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Abstract. Acoustic tomography offers path-integrated measurements of atmospheric velocity and temperature fluctuations

with high spatial resolution. Classical implementations of time-dependent stochastic inversion rely on homogeneous, isotropic

covariance models that are poorly suited to the anisotropic structure of wind turbine wakes. By directly estimating heteroge-

neous covariances from large-eddy simulations (LES) into the time-dependent stochastic inversion operator, we relax implicit

assumptions in the analytical models used historically. Retrievals using these LES-informed models improve agreement with5

true fields in variance, turbulent kinetic energy, and spectral content compared to analytical and precursor-based covariance

models. The results indicate that LES-informed covariance models can enhance the accuracy of acoustic tomography retrievals

in complex, anisotropic flows such as wind turbine wakes in some cases and highlight instances where analytical models still

offer competitive performance, despite their simplifying assumptions.

1 Introduction10

Accurate characterization of wind turbine wakes is critical for optimizing wind farm performance, mitigating turbine fatigue,

and enhancing power forecasting. Traditional remote sensing techniques, such as Doppler lidars, have advanced our under-

standing of wake dynamics, including phenomena like wake meandering and turbulence intensity variations (Bodini et al.,

2017; Brugger et al., 2022; Hamilton et al., 2025). However, these methods often rely on assumptions of flow homogeneity

and isotropy, which may not hold in the complex, anisotropic environment of turbine wakes. Recent experimental work from15

Placidi et al. (2023) showed that the velocity correlation tensor in the wind turbine wakes is highly heterogeneous, especially

in the near wake where the flow is dominated by the rotor-induced velocity deficit and shear.

Acoustic tomography (AT) offers a powerful approach to resolving the fluctuating velocity and temperature fields that drive

turbulent transport in the atmospheric boundary layer. The classical formulation of time-dependent stochastic inversion (TDSI)

in AT typically assumes homogeneous, isotropic, and stationary covariance structures for atmospheric fluctuations (Vecherin20

et al., 2006; Maric et al., 2025). While these assumptions simplify the inversion process, they may limit the accuracy of

retrievals in the heterogeneous flow conditions characteristic of wind turbine wakes (Hamilton and Cal, 2015; Ali et al., 2018).

When applied to wind energy, this capability opens new pathways for observing wind turbine wake dynamics at high spatial

and temporal resolution – something that conventional remote sensing techniques struggle to provide.
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This study investigates the potential of enhancing AT-based retrievals by incorporating numerically derived covariance fields25

obtained from large-eddy simulations (LES) of wind turbine wakes. By comparing retrievals using classical homogeneous

two-point correlation models with those utilizing LES-informed heterogeneous covariances, we aim to assess improvements

in capturing the complex dynamics of turbine wakes. Our central hypothesis posits that integrating LES-derived covariance

structures into the TDSI framework will yield more accurate reconstructions of wake-induced flow fields, where the classical

assumptions fail.30

The utility of numerically derived covariance fields in field deployments hinges on both practicality and generalizability.

LES-informed models offer a tailored representation of flow statistics under specific atmospheric and operational states, but

their use requires prior knowledge or classification of these states as well as significant computational resources. For broad

use of AT across atmospheric and industrial flows like wind turbine wakes, the underlying covariance models must be able to

describe flow correlations in diverse conditions without extensive re-computation. Fundamental explorations, as shown in this35

study, help establish a path forward for applying AT to high-resolution wake characterization in real-world wind farms and

potentially to other flows where turbulent transport and structure must be captured nonintrusively.

The results of this study contribute to a growing body of work seeking to extend high-fidelity remote sensing to complex

atmospheric flows. By rigorously comparing retrievals using classical and numerically informed covariance models, we offer

insight into how flow-specific turbulence statistics can be leveraged to improve wake-resolving tomography. These findings are40

not only relevant for turbine wake research and wind farm optimization but also suggest new applications of AT in atmospheric

and industrial settings where coherent structures and nonuniform turbulence dominate. Ultimately, this work aims to bridge the

gap between simulation-informed retrieval fidelity and the demands of operational sensing in the field.

2 Theory

The theoretical framework for acoustic tomography in wind turbine wakes builds on the established foundation of TDSI to45

address the unique challenges of wind turbine wake flows. The TDSI technique, as presented by Vecherin et al. (2006) and

implemented in the ATom toolbox (National Renewable Energy Laboratory, 2025a), builds from the fundamental measurement

principle that the travel time of an acoustic signal, ttr, between two points in the atmosphere depends on the thermodynamic

and mechanical state along the travel path.

The group velocity, ug , of an acoustic signal combines the Laplace adiabatic speed of sound, cL =
√

γRaTav (where γ is50

the ratio of specific heats, Ra is the gas constant for dry air, and Tav is the acoustic virtual temperature), and the bulk motion

of the atmosphere, u(x, t). The travel time along path Li is thus given by:

ttr,i =
∫

Li

1
ug

dl =
∫

Li

1
cL(r) +ni ·u(r)

dl (1)

where ni is the unit vector along the acoustic path Li.
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This relationship is typically linearized around the spatially averaged bulk values by decomposing the fields ϕ(x, t) = ϕ0(t)+55

ϕ′(x, t), where ϕ denotes scalar field variables (the u and v components of the velocity vector field, temperature field T , or

local speed of sound c), ϕ0 represents the spatial average of ϕ(x, t), and ϕ′(x, t) represents the purely fluctuating component.

The task of acoustic tomography is to invert this problem, seeking the fluctuating velocity and temperature from a collection

of travel times along paths Li, with i ∈ [1, ..., I]. This problem is mathematically ill-posed – additional information must be

supplied to find a tractable solution. In the traditional approach to TDSI, this additional information is supplied via correlation60

functions that describe relationships between field variables (fluctuating temperature and velocity components).

2.1 Optimal stochastic inverse operator

Correlation functions are integrated along paths to form the optimal stochastic inverse operator, A, that maps a collection of

observed acoustic travel times, d = [ttr]i, onto the model space m representing the fluctuating fields u and T over the retrieval

domain. Fields are retrieved from the observations as65

m = Ad (2)

The optimal stochastic inverse operator is defined by A = RmdR−1
dd, where Rmd is the model-data covariance matrix describ-

ing correlations between field retrievals mj at point j in the domain and acoustic travel time observations di, and Rdd is the

data–data covariance matrix describing correlations between observations along paths i and l. Time-dependence is introduced

by incorporating covariances between Nf different frames, yielding block matrices:70

Rmd =
[
Cmjdi

(tn, tm)
]
tn,tm∈T , (3)

Rdd = [Cdidl
(tn, tm)]tn,tm∈T , (4)

T =
{

tm = tn +
(
n− Nf

2

)
τ

∣∣∣ n = 0, . . . , Nf

}
(5)

Here, Cmd(tn, tm) is the covariance between model points and data paths at times tn and tm and similarly for Cdd(tn, tm).

The set of frames or measurement periods, T , considered in the definition of the optimal stochastic inverse operator is defined75

using Nf independent observations.

The model–data covariance tensor Cmjdi(tn, tm) quantifies the correlation between the field retrieval at point r and the

travel-time observation along path Li, evaluated at times tn and tm. It is constructed by integrating the two-point covariance

fields along the ray path Li at orientation θi:

Cmjdi
(tn, tm) =





∫
Li

c0(tm)
2T0(tm) ,CTT (r, tn;r′, tm) dl, for 1≤ j ≤ J,

∫
Li

Cuu(r, tn;r′, tm)cosθi + Cuv(r, tn;r′, tm)sinθi dl, for J + 1≤ j ≤ 2J,
∫

Li
Cuv(r, tn;r′, tm)cosθi + Cvv(r, tn;r′, tm)sinθi dl, for 2J + 1≤ j ≤ 3J.

(6)80

The data–data covariance tensor Cdidl
(tn, tm) characterizes the statistical dependence between travel-time observations

along ray paths Li and Ll at times tn
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Cdidp
(tn, tm) =

∫∫

Li,Ll

[
c0(tn)c0(tm)

4T0(tn)T0(tm)
,CTT (r, tn;r′, tm)Cuu(r, tn;r′, tm)cosθi cosθl

+ Cvv(r, tn;r′, tm)sinθi sinθl+,Cuv(r, tn;r′, tm)(cosθi sinθl + sinθi cosθl)
]
dl,dl′. (7)

Note that this formulation for Cdidl
(tn, tm) and Cdidp assumes that the temperature fluctuations are independent from the85

velocity fluctuations (i.e., CuT = CvT = 0). Following the work by Vecherin et al. (2006), this formulation also assumes that

the velocity correlation tensor is symmetric such that Cuv = Cvu.

The constituent correlation functions that comprise the model-data and data-data covariance matrices are typically assumed

to follow Gaussian relationships as:

Cϕaϕb
= σaσb exp

(
− (r− r′)2

lalb

)
· g(ϕa,ϕb) (8)90

where σa,σb and la, lb are the standard deviations and characteristic length scales of the fluctuating fields ϕa and ϕb, respec-

tively. The function g(ϕa,ϕb) is a function that modulates the Gaussian distributions to account for anticorrelation in the fields

in directions opposed to their primary direction,

g(ϕa,ϕb) =





1, if ϕa = ϕb = T

1− (x⊥a−x′⊥a)2

l2a
, if ϕa = ϕb = ui

(x⊥a−x′⊥a)(x⊥b−x′⊥b)
lalb

, if ϕa ̸= ϕb and ϕa,ϕb ̸= T

(9)

Where x⊥a represents the coordinate perpendicular to the direction of ϕa (e.g., for u, the perpendicular direction is y). This95

formulation deviates from that of Vecherin et al. (2006) slightly in that it does not assume that the u and v components of

velocity share a single length scale. Note that the family of correlation functions, Cϕaϕb
, are statistically stationary and do not

depend on the times of the observations, tn and tm.

In the TDSI technique, by invoking Taylor’s frozen turbulence hypothesis (Taylor, 1938) – which assumes that turbulent

structures are advected with the mean flow without significant distortion – an arbitrary number of model–data and data–data100

covariance matrices can be concatenated into a larger, more complex mapping operator. This is accomplished by assuming that

the receiver point r′ is advected by the spatial average velocity and the time between successive observations.

While this formulation is concise and allows users to develop a straightforward linear mapping between the observational

data and the retrieved fields, it is built on assumptions that the flow and temperature fields are homogeneous and statistically sta-

tionary – assumptions that are questionable for wind turbine wake flows. Additionally, this formulation typically assumes that105

the velocity and temperature fields are uncorrelated, which is unlikely to hold for strongly convective atmospheric conditions

(Wyngaard et al., 1971).
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2.2 Adaptation for wind turbine wakes

Wind turbine wakes are strongly inhomogeneous, arising from aerodynamic interactions between the rotor blades and the

incoming atmospheric flow that result in a local thrust force pointed upstream (Chamorro and Porté-Agel, 2013; Lignarolo110

et al., 2015). This force results in a slowdown of the flow upstream of the rotor and acceleration of the flow around the swept

area. Additionally, the energy extraction from the atmospheric flow produces a momentum deficit directly downstream of the

wind turbine that recovers through turbulent mixing downstream of the rotor.

To make the TDSI approach work for wind turbine wake flows, additional treatment is needed such that the turbulent

fluctuations can be treated as approximately normally distributed. This can be achieved by applying a Reynolds decomposition115

that separates the time-averaged spatial structure from the fluctuating fields:

ϕ(x, t) = ϕ(x) +ϕ0(t) +ϕ′(x, t) (10)

The formulation of the classical TDSI and the extension here aim to retrieve spatial fluctuations of the field variables around

their bulk averages, analogous in some ways to the discussion of dispersive stresses, which redistribute kinetic energy spatially.

Applying this decomposition to the data vector results in a constant background flow term that must be added to the re-120

lationship between the observed travel times and the field variables. Importantly, there is no contribution from cross terms

combining the time-averaged and fluctuating components that would need to be accounted for in the definitions of Cuu and

other correlation functions. This formulation does not account for the production of turbulent kinetic energy in regions of large

mean shear, but it leads to improved match with the assumptions of TDSI. After retrieving the fluctuations, we must add back

the time-averaged fields ϕ(x) to recover the full wake flow field. When the time-averaged flow and temperature fields are125

not directly available, as for the simulated cases explored here, background fields can be estimated with FLORIS (National

Renewable Energy Laboratory, 2025b) or other analytical models for the steady-state wake at any level of fidelity (Scott et al.,

2023; Sadek et al., 2023, e.g.,).

2.3 Numerically derived covariance fields

The general form of the correlation function Cϕaϕb
between fluctuating fields is a four-dimensional function that depends on130

multiple spatial and temporal coordinates, without assuming homogeneity or stationarity, taking the form:

Cϕaϕb
(r, tn,r′, tm) = ⟨ϕ′a(r, tn)ϕ′b(r

′, tm)⟩t (11)

where angle brackets imply ensemble averaging with respect to the coordinate in the subscript (in this case, time) and C is the

two-point correlation function between any two field variables ϕa,ϕb ∈ [u,v,T ].

In the case of the simulated atmospheric boundary layer, the correlation function can be further simplified assuming hor-135

izontal homogeneity and statistical stationarity (Thedin et al., 2023), such that the correlation function depends only on the

distance between the two points ∆r = r′− r and the time difference ∆t = tm− tn:

Cinflow,a,b = Cϕaϕb
(∆r+u∆t) = ⟨ϕ′a(r)ϕ′b(r

′+u(r′)∆t)⟩t,r (12)

5

https://doi.org/10.5194/wes-2025-137
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



For the undisturbed atmospheric boundary layer (ABL), Cϕaϕb
is computed on a horizontal plane at the hub height of the

turbine at the finest resolution. This is followed by the spatial averaging across all the subdomains. Readers are referred to140

Sect. 3 for additional details on the simulation setup.

While we cannot simplify the correlation function by assuming homogeneity for a wind turbine wake (i.e, the function

always depends on the specific points r and r′), we can simplify the expression in Eq. (11) by preserving the assumptions of

statistical stationarity and Taylor’s frozen turbulence hypothesis. In so doing, the correlation function simplifies to:

Cwake,a,b = Cϕaϕb
(r,r′+u(r′)∆t) = ⟨ϕ′a(r)ϕ′b(r

′+u(r′)∆t)⟩t (13)145

In Eq. (13), u(x) is the advection velocity at point r′. In practice, the simulated wind turbine wake is considered to be stationary

in time, and the ensemble average is effectively identical to a time average over the simulation time. The model–data and data–

data matrices can now be computed as before by integrating the numerically derived correlation functions Cϕaϕb
in place of

the analytical functions supplied in Eq. (8).

It is important to note that this formulation does not normalize the correlation function by the value of C where r′ = r and150

∆t = 0, as is typically done to define the correlation coefficient. The correlation must retain its physical units to provide an

accurate estimate of the fluctuating fields ϕ in the model domain, as normalization would remove the amplitude information

necessary for proper field reconstruction (Wilson et al., 2008).

3 Problem setup

We conduct LES of a Vestas V27 wind turbine (Petersen, 1990), operating in two distinct states corresponding to the neutral155

and convective ABL conditions. The simulations provide high-fidelity, dynamically consistent velocity and temperature fields,

which serve as the foundation for evaluating acoustic tomography methods in wind energy. By resolving turbulence-driven

covariances within the ABL and wind turbine wakes, we generate benchmark datasets to test retrieval accuracy against classical

tomographic inverse assumptions. The turbine considered has a rotor diameter D = 27 m, hub height H = 31.5 m, rated wind

speed of 14 ms−1, and rated power output of 225 kW. Turbine-induced aerodynamic forces on the ABL flow are modeled160

using the Joukowski actuator disk model (Sørensen et al., 2020), which takes into consideration both the radial and tangential

variations in the thrust loading across the rotor disk – improving fidelity compared to the traditional uniform-force actuator

disk model implementations. The simulations are performed using AMR-Wind, a block-structured finite-volume solver built

on the AMReX adaptive mesh refinement framework (Sprague et al., 2020; Zhang et al., 2021; Kuhn et al., 2025). The filtered

continuity, momentum, and potential temperature equations are consistent with the formulation of Churchfield et al. (2012).165

Note that the buoyancy term is included via a reference potential temperature T0 = 300 K. We close the subfilter-scale kinetic

energy using Moeng’s one-equation turbulence model (Moeng, 1984). Details on the numerical discretization are provided

by Sharma et al. (2024) and Kuhn et al. (2025).

The computational domain for the simulations spans 3200 m in the streamwise (x) and lateral (y) directions. Vertically (z),

the domain’s height is 960 m for neutral ABL and 1600 m for convective cases. The larger height for the latter is meant to170
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Table 1. ABL parameters for the neutral and convective cases.

ABL condition u∗ (ms−1) q3|w (K ms−1) L (m) δ (m) z0 (m)

Neutral 0.512 0 ∞ 700 0.1

Convective 0.498 0.025 -378 1000 0.1

accommodate the deeper boundary layer under buoyant forcing. The turbine is positioned at (x,y) = (1100,1600) m. We apply

periodic boundary conditions laterally, a slip wall at the top, and a rough wall at the bottom. The surface fluxes at the bottom

wall are computed using the Monin–Obukhov similarity theory (Moeng, 1984), which is based on the friction velocity u∗,

surface roughness z0 = 0.1 m, and surface heat flux q3|w, which are set to 0 and 0.025 Kms−1 for the neutral and convective

cases, respectively. Additionally, the von Kármán constant κ = 0.4 (Table 1) summarizes the key ABL parameters, including175

the friction velocity, u∗, Obukhov length, L, and boundary layer height, δ. To maintain a target velocity of 7 ms−1 at the hub

height plane, a body force is applied as a driving pressure gradient. Near the lower surface, we introduce small perturbations to

expedite boundary layer spin-up to quasi-equilibrium. Both the neutral and convective cases were initialized with a vertically

uniform potential temperature T = 300 K. A 100 m capping inversion layer follows, in which temperature increases linearly to

308 K. Above this, in the stable free atmosphere, we impose a constant lapse rate of 0.003 K/m. In the axial direction, the left180

and right boundaries are treated as mass inflow and pressure outflow, respectively. The turbulent inflow is generated a priori

by running precursor simulations, where data of the flow variables are saved on a plane at each time step. The precursor runs

consisted of a base mesh with grid resolution ∆ = 10 m and an additional refinement region that spans the entire x–y plane

and extends up to z = 80 m. In AMR-Wind, each layer of grid refinement reduces the grid spacing by a factor of half. Figure 1

shows the precursor-generated inflow boundary layer profiles up to a height of 100 m above the ground level, including a185

shaded region for the swept area of the rotor and a dashed line for the hub height of the simulated turbine.

4 6 8
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Figure 1. Inflow profiles of average horizontal velocity components, temperature, and turbulence intensity (TI) for the neutral and convective

inflow cases. Shaded region and dashed horizontal line indicate the rotor-swept area and hub height of the V27 turbine, respectively.
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Table 2. Joukowski actuator disk parameters for the coarse, medium, and fine grids.

Coarse Medium Fine

ϵ/∆ ϵ ϵ/D AP dr ϵ/dr ϵ ϵ/D AP dr ϵ/dr ϵ ϵ/D AP dr ϵ/dr

2 5 0.18 5 2.7 1.85 2.5 0.092 10 1.35 1.85 1.25 0.046 15 0.9 1.38

Prior to running the suite of LES for generating the covariance field data, we performed mesh resolution study for the

neutral ABL condition. The effect of three grid resolutions, referred to as coarse, medium, and fine, on the turbulence wake

statistics was investigated. The coarse grid consisted of two layers of refinement, whereas the medium and fine grids had three

and four refinement zones, respectively. For each case, the finest refinement block was centered at the turbine’s hub height.190

It spanned −3D to 15D in the streamwise direction, ±7D in the lateral direction, and up to 80 m in the vertical direction.

The corresponding actuator disk parameters are presented in Table 2, which includes the point force distribution width, ϵ,

number of actuator points (“AP” in the table) for the disk radius, disk grid spacing (dr), and the ratio the two, ϵ/dr. We chose

ϵ/∆ = 2, and the number of radial grid points (actuator points) was chosen such that ϵ/dr > 1. The wake statistics for all three

meshes showed grid-independency with the medium and fine grids. However, to ensure maximum resolution of the LES-based195

covariance fields, the results were obtained on the fine grid.

4 Results

The original TDSI formulation assumes homogeneous and stationary correlation functions. The analytical expressions in

Eq. (8) impose horizontal homogeneity, such that the covariance depends only on the separation r− r′. In the undisturbed

ABL, free from topography, turbine wakes, or transient forcing, this assumption may be reasonable. However, Vecherin et al.200

(2006) also proposed deriving covariances from numerical simulations, which are not bound by these assumptions. Stationarity

may still hold for turbine wakes, assuming sufficient ensemble averaging over the rotor-induced periodic forcing. Homogeneity,

however, is more problematic. Aerodynamic forcing from the turbine induces strong inhomogeneities in the flow, including a

persistent thrust-directed momentum deficit (Chamorro and Porté-Agel, 2013; Lignarolo et al., 2015). As a result, covariances

between velocity and temperature fluctuations vary significantly with position, and cannot be described solely by separation205

distance.

The results that follow quantify the impact of covariance model choice on the reconstruction of fluctuating velocity and

temperature fields. We compare analytical models for the correlation functions, statistically stationary correlation functions

calculated from the undisturbed ABLs represented by precursor simulations, and heterogeneous correlation functions for the

turbine-influenced flows. Reconstructions are evaluated in a 100 m × 100 m two-dimensional plane at the V27 hub height.210
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4.1 Acoustic tomography retrievals of the inflow ABL cases

The precursor simulations represent neutral and convective ABL flow without wind turbine influence. These simulations yield

velocity and temperature fields that are horizontally homogeneous, as are the associated two-point correlation functions. Nega-

tive values in the spatial correlation functions signal antiphase relationships between points, potentially reflecting the influence

of coherent structures such as counter-rotating eddies that induce opposing velocity perturbations across the separation vector.215

In the convective case (Fig. 2), the diagonal components of the correlation tensor – Cuu, Cvv , and CTT – each exhibit a

strong peak at ∆r = 0 that decays with increasing ∆r. The decay of Cvv is approximately isotropic, while Cuu and CTT

show marked anisotropy with slower decay in the x-direction than in the y-direction. The cross-correlation Cuv exhibits more

complex structure. Shown in the lower-left panel of Fig. 2, Cuv contains alternating regions of positive and negative correlation.

The cross-covariance Cuv is an order of magnitude smaller than the corresponding variances Cuu and Cvv , indicating weak220

coupling between u′ and v′ fluctuations. The pattern is approximately antisymmetric about the x-axis, with positive correlation

in quadrants 1 and 3 and negative correlation in quadrants 2 and 4. However, the field shows less antisymmetry about the y-axis,

with stronger correlations for negative x. This asymmetry persists despite averaging over 600 s of simulation data. The dashed

square in Fig. 2 indicates the 100 m × 100 m retrieval domain used for all reconstructions. This domain corresponds to the

physical scale of the acoustic tomography array deployed at the National Renewable Energy Laboratory’s (NREL’s) Flatirons225

Campus in Colorado, USA (Hamilton and Maric, 2022; Maric et al., 2025). The temperature covariance CTT exhibits even

lower magnitudes, which may imply that temperature fluctuations T ′ are minimal or uncorrelated at the measured scales.

Similar correlation results for the neutral ABL case are shown in Appendix A, but are not discussed in the current section for

brevity.

Figure 3 shows the modeled correlation functions for the convective precursor, using optimal parameters listed in Table 3.230

However, it tends to exaggerate the extent of anticorrelation compared to the LES-based correlation, suggesting that the im-

posed functional form may be too rigid to capture the observed decay of correlations with increasing ∆r.

The analytical correlation functions defined in Eq. (8) reproduce several key features of the convective precursor flow,

but also introduce important limitations. Notably, they impose anticorrelated regions in Cuu, outside of |y|> 45 m for the

parameter values listed in Table 3, consistent with expectations from the form of the modulating function. The formulation235

from Vecherin et al. (2006) implies similar behavior for Cvv in the x-direction, although the calculated covariances appear to

be approximately isotropic.

The mismatch between calculated and modeled covariance is more pronounced in CTT . While the simulation reveals gradual

streamwise decay and the emergence of anticorrelated regions at large cross-stream distances, the analytical model fails to

reproduce this structure. This discrepancy arises because the modulating function used for CTT remains identically unity,240

precluding any sign reversal in the correlation field.

For the cross-correlation Cuv , the analytical model exhibits perfect antisymmetry about both the x- and y-axes, consistent

with the mathematical constraints embedded in Eq. (9). In contrast, the LES-derived Cuv shows clear asymmetries, particularly

9
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Figure 2. Two-point correlation functions of the convective precursor simulation. Dashed region indicates the domain of the fluctuating field

retrievals.

about the y-axis, highlighting the presence of directional flow structures that violate the assumptions of homogeneity and

isotropy.245

To quantify the match between modeled and simulated covariances, we optimize the model parameters by minimizing the

normalized root-mean-square error (NRMSE), defined as

NRMSE =

√√√√
M∑

i=1

(ϕa− ϕ̂a)2

ϕ2
a

(14)

where ϕa signifies one of the fluctuating fields from the LES, the hat notation indicates the estimate of the field from the acoustic

tomography retrieval, and M is the number of points in the domain. Table 3 summarizes the resulting best-fit parameters for250

u, v, and T under both convective and neutral conditions. Unlike the original TDSI formulation, which assumes a common

parameter set across all fields, we allow each field to adopt its own optimal values. This added flexibility enables better

agreement with the LES data, particularly in flows with strong directional anisotropy or field-specific spatial structure.

Figure 4 presents a snapshot comparison of the fluctuating streamwise velocity component, u′, from the convective precursor

simulation (left), alongside retrievals based on the numerically derived (middle) and analytically modeled (right) correlation255

functions. All reconstructions use Nf = 4, incorporating two acoustic observations before and two after the retrieval time. Both

retrievals exhibit strong qualitative agreement with the simulated field, accurately recovering the dominant spatial structures.

Key features, such as the regions of negative u′ near the top and bottom boundaries and a localized positive patch centered near

(x,y) = (−40,−10) m, are present in both reconstructed fields.
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Table 3. Optimal model parameters σϕ and lϕ for convective and neutral conditions in precursor and turbine cases.

Condition Field (ϕ)
Precursor Cases Turbine Cases

σϕ lϕ σϕ lϕ

Convective

u 0.61 46.6 0.79 12.27

v 0.39 46.3 0.49 14.42

T 0.06 31.4 0.20 33.17

Neutral

u 0.71 13.30 0.98 13.30

v 0.58 15.54 0.72 15.50

T 0.01 16.87 0.01 16.87

Figure 3. Modeled correlation functions from Eq. (8) for the convective case tuned to match numerical correlation functions for the convective

precursor shown in Fig. 2. Model parameters correspond to those listed in Table 3.

Despite the similarities for large-scale features, differences emerge at smaller scales. The reconstruction based on numeri-260

cally derived correlations (middle) more faithfully reproduces secondary features, including small-magnitude fluctuations near

the center of the domain and the peak positive excursion of u′. However, it slightly overshoots the negative peak near the upper

boundary, indicating a local mismatch in amplitude. In contrast, the retrieval using modeled covariances (right) introduces

small-scale oscillations not observed in the simulation. These spurious features likely result from the interaction between the

assumed covariance structure and the inclusion of multiple time-separated observations in the stochastic inverse operator A.265

Figure 5 quantifies these retrieval differences by showing distributions of NRMSE across an ensemble of retrievals with

varying numbers of successive frames. Darker curves correspond to reconstructions using fewer frames (smaller Nf ), while
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Figure 4. Comparison of the u′ from the convective precursor LES (left) to the retrievals with the numerical correlations (middle) and the

modeled covariances (right).

lighter curves reflect increasingly wider temporal windows. For both the convective (Fig. 5a) and neutral (Fig. 5b) cases, the

left panels show retrieval error using numerically derived correlations and the right panels show results using the modeled cor-

relation functions. In both cases, retrievals using numerical correlations consistently outperform their analytical counterparts,270

particularly as Nf increases. This suggests that while both covariance models support accurate large-scale reconstructions,

the numerically derived correlations yield more faithful representations of the spatiotemporal variability embedded in the LES

data.

(a) Convective precursor (b) Neutral precursor

Figure 5. Distributions of NRMSE for the convective (a) and neutral (b) precursor simulations considering the calculated and analytically

modeled correlation functions (left and right column of each subfigure) for u′ (top), v′ (middle), and T ′ (bottom) field variables.
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For the convective case, retrievals based on numerically derived covariance fields show a rapid decline in NRMSE as the

number of successive frames increases from Nf = 0 to Nf = 2. This initial improvement reflects the added value of incor-275

porating temporal information from observations one time step before and after the retrieval time. Beyond Nf = 2, further

increases in the observation window offer diminishing returns. The NRMSE levels off for retrieved fields û′, v̂′, and T̂ ′, shown

in the left column of Fig. 5a.

In contrast, retrievals using the modeled correlation functions exhibit consistently higher NRMSE for û′ and v̂′, particularly

at small Nf . While retrieval accuracy improves with additional frames, the rate of error reduction is more gradual and persists280

over a broader range of Nf , suggesting that the modeled covariances benefit more from temporal averaging than their data-

driven counterparts.

For the neutral case (Fig. 5b), retrieval error trends for u′ and v′ mirror those observed in the convective ABL and NRMSE

and drop sharply as Nf increases. However, unlike in the convective regime, the spread of NRMSE distributions remains nearly

constant with increasing Nf , simply shifting toward lower median values. This persistent variability suggests that retrieval285

performance is more sensitive to specific observation configurations or flow states in the neutral ABL, possibly due to its more

isotropic structure.

Across both stability cases, retrievals of the temperature field T ′ consistently exhibit higher NRMSE values than the velocity

components. The broader distributions reflect both greater retrieval uncertainty and weaker observational sensitivity to tem-

perature fluctuations. This trend aligns with prior findings from Vecherin et al. (2006) and Maric et al. (2025) and underscores290

the inherent limitations of acoustic tomography for inferring temperature. In the neutral ABL, the median NRMSE for T ′ is

markedly higher than in the convective case. Two factors contribute to this discrepancy. First, the NRMSE metric normalizes

by the standard deviation of the simulated temperature field, which is notably small under neutral conditions. Second, the TDSI

framework is intrinsically limited in resolving temperature fluctuations below a certain threshold – approximately 0.1 K – as

previously reported by Maric et al. (2025).295

Figure 6. Median values of the NRMSE for u′ (left), v′ (center), and T ′ (right).

Figure 6 compares the median NRMSE across retrieved fields û′, v̂′, and T̂ ′ as a function of the number of frames Nf

used in the stochastic inverse operator A. Solid lines represent convective cases, dashed lines indicate neutral cases, and color

denotes the source of the correlation functions: green for numerical correlations and purple for analytical models. In both ABL

cases, retrievals based on numerical covariances (green) exhibit minimal improvement in median NRMSE beyond Nf = 4,
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suggesting that additional temporal information adds little value once short-term correlations are resolved. In contrast, retrievals300

using modeled covariances (purple) show a gradual and consistent decrease in NRMSE with increasing Nf , highlighting their

greater sensitivity to temporal averaging.

For the convective ABL (solid lines), modeled correlations consistently produce higher NRMSE than their numerical coun-

terparts for all variables when Nf ≤ 8. This disparity indicates that the modeled functions lack sufficient fidelity to represent

the fine-scale variability of the LES data without additional observational context. For the neutral ABL (dashed lines), how-305

ever, the trends of median NRMSE differ. Here, modeled correlations begin to outperform numerical covariances for û′ and

v̂′ when Nf ≥ 5, and for T̂ ′ when Nf ≥ 6. This crossover may reflect the smoother, more isotropic character of the neutral

ABL, which is more consistent with the assumptions embedded in the analytical model and may benefit more from increased

temporal integration.

4.2 Wind turbine wake retrievals310

Wind turbine wakes are considerably more complex than the horizontally homogeneous ABL flows described in the previous

section. The presence of the rotor disk and associated aerodynamic forcing makes the flow strongly inhomogeneous, with

marked spatial variation in mean fields and the higher-order statistics used in acoustic tomography. Figure 7 presents the triple

decomposition of the streamwise velocity u for the convective ABL case introduced in Eq. (10). The instantaneous field (top

left) captures the full spatial variability of the flow at a single time. The time-averaged velocity field u (top right) reveals315

persistent features, including an upstream deceleration due to induction and a pronounced wake extending more than 250

m downstream of the rotor. These structures are absent in the spatially averaged time series (bottom left), which represent

domain-wide averages over time and remain centered around zero. The purely fluctuating component u′ (bottom right) isolates

transient variations and exhibits an asymmetric structure, with u′ > 0 for y < 0 and u′ < 0 for y > 0. This asymmetry indicates

that the instantaneous wake deviates from its mean trajectory at the time of the snapshot shown in the figure. Dashed squares in320

each subfigure mark the 100 m × 100 m footprint of the physical acoustic tomography array deployed at the NREL Flatirons

Campus (Hamilton and Maric, 2022). Gray lines denote the acoustic ray paths used in the retrieval process.

Figure 8 presents the same triple decomposition of the streamwise velocity u for the neutral ABL case. Compared to the

convective case, the time-averaged wake in the neutral ABL is more well-defined, exhibiting a sharper momentum deficit and a

more distinct upstream deceleration due to the induction zone. The background flow is notably more uniform, with u≈ 8 ms−1325

across most of the domain outside the wake. As in the convective case, the spatially averaged time series, u0, v0, and T0, remain

centered near zero. However, they span a smaller range of variability: u0 and v0 fluctuate within approximately ±0.5 ms−1,

while T0 varies only between −0.0003 K and 0.0005 K. To maintain focus, the following discussion limits reference to the

neutral case and to aggregated metrics that can be directly compared to the convective case. Readers interested in a more

detailed treatment of the neutral wake are referred to Appendix A.330

Because the turbine wakes are strongly inhomogeneous, the correlation functions derived from simulation data cannot be

expressed in simplified, stationary form. Instead, they depend explicitly on the locations of both points r and r′, requiring the
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Figure 7. Convective simulation showing an instantaneous snapshot of the flow (top left) at hub height, time average field u (top right), time

series of spatial average velocity u0 (bottom left), and the purely fluctuating component u′ (bottom right).

Figure 8. Neutral simulation showing an instantaneous snapshot of the flow (top left) at hub height, time average field u (top right), time

series of spatial average velocity u0 (bottom left), and the purely fluctuating component u′ (bottom right).
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correlation function to be computed independently for every pair in the domain. As a result, each component of the covariance

tensor becomes a full M ×M field, where M is the number of grid points in the domain.

A representative set of correlation functions for the convective turbine case is shown in Fig. 9. Each subplot visualizes335

the correlation between the point marked in green with every other point in the domain, located along y = 0 and positioned at

x/D ∈ [−1,0,1,2]. The color scales are normalized independently for each reference location to better highlight local structure

and scale.

Figure 9. Examples of the correlation functions for the convective wind turbine wake case. The central point (r) for each plot is indicated

with a green marker. Vertical dashed gray lines indicate transects for which profiles are compared in Fig. 11

.

The autocorrelation Cuu exhibits an order of magnitude increase from the inflow to the wake: While fluctuations up-

stream are weakly correlated with maximum values around ±0.4 m2s−2, near-wake regions reach peak correlations exceeding340

±2.5 m2s−2, reflecting the emergence of coherent, periodic fluctuations induced by the rotor. Notably, the contours of Cuu

reveal the spatial imprint of the wake, with clear anticorrelation between the wake and upstream flow. At x = 2 (one rotor
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diameter downstream of the actuator disc), the correlation structure across the wake is asymmetric: One edge of the wake re-

mains positively correlated with the centerline, while the opposite side exhibits negative correlations – an imprint of rotational

asymmetry induced by the turbine. In contrast, Cvv – the autocorrelation of the cross-stream velocity component – shows a345

broader correlation length scale in the inflow and much weaker correlations within the wake. For the points within the wake

highlighted in the second row of Fig. 9, Cvv appears nearly isotropic but decays rapidly, indicating short-lived and small-scale

fluctuations.

The cross-correlations Cuv capture the intricate coupling between streamwise and cross-stream velocity components and

highlight features that are particularly challenging for simplified models to replicate. The most significant correlations cluster350

around the rotor disk, where Cuv > 0 for y > 0 and Cuv < 0 for y < 0. This antisymmetric pattern points to the bulk flow

rotation introduced by the rotor and continues to shape local velocity interactions downstream. Temperature correlations, CTT ,

show fundamentally different behavior than the velocity fields. Despite the strong inhomogeneity in velocity, CTT remains

spatially consistent across the domain, with little indication that the presence of the turbine significantly alters the magnitude

or structure of thermal fluctuations. This suggests that the turbine’s impact is largely mechanical and that thermal perturbations355

are governed by broader boundary layer processes.

To complement the LES-based correlation functions, modeled correlation functions were again constructed using the an-

alytical form in Eq. (8). Unlike the precursor case – where the model parameters were tuned to minimize the error between

analytical and numerical correlations – here the parameters were selected to minimize the median NRMSE between retrieved

and simulated fields. This shift in focus reflects the goal of improving retrieval fidelity rather than exact reproduction of the360

underlying statistics. Model parameters for the actuator disc simulation cases are listed in Table 3 under the “Turbine Cases”

columns.

Figure 10 shows the resulting modeled correlation functions for the convective turbine case. The optimized length scales are

uniformly smaller than those derived for the precursor flows. This contraction in spatial coherence likely reflects the smaller

turbulent length scales present within and around the wake.365

To aid visual comparison between the correlations, Fig. 11 contrasts cross sections of the correlation functions Cuu, Cvv ,

and CTT at various streamwise locations with correlation functions from the precursor (Fig. 2) and the NRMSE-minimizing

modeled correlations (Fig. 10) for both the convective and neutral cases. Cuv is not shown in the figure, as the model forces this

component to be zero along horizontal and vertical transects that include r, which makes it difficult to compare to the results

computed from simulations.370

Correlations Cuu and Cvv (left and middle columns, respectively) show close agreement between the numerical and modeled

correlations upstream of the rotor plane, for transects at x/D ≤ 0, in both stability regimes. In contrast, the correlation functions

in the wake region differ substantially in both magnitude and structure. The periodic forcing imposed by the rotor blades,

represented as a radially distributed body force in the actuator disk model, leads to enhanced spatial coherence in velocity

fluctuations, particularly in the near wake, x/D ≲ 3.375

Similar to the observations in Placidi et al. (2023), the largest peaks in Cuu and Cvv are observed directly downstream of the

rotor hub, centered at y/D = 0. Secondary peaks occur along the horizontal edges of the rotor disk, between y =±D/2 and
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Figure 10. Modeled correlation functions for the convective case optimized to minimize reconstruction error, ε, in the convective turbine

simulation.

y =±D, and exhibit antisymmetric deviations from the homogeneous distribution. This antisymmetry reflects the rotational

influence introduced by the rotor, which deflects low-momentum flow upward toward hub height on one side (y < 0) and draws

high-momentum flow downward on the opposite side (y > 0). As turbulence within the wake mixes the flow, these secondary380

peaks diminish and the correlation structure becomes more isotropic, approaching that of the precursor. The secondary peaks

in Cuu are more pronounced in the convective case than in the neutral case.

The shape and magnitude of CTT remain much closer to those predicted by the precursor and the analytical model, even in

the presence of the rotor. The rotor’s influence on temperature fluctuations is comparatively weak, and the resulting correlation

functions are nearly isotropic throughout the domain. Atmospheric stability still exerts a significant influence on CTT . The385

convective case exhibits a substantially larger correlation length scale than the neutral case, consistent with the stronger vertical

mixing associated with buoyancy-driven turbulence.

Figure 12 compares the NRMSE of retrievals û′ using the three sources of covariance information: heterogeneous correla-

tions from the turbine LES (left), homogeneous correlations from the precursor simulations (center), and analytical covariance

models (right). As in Fig. 5, darker colors indicate retrievals based on fewer successive frames, Nf , and lighter colors cor-390

respond to retrievals incorporating more frames. For all covariance sources, the width of the NRMSE distributions decreases

with increasing Nf , with Nf = 0 exhibiting the broadest range. Distributions for v′ and T ′ are omitted in Fig. 12 for clarity

and brevity.

Figure 13 shows the median NRMSE values for u′ as a function of Nf , with the convective case presented in the top row

and the neutral case in the bottom row. Each subplot includes three trends: retrievals using covariances from the turbine LES395

(green), the precursor simulations (purple), and the analytical model (red). Consistent with trends observed in the precursor
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Figure 11. Comparison of correlation functions from the convective (top) and neutral (bottom) turbine simulations at various streamwise

locations. Cross sections of the correlation functions Cuu (left), Cvv (center), and CTT (right) are compared to the respective homogeneous

correlations from the precursor (red) and analytical model (black).

Figure 12. Distributions of the reconstruction error for AT retrievals of the u′ component of velocity considering the convective (top row)

and neutral (bottom row) flow cases. Error distributions correspond to use of the numerical correlation functions (left column), correlations

from the respective precursor flows (center), and the modeled correlation functions (right column).

analysis, using heterogeneous covariance estimates from the turbine simulations yields the lowest median NRMSE up to

Nf = 4. For Nf > 4, the analytical covariance model yields lower retrieval error than the numerical covariances, despite not

explicitly capturing the wake heterogeneity. This crossover may be attributed to the improved conditioning of the mapping
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operator A when based on smoother, parameterized correlation functions, and the accumulation of information from multiple400

successive observations that attenuate the effects of model mismatch.

Figure 13. Median values of the NRMSE for u′ (left), v′ (center), and T ′ (right). The top row corresponds to convective atmospheric

conditions and the bottom row shows results for a neutral ABL. Each plot compares NRMSE of the retrievals when defining A with the

analytical models (purple), the homogeneous correlation functions from the precursors, or the heterogeneous correlation functions from the

turbine simulations.

In both the convective and neutral turbine cases, the homogeneous estimate for covariances consistently produces higher

NRMSE for û′. This trend does not hold for retrievals of the spanwise velocity fluctuations, v̂′. While the heterogeneous

covariance estimates yield a lower median NRMSE than the analytical model at low values of Nf , as seen for û′, the precursor

estimates are approximately equal to, or better than, either of the other sources. This result is consistent with the selected cross405

sections of Cvv(r,r′) shown in Fig. 11 (second row), where the spanwise velocity correlations are well approximated by the

homogeneous precursor correlations shown in Fig. 2. Although the magnitude of Cvv varies by a factor of 2 depending on the

choice of r, its spatial structure is approximately preserved in the homogeneous model.

The median NRMSE for retrievals of temperature fluctuations, T̂ ′, show the most deviation from the monotonic decrease in

retrieval error trend. In this case, the median NRMSE increases substantially for both the heterogeneous and analytical corre-410

lation functions when using small ensembles of snapshots. Notably, the zero-lag case (Nf = 0), corresponding to a stochastic

inversion that does not include time dependence, outperforms low-Nf ensemble approaches. After reaching a maximum, the

median NRMSE begins to decrease again with increasing Nf , at Nf = 1 for the heterogeneous case, and Nf = 2 for the

analytical model in the convective case.

Temperature retrievals also exhibit the largest discrepancy in median NRMSE between the convective and neutral stability415

cases. This difference arises from the boundary conditions used in the simulations. In the neutral ABL case, the imposed

surface heat flux is set to zero, resulting in negligible kinematic heat flux and correspondingly weak temperature fluctuations

on the order of 10−4 K. In contrast, the convective ABL case supports much stronger temperature fluctuations, several orders

of magnitude larger, which are more amenable to retrieval. This is most clearly illustrated in the distributions of NRMSE for
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the modeled temperature retrievals: The convective case converges to a median NRMSE near 1.0, while the neutral case shows420

values exceeding 300.

Figure 14. Comparison of the simulated streamwise and spanwise Reynolds normal stresses, the in-plane Reynolds shear stress, and the

temperature variance (from top), to the AT retrievals for the convective case

One of the key advantages of AT over other remote sensing methods for wind energy is its ability to resolve fluctuating veloc-

ity and temperature fields. To evaluate the quality of retrievals produced using the methods explored here, Fig. 14 compares the

estimated in-plane Reynolds stresses and temperature variance to their counterparts from the LES (left column). All estimated

variance fields qualitatively match the LES results, although each covariance model exhibits unique features. Retrievals using425

heterogeneous covariances derived from the turbine simulations (second column) show excellent agreement with the LES for

u′2, v′2, and u′v′. However, the temperature variance T ′2 is overestimated along the acoustic signal travel paths. The estimate
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of u′2 from the heterogeneous model also captures fine-scale structures around and downstream of the rotor that are absent

from the fields reconstructed using precursor or analytical models.

Retrievals based on the precursor-derived correlation functions exhibit vertical striations in all variance estimates, which430

may arise from mismatches between the precursor and turbine flow statistics. This is most evident in v′2 and u′v′, where the

pattern suggests a spatial aliasing effect due to correlation function inaccuracies.

Retrievals using analytically modeled covariances (right column) reproduce the gross structure of all variance fields and

generally agree with LES in magnitude. However, the Gaussian form of the analytical kernel leads to an apparent low-pass

filtering effect, smoothing out small-scale structures that are evident in the LES. An additional limitation of the analytical435

covariance model is its inability to recover accurate estimates of fluctuations near the domain boundaries, far from the acoustic

travel paths. This limitation has been noted in prior AT studies (e.g., Vecherin et al., 2006; Hamilton and Maric, 2022; Maric

et al., 2025) and underscores the importance of sensor placement in AT system design.

Among all quantities, the temperature variance T ′2 (bottom row of Fig. 14) shows the greatest deviation from the LES.

As discussed previously, temperature fluctuations in this convective case are largely decoupled from the dynamics of the440

rotor, and the temperature variance field is nearly isotropic. However, most AT-based estimates of T ′2 significantly exceed the

LES values, except those derived from the analytical model. More importantly, both the heterogeneous and precursor-based

covariance estimates introduce artifacts aligned with the acoustic paths, manifesting as spatially localized overestimates in

temperature variance.

To quantify the accuracy of the AT retrievals, Fig. 15 compares the horizontal TKE (TKE = (u′2 + v′2)/2) from the convec-445

tive LES (top left) to the AT retrievals using the heterogeneous numerical covariance, the homogeneous numerical covariance

from the precursor, and the analytical model. As for the variances in Fig. 14, the TKE estimated with AT is generally lower

than the equivalent field from the LES. This relationship is highlighted in the linear regressions in the bottom row of Fig. 15,

where the slope of the regression line is less than 1 for all retrieval methods. While the slope for the heterogeneous covariance

retrievals is closest to 1, the slope for the homogeneous covariance from the precursor is significantly lower, indicating that450

the AT retrievals are not able to capture the full range of TKE in the LES. When using the analytical model, the slope is 0.79,

better than the precursor correlations but still short of the heterogeneous case. There is also a small tail near the bottom-left

corner of the linear regression corresponding to the corners of the AT domain where the analytical model is unable to make

accurate estimates of any of the fluctuating fields.

To evaluate AT’s ability to resolve wind turbine wake turbulence, Fig. 16 compares the spectra and coherence of streamwise455

velocity fluctuations in the inflow (left column) and wake (right column) regions of the AT retrieval domain. Spectra are

calculated using Welch’s method, defined as

Pu′u′(f) =
1
L

K∑

k=1

1
N

∣∣∣∣∣
N∑

n=1

u′k(n)e−i2πfn/N

∣∣∣∣∣

2

, (15)

where K is the number of segments, L = 1024 samples is the number of points in the fast Fourier transform, N = 2048 is

the length of each segment, and u′k(n) is the k-th segment of the time series. A uniform window function is applied to each460

segment, zero-padded to mitigate convolution error introduced for finite time series.
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Figure 15. Comparisons of the TKE from the convective LES (top right) to the AT retrievals using the heterogeneous numerical covariance,

the homogeneous numerical covariance from the precursor, and the analytical model (top row, from left). The bottom row compares respective

TKE estimates to those from the LES, along with linear fit slope and coefficient of restitution.

Spectra are spatially averaged in the two subregions shown in Fig. 16, with the inflow region defined by x/D <−0.5 and

the wake region defined by x/D > 0.5 and |y/D|< 1. The inflow spectra exhibit lower power across all frequencies compared

to the wake region, consistent with the lower TKE upstream of the turbine. The LES case shows a clear inertial subrange from

approximately 0.01 Hz to 1 Hz. All retrievals match the LES spectra well up to approximately 0.2 Hz. The heterogeneous co-465

variance retrievals maintain agreement up to 2 Hz, outperforming the other methods. The analytical covariance model diverges

from the LES most rapidly, showing significant deviation by 0.5 Hz. Above 2 Hz, the precursor-based retrieval shows slightly

better agreement with the LES than the heterogeneous retrieval, suggesting that precursor correlations may better capture high-

frequency inflow turbulence. In the wake region, similar trends are observed. The heterogeneous covariance model shows the

best agreement up to 2 Hz. The precursor-based model again slightly outperforms the analytical model above 2 Hz, although470

both deviate from the LES more rapidly than the heterogeneous model.

Coherence between simulated and estimated streamwise velocity fluctuations quantifies the frequency-resolved agreement

between the two signals and is computed as:

Suû(f) =
|Pu′û′(f)|2

Pu′u′(f)Pû′û′(f)
, (16)

where Puû′ is the cross-spectral density and Pu′u′ and Pû′û′ are the power spectral densities of the simulated and estimated475

fields, respectively. Coherence spectra are shown in the bottom row of Fig. 16, for the inflow and wake regions. At the lowest
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Figure 16. Spectra (top row) and coherence (bottom row) for the inflow (middle column) and wake (right column) subregions of the AT

retrieval domain (left) for the convective case.

frequencies, Su′û′ ≈ 0.15, indicating that AT retrievals fail to capture some low-frequency fluctuations in both inflow and wake

regions. This is consistent with the reduced TKE observed in the AT reconstructions (Fig. 15). Coherence spectra reveal clear

differences in the dynamic reconstruction ability of the covariance models. The heterogeneous covariance model consistently

shows the best coherence with the LES between 0.1 Hz and 2 Hz. The analytical model performs the worst in both inflow and480

wake regions, underestimating coherence across the full frequency range.

5 Discussion and conclusions

This study evaluates the fidelity of different covariance models in reconstructing fluctuating velocity and temperature fields

using TDSI in wind turbine wakes in simulated ABLs. For both convective and neutral cases, heterogeneous covariance esti-

mates from the turbine simulations yield the most accurate retrievals overall, particularly for streamwise velocity fluctuations485

u′ and TKE. Analytical covariance models offer a consistent, lower-complexity alternative, but their performance varies across

flow regimes and field variables.

However, each source of covariance estimates have their own limitations. Retrievals based on heterogeneous or precursor

covariances exhibit numerical artifacts – particularly in temperature variance estimates – that align with the acoustic travel

paths. These artifacts reflect strong local anisotropies in the structure of the correlation functions and sensitivity to atmospheric490
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stability. This behavior underscores the importance of accurate and representative covariance estimates in the reconstruction

process, especially for thermodynamic variables.

The analytic covariance models, based on a Gaussian distribution, are each associated with a single length scale and standard

deviation per variable. A more expressive covariance model, e.g., with directionally resolved length scales (lu,x vs. lu,y) or even

heterogeneous parameters (e.g., lϕ = f(r)), could better represent flow features for wind turbine wakes and other industrial495

flows. Such refinements are expected to improve retrieval accuracy, particularly in strongly sheared or anisotropic flow regimes.

However, care must be taken to ensure that additional model complexity does not compromise the generality of the method

across atmospheric conditions or introduce prohibitive computational costs.

The analytical covariance models pursued in the traditional TDSI also makes simplifications that should be revisited. For

example, in the work by Vecherin et al. (2006), the authors assume that temperature and velocity fluctuations are not correlated,500

i.e., CuT = CvT = 0. In stratified ABLs, this simplification is not expected to hold, especially in configurations that seek

vertical velocity fluctuations. The implementation of TDSI undertaken here also assumes that the correlation tensor is inherently

symmetric. However, the tangential forcing introduced to the flow by a turbine rotor or actuator disk leads to a field where

Cuv ̸= Cvu. These considerations would be a straightforward adaptation of the conventional TDSI and are expected to lead to

improved representation of the coherent turbulence in a wind turbine wake.505

Practical implementation of AT for field measurements must consider both retrieval accuracy and computational efficiency.

The matrix A used in the retrieval scales with the number of ensemble frames Nf and the size of the spatial domain. While

larger Nf typically reduces NRMSE, constructing A becomes increasingly expensive at high Nf . Heterogeneous numerical

covariances can strike a balance when available, offering improved accuracy over analytical models and often outperforming

precursor-based covariances at moderate Nf . However, computing A via path integrals of heterogeneous correlation functions510

requires simulations or other a priori estimates of the covariance structure, which may not be feasible in all scenarios.

The error metric, NRMSE, used in the current work provides a relative measure of retrieval accuracy with respect to the

variability in the LES reference fields. It does not account for instrument noise, spatial resolution limits, or other uncertainties

in physical measurements. Additional validation against real AT datasets would be necessary to quantify retrieval uncertainty

in practical deployments.515

Blending analytical models with numerically estimated anisotropies or introducing adaptive covariance models conditioned

on local flow statistics may extend performance across regimes. The central approach to TDSI, mapping observations onto a

model space by way of a linear operator, is also amenable to alternative inversion strategies. Other methods to estimate A,

such as projection of the observed time-of-flight onto basis functions from dynamic mode decomposition, or scientific machine

learning approaches, could further enhance retrieval accuracy and efficiency. The literature has already shown the success of520

some alternative strategies including an unscented Kalman filter (Kolouri et al., 2013) and a radial basis function approach

(Rogers and Finn, 2021). These improvements will be especially relevant for field-scale deployments near utility-scale wind

turbines, where many of the assumptions in AT theory begin to break down. In future systems, flow heterogeneity, stratification,

and sensor layout may all vary significantly, necessitating robust and generalizable inversion strategies. The performance of the
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heterogeneous covariance model in this study, especially in reconstructing the wake structure and dynamics, indicates strong525

potential for field application when supplemented by high-resolution LES or observational surrogates.
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Appendix A: Supporting Data – Neutral Case

The following figures supplement the main results by presenting correlation structure, reconstructed field statistics, and spectral

diagnostics for the neutral ABL case.

Figure A1 shows numerically derived two-point correlation functions for the neutral precursor simulation, which serves as530

the basis for the homogeneous covariance model. The domain used for retrievals is indicated by the dashed outlines. These fields

reveal broad, nearly isotropic structures consistent with weaker thermal stratification and more uniform turbulence generation.

Figure A1. Numerically derived two-point correlation functions for the neutral precursor. Dashed region indicates the domain of the fluctu-

ating field retrievals.

Figure A2 presents analytical correlation models tuned to match the precursor correlations in Fig. A1. While the Gaussian

form captures the general structure, differences in anisotropy and spatial decay – especially for u′v′ and T ′2 – highlight the

limits of the analytical model’s expressiveness.535

Figure A3 illustrates examples of the full tensor correlation field reconstructed from the turbine simulation. These highlight

directional differences and localized anisotropy introduced by the wake, particularly in the streamwise correlations.

Figure A4 compares the LES-derived variances of the streamwise and spanwise velocity components, their covariance, and

the temperature variance to the corresponding AT retrievals. Compared to the convective case, the neutral results show higher

bias in the temperature variance and more spatially uniform retrieval errors across all variables.540

Figure A5 presents reconstructed TKE from all three covariance models. While the heterogeneous numerical covariance

model again yields the most accurate reconstruction, the differences among the models are smaller than in the convective case.
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Figure A2. Modeled correlation functions from Eq. (8) for the neutral case tuned to match numerical correlation functions for the neutral

precursor shown in Fig. A1. Model parameters correspond to those listed in Table 3.

The linear regression slopes and coefficients of restitution further indicate a general underestimation of TKE by all retrievals

in this lower-energy regime.

Finally, Fig. A6 shows inflow and wake region spectra (top row) and coherence (bottom row) of the streamwise velocity545

fluctuations. Retrievals in the neutral case show stronger low-frequency attenuation compared to the convective case, with

coherence values remaining below 0.2, even at the lowest frequencies. Nevertheless, relative model performance trends are

consistent: heterogeneous covariance models provide the best spectral match, while the analytical model shows significant

roll-off above 0.5 Hz.

Collectively, these results demonstrate that while TDSI is capable of resolving the main features of the neutral wake dy-550

namics, reconstruction quality is reduced compared to the convective case, particularly for temperature fluctuations and low-

frequency turbulent motions.

A mesh resolution study was conducted to assess the neutral turbulent boundary layer with the stand-alone Vestas V27

turbine, represented as a Joukowski actuator disk model, for both horizontally periodic and precursor-generated simulations.

In all cases, the turbine is positioned at (x,y) = (1100,1600) m. The resolution increases through the addition of static mesh555

refinement blocks, with three mesh configurations containing two, three, and four refinement levels. Each refinement zone

reduces the grid spacing ∆ by half in all three directions.

For horizontally periodic runs, refinement blocks in the range 0 < n < nmax, where nmax correspond to the maximum

refinement for each grid, spanning the entire domain length in the axial and lateral directions. In the vertical direction, these

blocks extend to a height of 216 m from the ground. With the turbine included, an additional refinement zone at the nmax level560
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Figure A3. Examples of the correlation functions for the neutral wind turbine wake case. The central point (r) for each plot is indicated with

a green marker. Vertical dashed gray lines indicate transects for which profiles are compared in Fig. 11

.

spans −3D to 10D in the streamwise direction, ±3D in the lateral direction, and up to 189 m in height. The resulting grid

spacings at the finest level are 2.5 m, 1.25 m, and 0.625 m for the three mesh configurations, providing 10.8, 21.6, and 43.2

points across the turbine diameter, respectively. For precursor-generated simulations, initial runs without the turbine use n = 1

refinement (∆ = 5 m), while turbine simulations employ nmax refinement levels.
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Figure A4. Comparison of the simulated variances of the streamwise and spanwise velocity components, their covariance, and the variance

of temperature (from top), to the AT retrievals for the neutral case.
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Figure A5. Comparisons of the TKE from the neutral LES (top right) to the AT retrievals using the heterogeneous numerical covariance,

the homogeneous numerical covariance from the precursor, and the analytical model (from left). The bottom row compares respective TKE

estimates to those from the LES, along with linear fit slope and coefficient of restitution.

Figure A6. Spectra (top row) and coherence (bottom row) for the inflow (middle column) and wake (right column) subregions of the AT

retrieval domain (left) for the neutral case.
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