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Dear Editor, 

 

We have improved the article ref. wes-2025-131 was extensively revised in accordance with the reviewer's 

suggestions and comments. We strongly believe that Wind Energy Science would be the most suitable journal for 

this work. Please find attached the revised manuscript. 

 

 

General comments from the reviewers. Reviewer 2 emphasised the relevance and motivation of the proposed study, 

while highlighting the strong potential for wind turbine monitoring. We are grateful for their constructive comments 

and suggestions, which have been carefully considered to improve the manuscript. 

 

 

Our general response: This version has been carefully revised to incorporate all the reviewers' suggestions, and we 

hope it will be suitable for publication in the Wind Energy Science journal. In general, the reviewer's comments were 

highly appreciated and helped us significantly improve the quality of our manuscript. We are grateful for their 

consideration and time to review our paper. In the following pages, we provide point-by-point responses to each 

reviewer's comments. We have highlighted the revised parts in the manuscript in blue.  

 

 

Yours sincerely, 

M. R. Machado  

A De Sousa 

J. S. Coelho 

R. Teloli 

 

 

 

 

 

 

 

 



RC1: 'Comment on wes-2025-131', Anonymous Referee #1, 26 Aug 2025 

This paper proposes a hybrid machine learning framework combining feature engineering with classification 

algorithms to detect operational failures in wind turbines using vibration and environmental data. However, the 

paper suffers from structural deficiencies and lacks clear motivation. While machine learning approaches for wind 

turbine fault detection are valuable, this work does not adequately differentiate itself from existing literature or 

demonstrate sufficient novelty for publication. The experimental design contains several methodological flaws that 

compromise the reliability of the reported results. I have the following comments on the detailed assessment of 

these issues: 

Answer: We thank the reviewer for the comments and the opportunity to clarify and improve the paper. We 

carefully addressed each issue pointed out, which certainly helped to improve the quality of our manuscript. 

 

The objective of this work is to propose a hybrid monitoring framework that combines multiple machine learning 

models and integrates multimodal data, thereby enhancing the interpretability of the Aventa wind turbine fault 

detection. Unlike conventional single-model or single-source approaches, this hybrid strategy improves cross-

domain correlations and environmental variability, enabling reliable monitoring under complex operational 

conditions. The model employs unsupervised k-means clustering to group data into homogeneous clusters, thereby 

facilitating pattern recognition without predefined labels, and multiple supervised classification machine learning 

algorithms for binary or multiclass fault classification.  Since different algorithms may perform better under different 

scenarios and operating conditions, the proposed framework analyzes different machine learning algorithms. It 

identifies the best-performing model for the applied study case.  

 

Furthermore, within this framework, the proposed relative change damage index introduces a feature normalising 

and scaling strategy that enhances the comparability of heterogeneous features without requiring predefined 

baselines. This improves sensitivity to operational deviations and ensures consistent feature interpretation across 

different sensors. Additionally, the canonical correlation-based feature and sensor selection method evaluates 

multivariate dependencies between response features and fault classes, providing a physically consistent, data-

driven basis for ranking sensor importance.  The main contributions of this study are:  

(i) the development of a hybrid ML framework for operational fault assessment combining multiple 

algorithms and multimodal data, 

(ii) the introduction of a feature relative change strategy for feature normalisation and scaling, and  

(iii) the implementation of a canonical correlation-based feature and sensor selection process. 

The proposed model enhances interpretability, scalability, and diagnostic performance. Comparative results across 

different scenarios confirmed the model's accuracy (85–98%) and stability, validating the methodological distinction 

in a practical application. 

 

A deeper explanation and demonstration of the hybrid model, along with how our paper differs from previous 

literature, were included in the introduction.   

 

 

1. The introduction does not adequately establish a clear research gap or compelling motivation for this work. The 

authors need to articulate more clearly what distinct advantages their proposed approach offers compared to 

existing methodologies.  

Answer:  We thank the reviewer for the comment. In the revised version, we have improved the organisation of the 

introduction, including references to better emphasise the research gap and the contributions of this work, and to 

guide readers through past developments in the field.  

 

The objective of this work is to propose a hybrid monitoring framework that combines multiple machine learning 

models and integrates multimodal data, thereby enhancing the interpretability of the Aventa wind turbine fault 

https://editor.copernicus.org/#RC1


detection. Unlike conventional single-model or single-source approaches, this hybrid strategy improves cross-

domain correlations, multiphysics interactions, and environmental variability, enabling reliable monitoring under 

complex operational conditions. The model employs unsupervised k-means clustering to group data into 

homogeneous clusters, thereby facilitating pattern recognition without predefined labels, and multiple supervised 

classification machine learning algorithms for binary or multiclass fault classification.  Since different algorithms may 

perform better under different scenarios and operating conditions, the proposed framework analyzes different 

machine learning algorithms. It identifies the best-performing model for the applied study case.  

 

Furthermore, within this framework, the proposed relative change damage index introduces a feature normalising 

and scaling strategy that enhances the comparability of heterogeneous features without requiring predefined 

baselines. This improves sensitivity to operational deviations and ensures consistent feature interpretation across 

different sensors. Additionally, the canonical correlation-based feature and sensor selection method evaluates 

multivariate dependencies between response features and fault classes, providing a physically consistent, data-

driven basis for ranking sensor importance.  The main contributions of this study are:  

(i) the development of a hybrid ML framework for operational fault assessment combining multiple 

algorithms and multimodal data, 

(ii) the introduction of a feature relative change strategy for feature normalisation and scaling, and  

(iii) the implementation of a canonical correlation-based feature and sensor selection process. 

The proposed model enhances interpretability, scalability, and diagnostic performance. Comparative results across 

different scenarios confirmed the model's accuracy (85–98%) and stability, validating the methodological distinction 

in a practical application. 

 

Thus, the distinct advantage of this work lies in its hybridization of ML models and multiphysics data fusion, which 

together enhance diagnostic accuracy, robustness, and interpretability beyond what existing SHM strategies 

provide. A deeper explanation and demonstration of the hybrid model, along with how our paper differs from 

previous literature, were included in the introduction.   

 

 

2. The manuscript contains numerous grammatical errors and inconsistencies that impede readability, for example:   

Answer: We thank the reviewer for the comment. The following actions were incorporated in the revised 

manuscript. 

o Line 20: Incorrect citation formatting "...those turbines Veers et al. (2023)"- Answer: We revised the reference list.  

o Algorithm 1, Step 1: "Receive structural ... from the time-domain responses"- Answer: Now it reads: “Receive 

structural response data from the time-domain accelerometer measurements and environmental conditions from 

the SCADA system.”  

o Line 128: ... to capture the most information about the damage ... Answer: We revised this sentence. Now it reads: 

“Table 1 lists the SCADA data and accelerometers used for monitoring, along with their respective sensor channels 

and locations. The x-axis captures side-to-side turbine motion, and the y-axis captures fore-aft turbine motion.”  

o Undefined abbreviations (RHS, LHS in Figure 4 caption, DT algorithm)   Answer: According to the Chicago manual 

of style, lhs - means left-hand side and rhs - means right-hand side. We used the standard abbreviations in the 

caption of Figure 4.   

In the new version of the manuscript, it was substituted with letters as (a), (b), and (c).  DT algorithm was defined - 

Decision tree (DT). 

 



3. The statement on line 35 that "unlike traditional methods that rely on hand-crafted features, machine learning 

enables ..." requires clarification and justification. The shallow machine learning models implemented in this work 

are fundamentally dependent on hand-crafted features rather than learned representations.  

Answer:  We thank the reviewer for this comment. We acknowledge that the original statement may have been 

misleading. We intended to contrast traditional SHM methods, which typically rely on physics-based analytical 

models or a limited set of manually selected statistical features, with modern data-driven approaches that can 

automatically process large datasets. We agree that the shallow ML models employed in this study still depend on 

feature extraction. However, these features are automatically derived from the measured signals rather than 

manually defined or tuned. This distinction reflects a shift toward automated data processing and scalability for 

large and heterogeneous datasets. To avoid confusion, the sentence has been restructured, and the discussion in 

the literature review section has been revised to clarify this point. 

 

4. Table 2 lists numerous correlated features (RMS, variance, standard deviation, energy) that likely exhibit 

multicollinearity. Including all these features appears arbitrary and may degrade model performance due to 

redundant information. Additionally, clarification on "spectral features" is needed in this table. The spectral section 

still computes time-domain features.  

Answer:  We have carefully revised Table 2 and the corresponding section to clarify the feature definitions and 

address concerns about multicollinearity. The features originally described as “spectral” were in fact time-domain 

(temporal) features, as pointed out by the reviewer, and this terminology has been corrected throughout the 

manuscript. 

 

To address the reviewer’s concern regarding redundancy and multicollinearity, a feature correlation analysis was 

conducted and presented in Figure 4. This analysis revealed two main feature groups exhibiting similar statistical 

behaviour.  Group 1 consists of the RMS and median, which represent the central tendency of the signal. Group 2 

assumed the maximum, minimum, amplitude range, variance, energy centre, and signal rate representing variability 

and extreme values. Features such as energy, kurtosis, higher-order moments, and Shannon entropy showed low 

sensitivity to damage and were therefore excluded during normalisation and further analysis. Based on the 

correlation results, only four representative features were selected to construct the global dataset: the RMS, 

maximum, variance, and amplitude. These features were chosen as representative of their respective groups to 

avoid redundancy, reduce computational cost, and mitigate the risk of overfitting. This selection ensures that the 

classifier retains the most relevant discriminatory information while improving efficiency and generalisation 

capability.  

 

The global dataset consisted of features extracted from each sensor axis (measurement_rows × 48 columns) plus 

SCADA data. To refine the dataset, a canonical correlation analysis was applied to select the most sensitive features 

per sensor, reducing the dataset from 48 to four representative features plus SCADA data. This step improved 

computational efficiency and ensured that only the most informative features were retained. Additionally, sensor 

relevance was validated by removing the best-performing sensor feature, confirming the robustness of the proposed 

selection strategy. This explanation was updated in section 2.3 of the revised manuscript.  

 

5. Section 2.2 appears to describe routine data preprocessing rather than a methodological contribution. 

Furthermore, the overall feature engineering pipeline lacks clear explanation of how the final feature vector is 

constructed.  

Answer:  The monitoring framework consists of seven steps including clear identify in the revised pipeline figure 

(Fig.1) , where  (1) receiving the acquired data; (2) data processing and organisation; (3) feature extraction, 

normalisation, and grouping for similarity pattern; (4) unsupervised feature labelling and clustering; (5) feature 

and sensor selection; (6) data splitting, and ML failure identification and classification; and (7) Fault classification 

and model evaluation. The final step also outputs the operational failure and identifies the best-performing ML 



algorithm based on its performance metric. The novelty associated with the hybrid model and multimodal data, 

feature and sensor selection, data normalization, and multiple fault classification is presented in a comprehensive 

set of steps outlining the process. Thus, the steps that have novelty associated with them are detailed in sections 

2.2, 2.3, and 3.2.  

 

Figure 1. Pipeline of the hybrid machine learning model for fault classification on the Aventa 6.7 kW wind turbine. 

 

The final refined dataset used in step 6 is explained in section 2.3 of the revised manuscript. It is derived from the 

global dataset, which is assumed to be (measurement_rows × 48 columns) plus SCADA data. The dataset refinement 

is performed using canonical correlation analysis (fastcan), which selects the most sensitive features per sensor. In 

the binary study, the dataset was reduced to 4 representative features, plus SCADA data (measurement_rows × 6 

columns). In the multiclass case, it was reduced to 9 features, plus SCADA data (measurement_rows × 11 columns). 

The results of the fastcan for each sensor in the binary and multiclass cases are presented in Figs. 5-10, and detailed 

information has been added to the revised manuscript. 

 

*A deeper description of the final dataset is given in the answer to question 7. 

 

6.  The relative change damage index (Equation 1) lacks theoretical foundation. Why normalize by max(Δf) 

specifically? How does this normalization enhance fault sensitivity? The threshold of 0.6 for feature selection 

appears arbitrary without statistical justification. 

Answer:  The initial threshold value of 0.6 was chosen to ensure that the selected features reached at least 60% of 

the scoring metric. After further evaluation, this threshold was removed from the revised manuscript, and selection 

was based solely on the highest CCA (fastcan) score. This assumption was consistently adopted for both the binary 

and multiclass cases. 

 

Regarding the theoretical basis of the proposed relative change (RC) damage index defined in Eq. (1): the 

normalization by the maximum deviation, max(Δf), was deliberately designed to transform each feature into a 



dimensionless relative scale ranging from 0 to 1. This operation establishes a consistent reference, corresponding 

to the feature’s maximum observed deviation, against which all other values are compared. 

This normalization serves two main theoretical purposes. First, it preserves the intrinsic ordering and proportionality 

of the data points, ensuring that the feature's dynamic pattern remains unaltered. Second, it rescales the feature 

space to eliminate the influence of magnitude differences across sensors or feature types, enabling fair comparison 

among variables with distinct physical units or scales. 

Thus, normalizing by the maximum deviation is particularly effective because it defines the undamaged condition 

as the upper bound (close to unity), while deviations toward zero indicate progressive degradation. This approach 

enhances fault sensitivity by amplifying subtle variations that would otherwise be numerically insignificant (e.g., 

3.280 vs. 3.286) and potentially overlooked by machine learning algorithms. 

In summary, the RC normalization provides a physically interpretable and mathematically consistent scaling, 

ensuring that the features retain their intrinsic dynamic signature while becoming more sensitive and comparable 

across operational states. This makes the RC-based normalization both theoretically grounded and practically 

effective for fault detection and classification. The corresponding explanation was added to Section 2.3, and a 

graphical illustration is now provided in the updated Figure 4. 

Added in the revised manuscript:  

 

This relative change normalization provides a theoretical foundation based on relative scaling and dimensionless 

feature representation. Figure 4 (a–c) illustrates the process: (a) the non-normalized features, (b) the scaling and 

normalization applied to the Amp feature (extended to all others), and (c) the normalized features obtained using 

the proposed relative change technique. The $RC$ normalization converts the data into dimensionless features that, 

prior to normalization, differed only slightly (e.g., 3.280 vs. 3.286), making such variations numerically negligible for 

machine learning models. Thus, the proposed approach amplifies these small variations while preserving the 

intrinsic dynamic pattern. Features with values close to unity correspond to undamaged conditions, whereas values 

approaching zero indicate faults. Hence, the method enhances fault sensitivity and enables consistent comparison 

across features of different magnitudes, making the damage feature more sensitive to early anomalies under varying 

operating states.  

Features such as energy, kurtosis, higher-order moments, and Shannon entropy exhibited low sensitivity to failures 

and were excluded during normalisation and analysis. This first supervised analysis revealed two feature groups with 



similar behaviour. Group 1 consists of RMS and median (Fig.4 c-Top), while Group 2 comprises maximum, minimum, 

amplitude range, variance, energy centre, and signal rate (Fig.4 c-Bottom). The formation of two feature groups 

indicates a high degree of correlation within each group, with RMS and median primarily capturing the signal's 

central tendency. In contrast, the features of group 2 describe its variability and extremes. Therefore, using all 

features would introduce redundancy, increase computational cost, and risk overfitting due to the curse of 

dimensionality. Therefore, selecting only representative features from each group ensures that the classifier retains 

the essential discriminatory information while improving efficiency and generalisation.  

The canonical correlation analysis for sensor ranking (Equations 2-3) requires clearer explanation. The mathematical 

formulation doesn't clearly translate to practical sensor selection criteria. 

Answer:  We thank the reviewer for this valuable comment. In the revised version, we have clarified the connection 

between the canonical correlation formulation and the sensor selection process. Canonical Correlation Analysis 

(CCA) quantifies the linear relationship between two multivariate datasets: the sensor feature space X and the target 

(or response) space Y. In the context of sensor ranking, each sensor provides a set of features, and CCA identifies 

how strongly each sensor’s feature set is correlated with the response variable, which represents the system 

condition or damage state. Similarly, by indicating the best features of each sensor, we can identify the sensor with 

the highest score for the referee failure.  We included the CCA detailed formulation in section 3.2, followed by the 

pseudocode for fastcan's feature and sensor selection. The included explanation is as follows:  

 

Preview of the section 3.2 content 



7. Table 4 reports perfect results for SVM/kNN/RF/DT, yet the text states only SVM achieves perfect performance. 

This contradiction requires clarification. How do you justify these perfect accuracy claims, and have you conducted 

statistical validation? Such results typically suggest potential overfitting. 

Answer:  A deeper investigation into the sensitivity of the ML algorithms and the possible cause of the perfect 

metrics was introduced. Therefore, all results were checked and validated in the revised manuscript. The model 

employs a multiphysic dataset, considering structural and environmental information. At first, the general dataset 

serves as input to the k-means for pattern recognition and labelling.   

 

The environmental information, consisting of the daily average temperature and wind speed, was provided by the 

turbine’s owner in such a configuration. We identify that when the dataset organisation assumes Features-SCADA 

and then uses k-means for labelling, the SCADA features are highly correlated and influence the k-means grouping.  

Therefore, masking the failure's sensitivity. Furthermore, we implemented four data organization methods to 

demonstrate the influence of data arrangement and to indicate an optimal dataset configuration.    

 

We demonstrated the impact of the dataset arrangement, the influence of the environmental conditions, and 

sensors on the performance metrics of the ML models.  Also, the statistical validation was performed in all cases 

and demonstrated in the cross-validation metric (Fig. 11a- d (last column)). The following action was updated in the 

revised manuscript.  

 

Included in the manuscript: 

 

The final refined dataset organization is a crucial step in enabling machine learning algorithms to classify operational 

failures accurately. The deployed dataset exhibits a multimodal nature, integrating structural, temperature, and 

wind velocity information. The structural information is directly obtained from the accelerometers, which capture 

the system's physical response and potential failure signatures. In contrast, temperature and wind speed data are 

obtained from the SCADA system and represent indirect but relevant variables that influence the dynamic behaviour 

measured by the accelerometers, although they do not directly describe the damage dynamics. The final dataset is 

organized into four configurations, which are evaluated and their relevance demonstrated in the section 4. 

• Fe-kms-Sc: dataset composed of the selected features (Fe) extracted from the accelerometer time signals, followed 

by the SCADA data (Sc), and beelining provided by the k-means clustering (kms). 

• Fe-Sc-kms: dataset including the selected features, the SCADA data, and the corresponding k-means labels. 

• Fe-kms: dataset including only the selected features and the k-means labels, without incorporating the SCADA 

information. 

• Fe-kms-LoseSensor: dataset including the selected features excluding those obtained from the most sensitive 

sensor identified by the Fast CCA method, together with the k-means labels and SCADA data. This configuration 

simulates the loss of the most sensitive sensor in each analysis scenario. 

 

The k-means labelling of the datasets Fe-kms-Sc and Fe-kms-LoseSensor is applied exclusively to the features that 

contain the most relevant physical information about the damage. The SCADA data are then organized by the 

corresponding day and hour for each feature sample. This ensures that the SCADA records follow the same row 

reordering imposed by the k-means clustering, while preserving the correct temporal(day and hour) correspondence 

between the SCADA measurements and the related accelerometer data. 

 

The results for each dataset are shown in the new Figure 10, which compares the ML metrics for each algorithm 

and dataset.    

 

 

 



Included in the manuscript: 

 

The ML models were tested on the Fe-kms-Sc, Fe-Sc-kms, Fe-kms, and Fe-kms-LoseSensor datasets to assess the 

influence of environmental dependencies (SCADA data) and the sensitivity of each sensor in failure evaluation. The 

metrics for the Fe-Sc-kms dataset, shown as black ($\ast$) in Fig.~\ref{metrics}(a-d), indicate that, except for the NB 

classifier, all ML models achieved 100\% accuracy. Such perfect performance across multiple models can suggest 

potential issues like data leakage, overfitting, or improper dataset splitting. However, cross-validation with multiple 

random partitions was performed to ensure statistical robustness. In this case, the consistently high accuracy reflects 

the physical consistency and strong discriminative power of the selected features rather than methodological flaws. 

 

 
 



The k-means clustering results and associated metrics also reveal clear class separation. The feature scores derived 

from the CCA, which quantify the linear association between the selected features and the k-means clusters (Fig.10), 

highlight the strong correlation between SCADA data and the structural sensors (accelerometers). The SCADA system 

provides environmental variables, such as daily temperature and wind speed, but lacks important structural 

information more directly related to damage states. In the Fe-Sc-kms dataset configuration, both features and 

SCADA inputs are used in the k-means clustering, which is predominantly influenced by the SCADA parameters. 

Therefore, the perfect ML metrics are attributed to dataset bias, where the models primarily classify failure 

conditions based on environmental variations rather than the structural response itself.  

 
 

The ML models' metrics for the Fe-kms-Sc dataset, shown as blue $\bullet$ in Fig.11(a-d), indicate the sensitivity of 

the ML models to the damage. The k-means is performed on the structural features, and the SCADA follows its data 

reorganization, but it is not directly considered in the k-means labeling. For the binary case, the model's metrics 

range from 0.93 to 0.99. The SVM model reached 0.98 on the NO-FC case, XGBoost reached 0.98 for NO-AI, and 

XGBoost reached 0.99 for NO-RI. Multiclass case varied from 0.86 given by NB to 0.955 by RF. 

The SCADA data are not included in the Fe-kms dataset, shown as orange-$\blacksquare$ in Fig.11(a-d). The 

performance metrics reached 0.98 with the SVM model for the NO-FC case, 0.955 with RF for the NO-AI case, 0.98 

with XGBoost for the NO-RI case, and 0.95 with RF in the multiclass analysis. When the most sensitive sensor for 

each failure case was removed from the Fe-kms-LoseSensor dataset (yellow $\bLozenge $), performance metrics 

decreased, except for NO-AI, indicating the importance of this sensor’s information for monitoring accuracy and 

model performance. This also reinforces that the most sensitive sensor is typically located near the damage site. In 

the NO-AI case, all sensors were positioned on the nacelle and tower. Although these sensors can capture the 

dynamic effects of blade aero-imbalance, they are distant from the local damage, which reduces their sensitivity. 

Consequently, the sensor group primarily captured global structural responses to the fault rather than local damage 

effects, explaining the performance variation when one of the sensors was removed. 

 



8. Figures 3b-c demonstrate clear environmental dependencies, but the model's ability to distinguish between 

environment-induced changes and actual failures remains unvalidated. 

Answer:  Aside from figure 3b-c, the new results presented in Figure 10 a-d confirm that environmental parameters 

(from SCADA data) strongly influence the model’s output when included in the dataset configuration. This is evident 

in the Fe-Sc-kms dataset, where all models achieved near-perfect accuracy due to the dominance of environmental 

features, primarily temperature and wind speed. However, to isolate and validate the model’s ability to distinguish 

true structural failures from environmental variations, additional datasets were tested. 

 

In the Fe-kms configurations, the SCADA data were either excluded or aligned only with the structural features, 

allowing the models to rely primarily on vibration-based indicators. These configurations showed lower, yet 

physically consistent, performance (metrics around 0.93), demonstrating that the models can indeed detect failure-

induced changes but without the intrinsic parameter of environmental fluctuations. However, when SCADA data 

were correctly incorporated into the analysis, the Fe-kms-Sc dataset, which integrates structural features with 

aligned but non-dominant environmental information, yielded the most physically consistent and discriminative 

performance for wind turbine failure classification. 

 


