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Dear Editor,

We have improved the article ref. wes-2025-131 was extensively revised in accordance with the reviewer's
suggestions and comments. We strongly believe that Wind Energy Science would be the most suitable journal for
this work. Please find attached the revised manuscript.

General comments from the reviewers. Reviewer 2 emphasised the relevance and motivation of the proposed study,
while highlighting the strong potential for wind turbine monitoring. We are grateful for their constructive comments
and suggestions, which have been carefully considered to improve the manuscript.

Our general response: This version has been carefully revised to incorporate all the reviewers' suggestions, and we
hope it will be suitable for publication in the Wind Energy Science journal. In general, the reviewer's comments were
highly appreciated and helped us significantly improve the quality of our manuscript. We are grateful for their
consideration and time to review our paper. In the following pages, we provide point-by-point responses to each
reviewer's comments. We have highlighted the revised parts in the manuscript in blue.

Yours sincerely,
M. R. Machado
A De Sousa

J. S. Coelho

R. Teloli



RC1: 'Comment on wes-2025-131', Anonymous Referee #1, 26 Aug 2025

This paper proposes a hybrid machine learning framework combining feature engineering with classification
algorithms to detect operational failures in wind turbines using vibration and environmental data. However, the
paper suffers from structural deficiencies and lacks clear motivation. While machine learning approaches for wind
turbine fault detection are valuable, this work does not adequately differentiate itself from existing literature or
demonstrate sufficient novelty for publication. The experimental design contains several methodological flaws that
compromise the reliability of the reported results. | have the following comments on the detailed assessment of
these issues:

Answer: We thank the reviewer for the comments and the opportunity to clarify and improve the paper. We
carefully addressed each issue pointed out, which certainly helped to improve the quality of our manuscript.

The objective of this work is to propose a hybrid monitoring framework that combines multiple machine learning
models and integrates multimodal data, thereby enhancing the interpretability of the Aventa wind turbine fault
detection. Unlike conventional single-model or single-source approaches, this hybrid strategy improves cross-
domain correlations and environmental variability, enabling reliable monitoring under complex operational
conditions. The model employs unsupervised k-means clustering to group data into homogeneous clusters, thereby
facilitating pattern recognition without predefined labels, and multiple supervised classification machine learning
algorithms for binary or multiclass fault classification. Since different algorithms may perform better under different
scenarios and operating conditions, the proposed framework analyzes different machine learning algorithms. It
identifies the best-performing model for the applied study case.

Furthermore, within this framework, the proposed relative change damage index introduces a feature normalising
and scaling strategy that enhances the comparability of heterogeneous features without requiring predefined
baselines. This improves sensitivity to operational deviations and ensures consistent feature interpretation across
different sensors. Additionally, the canonical correlation-based feature and sensor selection method evaluates
multivariate dependencies between response features and fault classes, providing a physically consistent, data-
driven basis for ranking sensor importance. The main contributions of this study are:

(i) the development of a hybrid ML framework for operational fault assessment combining multiple
algorithms and multimodal data,
(ii) the introduction of a feature relative change strategy for feature normalisation and scaling, and

(iii) the implementation of a canonical correlation-based feature and sensor selection process.
The proposed model enhances interpretability, scalability, and diagnostic performance. Comparative results across
different scenarios confirmed the model's accuracy (85—98%) and stability, validating the methodological distinction
in a practical application.

A deeper explanation and demonstration of the hybrid model, along with how our paper differs from previous
literature, were included in the introduction.

1. The introduction does not adequately establish a clear research gap or compelling motivation for this work. The
authors need to articulate more clearly what distinct advantages their proposed approach offers compared to
existing methodologies.

Answer: We thank the reviewer for the comment. In the revised version, we have improved the organisation of the
introduction, including references to better emphasise the research gap and the contributions of this work, and to
guide readers through past developments in the field.

The objective of this work is to propose a hybrid monitoring framework that combines multiple machine learning
models and integrates multimodal data, thereby enhancing the interpretability of the Aventa wind turbine fault


https://editor.copernicus.org/#RC1

detection. Unlike conventional single-model or single-source approaches, this hybrid strategy improves cross-
domain correlations, multiphysics interactions, and environmental variability, enabling reliable monitoring under
complex operational conditions. The model employs unsupervised k-means clustering to group data into
homogeneous clusters, thereby facilitating pattern recognition without predefined labels, and multiple supervised
classification machine learning algorithms for binary or multiclass fault classification. Since different algorithms may
perform better under different scenarios and operating conditions, the proposed framework analyzes different
machine learning algorithms. It identifies the best-performing model for the applied study case.

Furthermore, within this framework, the proposed relative change damage index introduces a feature normalising
and scaling strategy that enhances the comparability of heterogeneous features without requiring predefined
baselines. This improves sensitivity to operational deviations and ensures consistent feature interpretation across
different sensors. Additionally, the canonical correlation-based feature and sensor selection method evaluates
multivariate dependencies between response features and fault classes, providing a physically consistent, data-
driven basis for ranking sensor importance. The main contributions of this study are:

(i) the development of a hybrid ML framework for operational fault assessment combining multiple
algorithms and multimodal data,
(ii) the introduction of a feature relative change strategy for feature normalisation and scaling, and

(iii) the implementation of a canonical correlation-based feature and sensor selection process.
The proposed model enhances interpretability, scalability, and diagnostic performance. Comparative results across
different scenarios confirmed the model's accuracy (85-98%) and stability, validating the methodological distinction
in a practical application.

Thus, the distinct advantage of this work lies in its hybridization of ML models and multiphysics data fusion, which
together enhance diagnostic accuracy, robustness, and interpretability beyond what existing SHM strategies
provide. A deeper explanation and demonstration of the hybrid model, along with how our paper differs from
previous literature, were included in the introduction.

2. The manuscript contains numerous grammatical errors and inconsistencies that impede readability, for example:
Answer: We thank the reviewer for the comment. The following actions were incorporated in the revised
manuscript.

oline 20: Incorrect citation formatting "...those turbines Veers et al. (2023)"- Answer: We revised the reference list.

oAlgorithm 1, Step 1: "Receive structural ... from the time-domain responses”- Answer: Now it reads: “Receive
structural response data from the time-domain accelerometer measurements and environmental conditions from
the SCADA system.”

oline 128: ... to capture the most information about the damage ... Answer: We revised this sentence. Now it reads:
“Table 1 lists the SCADA data and accelerometers used for monitoring, along with their respective sensor channels
and locations. The x-axis captures side-to-side turbine motion, and the y-axis captures fore-aft turbine motion.”

o Undefined abbreviations (RHS, LHS in Figure 4 caption, DT algorithm) Answer: According to the Chicago manual
of style, Ihs - means left-hand side and rhs - means right-hand side. We used the standard abbreviations in the
caption of Figure 4.
In the new version of the manuscript, it was substituted with letters as (a), (b), and (c). DT algorithm was defined -
Decision tree (DT).



3. The statement on line 35 that "unlike traditional methods that rely on hand-crafted features, machine learning
enables ..." requires clarification and justification. The shallow machine learning models implemented in this work
are fundamentally dependent on hand-crafted features rather than learned representations.

Answer: We thank the reviewer for this comment. We acknowledge that the original statement may have been
misleading. We intended to contrast traditional SHM methods, which typically rely on physics-based analytical
models or a limited set of manually selected statistical features, with modern data-driven approaches that can
automatically process large datasets. We agree that the shallow ML models employed in this study still depend on
feature extraction. However, these features are automatically derived from the measured signals rather than
manually defined or tuned. This distinction reflects a shift toward automated data processing and scalability for
large and heterogeneous datasets. To avoid confusion, the sentence has been restructured, and the discussion in
the literature review section has been revised to clarify this point.

4. Table 2 lists numerous correlated features (RMS, variance, standard deviation, energy) that likely exhibit
multicollinearity. Including all these features appears arbitrary and may degrade model performance due to
redundant information. Additionally, clarification on "spectral features" is needed in this table. The spectral section
still computes time-domain features.

Answer: We have carefully revised Table 2 and the corresponding section to clarify the feature definitions and
address concerns about multicollinearity. The features originally described as “spectral” were in fact time-domain
(temporal) features, as pointed out by the reviewer, and this terminology has been corrected throughout the
manuscript.

To address the reviewer’s concern regarding redundancy and multicollinearity, a feature correlation analysis was
conducted and presented in Figure 4. This analysis revealed two main feature groups exhibiting similar statistical
behaviour. Group 1 consists of the RMS and median, which represent the central tendency of the signal. Group 2
assumed the maximum, minimum, amplitude range, variance, energy centre, and signal rate representing variability
and extreme values. Features such as energy, kurtosis, higher-order moments, and Shannon entropy showed low
sensitivity to damage and were therefore excluded during normalisation and further analysis. Based on the
correlation results, only four representative features were selected to construct the global dataset: the RMS,
maximum, variance, and amplitude. These features were chosen as representative of their respective groups to
avoid redundancy, reduce computational cost, and mitigate the risk of overfitting. This selection ensures that the
classifier retains the most relevant discriminatory information while improving efficiency and generalisation
capability.

The global dataset consisted of features extracted from each sensor axis (measurement_rows x 48 columns) plus
SCADA data. To refine the dataset, a canonical correlation analysis was applied to select the most sensitive features
per sensor, reducing the dataset from 48 to four representative features plus SCADA data. This step improved
computational efficiency and ensured that only the most informative features were retained. Additionally, sensor
relevance was validated by removing the best-performing sensor feature, confirming the robustness of the proposed
selection strategy. This explanation was updated in section 2.3 of the revised manuscript.

5. Section 2.2 appears to describe routine data preprocessing rather than a methodological contribution.
Furthermore, the overall feature engineering pipeline lacks clear explanation of how the final feature vector is
constructed.

Answer: The monitoring framework consists of seven steps including clear identify in the revised pipeline figure
(Fig.1) , where (1) receiving the acquired data; (2) data processing and organisation; (3) feature extraction,
normalisation, and grouping for similarity pattern; (4) unsupervised feature labelling and clustering; (5) feature
and sensor selection; (6) data splitting, and ML failure identification and classification; and (7) Fault classification
and model evaluation. The final step also outputs the operational failure and identifies the best-performing ML



algorithm based on its performance metric. The novelty associated with the hybrid model and multimodal data,
feature and sensor selection, data normalization, and multiple fault classification is presented in a comprehensive
set of steps outlining the process. Thus, the steps that have novelty associated with them are detailed in sections
2.2,2.3,and 3.2.
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Figure 1. Pipeline of the hybrid machine learning model for fault classification on the Aventa 6.7 kW wind turbine.

The final refined dataset used in step 6 is explained in section 2.3 of the revised manuscript. It is derived from the
global dataset, which is assumed to be (measurement_rows x 48 columns) plus SCADA data. The dataset refinement
is performed using canonical correlation analysis (fastcan), which selects the most sensitive features per sensor. In
the binary study, the dataset was reduced to 4 representative features, plus SCADA data (measurement_rows x 6
columns). In the multiclass case, it was reduced to 9 features, plus SCADA data (measurement_rows x 11 columns).
The results of the fastcan for each sensor in the binary and multiclass cases are presented in Figs. 5-10, and detailed
information has been added to the revised manuscript.

*A deeper description of the final dataset is given in the answer to question 7.

6. The relative change damage index (Equation 1) lacks theoretical foundation. Why normalize by max(Af)
specifically? How does this normalization enhance fault sensitivity? The threshold of 0.6 for feature selection
appears arbitrary without statistical justification.

Answer: The initial threshold value of 0.6 was chosen to ensure that the selected features reached at least 60% of
the scoring metric. After further evaluation, this threshold was removed from the revised manuscript, and selection
was based solely on the highest CCA (fastcan) score. This assumption was consistently adopted for both the binary
and multiclass cases.

Regarding the theoretical basis of the proposed relative change (RC) damage index defined in Eq. (1): the
normalization by the maximum deviation, max(Af), was deliberately designed to transform each feature into a



dimensionless relative scale ranging from 0 to 1. This operation establishes a consistent reference, corresponding
to the feature’s maximum observed deviation, against which all other values are compared.

This normalization serves two main theoretical purposes. First, it preserves the intrinsic ordering and proportionality
of the data points, ensuring that the feature's dynamic pattern remains unaltered. Second, it rescales the feature
space to eliminate the influence of magnitude differences across sensors or feature types, enabling fair comparison
among variables with distinct physical units or scales.

Thus, normalizing by the maximum deviation is particularly effective because it defines the undamaged condition
as the upper bound (close to unity), while deviations toward zero indicate progressive degradation. This approach
enhances fault sensitivity by amplifying subtle variations that would otherwise be numerically insignificant (e.g.,
3.280 vs. 3.286) and potentially overlooked by machine learning algorithms.

In summary, the RC normalization provides a physically interpretable and mathematically consistent scaling,
ensuring that the features retain their intrinsic dynamic signature while becoming more sensitive and comparable
across operational states. This makes the RC-based normalization both theoretically grounded and practically
effective for fault detection and classification. The corresponding explanation was added to Section 2.3, and a
graphical illustration is now provided in the updated Figure 4.

Added in the revised manuscript:
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Figure 4. (a) Non-normalized feature grouped by similarity under different operating conditions, NO-blue, FC-orange, RI-yellow, Al-purple
colour. (b) Demonstration of the scaling and normalisation on the AMP-feature related to Eq. 1. Scaled and normalised features grouped by

similarity under different conditions (c).

This relative change normalization provides a theoretical foundation based on relative scaling and dimensionless
feature representation. Figure 4 (a—c) illustrates the process: (a) the non-normalized features, (b) the scaling and
normalization applied to the Amp feature (extended to all others), and (c) the normalized features obtained using
the proposed relative change technique. The SRCS normalization converts the data into dimensionless features that,
prior to normalization, differed only slightly (e.g., 3.280 vs. 3.286), making such variations numerically negligible for
machine learning models. Thus, the proposed approach amplifies these small variations while preserving the
intrinsic dynamic pattern. Features with values close to unity correspond to undamaged conditions, whereas values
approaching zero indicate faults. Hence, the method enhances fault sensitivity and enables consistent comparison
across features of different magnitudes, making the damage feature more sensitive to early anomalies under varying
operating states.

Features such as energy, kurtosis, higher-order moments, and Shannon entropy exhibited low sensitivity to failures
and were excluded during normalisation and analysis. This first supervised analysis revealed two feature groups with



similar behaviour. Group 1 consists of RMS and median (Fig.4 c-Top), while Group 2 comprises maximum, minimum,
amplitude range, variance, energy centre, and signal rate (Fig.4 c-Bottom). The formation of two feature groups
indicates a high degree of correlation within each group, with RMS and median primarily capturing the signal's
central tendency. In contrast, the features of group 2 describe its variability and extremes. Therefore, using all
features would introduce redundancy, increase computational cost, and risk overfitting due to the curse of
dimensionality. Therefore, selecting only representative features from each group ensures that the classifier retains
the essential discriminatory information while improving efficiency and generalisation.

The canonical correlation analysis for sensor ranking (Equations 2-3) requires clearer explanation. The mathematical
formulation doesn't clearly translate to practical sensor selection criteria.

Answer: We thank the reviewer for this valuable comment. In the revised version, we have clarified the connection
between the canonical correlation formulation and the sensor selection process. Canonical Correlation Analysis
(CCA) quantifies the linear relationship between two multivariate datasets: the sensor feature space X and the target
(or response) space Y. In the context of sensor ranking, each sensor provides a set of features, and CCA identifies
how strongly each sensor’s feature set is correlated with the response variable, which represents the system
condition or damage state. Similarly, by indicating the best features of each sensor, we can identify the sensor with
the highest score for the referee failure. We included the CCA detailed formulation in section 3.2, followed by the
pseudocode for fastcan's feature and sensor selection. The included explanation is as follows:

is given in Algorithm 2, which is repeated for each fault diagnosis. The Fastcan methed is based on the canonical correlation
coefficient (CCA), which is a criterion to measure the linear association between two multivariate random variables. It evaluates
the relevance of features with respect to the response matrix. Given the feature matrix X € BRV*™ and the response matrix
Y € BRV*™ the canonical correlation coefficient is defined as

280 Ry(X,Y)= m‘;;‘ 7(Xere, Yo lii), 2)

where X and Y are column-centred matrices and r (-, -) denotes the Pearson correlation. The projection vectors ny; € R™ and

i € B™ are obtained by solving the following eigenvalue problems

(XeXe) 1X'.[.Yr,(Y(';Y[,-] er]:xC = RIX,Y) g, 3
{Y(I,-Yr:] err:xr:(xfr:xr:) IX(I:YC Bi= R?(X,Y}ﬁ.-. 4

285 The eigenvalues R2(X,Y) correspond to the squared canonical correlation coefficients, while «; and f; are the canonical
weight vectors that define the canonical variates X and Yo%, There are at most min(n, ) non-zero canonical correla-
tion coefficients 7y (X, Y),..., Rminin,m)(X,Y). The overall criterion for feature selection is the sum of squared canonical
correlations (SSC)

min(n,m)

SS5C(X,Y)= 3 RUXY) (5)
k=1

290 To accelerate computation, the SSC can be reformulated using two equivalent decompositions: (i) the h-correlation form (valid

when N < n+m),

S5C(XY)= Zn: ir’{mi, uj), ()]

i=1j=1

where {u; } and {v;} are orthogonal bases of the feature and response spaces; and (ii) the f-angle form (valid when N > n+tm),

285 SSC(X,Y) =33 cos?(Z{w,v5)), @
i=1j=1
where the canonical correlations are expressed as squared cosines of the principal angles between the subspaces of X and Y.
In the greedy selection step, the next feature ,; is chosen to maximise the incremental S5C

min(pt1,m)

d = argmax Z R} ((Xao20i). Y), (®)

k=1
where X, denotes the already selected features. This formulation allows efficient feature ranking by reducing computational

300 complexity while preserving the theoretical properties of canonical correlation analysis. This process involves looping through
the features for each sensor in an interaction. In sequence, a similar procedure is performed for sensor ranking, with the feature
matrix defined as X, € R¥**, where X, contains the highest ranking feature(s) of each sensor.

Preview of the section 3.2 content



7. Table 4 reports perfect results for SVM/kNN/RF/DT, yet the text states only SVM achieves perfect performance.
This contradiction requires clarification. How do you justify these perfect accuracy claims, and have you conducted
statistical validation? Such results typically suggest potential overfitting.

Answer: A deeper investigation into the sensitivity of the ML algorithms and the possible cause of the perfect
metrics was introduced. Therefore, all results were checked and validated in the revised manuscript. The model
employs a multiphysic dataset, considering structural and environmental information. At first, the general dataset
serves as input to the k-means for pattern recognition and labelling.

The environmental information, consisting of the daily average temperature and wind speed, was provided by the
turbine’s owner in such a configuration. We identify that when the dataset organisation assumes Features-SCADA
and then uses k-means for labelling, the SCADA features are highly correlated and influence the k-means grouping.
Therefore, masking the failure's sensitivity. Furthermore, we implemented four data organization methods to
demonstrate the influence of data arrangement and to indicate an optimal dataset configuration.

We demonstrated the impact of the dataset arrangement, the influence of the environmental conditions, and
sensors on the performance metrics of the ML models. Also, the statistical validation was performed in all cases
and demonstrated in the cross-validation metric (Fig. 11a- d (last column)). The following action was updated in the
revised manuscript.

Included in the manuscript:

The final refined dataset organization is a crucial step in enabling machine learning algorithms to classify operational

failures accurately. The deployed dataset exhibits a multimodal nature, integrating structural, temperature, and

wind velocity information. The structural information is directly obtained from the accelerometers, which capture

the system's physical response and potential failure signatures. In contrast, temperature and wind speed data are

obtained from the SCADA system and represent indirect but relevant variables that influence the dynamic behaviour

measured by the accelerometers, although they do not directly describe the damage dynamics. The final dataset is

organized into four configurations, which are evaluated and their relevance demonstrated in the section 4.

e Fe-kms-Sc: dataset composed of the selected features (Fe) extracted from the accelerometer time signals, followed
by the SCADA data (Sc), and beelining provided by the k-means clustering (kms).

e Fe-Sc-kms: dataset including the selected features, the SCADA data, and the corresponding k-means labels.

e Fe-kms: dataset including only the selected features and the k-means labels, without incorporating the SCADA
information.

e Fe-kms-LoseSensor: dataset including the selected features excluding those obtained from the most sensitive
sensor identified by the Fast CCA method, together with the k-means labels and SCADA data. This configuration
simulates the loss of the most sensitive sensor in each analysis scenario.

The k-means labelling of the datasets Fe-kms-Sc and Fe-kms-LoseSensor is applied exclusively to the features that
contain the most relevant physical information about the damage. The SCADA data are then organized by the
corresponding day and hour for each feature sample. This ensures that the SCADA records follow the same row
reordering imposed by the k-means clustering, while preserving the correct temporal(day and hour) correspondence
between the SCADA measurements and the related accelerometer data.

The results for each dataset are shown in the new Figure 10, which compares the ML metrics for each algorithm
and dataset.



Included in the manuscript:

The ML models were tested on the Fe-kms-Sc, Fe-Sc-kms, Fe-kms, and Fe-kms-LoseSensor datasets to assess the
influence of environmental dependencies (SCADA data) and the sensitivity of each sensor in failure evaluation. The
metrics for the Fe-Sc-kms dataset, shown as black (S\astS) in Fig.~\ref{metrics}(a-d), indicate that, except for the NB
classifier, all ML models achieved 100\% accuracy. Such perfect performance across multiple models can suggest
potential issues like data leakage, overfitting, or improper dataset splitting. However, cross-validation with multiple
random partitions was performed to ensure statistical robustness. In this case, the consistently high accuracy reflects
the physical consistency and strong discriminative power of the selected features rather than methodological flaws.
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Figure 1. Comparison of the metrics (accuracy, Fl-score, precision, recall, and cross-validation) for the six ML algorithms and each
arranged final dataset. (a) Binary MO-FC, (b)) Binary NO-AL (c) Binary NO-REI, and (d) multiclass failure study cases



The k-means clustering results and associated metrics also reveal clear class separation. The feature scores derived
from the CCA, which quantify the linear association between the selected features and the k-means clusters (Fig.10),
highlight the strong correlation between SCADA data and the structural sensors (accelerometers). The SCADA system
provides environmental variables, such as daily temperature and wind speed, but lacks important structural
information more directly related to damage states. In the Fe-Sc-kms dataset configuration, both features and
SCADA inputs are used in the k-means clustering, which is predominantly influenced by the SCADA parameters.
Therefore, the perfect ML metrics are attributed to dataset bias, where the models primarily classify failure
conditions based on environmental variations rather than the structural response itself.
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Figure 11. Feature score of the Fe-kms-Sc dataset for (a) NO-FC, (b) NO-RI, (¢) NO-ALI and (d) multiclass.

The ML models' metrics for the Fe-kms-Sc dataset, shown as blue S\bulletS in Fig.11(a-d), indicate the sensitivity of
the ML models to the damage. The k-means is performed on the structural features, and the SCADA follows its data
reorganization, but it is not directly considered in the k-means labeling. For the binary case, the model's metrics
range from 0.93 to 0.99. The SVM model reached 0.98 on the NO-FC case, XGBoost reached 0.98 for NO-Al, and
XGBoost reached 0.99 for NO-RI. Multiclass case varied from 0.86 given by NB to 0.955 by RF.

The SCADA data are not included in the Fe-kms dataset, shown as orange-S\blacksquareS in Fig.11(a-d). The
performance metrics reached 0.98 with the SVM model for the NO-FC case, 0.955 with RF for the NO-Al case, 0.98
with XGBoost for the NO-RI case, and 0.95 with RF in the multiclass analysis. When the most sensitive sensor for
each failure case was removed from the Fe-kms-LoseSensor dataset (yellow S\bLozenge S), performance metrics
decreased, except for NO-Al, indicating the importance of this sensor’s information for monitoring accuracy and
model performance. This also reinforces that the most sensitive sensor is typically located near the damage site. In
the NO-AI case, all sensors were positioned on the nacelle and tower. Although these sensors can capture the
dynamic effects of blade aero-imbalance, they are distant from the local damage, which reduces their sensitivity.
Consequently, the sensor group primarily captured global structural responses to the fault rather than local damage
effects, explaining the performance variation when one of the sensors was removed.



8. Figures 3b-c demonstrate clear environmental dependencies, but the model's ability to distinguish between
environment-induced changes and actual failures remains unvalidated.

Answer: Aside from figure 3b-c, the new results presented in Figure 10 a-d confirm that environmental parameters
(from SCADA data) strongly influence the model’s output when included in the dataset configuration. This is evident
in the Fe-Sc-kms dataset, where all models achieved near-perfect accuracy due to the dominance of environmental
features, primarily temperature and wind speed. However, to isolate and validate the model’s ability to distinguish
true structural failures from environmental variations, additional datasets were tested.

In the Fe-kms configurations, the SCADA data were either excluded or aligned only with the structural features,
allowing the models to rely primarily on vibration-based indicators. These configurations showed lower, yet
physically consistent, performance (metrics around 0.93), demonstrating that the models can indeed detect failure-
induced changes but without the intrinsic parameter of environmental fluctuations. However, when SCADA data
were correctly incorporated into the analysis, the Fe-kms-Sc dataset, which integrates structural features with
aligned but non-dominant environmental information, yielded the most physically consistent and discriminative
performance for wind turbine failure classification.



