mean error across all ASOS stations used in 

this analysis. Across winter, spring, summer, and fall, ADDA-v2 saw average RMSE values at 1.06, 0.87, 0.82, and 1.05 m s-435 

1 respectively, with a full-year average of 0.95 m s-1. ERA5 saw average RMSE values at 0.96, 1.12, 1.07, and 1.13 respectively, 

with a full-year average of 1.07 m s-1. ADDA-v2 performed best during spring and summer, when wind speed overestimations 

were reduced in the Southeast. Alternatively, ERA5 performs best during the winter, when the large error over the West is 

minimized.  

 When specifically looking at the ASOS stations over Alaska (Fig. 6), ADDA-v2 and ERA5 generally capture coastal 440 

wind speeds well, but struggle more in areas with complex topography. For some locations of Alaska’s mountainous interior, 

RMSE values are much higher than surrounding locations (RMSEs greater than 2.5 m s-1). Overall, average RMSEs across 

Alaska for each season were 1.65, 1.08, 0.9, and 0.95 m s-1 for ADDA-v2 and 1.14, 1.23, 1.17, and 0.96 m s-1 for ERA5. Full-

year RMSE averages were almost identical, at 1.14 and 1.13 m s-1 for ADDA-v2 and ERA5 respectively. Similarly to CONUS, 

ADDA-v2 was able to more accurately capture Alaska’s wind speeds during the summer and fall but had a notable spike in 445 

RMSE magnitudes during the winter, especially for inland locations.  

 Overall, both ADDA-v2 and ERA5 are able to reasonably capture the seasonal patterns in near-surface wind speeds 

across CONUS. ADDA-v2 does have a slight edge in performance, but both datasets demonstrate some systematic biases. The 

strong underestimation of ERA5 wind speeds over the western region of CONUS is noteworthy and could have significant 

implications to data utilization in that area. Likewise, ADDA-v2 shows an overestimation over the Southeast in the fall and 450 

winter, when observed wind speeds are very low, especially during the overnight hours.   

 

3.3 Sensitivity of Wind speed Biases to Physics Parameterizations  

Most notably, ADDA-v2 sees positive wind speed biases across the Southeast United States, as well as for some parts of the 

Upper Midwest. This bias is seen for both the near-surface winds and the hub-height winds (Fig. 6, 2e). Primarily, this is 455 

attributed by the biases within the forcing data used as boundary conditions to run ADDA-v2 simulations. Depicted in Fig. 6, 

ERA5 demonstrates relatively higher RMSE values for southeast CONUS, overestimating wind speeds for this region. ERA5 

most significantly overestimates wind speeds during overnight hours, when observational wind speeds fall between 0-1 m s-1. 

ADDA-v2 inherits this bias and sees wind speeds in the southeast 1-2 m s-1 higher than observations.  

This tendency to overestimate wind speeds at night may also be attributed to the model’s capacity to respond to 460 

atmospheric stability. It has been documented that Noah-YSU (the PBL and LSM schemes used to run ADDA-v2 simulations) 

has an enhanced performance for wind speeds in unstable conditions but struggles in a very stable atmosphere (Hong et al. 

2006, Draxl et al. 2014, Wang and Jin 2014). Thus, the very low wind speeds present during stable conditions may not be 

accurately captured by models employing these schemes.  
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 To further investigate the implications of model schemes on simulated wind speeds, we validated all structure 465 

uncertainty (Section 2.4) ensemble members against observations in regions where ADDA-v2 experiences positive wind speed 

biases. This allowed us to test whether an alternate model configuration could achieve enhanced performance in areas where 

ADDA-v2 demonstrated near-surface wind speed overestimations. Various ASOS locations were chosen in areas where 

ADDA-v2 showed high RMSE values and seasonally averaged diurnal cycles were plotted across the six ensemble members 

against observations. Error metrics were calculated and the most accurate ensemble, indicated by the highest correlation 470 

coefficient or the lowest RMSE, was noted (Fig. 7). Because the Southeast wind speed overestimations can at least be partly 

attributed to the inherited bias from the ERA5 forcing data, locations were chosen within the Midwest region to test the 

performance of different model configurations.  

 

Figure 7. Seasonally averaged diurnal cycles for each of the structure uncertainty ensemble members (Section 2.4) against observed wind 475 
speeds in regions where ADDA-v2 demonstrated a positive bias. 
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For each location that demonstrated a positive near-surface wind speed bias, the Noah-MP land surface model 

outperformed the Noah land surface model, as seen in the diurnal cycles plotted for a Wisconsin ASOS station. ( Fig. 7). It is 

also apparent that the greatest error occurs during the overnight hours (00-12 UTC), in which none of the six ensemble members 480 

come close to representing the observed wind speeds. Contrarily, during the daytime hours (12-00 UTC), all ensemble 

members are able to more accurately capture wind speed magnitudes, although still demonstrating some degree of 

overestimation. Furthermore, in all but one metric, the MYNN PBL scheme outperformed the YSU PBL scheme. Of the 

statistical metrics considered for each season, the MYNN PBL scheme almost always showed the lowest RMSE value and the 

highest correlation coefficient. However, it is important to acknowledge that no individual model configuration was able to 485 

solve the positive bias seen for these locations.  

Considering the effects that different LSM schemes have on simulated wind speeds, we further analyzed how specific 

LSM parameterizations drive differences in near-surface winds. One of the most important considerations is the friction 

velocity, typically denoted by u*, in which a greater magnitude of this variable corresponds to weake r wind speeds. Friction 

velocity is essential in accurately representing boundary layer processes and is crucial for accurately simulating wind profiles.  490 

 

 

 

Figure 8. Vertical profile of wind for a location in which ADDA-v2 overestimated wind speeds, comparing averaged winds between the 
2018 simulations using the NoahMP and Noah LSMs. Wind speed profiles correspond to the leftmost y-axis while the ratios of both wind 495 
speed and friction velocity use the rightmost y-axis. 
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However, in different model configurations, this parameterization can vary. We analyzed this between the Noah-MP and Noah 

LSM schemes and found that friction velocity generally tends to be larger in model simulations that employ Noah -MP (Fig. 

8). Then, looking specifically at the locations that saw positive near-surface wind speed biases, it was discovered that Noah-500 

MP showed a notably greater friction velocity when compared to that of the Noah LSM. In some cases, the friction velocity 

was as much as 20-25% larger in NoahMP than Noah. This has significant implications on wind speeds close to the surface, 

where greater friction velocities signify weaker winds and can have significant influences on model performance.  

As seen in Fig. 7, the NoahMP LSM tended to simulate weaker, and more accurate winds, than its Noah counterpart. 

This can be partly attributed to the greater magnitude of the friction velocity coefficient parameterized in the NoahMP LSM. 505 

This factor was crucial in driving the difference in simulated wind speeds between models employing these different LSMs. 

Wind speed ratios between NoahMP and Noah, specifically within the first ~10m AGL, were as high as 1.15 (Fig. 8). At 

greater heights, this ratio decreases as friction has a diminishing influence on momentum fluxes with height and wind speeds 

get stronger overall. However, it is important to note that while the NoahMP LSM saw improved performance in simulating 

near-surface winds, it still did not fully resolve the positive bias observed. 510 

 

3.4 Interannual Variability and Model Uncertainty   

Interannual variability across ADDA-v2’s 20-year temporal period was calculated across the entire spatial domain. 

Additionally, model uncertainty was quantified by investigating the spread across 500 augmented ensembles, varying in their 

physics parameterizations (structure uncertainty) and initial conditions (internal variability). Then, the magnitudes and 515 

spatiotemporal patterns of each of these variabilities were investigated.  

Intuitively, the degree of model uncertainty is significantly influenced by the timescale being analyzed. This can be seen in  

Fig. 9, in which the magnitude of uncertainty scales inversely with the length of the timescale. The biweekly timescale sees 

uncertainty values of approximately 0.4-0.7 m s-1 across much of North America (Fig.9, 10). The weekly timescale sees a 

notable increase in the uncertainties observed, with most values falling between 0.7 -1.1 m s-1. Lastly, the daily timescale sees 520 

the most drastic increase in uncertainty, with many locations across North America seeing values exceed 2.5 m s-1. This concept 

is similar to the improved performance of ADDA-v2 at coarser resolution timescales (Section 3.1.4). Also, daytime and 

nighttime monthly averages were also analyzed to explore the diurnal signatures of model uncertainty. Both yielded 

comparable uncertainties overall, but nighttime monthly averaged uncertainties were slightly higher than that of daytime 

monthly averaged uncertainties, typically by about 0.2-0.4 m s-1. Nighttime uncertainties were noticeably higher in the regions 525 

of complex topography, especially over the Rocky Mountains .  

It is also important to note the spatial patterns present for model uncertainty across the domain. In regions with more 

complex topography, model uncertainty tends to be higher. For the biweekly and weekly timescales, the mountainous regions 

demonstrate higher uncertainty values, by about 0.5 m s-1, when compared to adjacent regions with simpler topography (Fig. 

9, Fig. 10a, b). Complex topography introduces more unpredictable interactions between the physical mechanisms that drive  530 
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Figure 9. Model uncertainty at different timescale averages (daily, weekly and biweekly), represented by the difference between the 95th 
and 5th percentiles of the wind speed distributions. 

 535 

near-surface wind (Wu et al., 2022a; Helbig et al., 2017). Thus, small changes in model initial conditions or parameterizations 

can influence these mechanisms and cause significant variability within the simulated wind. It is also interesting to note though 

that large lake features also observed high degrees of model uncertainty, specifically during the summer months.  

In the context of wind energy applications, model uncertainty is integral when mapping ideal locations for wind farm 

siting. However, it needs to be paired alongside spatiotemporal patterns of interannual variability to understand the full scope  540 
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Figure 10. Biweekly averaged interannual variability and model uncertainty for one winter month (January) and one summer month (July). 
Uncertainty and interannual variability were taken as the difference between the 95th and 5th percentiles of the wind speed distributions at 545 
each timescale average. 
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of wind resource reliability and potential risks associated with long-term power generation. Ideally, both model uncertainty 

and interannual variability need to be low for optimal and consistent power generation. As seen in Fig. 10a, the magnitude 

scale of interannual variability and model uncertainty is very different. For example, weekly averaged 100 m wind speeds can 

fluctuate as much as 6-7 m s-1 between years, especially for the winter months, when highly variable synoptic -scale features 550 

strongly influence wind patterns. Alternatively, model uncertainty is typically in the range of about 0.5 -1.5 m s-1 for the same 

season and time-scale average.  

The summer season shows a notable decrease in interannual variability, with typical magnitudes ranging from 3-4 m 

s-1, most likely attributed to the more consistent synoptic patterns present during summer. Model uncertainty during the 

summer, however, shows similar magnitudes to that of winter and has a relatively constant spatial pattern (Fig. 10b). This was 555 

seen at other timescales as well (i.e. biweekly/monthly), in which the magnitude and spatial patterns of model uncertainty 

remained relatively consistent between seasons. As aforementioned, topographically complex regions saw much higher 

magnitudes for model uncertainty, and the spatial patterns of interannual variability matched this trend as well. For both winter 

and summer, regions of complex terrain (i.e., the Rocky Mountains) saw higher magnitudes of interannual variability than 

surrounding regions.  560 

Altogether, both components of uncertainty, interannual variability and model uncertainty, are integral considerations 

for wind resource assessments. This data can be leveraged to identify key regions that have an optimal combination of 

moderately strong wind speeds and relatively low model uncertainty and interannual variability. Ultimately, this will maximize 

energy output potential for optimally sited wind farms and minimize the risk of unpredictable extreme weather events that can 

affect wind energy infrastructure.   565 

 

4 Discussion and Concluding Remarks    

The validation of the Argonne Downscaled Data Archive Version 2 (ADDA-v2) dataset presented in this study underscores 

its utility in wind resource assessments and climatological applications. This section synthesizes the key findings and compares 

the performance of ADDA-v2 with ERA5, highlighting ADDA-v2’s added value to its coarser resolution forcing data.  570 

ADDA-v2 demonstrated significant advantages over ERA5 in capturing fine-scale wind variability across diverse 

geographies. The dataset performed particularly well in regions with complex terrain, such as the Rocky Mountains and Alaska,  

where high-resolution modeling captured localized wind phenomena more effectively. Specifically, ADDA-v2 outperformed 

ERA5 in hub-height wind speed distribution evaluations, with an average OVL of 0.85 compared to ERA5’s 0.78. Temporal 

validation further emphasized ADDA-v2’s improved capabilities: ADDA-v2 exhibited strong correlations with observed 575 

diurnal cycles, indicated by an average correlation of 0.67 across all locations analyzed compared to ERA5’s 0.35. This is 

especially critical when assessing the consistency in wind power generation throughout the day, with potential implications 
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for hybrid style energy generation. Additionally, ADDA-v2’s ability to reduce errors at coarser temporal scales (e.g., weekly 

and monthly averages) reinforces its applicability for long-term climatological studies and resource planning. 

However, challenges remain, particularly in regions where both ADDA-v2 and ERA5 struggled, such as the Southeast 580 

United States and areas influenced by stable atmospheric conditions. These limitations highlight the need for targeted 

improvements in parameterizations to address specific biases. But as this analysis found, none of the model configurations 

tested across the six structure uncertainty ensembles were able to resolve the biases, indicating partial attributions to both the 

inherited bias from the ERA5 forcing data as well as the model’s systematic bias, resulting from incomplete parameterizations , 

such as the specific PBL and LSM parameterizations and limitations in capturing complex interactions within the model’s 585 

climate system. Future research can look more in depth at the specific mechanisms within these parameterizations to 

understand why they are unable to capture certain wind patterns. Additionally, while this validation focused more on inland 

regions, future analysis may expand the validation to offshore locations, testing ADDA-v2’s performance over coastal and 

oceanic locations. (Research has been conducted exploring ADDA-v2’s capability at capturing coastal winds in Sheridan et 

al. (2024).  590 

Ultimately, the validation presented here, coupled with the analysis of model uncertainty and interannual variability 

can provide the framework for useful applications of the ADDA-v2 dataset. By providing detailed insights into wind resource 

variability, ADDA-v2 enables more informed decisions in renewable energy planning, risk assessment, and climatological 

studies.  

 595 

 

Code and Data Availability 

All datasets used in this study are freely available, except for the selected proprietary hub-height data. ERA5 reanalysis data 

is accessible through Climate Data Store: https://cds.climate.copernicus.eu/. ADDA-V2 data is located on the ALCF high-

performance storage system and is available upon request. A subset of the ADDA-v2 dataset is hosted by the National 600 

Renewable Energy Laboratory, providing access to hub-height wind speed data (https://developer.nrel.gov/docs/wind/wind-

toolkit/wtk-led-climate-v1-0-0-download/). The public in-situ data can be found on Data Archive and Portal (DAP) Platform 

(https://a2e.energy.gov/data) and the IEM Mesonet (https://mesonet.agron.iastate.edu/ASOS/). Data processing scripts were 

written in python and can be made available upon request. 
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