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Dear Editor, 

 

We have improved the article ref. wes-2025-131 was extensively revised in accordance with the reviewer's 

suggestions and comments. We strongly believe that Wind Energy Science would be the most suitable journal for 

this work. Please find attached the revised manuscript. 

 

 

General comments from the reviewers. Reviewer 2 emphasised the relevance and motivation of the proposed study, 

while highlighting the strong potential for wind turbine monitoring. We are grateful for their constructive comments 

and suggestions, which have been carefully considered to improve the manuscript. 

 

 

Our general response: This version has been carefully revised to incorporate all the reviewers' suggestions, and we 

hope it will be suitable for publication in the Wind Energy Science journal. In general, the reviewer's comments were 

highly appreciated and helped us significantly improve the quality of our manuscript. We are grateful for their 

consideration and time to review our paper. In the following pages, we provide point-by-point responses to each 

reviewer's comments. We have highlighted the revised parts in the manuscript in blue.  

 

 

Yours sincerely, 

M. R. Machado  

A De Sousa 

J. S. Coelho 

R. Teloli 

 

 

 

 

 

 

 

 



RC2: 'Comment on wes-2025-131', Anonymous Referee #2, 27 Aug 2025   

The paper “Failure classification of wind turbine operational conditions using hybrid machine learning” By Machado 

et al. presents a hybrid machine learning framework for classifying wind turbine operational conditions, integrating 

supervised and unsupervised learning techniques. More specifically, the authors propose a novel relative change 

damage index for feature normalisation and apply canonical correlation analysis (CCA) for feature and sensor 

selection. The framework is implemented within the PyMLDA open-source platform and validated on experimental 

data from a small-scale Aventa AV-7 wind turbine. Results show excellent classification performance (up to 100% 

accuracy) in both binary and multiclass scenarios, with SVM outperforming other classifiers. 

In summary, the proposed approach is relevant and well-motivated, and the results indicate strong potential for 

wind turbine monitoring. However, before being reconsidered for full acceptance, the following remarks should all 

be addressed by the Authors: 

Answer: We thank the reviewer for the comments on our work and for the time to review our paper. 

 

1. The title is a bit too generic and should be better detailed and circumscribed to the specific Machine Learning 

approach finally selected (Support Vector Machine). 

Answer:  The objective of this work is to propose a hybrid monitoring framework that combines multiple machine 
learning models and integrates multimodal data, thereby enhancing the interpretability of the Aventa wind turbine 
fault detection. Unlike conventional single-model or single-source approaches, this hybrid strategy leverages cross-
domain correlations and environmental variability, enabling reliable monitoring under complex operational 
conditions. The model employs unsupervised k-means clustering to group data into homogeneous clusters, thereby 
facilitating pattern recognition without predefined labels, and multiple supervised classification machine learning 
algorithms for binary or multiclass fault classification.  Since different algorithms may perform better under different 
scenarios and operating conditions, the proposed framework analyzes different machine learning algorithms. It 
identifies the best-performing model for the applied study case.  
Therefore, restricting the title to a single specific method would not cover the main objective of this paper, which is 
better addressed in the revised manuscript. In this regard, the proposed title “Failure classification of wind turbine 
operational conditions using hybrid machine learning” is, in our view, more comprehensive and better reflects the 
nature of the study. Therefore, we believe the current title adequately represents the article's scope and objectives. 

2. The study relies on a single small-scale 6.7 kW turbine dataset, partly with simulated faults (e.g., aerodynamic 

imbalance via roughness tape). The generalisability of the findings to utility-scale turbines in field conditions should 

be better acknowledged and discussed. 

Answer:  This study is associated with the ASCE-EMI Structural Health Monitoring for Wind Energy Challenge 

promoted by WedoWind and the Eastern Switzerland University of Applied Sciences. The primary goal of the 

challenge was to accurately detect three fault events: (1) pitch drive failure, (2) aerodynamic imbalance, and (3) 

icing. Among these, the aerodynamic imbalance was simulated using roughness tape, while the pitch drive failure 

and rotor icing were real faults that occurred in the turbine components. As part of this challenge, we have access 

only to the Aventa dataset and some information about the sensing position and period of the measurements. 

Although one of the failure conditions was induced, the others were genuine faults, ensuring realistic and diverse 

data characteristics.  

The proposed data-driven model, developed and tested using a 6.7 kW turbine, effectively handles the intrinsic 

complexity of multi-source turbine data and fault variations representative of larger-scale systems. The 

methodology is designed to be scalable and adaptable, with a focus on its applicability to real-world operational 

scenarios. We acknowledge that the dataset originates from a small-scale turbine, however, the model was 

subsequently tested on a 1.65 MW turbine provided by an industrial partner, where it performed as expected. This 

reinforces the method’s potential for generalization to utility-scale wind turbines operating under field conditions.  

This information was included in the conclusion section.  

https://wes.copernicus.org/#RC2


3. Related to the first remark, the robustness of the model under more complex environmental and operational 

variability (e.g., turbulence, large-scale icing, mixed faults) is not clear. More discussion on scaling the framework to 

real-world turbines is needed. 

Answer:  The current study considers general environmental and operational variability. Indeed, evaluating the 

influence of harsh environmental conditions, such as strong turbulence, large-scale icing, or mixed-fault scenarios, 

would be an important next step to validate the model further. Our group has prioritized a data-driven approach, 

relying on real measurements to develop and refine the methodology. However, we currently lack access to datasets 

capturing such extreme or combined operating conditions. We are actively seeking collaborations and data from 

turbines exposed to these environments to advance the study. 

Nevertheless, the proposed framework was designed with adaptability in mind and can be extended to process data 

from real-world, utility-scale turbines operating under complex and dynamic conditions. Our ongoing studies focus 

on validating the approach using large-scale, more diverse datasets to assess further and enhance its reliability and 

generalization capabilities. 

4. The claimed methodological novelties (relative change damage index and CCA-based feature/sensor selection) 

are interesting but not sufficiently differentiated from existing approaches in the literature. A stronger justification 

and comparative analysis would clarify their true contribution. 

Answer: The methodological novelties of this study are embedded within the proposed hybrid monitoring 

framework, which integrates multiple machine learning models with multimodal data sources (structural and 

SCADA). This integration enables the framework to capture cross-domain correlations and operate reliably across 

varying environmental and operational conditions, advancing previous traditional single-source or single-model 

SHM approaches. 

Within this framework, the relative change damage index introduces a feature normalising and scaling strategy that 

enhances the comparability of heterogeneous features without requiring predefined baselines. This improves 

sensitivity to operational deviations and ensures consistent feature interpretation across different sensors. 

Additionally, the canonical correlation-based feature and sensor selection method evaluates multivariate 

dependencies between response features and fault classes, providing a physically consistent, data-driven basis for 

ranking sensor importance.  The main contributions of this study are:  

(i) the development of a hybrid ML framework for operational fault assessment combining multiple 

algorithms and multimodal data, 

(ii) the introduction of a feature relative change strategy for feature normalisation and scaling, and  

(iii) the implementation of a canonical correlation-based feature and sensor selection process. 

 

The proposed model enhances interpretability, scalability, and diagnostic performance. Comparative results across 

different scenarios confirmed the model's accuracy (85–98%) and stability, validating the methodological distinction 

in a practical application. 

 

5. The reported near-perfect accuracies (often 100%) raise concerns of overfitting or data leakage. The authors 

should explain in more detail how independence between training and testing sets was ensured, and ideally provide 

confidence intervals or statistical robustness checks. 

Answer: We thank the reviewer for the comment regarding the possibility of overfitting or data leakage, given the 

high accuracy reported. In the revised manuscript, further investigation was conducted, and all results were re-

evaluated and validated.  

 

The dataset is multiphysical, combining structural (accelerometers) and environmental (SCADA) information. It was 

found that when SCADA data were used directly in the k-means labelling stage, their strong internal correlation 

could bias group formation, leading to artificially high metrics. To eliminate this effect and ensure independence 

between the training and test sets, four different configurations of the dataset were evaluated, in which k-means 

labelling was applied to structural characteristics, with SCADA data used as the following variables, and the resulting 



time-aligned data were subsequently used.  In addition, all results were reprocessed using stratified cross-validation, 

and confidence intervals were calculated from multiple random divisions, ensuring statistical robustness. Thus, the 

high accuracy rates observed reflect the physical consistency and discriminative power of the selected features 

rather than overfitting or data leakage. 

Included in the manuscript: 

The final refined dataset organization is a crucial step in enabling machine learning algorithms to classify operational 

failures accurately. The deployed dataset exhibits a multimodal nature, integrating structural, temperature, and 

wind velocity information. The structural information is directly obtained from the accelerometers, which capture 

the system's physical response and potential failure signatures. In contrast, temperature and wind speed data are 

obtained from the SCADA system and represent indirect but relevant variables that influence the dynamic behaviour 

measured by the accelerometers, although they do not directly describe the damage dynamics. The final dataset is 

organized into four configurations, which are evaluated and their relevance demonstrated in the section 4. 

• Fe-kms-Sc: dataset composed of the selected features (Fe) extracted from the accelerometer time signals, followed 

by the SCADA data (Sc), and beelining provided by the k-means clustering (kms). 

• Fe-Sc-kms: dataset including the selected features, the SCADA data, and the corresponding k-means labels. 

• Fe-kms: dataset including only the selected features and the k-means labels, without incorporating the SCADA 

information. 

• Fe-kms-LoseSensor: dataset including the selected features excluding those obtained from the most sensitive 

sensor identified by the Fast CCA method, together with the k-means labels and SCADA data. This configuration 

simulates the loss of the most sensitive sensor in each analysis scenario. 

 

The k-means labelling of the datasets Fe-kms-Sc, Fe-kms, and Fe-kms-LoseSensor is applied exclusively to the 

features that contain the most relevant physical information about the damage. The SCADA data are then organized 

by the corresponding day and hour for each feature sample. This ensures that the SCADA records follow the same 

row reordering imposed by the k-means clustering, while preserving the correct temporal (day and hour) 

correspondence between the SCADA measurements and the related accelerometer data. 

 

The results for each dataset are shown in the new Figure 10, which compares the ML metrics across algorithms and 

datasets.    

 

Included in the manuscript: 

The ML models were tested on the Fe-kms-Sc, Fe-Sc-kms, Fe-kms, and Fe-kms-LoseSensor datasets to assess the 

influence of environmental dependencies (SCADA data) and the sensitivity of each sensor in failure evaluation. The 

metrics for the Fe-Sc-kms dataset, shown as black (*) in Fig.10(a-d), indicate that, except for the NB classifier, all ML 

models achieved 100\% accuracy. Such perfect performance across multiple models can suggest potential issues like 

data leakage, overfitting, or improper dataset splitting. However, cross-validation with multiple random partitions 

was performed to ensure statistical robustness. In this case, the consistently high accuracy reflects the physical 

consistency and strong discriminative power of the selected features rather than methodological flaws. 

 





 
 

The k-means clustering results and associated metrics also reveal clear class separation. The feature scores derived 

from the CCA, which quantify the linear association between the selected features and the k-means clusters (Fig.10), 

highlight the strong correlation between SCADA data and the structural sensors (accelerometers). The SCADA system 

provides environmental variables, such as daily temperature and wind speed, but lacks important structural 

information more directly related to damage states. In the Fe-Sc-kms dataset configuration, both features and 

SCADA inputs are used in the k-means clustering, which is predominantly influenced by the SCADA parameters. 

Therefore, the perfect ML metrics are attributed to dataset bias, where the models primarily classify failure 

conditions based on environmental variations rather than the structural response itself.  



 
 

The ML models' metrics for the Fe-kms-Sc dataset, shown as blue $\bullet$ in Fig.11(a-d), indicate the sensitivity of 

the ML models to the damage. The k-means is performed on the structural features, and the SCADA follows its data 

reorganization, but it is not directly considered in the k-means labelling. For the binary case, the model's metrics 

range from 0.93 to 0.99. The SVM model reached 0.98 on the NO-FC case, XGBoost reached 0.98 for NO-AI, and 

XGBoost reached 0.99 for NO-RI. Multiclass case varied from 0.86 given by NB to 0.955 by RF. 

The SCADA data are not included in the Fe-kms dataset, shown as orange-$\blacksquare$ in Fig.11(a-d). The 

performance metrics reached 0.98 with the SVM model for the NO-FC case, 0.955 with RF for the NO-AI case, 0.98 

with XGBoost for the NO-RI case, and 0.95 with RF in the multiclass analysis. When the most sensitive sensor for 

each failure case was removed from the Fe-kms-LoseSensor dataset (yellow $\bLozenge $), performance metrics 

decreased, except for NO-AI, indicating the importance of this sensor’s information for monitoring accuracy and 

model performance. This also reinforces that the most sensitive sensor is typically located near the damage site. In 

the NO-AI case, all sensors were positioned on the nacelle and tower. Although these sensors can capture the 

dynamic effects of blade aero-imbalance, they are distant from the local damage, which reduces their sensitivity. 

Consequently, the sensor group primarily captured global structural responses to the fault rather than local damage 

effects, explaining the performance variation when one of the sensors was removed. 

 

6. K-means clustering is used to initialise labelling, but the validation of clusters relies solely on the elbow method. 

Additional cluster quality indices (e.g., silhouette score, Davies–Bouldin) should be reported to strengthen 

confidence in the unsupervised stage. 

Answer: We thank the reviewer for the suggestion regarding cluster validation. To ensure the quality of the 

unsupervised clustering with the K-means algorithm, we tested and included the suggested evaluation metrics, the 

silhouette score, and the Davies–Bouldin index. 



For binary cases (k=2), the results indicate good separability between operating conditions, with consistent metrics 

across different components and failure types. In NO-FC scenarios, Silhouette Score values remain high (between 

0.86 and 0.87) and Davies–Bouldin indices are low (between 0.12 and 0.13), indicating that points within each group 

are very similar to each other and that the clusters are well separated.  In NO_RI and NO_AI conditions, the results 

still show a satisfactory clustering structure, with Silhouette values close to 0.56 to 0.60 and Davies–Bouldin 

between 0.58 and 0.75, indicating good cluster quality. In general, all binary-scenario cases yielded metrics superior 

to the reference values recommended in the literature (Silhouette > 0.5 and Davies–Bouldin < 1.0), confirming that 

the clustering method can adequately distinguish the different operational states of the turbines. 

For the multi-class case with k=4, the validation metrics indicate good clustering quality. Silhouette Score values 

range from 0.52 to 0.60, and the Davies–Bouldin index values range from 0.50 to 0.60, indicating compact and well-

separated clusters. These results confirm that the clustering process identified variations in turbine operational 

states. Therefore, these metrics provide strong evidence that the clustering step is reliable and that the labels 

assigned during the unsupervised phase are consistent. 

Figure 5 was updated, including the K-means silhouette and its associated metrics. Figures 6, 7, and 9 follow the 

same organization but are for the other cases: NO-RI, NO-AI, and multiclass, respectively.   

 

 

7. The threshold of 0.6 for feature selection appears arbitrary; further justification or sensitivity analysis would 

be valuable. 

Answer: The initial threshold value of 0.6 was set to ensure that the selected variables achieved at least 60% of the 

score metric. However, after further analysis, this threshold was removed in the revised version of the manuscript. 

Variable selection was then based solely on the highest canonical correlation scores. This criterion was applied 

consistently for both binary and multiclass cases. 



 

8. The pipeline of Figure 1 is quite generic and, as it is now, does not really differentiate itself from any other ML-

based Condition Monitoring approach. 

Answer: Thank you for the comment. The pipeline in Figure 1 has been revised to clearly identify seven stages of 

the proposed monitoring framework, emphasizing the novelty associated with the hybrid multimodal model, 

feature and sensor selection, normalization, and multi-fault classification. Each step is now detailed in Sections 2.2, 

2.3, and 3.2, highlighting how our approach differentiates from generic ML-based condition monitoring schemes. 

The final feature dataset and CCA (Fastcan) refinement process are described in Section 2.3, with results presented 

in Figs. 5–10. 

 

Included in the manuscript: 

The monitoring framework consists of seven steps including clear identify in the revised pipeline figure (Fig.1) , where  

(1) receiving the acquired data; (2) data processing and organisation; (3) feature extraction, normalisation, and 

grouping for similarity pattern; (4) unsupervised feature labelling and clustering; (5) feature and sensor selection; 

(6) data splitting, and ML failure identification and classification; and (7) Fault classification and model 

evaluation. The final step also outputs the operational failure and identifies the best-performing ML algorithm based 

on its performance metric. The novelty associated with the hybrid model and multimodal data, feature and sensor 

selection, data normalization, and multiple fault classification is presented in a comprehensive set of steps outlining 

the process.  

 

Figure 1. Pipeline of the hybrid machine learning model for fault classification on the Aventa 6.7 kW wind turbine. 

The framework presentation and Fig.1 are followed by pseudo-algorithm 1.  

 

9. The finding that SVM performs other classifiers fits well with recent findings in the SHM literature. However, 

Relevance Vector Machine (RVM) can be a feasible alternative, see e.g.   

https://doi.org/10.1016/j.oceaneng.2024.117692 

Answer: We thank the reviewer for the suggestion regarding RVM. Indeed, SVM has demonstrated consistent 

performance in SHM-related studies, consistent with our results. We also recognise the relevance of RVM as a 

https://doi.org/10.1016/j.oceaneng.2024.117692


promising alternative, as indicated in the suggested reference. In response, we have included a discussion of RVM 

in the vibration-based SHM section of the manuscript.  The following description was added to the manuscript. 

In addition to these approaches, recent studies have highlighted the potential of Relevance Vector Machines (RVM) 

as an alternative to SVM. RVM offers sparser solutions and greater computational efficiency without compromising 

accuracy, making it particularly suitable for scenarios with large data volumes and complex environmental variability 

(Kuai et al., 2024). 

 

10. It would be useful to expand the context of Condition and Structural Health Monitoring for Wind Turbines, 

mentioning research review works, e.g. https://doi.org/10.3390/s22041627  

Answer: We thank the reviewer for their suggestion. Indeed, expanding the context on Condition Monitoring (CM) 

and Structural Health (SHM) in wind turbines is pertinent. In response to the suggestion, we have included a brief 

discussion of review papers on the topic, with emphasis on https://doi.org/10.3390/s22041627.  This addition 

reinforces the framing of our study within the current literature. The following description was added to the 

manuscript. 

An effective wind turbine monitoring strategy combines Condition Monitoring (CM) of mechanical subsystems and 

SHM of structural elements (Civera and Surace, 2022). The authors highlight the growing integration of both into AI-

based systems, aiming to improve reliability and operational safety. 

11. While many figures are detailed, some are dense or partially redundant. Simplifying or condensing visual 

material, and clarifying captions to emphasise the main insights, would improve readability. 

Answer: We thank the reviewer for their comment. In the revised version, we have simplified and condensed some 

figures, revised their captions, and highlighted the main insights to improve clarity and readability. 

 

12. The conclusions somewhat overstate the generalisability of the proposed framework. A more balanced 

discussion of limitations (especially regarding dataset size, simulated faults, and applicability to large-scale turbines) 

would be appropriate. 

Answer: We revised the conclusion section, incorporating the updated findings and the model's limitations as 

suggested.  

 

Included in the manuscript: 

This study proposes a data-driven hybrid framework for classifying operational conditions of a wind turbine, 

including normal operation, pitch-drive faults, rotor icing, and aerodynamic imbalance, encompassing multimodal 

data and multiple ML algorithms. The monitoring process follows an eight-step procedure: data processing, feature 

and sensor selection, feature normalisation, data splitting, unsupervised clustering, machine learning classification, 

and model evaluation. A novel relative change damage index was introduced to enhance scalability and normalise 

features extracted from structural dynamic responses and environmental conditions. Canonical correlation analysis 

was used to identify and rank the most sensitive features among the fifteen extracted from temporal responses and 

SCADA data (wind speed and temperature). Thus, multimodal information, including vibration signals from six 

accelerometers distributed across the turbine and environmental parameters (wind speed and temperature), was 

incorporated into the framework. Unsupervised k-means clustering enabled the discovery of homogeneous data 

groups, supporting robust pattern recognition without predefined labels. 

Failure classification was implemented as both binary and multiclass tasks using kNN, SVM, DT, RF, Naive Bayes, and 

XGBoost. Models were tested on the Fe-kms-Sc, Fe-Sc-kms, Fe-kms, and Fe-kms-LoseSensor datasets to evaluate 

environmental influence and sensor sensitivity. Using the Fe-kms-Sc dataset, the models performed best, where 

https://doi.org/10.3390/s22041627
https://doi.org/10.3390/s22041627


SVM achieved the highest accuracy for NO-FC (0.98), XGBoost for NO-RI (0.99) and NO-AI (0.98), and RF for 

multiclass classification (0.955). The Fe-kms-Sc dataset, which combines structural features with aligned SCADA 

data, yielded the most reliable failure detection. Excluding SCADA data (Fe-kms), the models focused on structural 

changes, with binary accuracies of 0.93-0.99 and multiclass accuracies of 0.86-0.95. Including SCADA alone (Fe-Sc-

kms) produced perfect metrics due to environmental dominance, whereas removing the most sensitive sensor (Fe-

kms-LoseSensor) reduced performance, confirming the importance of sensor placement near the damage and 

identification of the most sensitive sensor in each analysis. 

The proposed hybrid model, developed and tested on a 6.7kW Aventa turbine, effectively manages the complexity 

of multi-source turbine data and representative fault variations. Its success relies on careful feature and sensor 

selection, ML model selection, inclusion of environmental data, dataset multimodality, and thoughtful dataset 

arrangement, which together enhance discriminative power and classification reliability. However, validation is 

limited by the small size of the wind turbine, the use of induced faults to simulate aero-imbalance in the blades, 

and differences between small-scale experimental turbines and large-scale operational turbines or wind farms. 

Extreme environmental and operational events, such as strong turbulence, large-scale icing, and mixed-fault 

scenarios, were not included in this study due to the controlled nature and limited scope of the experimental 

datasets.  Ongoing studies aim to evaluate the methodology on larger, more diverse datasets, further explore 

environmental effects, extend the study to offshore wind farms, and assess reliability, generalisation, and 

applicability to utility-scale systems. 

 


