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Abstract. Recent advancements in the use of active wake mixing (AWM) to reduce wake effects on downstream turbines open
new avenues for increasing power generation in wind farms. However, a better understanding of the fluid dynamics underlying
AWM is still needed to make wake mixing a reliable strategy for wind farm flow control. In this work, a spectral proper
orthogonal decomposition (SPOD) is used to analyze the dynamics of coherent flow structures that are induced in the wake
through blade pitch actuation. The data are generated using the Exawind software suite to perform a large eddy simulation of an
NREL 2.8 MW turbine operating in a stable atmospheric boundary layer. SPOD tracks the modal behavior of flow structures
from their generation in the turbine induction field, through their growth in the near wake region, and to their subsequent
evolution and energy transfers in the far wake. SPOD is shown to be a useful tool in the context of AWM because it translates
the wavenumber and frequency inputs to the turbine controller to structures in the wake. A decomposition of the radial shear
stress flux in the wake is also developed using SPOD to measure the contribution of coherent flow structures to mean flow
turbulent entrainment and wake recovery. The effectiveness of AWM is connected to its ability to excite inherent structures in
the wake of the turbine that arise using baseline controls. The effects of AWM on blade loading are also analyzed by connecting
the axial force along the blade to the SPOD analysis of the turbine induction field. Lastly, the performance of different AWM

strategies is demonstrated in a two-turbine array.
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1 Introduction

Interactions between wind turbines and surrounding wakes often result in reduced power generation and increased structural
loads for downstream turbines in a wind farm (Nygaard, 2014; El-Asha et al., 2017). Power losses are particularly problematic

in stable atmospheric boundary layers (ABLs) because of the increased persistence of wind turbine wakes in these conditions.
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Several wind farm flow control (WFFC) methods have been proposed in the last decade to reduce the negative impacts of
wake momentum loss in wind farms, including turbine derating, wake steering, and wake mixing (Meyers et al., 2022). These
methods rely on static or dynamic adjustments to the operation of upstream turbines, away from their optimal set-point, for
the benefit of downstream turbines. This paper focuses on the technique of active wake mixing (AWM), which is a particularly
promising approach for wake mitigation as it provides a mechanism for introducing new momentum into a wind farm. Specif-
ically, AWM aims to excite coherent structures in the wake through dynamic oscillations in the turbine’s control parameters to
enhance the entrainment of higher velocity flow into the wake, resulting in faster wake recovery.

As with any WFFC strategy, AWM introduces power and load trade-offs to the wind farm optimization problem. Recent
experimental and numerical results indicate that AWM can improve the power production of turbine arrays anywhere from
1% to 30% (Frederik et al., 2020c, b; Yilmaz and Meyers, 2018; Taschner et al., 2023; Frederik et al., 2020a), at the cost of
increasing loads on upstream turbines due to pitch actuation (Frederik and van Wingerden, 2022). These results vary signif-
icantly with wind farm layout, turbine model, and ABL condition. Additionally, the design space for AWM is considerably
large. While wake steering, for example, depends on setting the yaw angle, common implementations of AWM involve sev-
eral relevant design parameters to control the blade pitch fluctuations, such as the pitch amplitude, forcing frequency and
wavenumber, clocking angle, and waveform of the pitch signal (see Cheung et al. (2024a) and Section 2). Given the complex
interactions between wind conditions, wind farm layout, and turbine control parameters, we therefore cannot expect to rely
solely on parametric studies to optimize AWM. Instead, a deeper understanding of the physical mechanisms behind the power
and load trade-offs of AWM is necessary to effectively navigate the design space.

AWM introduces periodic oscillations in the turbine’s control parameters, such as the blade pitch, to generate large-scale
coherent structures in the wake. Several approaches have been developed in the recent literature to analyze the dynamics
induced by these large-scale structures and their connection to the performance of different AWM strategies. Brown et al.
(2025) analyzed the mean flow kinetic energy budget through a control volume analysis around the wake of an actuated turbine.
This analysis was used to explain the power increases for a two turbine array reported by Frederik et al. (2025). It was shown
that AWM enhances the turbulent and, in some cases, the mean-flow entrainment of momentum into the wake, and that veer
has a large impact on the relative performance among AWM strategies. Korb et al. (2023) noted the importance of turbulent
entrainment as well, but also showed that helical structures in particular can spread and deflect the wake deficit, leading to
faster wake recovery. Munters and Meyers (2018) used an adjoint framework to determine an optimal perturbation to impart
on the wake, which resembled an axisymmetric flow structure that enhanced existing vortical structures in the non-actuated
wake. Cheung et al. (2024a) introduced a normal mode representation of the coherent wake structures and used linear stability
analysis to quantify the growth characteristics of the initial flow disturbances in the wake.

Despite these advancements, a complete understanding of the performance differences between AWM strategies has not been
established, including their impact on wake dynamics and relationship to ABL characteristics, which limits the applicability of
wake mixing technologies in practice. Fortunately, large-scale coherent structures are a well studied phenomenon in the broader
context of turbulent flows (Hussain and Reynolds, 1970; Robinson et al., 1991; Ho and Huerre, 1984; Crow and Champagne,

1971; Fuchs et al., 1979), and several techniques have been developed to extract, quantify, and model coherent flow features
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(Rowley and Dawson, 2017; Taira et al., 2017). The spectral proper orthogonal decomposition (SPOD), in particular, has proven
to be a useful representation of space-time coherence in statistically stationary flows (Towne et al., 2018). Since its introduction
by Lumley (1967), SPOD has been applied to a number of turbulent flows, including turbulent boundary layers (Tutkun and
George, 2017), jets (Citriniti and George, 2000; Gudmundsson and Colonius, 2011), and wakes (Tutkun et al., 2008; Araya
et al., 2017). In the context of AWM, Cheung et al. (2024a) demonstrated in a canonical flow that SPOD could be used to
track the modal growth of instabilities in the wake. Other related data-driven methods also exist, such as space-only POD
and Dynamic Mode Decomposition (DMD), which provide spatial and temporal orthogonalizations of the flow, respectively.
DMD has recently been used to analyze flow structures (Muscari et al., 2022) and model wake dynamics (Gutknecht et al.,
2023) within the context of AWM. While these methods are effective at identifying either spatially coherent structures or
dynamically meaningful temporal structures in the flow, the SPOD identifies structures that evolve coherently in both space
and time. Furthermore, as demonstrated by Towne et al. (2018), the SPOD structures correspond to an ensemble-average of
DMD structures, so that the SPOD structures are both dynamically significant, unlike those identified by space-only POD, and
provide an optimal description of the energy content in the flow.

In this paper, the applicability of SPOD to AWM is strengthened further. A formulation of SPOD is presented that translates
the wavenumber and frequency inputs to the turbine controller to coherent structures in the flow. The coherent structures
induced by AWM are then analyzed from the turbine induction field to the far wake region using high fidelity large eddy
simulation (LES) data of a wind turbine operating in stable ABL conditions. SPOD is used to quantify the energetic structures
in the wake for each AWM strategy, as well as their interactions with other large-scale wake structures. Additionally, the
SPOD analysis is connected to conventional wake mixing metrics through a modal decomposition of turbulent entrainment
statistics. This formulation provides insights into the wake recovery mechanisms of different AWM strategies and their relative
performance, which is subsequently demonstrated in a two-turbine array. The flow structures that arise in the wake of a baseline-
operated turbine are also analyzed through SPOD and connected to the performance of different AWM strategies.

The remainder of this paper is organized as follows: The methodology for the paper is discussed in Section 2, including
the LES specifications, ABL precursor generation, turbine model, implementation of AWM in the turbine controller, and
SPOD formulation. The results from the SPOD analysis are then discussed in Section 3.1 for several AWM strategies, which
are connected to conventional wake mixing metrics in Section 3.2 and turbine performance metrics in Section 3.3. Finally,

conclusions are provided in Section 4.

2 Methodology
2.1 LES formulation

Large eddy simulations of a single wind turbine are performed using the ExaWind Nalu-Wind solver. Nalu-Wind employs an
unstructured second-order control-volume finite-element discretization in space and a second-order backwards-differentiation
scheme in time to solve the implicitly-filtered incompressible Navier-Stokes equations. Additional details on the Nalu-Wind

solver and its application to wind turbine simulations is given by Sprague et al. (2020) and Domino (2015). A one-equation
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Figure 1. (Left) 3D visualization of the flow for the pulse case with A = 1.25° pitching amplitude. Isosurfaces of the Q-criterion (Q = 0.05)
are shown on a subset of the domain, colored by spanwise vorticity. Mid-planes of the wake are projected to the domain boundaries and show

streamwise velocity. (Right) Contours of streamwise velocity for each AWM strategy on the hub height plane.

model for the evolution of the subgrid turbulent kinetic energy (TKE) is used to represent the subgrid-scale effects on the
resolved flow (Davidson, 1997). The simulation domain ranges from O m <z < 3000 m, 0 m <y <750 m, and O m < z <
960 m in the streamwise, lateral and vertical directions, respectively. A three-dimensional visualization of the flow on a subset
of the domain is shown in Fig. 1. Three distinct levels of isotropic resolution are used to discretize the domain around the
turbine: a 5 m background mesh near the domain boundaries; a 2.5 m refinement zone that extends 10D in the streamwise
direction and 1.8D in the lateral and vertical directions from the domain center; and a 1.25 m refinement box surrounding the
turbine, extending 2D upstream and downstream of the turbine, and 1D in the vertical and lateral directions from the turbine’s
hub location.

The streamwise and lateral boundary conditions are defined by an inflow condition extracted from an initial precursor simu-
lation. The target conditions for the precursor simulation are derived from stable ABL measurements taken in 2021 concurrent
with the American Wake Experiment (AWAKEN) campaign (Moriarty et al., 2024). Specifically, the atmosphere was sampled
at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) C1 site (Facility,
2024) using a Doppler profiling lidar and CO» flux stations. A number of filters were applied to isolate 30-minute bins cor-
responding to high-quality measurements and periods of likely interest for wake control. Balancing the need for appreciable
sample size with that for retaining the realism of a specific, observable ABL condition, the latter filters isolated a wind condi-
tion with a frequency of occurrence: wind speed between 6 and 6.7 m/s, wind direction ranging from 100° to 260° (assuming a

clockwise definition of wind direction with 0° corresponding to northerly flow), and turbulence intensity (TI) from 0% to 7%.
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Figure 2. Horizontally averaged profiles of the simulated and measured (a) wind speed, (b) turbulence intensity, and (c) wind direction.

The 1200 minutes of (non-contiguous) data that meet the above criteria are used to establish target statistics for the precursor
simulation, and these are a hub-height wind speed of 6.4 m/s, a TI of 4.4%, a shear exponent of 0.19, and 17° of veer over the
rotor disk. The low TT and high veer in this target are congruent with the southerly, stable ABL conditions typically observed
at the SGP site (Krishnamurthy et al., 2021), and these conditions offer a strong opportunity to demonstrate a use-case for
wake-control technology.

The surface roughness height (0.0015 m) and cooling rate (4.16 x 10~> K/s) parameters are calibrated in the precursor
simulation of the ABL to ensure good agreement between the simulated and measured flow statistics; this calibration results
in inflow data with an average hub-height wind speed of U, = 6.4m/s, a TI of 3.5%, a shear exponent of 0.17, and 9° of
veer over the rotor disk. Notably, the simulated ABL exhibits less veer than the measurement data, and this is due to the
numerical forcing scheme used to drive the ABL towards the target statistics (primarily TI and shear), which limits the amount
of simulated veer that can be achieved while maintaining a realistic ABL velocity profile; such difficulty achieving high veer
was also encountered in Brown et al. (2025) and Frederik et al. (2025). Alternate ABL forcing schemes, such as those which
incorporate meso-scale information in a direct assimilation approach, may be able to match the veer and wind speed profiles,
but are not studied here. In addition to the above summary statistics, a good agreement between the vertical profiles of the
simulated and measured ABL is found (see Fig. 2).

The turbine is simulated within the ABL with a time step of At = 0.02 for 1,100s after reaching a steady state. Terrain
effects are not included in either the precursor or the wind turbine simulations, and, instead, a flat lower surface is implemented
using the atmospheric rough wall model from Moeng (1984). A 100m wide inversion layer is applied to the temperature profile
at z = 700 m to reduce perturbations in the flow above this height, and a temperature gradient of 7.5 - 10~# K/m is maintained
at the upper boundary. A potential flow solution is used set the upper boundary condition for the velocity field.

The turbine specifications are provided by the NREL 2.8 MW turbine model (Quon, E. W., 2024), which provides an open-
source representation of a turbine that is similar to those located at the AWAKEN site. The hub of the turbine is located in

the computational domain at (Zpub, Yhub, 2hus) = (1050,375,88.5) m, within the Az = 1.25 m resolution region. The wind
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Figure 3. Specifications of the NREL 2.8MW reference turbine model (Quon, E. W., 2024) including the generator power and rotor thrust
curves (left) and the design parameters (right). The dashed line corresponds to the hub height wind speed for the precursor ABL simulation

used in this study which is situated in region 2 for this turbine.

speed in the precursor ABL simulation at the hub height location corresponds to region 2 for this turbine and also falls within
the relatively constant thrust coefficient region (see Fig. 3). To represent the dynamic response of the turbine, Nalu-Wind is
coupled to the National Renewable Energy Lab’s OpenFAST software suite (National Renewable Energy Laboratory, 2024b),
which has been validated versus measurements of the GE 2.8 MW turbine on which the NREL 2.8 MW turbine is based
(Brown et al., 2024). An actuator line model (ALM) with an isotropic Gaussian spreading function with a spreading parameter
of e/Ax = 2 is used to represent the turbine aerodynamic forces computed in OpenFAST as body forces in the LES (Sorensen
and Shen, 2002). The filtered lifting line correction is applied with an optimal kernel width of £°P* = 0.25¢, where c is the
chord length, to improve the ALM’s representation of the force distribution along the blade (Martinez-Tossas and Meneveau,
2019; Martinez-Tossas et al., 2024).

To implement different AWM control strategies on the turbine, a dynamic blade pitch, ©, is specified on top of the baseline
pitch set point, ©¢. The dynamic blade pitch can be specified using either a normal-mode representation (Cheung et al., 2024a)
or a Coleman-transform representation (Frederik et al., 2020b). Both representations have been implemented in NREL’s refer-
ence open-source controller (ROSCO v2.8.0; National Renewable Energy Laboratory (2024a)), which is coupled to OpenFAST
in the LES. In this work, the normal-mode representation is used because the wavenumber and frequency input to the controller
align directly with the parameters of the SPOD analysis formulated in Section 2.2. Specifically, the dynamic blade pitch for

each blade is specified as

@(t) = 60 (t) + A Z cos(wet - Féoe(t) + (bclock)» (1)
{ro}

where A is the pitching amplitude, w, is the excitation frequency, 6 is the azimuth position of the blade, ¢.jock is the clocking
angle, and kg is an azimuthal wavenumber. The summation in Eq. 1 is over a discrete set of azimuthal wavenumbers. Of
particular importance to this study are the xy and w, parameters, which control the shape and frequency of the flow structures
that are imparted on the wake, respectively. The excitation frequency can be specified through a Strouhal number based on

the inflow velocity, U, and turbine diameter, D, as w, = 27 StUs,/D. A Strouhal number of St = 0.3 is used for all control
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Figure 4. Time series of the blade pitch signal for a single blade for each AWM cases, normalized by the pitching amplitude. One Strouhal
period is shown based on the excitation frequency we.. The black line at © /A = 0 corresponds to the baseline blade pitch signal. The total

pitch travel for a single Strouhal period is also shown for each AWM case.

strategies considered here, as this has been shown in previous studies to align with natural unsteady processes in the wake
and result in good performance for different AWM cases (Frederik et al., 2020c; Munters and Meyers, 2018; Cheung et al.,
2024a). A single Strouhal period based on the inflow velocity and turbine diameter corresponds to 66.15s, which means that
flow structures are generated over much longer periods than a typical rotor period (see Fig. 4). The 1,100s of simulation time
corresponds to over 16 complete Strouhal cycles at St = 0.3.

Four AWM strategies are considered in addition to a baseline case, including a pulse (kg = 0), helix (kg = —1), side-
to-side (kg = £1, ¢clock = 90°), and up-and-down (kg = %1, Pclock = 0°) actuation. Here, positive and negative azimuthal
wavenumbers denote flow structures that rotate in the same and opposite direction of the turbine, respectively (i.e., clockwise
and counter-clockwise when looking downstream). The counter-clockwise helix method is used here, which has been found
to consistently outperform its clockwise counterpart (Coquelet et al., 2024). The pulse forcing is axisymmetric and achieved
through collective pitching of the three turbine blades, while the other AWM strategies rely on individual pitch control to
create a non-uniform thrust force around the rotor disk. In this study, the clocking angle is only relevant for differentiating
the side-to-side and up-and-down actuations, in which case it negates the thrust force in the vertical and horizontal directions,
respectively. For the pulse and helix cases, the clocking angle only determines the phase of excitation and it is arbitrarily set to
90° here. A pitching amplitude of A = 1.25° is primarily used in this study, although other values of A are also discussed.

The blade pitch signal for each AWM case is shown in Fig. 4 over a single Strouhal period. For the up-and-down and side-to-
side cases, a pitching amplitude of A = 1.25° is applied to both the £1 modes. This choice is made to ensure that each mode is
forced with the same pitch amplitude, allowing for a consistent comparison of modal energy and entrainment between modes
and AWM cases in the SPOD analysis developed in Section 2.2. As a result, the total pitch amplitude for the up-and-down and
side-to-side cases is twice that of the pulse and helix cases; however, this corresponds to only an 18% increase in total pitch
travel over the helix case (see Fig. 4). A summary of the AWM parameters is provided in Table 1, and a visualization of the
streamwise velocity on the hub height plane for each AWM strategies is shown in Fig. 1.

The blade pitch fluctuations are designed to induce azimuthal and temporal variations in the blade loading at the wavenum-

bers and frequencies input to the controller. These variations can be examined through the spectrum of the axial force along
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Table 1. Summary of AWM cases and control settings.

Case Name Pitch Amplitude = Azimuthal Wavenumbers  Strouhal Number  Clocking Angle

(4) (ko) (51) (¢clock)
Baseline N/A N/A N/A N/A
Pulse 1.25° 0 0.3 90°
Helix 1.25° —1 0.3 90°
Up-and-down 1.25° +1 0.3 0°
Side-to-side 1.25° +1 0.3 90°

the blade span (Cheung et al., 2024a). The Fourier representation of the axial force, F}, at a particular radial location, r, blade

azimuthal angle, 6, and time, ¢, for a given blade is
(r,kg,w / / Fo(r,0,t)e@tHre0) ggqy. 2)

Given a discrete time series of the axial force at each nodal location along the blade, F(r,t), the blade azimuthal angle is
determined using the instantaneous rotor speed signal, 2, as (¢ 0) + f o t')dt’. Then the Fourier coefficients, F,, are
readily determined by performing a Fourier transform in the time and azimuthal directions.

The blade loading spectra indicate that the prescribed blade pitch fluctuations result in the intended modal response in
the axial loading for each AWM strategy (see Fig. 5). In all cases, the highest periodic loading occurs near the blade-tip at
around 90% of the blade-span. Notably, the kg = 0 actuation exhibits significantly higher periodic loading at St = 0.3 than
the other cases. An increase in the axial force of over 10% is observed at the xy = 0 wavenumber for the pulse actuation
across the majority of the blade span, while the other cases show around a 7.5% increase in their respective modes. There are
contributions to the axial force from wavenumbers other than those directly forced by the prescribed blade pitch fluctuations,
which may result from factors such as the unsteady inflow, the effects of AWM on the turbine induction field, or other controller
specifications. For instance, the non-axisymmetric forcing strategies exhibit a notable increase in the kg = 0 mode, which is
attenuated 2.5% for the up-and-down case in the middle of blade.

To analyze the corresponding wavenumber and frequency content in the wake, an SPOD analysis is formulated in the

following section.
2.2 SPOD formulation

Proper orthogonal decomposition (POD), also referred to as principle component analysis or Karhunen-Loéve decomposition,
is a common data analysis technique that identifies a set of deterministic modes that optimally represent the energy in a
stochastic process. Since its inception by Lumley (1967), several formulations of POD have emerged and been applied to
a wide range of applications (Towne et al., 2018). In this paper, the focus is on spectral POD, which identifies the dominant
coherent structures in a flow through a set of spatial-temporal modes (Picard and Delville, 2000). This differs from a space-only

POD (Sirovich, 1987; Aubry et al., 1988; Ali et al., 2017) by considering the frequency content of the data, which is particularly
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coefficients of the axial force, |Fx |, at St = 0.3 for different azimuthal wavenumbers, k¢, normalized by the mean axial blade loading, |F'z|.

useful in the context of AWM for tracking flow structures that are forced at specific Strouhal numbers. Additionally, a polar
decomposition is used here to represent spatial correlations as in Citriniti and George (2000), and a Fourier transform is applied
in the azimuthal direction so that velocity correlations in the radial direction, 7, are considered at each azimuthal wavenumber,
kg, and frequency, w. This setup allows for the evolution of the forced azimuthal wavenumbers and frequencies that are input
to the turbine controller to be explicitly tracked in the flow, as well as their interactions with other wake structures.

Given a time series of planar velocity field data, the SPOD is defined by the eigenvalues and eigenvectors of the cross-
spectral density tensor, S, which is the time Fourier-transform of the two-point space-time velocity correlation tensor (Towne
et al., 2018). For a statistically stationary flow, the cross-spectral density tensor at a specific frequency, w, and azimuthal
wavenumber, kg, can be expressed as S(r,r") = (4(r, ko,w)u* (1, kg,w)), where @ are the velocity Fourier coefficients, () is
the expectation operator, and * represents the complex conjugate of a scalar or the Hermitian transpose of a tensor (Citriniti and
George, 2000). In this paper, u denotes the fluctuating velocity field, since SPOD typically operates on a zero-mean stochastic

process, and U will be used for the mean velocity field. The eigenvalue problem is then expressed as
[ 80 000" " = M) ). G)

The solution to Eq. 3 is a set of eigenvalues, A, and orthogonal eigenvectors, 1. The eigenvectors represent individual flow

structures and the eigenvalues represent the average TKE of flow that is captured by the eigenvectors. Therefore, the eigenvalues
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can be used to rank the eigenvectors 1,15, 15, - - from most to least energetic across all kg and w such that A\ > Ay > --- >
0. In this sense, the velocity Fourier coefficients, &, can be optimally expanded from the most energetic to the least energetic

structures in the flow as

T Ro,w Za’j 597 T Ro,w ) (4)

where a;(kg,w) = [@(r, ko,w)y](r, ke,w)dr is obtained by projecting the velocity Fourier coefficient onto the j™ eigen-
vector. We can define ;(r, kg,w) = a;j(ke,w)t;(r,Kp,w) as the contribution to the velocity Fourier coefficients from the
jth eigenvector. The real-space velocity field is recovered by performing an inverse Fourier transform in the temporal and

azimuthal directions, i.e.,

u(r,0,t) = Z (r,0,t) [//uj (rykg,w) ’(”99+m)dn9 dw &)

In Eq. 5, u;(r,0,t) denotes the reconstruction of the velocity field in real space from the jth SPOD eigenvector. Similarly, the

velocity can be reconstructed from the leading N eigenvectors by truncating the summations in (4) and (5). More generally, we

10
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across the extent of the streamwise domain, respectively.

denote uy =) jes W (r,0,t) as the reconstruction of the velocity field from a collection of eigenvectors defined by a given
set of integers 7. Further details on the general application of SPOD to fluid dynamics, including its connection to Dynamic
Mode Decomposition (DMD) and resolvent analysis, are provided by Towne et al. (2018).

Given the computational setup in Section 2, SPOD is performed on time series of cross-flow planes extracted from the LES
at multiple streamwise locations ranging from —5 < (& — )/ D < 14 (see Fig. 6). These y-z planes are sampled at a spatial
resolution consistent with the local grid resolution and a frequency of 2Hz over the 1,100s of simulation time. Each planar time
series is divided into nineteen overlapping blocks of data (Ng = 19), and the cross-spectral density is approximated from an
ensemble average of these realizations for each temporal frequency using a windowed Fourier transform in time. The short-
time FFT routine from the SciPy package (Virtanen et al., 2020) is used to perform the padded windowed Fourier transform
in time, providing routines for both forward and inverse transforms, allowing the flow field to be reconstructed in real space

to machine precision using Eq. 4. Each block of data corresponds to 128s of simulation time, with a 64s overlap between
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consecutive blocks. This configuration allows for the resolution of Strouhal numbers down to St = 0.15 within each block.
The SPOD parameters discussed here were primarily chosen to maximize the number of blocks over the 1,100s time interval,
while also ensuring good temporal resolution of the forcing Strouhal number, 0.3.

The velocity field is transformed to a polar grid with 256 uniformly spaced points in both the radial, r € [0, L], and az-
imuthal, 6 € [0,27), directions. The radial extent of the flow region considered is taken to be L = 1.4R, which brings the flow
region to within a Im clearance from the ground at its lowest point. This radius is found to be sufficient for encompassing the
wake near the turbine; however, the wake does spread anisotropically downstream beyond the extent of this radial domain (see
Fig. 7a). Thus, only the wake dynamics within a 1.4 R circular region are captured by the SPOD analysis here. This choice is
made as the polar representation of the flow field is needed to track the flow structures at the specific azimuthal wavenumbers
forced by turbine controller. However, we note that SPOD could be applied to the full Cartesian data to analyze y-z correlations
for the entire wake structure, and that, while this would sacrifice the ability to examine specific wavenumbers, it would result
in a more efficient basis for representing anisotropic structures in the wake.

For each streamwise location in the wake, the polar coordinates are defined around the center of the wake, rather than a fixed
y-z coordinate at all locations. This approach is taken because the turbulence in the wake, including the AWM-induced flow
structures, will follow the mean movements of the wake, and we are interested in tracking their properties downstream. Further,
the path the actual wake travels dictates the worst-case position for a downstream turbine (and the best-case scenario for wake
control), which further motivates the choice to use the wake position as the centering point for the analyses herein. The wake
centers are identified by a velocity deficit weighted average over a wL% area using the SAMWICH package (Quon et al., 2020)
(see Fig. 7a). The lateral and vertical mean wake centers are shown in Figs. 7b and 7c, respectively, for each case in Table 1
across the extent of the streamwise domain. The mean wake generally moves up and to the right (when looking downstream),
with the largest deviation from the hub height location occurring for the side-to-side actuation, which moves 0.45D to the right
and 0.26D upward. The wake movement and skewness align with the direction of veer in the ABL. The polar transformation
for each AWM case is defined around the wake center for the baseline case. This adjusts the analysis for wake movements
as a result of the unsteady inflow to follow the general movement of the dominant flow structures, but preserves differences
in the induced wake movement from the baseline as a result of AWM. Subtraction of the wake centers also adjusts for wake
expansion and veer due to mean flow effects. For all streamwise locations upstream of the turbine, the polar representation of
the velocity field is centered on the turbine hub height.

All three cylindrical velocity field components, w = (u,u,,ug), are included in the SPOD analysis of the cross spectral
density tensor. This approach provides the most comprehensive description of the coherent structures in the flow because it
contains correlations between all components of the velocity field. However, the eigenvalues and eigenvectors of the com-
ponents of the trace of S can also be used to identify the response of each velocity component to AWM individually (see
Appendix A). In this case S11, S22, and Ss3 are identified with the streamwise, radial, and azimuthal velocity components, re-
spectively. This is useful for discerning which components of the flow are contributing the most TKE to a given flow structure.

For both S and its diagonal elements, the discrete eigenvalue problem is solved using a low-rank SVD solver, which results
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Figure 8. Eigenvalues of S at five different Strouhal numbers for the baseline case. Shown are the azimuthal wavenumbers k¢ =0 (—),
ko =1 (—), kg = —1 (—), kg =2 (—), and kg = —2 (—). Each eigenvalue is normalized by the global maximum baseline eigenvalue

across all streamwise locations and Strouhal numbers.

in Np eigenvalues and eigenvectors for each ¢ and w. More details on the solution to the discrete eigenvalue problem are

provided in Appendix B.

3 Results

In this section, the wake mixing dynamics and efficacy of each AWM strategy are explored through the SPOD analysis. The
energetic flow structures are tracked throughout the wake in Section 3.1 and connected to turbulent entrainment statistics in

Section 3.2. The practical benefits of AWM are also demonstrated for a two-turbine array in Section 3.3.
3.1 SPOD results

The SPOD eigenvalues are used to track the dominant flow structures throughout the streamwise domain. The results primarily
focus on the azimuthal wavenumbers kg = 0, £1, and 42 at St = 0.3 as this range encompasses the forced coherent structures
for each AWM case, as well as other large-scale structures that get excited downstream in the wake. The eigenvalues for the
baseline case are also analyzed at these wavenumbers for a wider range of frequencies (Fig. 8), which represent the energy in
the inherent flow structures in the non-actuated wake resulting from standard turbine operations. Both the absolute values of
the eigenvalues (Fig. 9) and the baseline-normalized eigenvalues (Fig. 10) are discussed, which quantify the dominant coherent
structures in the wake for each control strategy and the effectiveness of AWM at exciting structures in the wake over the
baseline, respectively. Comparisons in the modal behavior for each AWM case offer insights into their relative performance,
which are strengthened further in Sections 3.2 and 3.3. In addition to eigenvalues, the reconstruction of the velocity field from
the leading SPOD eigenvectors is used to show the leading flow structures in the wake and the induction field.

In Fig. 8, the eigenvalues for the baseline wake are shown for a broad frequency range. In general, the most energetic
structures in the wake are found at St = 0.3, which may explain the effectiveness of AWC forcing frequencies near this value

(Munters and Meyers, 2018; Frederik et al., 2020c; Cheung et al., 2024a; Brown et al., 2025; Frederik et al., 2025). In this
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Figure 9. Eigenvalues of S at St = 0.3 for the azimuthal wavenumbers kg =0 (—), kg =1 (—), kg = =1 (), kg =2 (—), and kg = —2
(—). Each eigenvalue is normalized by the global maximum eigenvalue across all AWM cases and streamwise locations. The eigenvalues
are shown in the near the turbine region (|(z — Zrus)/D| < 1) in the top row of figures, (a), and across the entire streamwise domain,

—5 < (z — Zhup)/D < 14, in the bottom row of figures, (b).

sense, SPOD could provide a way to identify the optimal AWC forcing frequency based on baseline wake data. A more detailed
investigation of the baseline wake within the range St € [0.25,0.35], would be worthwhile for future research; however, the
SPOD parameters selected in this study do not permit such fine resolution. There is also considerable energy present in the
baseline wake at St = 0.15, suggesting potential support for sub-harmonic forcing strategies (Li et al., 2024). In contrast, the
energy content at higher Strouhal numbers (St > 0.6) is largely insignificant when compared to lower values. The remainder
of this section focuses on St = 0.3, as this corresponds to the dominant frequency in the baseline wake and the AWC forcing
frequency that was selected a priori.

In the baseline case, a small distinction between large-scale flow structures at St = 0.3 originates in the induction field ahead
of the turbine, which grows significantly in the wake (see Fig. 9). The k9 = —1 mode is the dominant flow structure in the
immediate near-wake of the turbine as well as in the far-wake, while the xy = 1 mode is the leading structure between 0.5D and
5D downstream of the turbine. Together, the -1 modes result in a mean movement of the wake, as well as a swirl component
if the energy in these modes is imbalanced. SPOD decouples these competing rotational effects in the wake, allowing them to
be examined independently. There are several factors contributing to the swirl of the baseline wake. The clockwise rotation of
the turbine blades, for instance, imparts a counter-clockwise swirl in the mean wake, which may be contributing to the large

ke = —1 mode. Similarly, the positive veer in this ABL introduces a horizontal shear to the wake, resulting in a large-scale
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Figure 10. Eigenvalues of S at St = 0.3 for the azimuthal wavenumbers kg =0 (—), kg =1 (—), kg = —1 (), kg =2 (—),and kg = —2
(—). The eigenvalues for each wavenumber and streamwise location are normalized by the corresponding eigenvalues in the baseline case.
The eigenvalues are shown in the near the turbine region (| (z — znw)/D| < 1) in the top row of figures, (a), and across the entire streamwise

domain, —5 < (z — zpus)/D < 14, in the bottom row of figures, (b).

counter-clockwise swirl, which may be contributing to the xy = 1 mode. Other prominent energetic structures in baseline wake
include the k¢ = 2 mode in the near wake region, and the k9 = 0 mode in the far wake.

For each AWM case, the largest increase in eigenvalues over the baseline occurs in the near-wake region between 0.25D
and 1D behind the turbine, corresponding to the azimuthal wavenumber directly forced by the dynamic blade pitch settings
i.e., kg = 0 for the pulse, kg = —1 for the helix, and k9 = £1 for the up-and-down and side-to-side actuations (see Fig. 10).
The SPOD analysis therefore confirms that the azimuthal wavenumber and frequency inputs to the turbine controller lead to
the intended flow response directly downstream of the turbine. The streamwise velocity component contributes the most to
the TKE of the coherent structures in the near wake region, although a similar modal response is induced in the radial and
azimuthal components (see Appendix A). This is expected as the most observable effect of the blade pitch fluctuations are
on the axial loading. It is also readily apparent from the leading SPOD mode shapes that the intended flow perturbations are
imparted on the wake for each AWM case (see Fig. 11a). The primary flow perturbation in the near wake for the pulse actuation
is axisymmetric and oscillates at the Strouhal period. The coherent structures for the other AWM strategies are characterized
by two regions of low- and high-speed flow, which rotate about the wake center for the helix case and oscillate at the Strouhal
period for the mixed-mode forcings depending on the clocking angle. To connect the SPOD eigenvectors to more familiar flow

quantities, we note that these flow patterns can also be observed in the region near the rotor by carefully phase averaging the
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Figure 11. Dominant flow structures at four streamwise locations in the wake. The reconstructed fluctuating velocity field, w7 (r,0), is
shown at a single instance in time using the SPOD eigenvectors that correspond to the leading eigenvalues for St = 0.3. For each case, the
reconstructed velocity field is normalized by its maximum value in the polar domain at that specific time. For the pulse and helix cases, one
SPOD mode is included in the reconstruction, i.e., J = {1 | wUint/D = 0.3}. For the up-and-down and side-to-side cases two SPOD modes
are included in the flow reconstruction, i.e., J = {1,2 | wUint/D = 0.3}. The colored contours show normalized streamwise velocity and

the arrows denote the in-plane velocities.
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Figure 12. Phase-averaged, baseline-subtracted velocity fields at (z—znyp) /D = 0.1. Phase averaging within the Strouhal cycle is performed
with a 10° bin centered on 0°. After the phase averaging is performed for all cases, both the streamwise and lateral components of velocity

are baseline-subtracted to yield the colored contours and the vector fields, respectively. The dashed lines outlines the turbine rotor disk.

real-space flow. In Fig. 12, the phase-averaged baseline-subtracted velocity field is shown for each AWM case. The leading
SPOD modes are clearly apparent in the phase-averaged fields, demonstrating that the flow patterns identified by SPOD are
indeed the dominant coherent structures in the wake.

The eigenvalues of the forced azimuthal wavenumber(s) begin to increase from the baseline values around 0.5D upstream
of the turbine for each AWM strategy, and grow rapidly through the induction field to reach a value over an order of magnitude
larger than the baseline at the turbine location (see Fig. 10). AWM therefore modifies the induction field with similar spectral
characteristics as those imparted on the wake region directly behind the turbine. However, unlike in the wake, the coherent
structures at St = 0.3 are not the dominant energy containing modes in the induction field, which instead occur near the blade-
passing frequency (St ~ 7.5) for each AWM case (see Fig. 13a). Nonetheless, SPOD allows these structures to be decoupled,
and the focus here is on modes at the excitation frequency (Fig. 13b). The azimuthal and temporal modifications to the turbine
induction field translate to variations in the axial force along the blade (compare Figs. 5 and 9a), which are subsequently
imparted to the downstream wake. Notably, the k¢ = 0 in the near-wake region of the pulse case exhibits a larger increase in
energy over the baseline compared to the forced wavenumbers associated with the other AWM strategies. This observation
aligns with the larger variations in blade loading seen with the pulse method compared to the other cases. The structure of
the dominant modes in the induction field may provide insight into why there is increased blade loading observed with pulse
actuation relative to the other AWM strategies. For the non-axisymmetric forcings, the in-plane velocity field in the induction
zone is seen to divert the flow from the low- to high-speed region of the streamwise velocity (see Fig. 13b). This suggests that
the individual pitching of the turbine blades creates a non-uniform blockage in the flow, leading to flow diversion around the
region of higher blockage and consequently reducing the periodic axial blade force that actuates the wake modes. However,
in the pulse case, there is no apparent flow diversion because all the blades are collectively pitched. This increase in blade
loading for the pulse case is seemingly important as it translates to the largest modal energy in the near-wake region which, as

discussed further in Section 3.2, facilitates the most effective mixing of the downstream wake.
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Figure 13. Dominant flow structures in the induction field. The reconstructed fluctuating velocity field, ws(r,6,t) is shown at a single
instance in time. For each case, the reconstructed velocity field is normalized by its maximum value in the polar domain at that specific
time. For the pulse and helix case, one SPOD mode is included in the reconstruction, whereas for the up-and-down and side-to-side cases
two SPOD modes are included in the flow reconstruction. In (a), the leading SPOD eigenvectors across all wavenumbers and frequencies
are used, i.e., J = {1} for the pulse and helix methods, and 7 = {1,2} for up-and-down and side-to-side methods. In (b), the leading
SPOD eigenvectors across all wavenumbers at St = 0.3 are used, i.e., J = {1 | wUint/D = 0.3} for the pulse and helix method and J =
{1,2 | wUin¢/D = 0.3} for the up-and-down and side-to-side method. The colored contours show normalized streamwise velocity and the

arrows denote the in-plane velocities.

As the wake evolves downstream, nonlinear and mean flow interactions excite flow structures beyond those directly forced by
the turbine controller. For the non-axisymmetric forcing strategies, there is a notable increase in the xy = 0 wavenumber relative
to the baseline between 2 < (x — Zpqp)/ D < 5, which dominates the baseline-normalized eigenvalues in this region (Fig. 10b).
For the pulse case, the increase over the baseline is sustained by the kg = 1 and 2 wavenumbers between 3 < (x — xpup)/D <
10. By 10D to 14D downstream, the k9 = —1 mode is dominant in all cases, but the modal energy in the large scales has
generally returned to the baseline levels for all of the AWM strategies. However, we note that increases in pitching amplitude
or adjustments to the Strouhal number may extend the duration of AWM effects. Moreover, it is important to highlight that,
although the modal energy relative to the baseline wake generally decreases downstream for the AWM cases, the modal energy
in the baseline wake itself typically increases downstream (Fig. 9b). Consequently, the flow structure with the largest modal
energy for the AWM cases may not be located in the immediate near-wake of the turbine, despite the largest increases over

the baseline occurring in that region. It is clear from the SPOD modes, for instance, that the dominant flow structure, in terms
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of the absolute magnitude of the eigenvalues, changes as the wake evolves downstream (see Figs. 11b-d). The largest absolute
eigenvalue across all AWM cases and streamwise locations occurs for the xy = 1 wavenumbers for the pulse actuation 4D
downstream (see Fig. 9b). In fact, for all AWM cases, the largest eigenvalues between 5 and 6D downstream is for the kg =1
wavenumber. The energy in this mode is primarily driven by the radial velocity component, u.., which is generally true of the
modal energy increases over the baseline by 4D to 5D downstream (see Appendix A). Notably, the kg = 1 mode is also the
dominant structure in the near-wake region of the baseline case, which suggests that the effectiveness of AWM strategies at
increasing modal energy in the wake is related to their ability to excite the natural flow structures in the non-actuated wake.
This appears to be the case for higher harmonics in the flow as well, such as the £y = 2 mode for the pulse and side-to-side
actuations (see Fig. 9b).

The flow response in the wake between the two mixed-mode forcing strategies differs significantly even though both strate-
gies excite the k9 = =1 modes. This behavior highlights that differences in the clocking angle cause flow structures to interact

differently with the ABL, including variations in shear, stratification, turbulence, and ground effect. By 3D to 6D downstream,
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Figure 16. Contours of the radial shear stress flux, 7, for the baseline case at four different streamwise locations. The dashed line corresponds

to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

the up-and-down strategy strongly forces the kg =0 and 1 modes, while the side-to-side strategy forces the kg = 2 mode
(Fig. 9b). Interestingly, the kg = 1 and —1 modes have nearly identical growth rates in the induction field ahead of the turbine
for these cases, but, directly behind the turbine, k9 = —1 emerges as the dominant flow structure for both cases. This suggests
that the k9 = —1 mode is enhanced by the counter-clockwise vortex rings generated behind the turbine, which has also been
linked to the performance differences between the counter-clockwise and clockwise helix strategies (Coquelet et al., 2024).
The total TKE in the wake at each streamwise location can be computed by summing the entire set of eigenvalues across
all wavenumbers and frequencies (see Fig. 14). In the near wake, the up-and-down and side-to-side forcings have the largest
TKE increase over the baseline, because two modes are forced at the same pitching amplitude as opposed to the single modes
in the pulse and helix case. However, by 3D downstream, the increase in TKE over the baseline drops to around 10% for the
non-axisymmetric forcings, while the pulse case maintains around a 15-20% increase until 9D downstream. This increase for
the pulse actuation is driven by TKE in the radial velocity (see Soo in Fig. 14). It is important to note that the goal of AWM
is to increase TKE in the large scale coherent structures of the wake that entrain the freestream momentum, not necessarily
to increase wake TKE in general, which can impact blade loading on downstream turbines. To understand the separation of
scales in the wake, the streamwise evolution of the eigenvalue spectra is reported in Fig. 15. In the pulse and helix cases, an
order-of-magnitude decrease in the eigenvalue spectrum is observed after the first three SPOD modes at 0.5D downstream.
In contrast, the side-to-side and up-and-down cases exhibit a more gradual decay, attributed to the forcing of two modes by
the blade pitch actuations, resulting in an order-of-magnitude decrease after six SPOD modes. This suggests that the flow is
effectively represented by the leading SPOD modes in the near wake region, where large-scale coherent structures dominate
the flow’s unsteadiness and account for the majority of the wake TKE. However, the decay becomes more gradual starting
around 3D downstream, and by 10D, the distribution of modal energy across all AWM cases is similar to the turbulence in the

baseline wake.
3.2 Wake mixing and turbulent entrainment dynamics
The practical benefit of increased modal energy in the wake is additional entrainment of mean momentum by the coherent wake

structures. This is the primary mechanism by which AWM enhances wake recovery and where the advantage of AWM lies over
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Figure 17. (a) Circumferential average of the radial shear stress flux around a rotor disk centered at the wake center, defined as

T= ﬁ OZW T(r=D/2,0)df. (b) Rotor averaged velocity for each AWM case, normalized by the baseline value. The velocity is aver-

aged over a rotor disk centered around the wake center.

other wind farm control strategies. Entrainment is quantified here using the negative radial shear stress flux, 7 = —U,u .,
where - denotes the time average of a fluctuating quantity. This term quantifies the radial turbulent transport of mean streamwise
kinetic energy, which Lebron et al. (2012) demonstrated is the dominant contributor to wake recovery for a single, isolated
turbine wake. Positive values of 7 indicate a gain of mean flow into the wake due to turbulent transport, whereas negative
values of T indicate a loss of mean flow.

The radial shear stress flux of the wake for the baseline case is shown in Fig. 16. Mean flow is primarily entrained through
the boundary of the wake, which aligns with the rotor-disk in the near wake region but deforms anisotropically downstream.
Veer, in particular, skews the wake significantly downstream, which in turn affects the distribution of 7. A scalar measure of

mean flow entrainment, 7 = - T (r=D/2,0)db, is obtained by azimuthally averaging 7 around the circumference of a

27 Jo

rotor disk centered with the wake (see Fig. 17a). Wake recovery mechanisms are analyzed here in terms of a rotor disk centered
around the wake centers at each streamwise location to track the entrainment properties of the wake structures downstream.
This formulation is consistent with the SPOD analysis, which is computed around the wake centers.

All AWM strategies improve the net radial shear stress flux over the baseline throughout most of the streamwise domain,
with the largest increases occurring between 2D and 4D behind the turbine (see Fig. 17a). Notably, the largest increase
in the net mean flow entrainment is for the pulse actuation, which sustains an increase over the baseline between 3D and
10D downstream, whereas the other AWM cases return to the baseline levels in this region. This behavior is similar to the

downstream evolution of the eigenvalues for the pulse case, which also sustained an increase over the baseline in this region.

The improvement in radial shear stress flux over the baseline is not homogeneous around the rotor disk, however, and there are
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Figure 18. Contours of the baseline-subtracted radial shear stress flux for each AWM case. The dashed line corresponds to the rotor disk

centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

points where mean flow is even lost compared to the baseline due to the AWM pitch actuation (see Fig. 18). This is a departure
from the canonical case analyzed by Cheung et al. (2024a), further highlighting the impact of ABL characteristics on wake
410 mixing dynamics including wind veer, shear, and stratification. Moreover, the modal structure of the forcing is visible in the
contours of 7 within a turbine diameter downstream, where positive values are approximately axisymmetric for the pulse case

but depend on the clocking angle for the up-and-down and side-to-side actuations.
While Fig. 17a provides an overview of the total radial shear-stress flux, SPOD facilitates a more detailed analysis of the
contributions to this flux. The contribution from each flow structure in the wake to turbulent entrainment can be quantified

415 by decomposing the radial shear stress flux into SPOD modes. Specifically, we can define the contribution to 7 from the jth
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Figure 19. (a) Azimuthally averaged contribution to the radial shear stress flux, 7; ;, and (b) TKE, |);|, in the wake from the leading SPOD
eigenvectors at St =0.3 and ko = 0,%1, and +2. Each AWM case is shown in addition to the baseline. The values in (a) and (b) are

normalized by the maximum values of 7; ; and |A;| across all AWM strategies and streamwise locations, respectively.

SPOD eigenvectors as
7;‘7]'(7', 0) = —Uzumvjum, (6)

where u, ; and u, ; are the streamwise and radial components of u;. A full decomposition of 7 is obtained by considering
streamwise and radial velocity correlations between all pairs of SPOD eigenvectors, namely 7;  (r,0) = —U, Uz, Uy ;. How-
ever, the focus here is on the case when j = k, which is found to dominate 7} j, for all wavenumbers and frequencies of interest.
This is expected as the AWM forcings induce a similar modal response in the streamwise and radial velocity components (see
Appendix A). Similarly to 7, the net mean flow entrainment into the rotor disk from 7; ; can be quantified by the scalar
measure 7; j = 5- 027r 7,.;(r=D/2,0)dd. While the eigenvalue, |\;|, is a scalar measure of modal TKE, the scalar quantity
7j,; represents the contributions to the net radial shear stress flux from the jth SPOD mode. The quantity 7; ; is positive for
any mode that leads to a net turbulent entrainment of mean velocity into the wake, and negative for modes leading to the
entrainment of mean velocity out of the wake.

The decomposition of 7~ into SPOD modes enables a quantitative comparison between the modal contributions to turbulent

entrainment, 7; j, and modal TKE, |)\j |, in the wake (see Fig. 19). For each AWM case, the wavenumbers directly forced by

the blade pitch actuations entrain the most momentum directly behind the turbine; however, this is not necessarily the case
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throughout the entire wake. Turbulent entrainment for the pulse actuation at St = 0.3 is driven by the k¢ = 1 and 2 wavenum-
bers between 3D and 10D downstream, explaining the large aforementioned increase in 7 over the baseline for the pulse case
in this region. However, the contribution from the k9 = 0 mode drops below that of the baseline for the pulse case by 4D
downstream. The kg9 = 1 and 2 wavenumbers are the dominant flow structures in the near wake of the baseline case, in terms
of both TKE and entrainment, which suggests that optimizing AWM depends on forcing the natural coherent structures in the
non-actuated wake, either directly through the turbine controller, or indirectly through triadic wavenumber interactions (Wal-
effe, 1992) in the wake and interactions with other ABL processes. Similarly, the k9 = 1 and 2 modes contribute significantly
to entrainment for both mixed-mode forcing strategies, however, their entrainment characteristics in the wake differ. In the
up-and-down case, the Ky = 1 and 2 modes contribute the most to entrainment between 4D and 10D downstream following
the excitation of the 0 mode in the near-wake region. In contrast, for the side-to-side case, the k9 = 2 mode entrains the most
momentum in the near wake while the 1 mode dominants in the far wake. Finally, even though the counter-clockwise helix
method is used here to excite the k9 = —1 mode, the largest contribution to entrainment in the wake is from the k9 = 1 mode
between 5D and 7D downstream.

Given the prominence of the xy = 1 structure in this flow, it would be worthwhile to investigate a clockwise helix method
in this context, as it would directly excite this mode. Although we do not generally expect the clockwise helix method to
outperform the counter-clockwise helix (Coquelet et al., 2024), it may be that the presence of veer enhances the former’s effect
by introducing a clockwise swirl in the wake. It is worth noting, however, that while the two mixed-mode cases do force the
kg = —1 mode directly, the pulse method enhances this mode the most. Strategies that force higher harmonics may also be
worth investigating, as the k9 = 2 mode contributes significantly to entrainment for the pulse, up-and-down, and side-to-side
strategies, although increasing |x4| beyond 1 in the turbine controller may introduce prohibitive oscillations in the pitch of the
turbine blades.

A comparison between modal energy, |\;|, and modal entrainment, 7;;, across a wider range of wavenumbers and frequen-
cies is shown in Fig. 20. It is generally found that the dominant coherent structures in terms of TKE are also responsible for
entraining the most mean flow. However, 7; ; does not strictly decrease with the eigenvalue index, j, like |)\j| does; there are
several instances across streamwise locations and AWM cases where the flow structure that entrains the most momentum is
not the one with the largest modal energy, although it typically falls within the leading 5-10 eigenvalues. It is important to
recall that the SPOD formulation only guarantees an ordering of modes based on energy, not entrainment, so there is no reason
to expect, in general, that 7; ; decay monotonically with j like |\;|. This is particularly evident for the large j-indices shown
in Fig. 20. Once the eigenvalue spectrum has decayed by roughly an order of magnitude, SPOD modes even begin to entrain
mean flow out of the wake, as indicated by the negative values of 7; ;.

The increase in the radial shear stress flux over the baseline case results in faster velocity recovery in the wake (see Figs. 21
and 22). Similar to 7, the increases in mean streamwise velocity, U,, are not distributed uniformly around the rotor disk;
however, all AWM strategies lead to a net increase in rotor-averaged streamwise velocity over the baseline across most of the
streamwise domain (see Fig. 17b). The largest increase occurs with the pulse actuation, which shows over a 4% increase from

the baseline between 2D and 6D downstream, while the other AWM strategies exhibit increases of 1% to 2.5% in this region.
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Figure 20. Energy and entrainment spectra defined by |\;| and 75, ;, respectively, for the leading 75 eigenvalues at (z — zpup)/D =1, 3,
and 6. The spectra are normalized on the maximum value of |\;| and 75, ; for each AWM case and streamwise location. Note that 7; ; is not
a strictly positive quantity like |\;], so rapid roll-offs in the spectra occur on a log-log scale for any modes contributing to a net entrainment

of mean velocity out of the wake.

Beyond 12D downstream, the trend reverses, and the rotor-averaged velocity for the pulse actuation falls the furthest below the
baseline value. However, at such far distances downstream, there may still be a benefit from AWM in terms of wake recovery
if averaging over a larger volume. Notably, the helix forcing does sustain an increase in rotor-averaged velocity over the entire
extent of the streamwise domain. In fact, by 14D downstream, the dominant mode in terms of energy and entrainment for all
AWM strategies and the baseline case is kg = —1. These results suggest that strategies that excite the kg = —1 mode, such as

the counter-clockwise helix, may be the most effective in deep-array scenarios.
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Figure 21. Contours of the streamwise velocity, Uy, for the baseline case at four different streamwise locations. The dashed line corresponds

to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

3.3 Power and load performance metrics

Increased turbulent entrainment of mean flow enhances the performance of downstream turbines. This section demonstrates
the practical benefits of improved wake recovery using a virtual two-turbine array. The gains in power typically come with the
trade-off of increased loads on the upstream turbine due to pitch actuation. Therefore, the effect of different AWM strategies
on turbine loads are also discussed.

The results for the second turbine are obtained through a stand-alone OpenFAST simulation of an identical NREL 2.8 MW
turbine positioned downstream of the turbine simulated in the LES. AWM is applied solely to the upstream turbine, while
the downstream turbine is operated using the baseline controls. Streamwise spacings ranging from 1D to 14D, in increments
of 1D, are analyzed for the two turbine array for each AWM strategy considered on the upstream turbine, as well as for
the baseline case, resulting in a total of seventy OpenFAST simulations. At each streamwise location, cross-flow planes are
extracted from the LES and used as inflow conditions for the virtual second turbine OpenFAST simulations. This inflow data
is collected from the LES over a 600s period, the first 120s of which are discarded as transient data when computing statistics
from the outputs of OpenFAST. All statistics reported here are averaged over seven Strouhal periods. Importantly, the lateral
position of the second turbine is adjusted at each streamwise location to correspond with the wake centers identified in Fig. 7b.
This decision places the second turbine in the most waked environment at each streamwise location, which is where AWM is
expected to be the most beneficial (Taschner et al., 2024). Recall that, in this flow, the turbine-aligned configuration does not
correspond to the most waked conditions for the second turbine, primarily due to the large degree of wind veer.

The change in power from baseline operations for the virtual two-turbine array is shown in Fig. 23. It is important to note
that the downstream turbine cannot follow the vertical movements of the wake, so an exact agreement with the wake analysis
resulted presented in Sections 3.2 is not anticipated. Nonetheless, the trends in power for the downstream turbine closely
align with the rotor-averaged velocity centered with wake (compare Figs. 17b and 23). The largest increase in power for the
combined two-turbine array occurs for the pulse case, with a maximum increase of 3.7% occurring at a turbine spacing of 5D.
The pulse case performs the best for turbine spacings between 2D and 9D, while the other AWM strategies lead to increases

of around 1% for these spacings. These results are consistent with other studies that have examined the pulse method in highly

26



495

500

Pulse Helix Up-and-down Side-to-side

200 (X = Xpup)/D = 0.5 (X = Xpup)/D = 0.5 (X = Xpup)/D = 0.5 (X = Xpup)/D = 0.5
025
150 0.125 ?E
€ 3
:100 00
50 -0.125 |,
0 -0.25
200 025
150 0.125 ?E
Ly} o
£ g
;100 00
|
50 -0.125
0 -0.25
(X = Xnup)/ID = 3.0 (X = Xpup)/D = 3.0 (X = Xnup)/ID = 3.0
200
025
£
150 0.125 g
E g
;100 y 00
|
50 -0.125 .
0 -0.25
(X = Xnup)ID = 6.0 (X = Xpup)/D = 6.0
200 ‘ - . 0.25
150 F ’ 0.125 §
£ 3
:100 00 X
50 -0.125 |,
o L2 - : A v -0.25
100 0 -100 100 0 -100 100 0 -100 100 0 -100
Y = Yhup [M] Y = Yhup [M] Y = Yhup [M] Y = Yhuo [M]

Figure 22. Contours of the streamwise velocity, U, for each AWM case, subtract by the baseline values shown in Fig. 21. The dashed line
corresponds to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake

centers.

veered ABLs (Brown et al., 2025; Frederik et al., 2025). However, for turbine spacings greater than 10D, the pulse method
underperforms baseline operations. The helix method performs the best between 10D and 12D, which is consistent with the
sustained increase in modal energy and entrainment for the k9 = —1 mode observed in the far wake.

The increases in power come at the cost of increased loads on the upstream turbine. In Section 2.1, it was shown that
the variations in the blade pitch lead to an increase in the axial force along the blade. However, the dynamic blade pitch
fluctuations also affect other load channels on the turbine. In Fig. 23, loads are analyzed in terms of the baseline-normalized
damage-equivalent loads (DELs) for seven different load channels for each AWM strategy. DELs are computed following
Freebury and Musial (2000) and Ennis et al. (2018). Flapwise DELs increase between 1.4 to 1.8 times the baseline values
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Figure 23. (top) Percent change in generated power, P, from the baseline case (Pa—oo) for a two turbine array with the turbine spacings
ranging from 1D to 14D. The results for the upstream turbine are computed from the LES, while the downstream turbine results are obtained
from a stand-alone OpenFAST simulation using YZ-planes from the LES as inflow data at each streamwise location. AWM is applied to the
upstream turbine with A = 1.25°, while the downstream turbine is operated using baseline controls. (bottom) Baseline-normalized damage
equivalent loads (DEL) for seven different load channels. Solid bars indicate DELSs for the upstream turbine, while the DELs for the turbine
5D downstream are outlined in black. The red dashed line corresponds to the DELs of the turbine using baseline controls in DLC 1.2
conditions (single seed) derived from the Normal Turbulence Model with a hub height wind speed of 6.4 m/s (i.e., turbulence intensity of

25.90%).

depending on the AWM strategy. The pulse method results in a greater increase in flapwise DEL compared to the helix method
at the same pitching amplitudes, which aligns with the increase in the axial force spectra observed for the pulse case compared
to the helix reported in Fig. 5. Large increases in the tower-base fore-aft moment are also observed for the pulse method,
whereas the individual pitch control methods lead to increases in the low-speed shaft nodding and yawing moments. However,
the DELs for the edgewise moment, rotor torque, and tower-base side-to-side moment do not show as significant increases
compared to the baseline. For a virtual turbine placed 5D downstream, where the largest gains in combined power are found,

only minor variations in the DELs are observed, likely due to increases in wake TKE, and the changes from the baseline are
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largely negligible across all load channels compared to the upstream turbine. In some instances, AWM even reduces the loads
on downstream turbines.

To provide context for these loads, the DELs for this turbine in a DLC 1.2 environment are also included in Fig. 23. A
DLC 1.2 simulation is typically used to evaluate the structural integrity and performance of the wind turbine under expected
operational conditions, ensuring that it can withstand the loads and stresses it will encounter during its operational life. The
DLC 1.2 results are computed here with a single seed for the turbine using baseline controls in conditions derived from the
Normal Turbulence Model with a hub height wind speed of 6.4 m/s and a turbulence intensity of 25.90%. This comparison
is included to highlight that AWM is particularly well-suited for stable ABL conditions with low TI, where the significant

increases in DELs over the baseline largely remain much smaller than the loads on the turbine in typical design environments.

4 Conclusions

In this work, an SPOD analysis was developed to track the coherent flow structures induced by AWM throughout the streamwise
domain, including their origins in the turbine induction field, growth in the near wake region, and subsequent evolution and
energy transfers in the far wake. SPOD is shown to be a particularly useful tool in the context of AWM because it decouples
structures in the flow, allowing the wavenumber and frequency inputs to the turbine controller to be translated directly to the
wake. The modes directly forced by the blade pitch fluctuations are found to be the dominant flow structures in the near wake
region, which originate around 0.5 D ahead of the turbine. However, as the wake evolves downstream, modal interactions excite
other flow structures within the wake, which often exceed the energy of the near wake structures. Further, it is demonstrated that
a complete description of AWM effects requires considering correlations between all three velocity components, as significant
radial and azimuthal modifications to the wake are induced, in addition to the those in the streamwise direction.

The SPOD analysis was also connected to conventional wake mixing quantities of interests for different AWM strategies. A
new modal decomposition of the radial shear stress flux was developed to measure the contribution of each flow structure in
the wake to mean flow turbulent entrainment. This established a quantitative connection between the kinetic energy of coherent
structures in the wake and their contribution to turbulent entrainment. The leading flow structures in terms of TKE are found to
be primarily responsible for velocity recovery mechanisms within the wake; however, the relationship between modal energy
and entrainment is not necessarily directly proportional. In terms of blade loading, a correlation between the spectrum of the
axial force along the blade and the spectral characteristics of the induction field was established through the SPOD eigenvalues.
Additionally, the modal structure of the induction field suggested that the individual pitch control strategies divert flow around
regions of higher blockage, leading to a decrease in the axial blade force compared to collective pitch actuation. A complete
end-to-end description of the actuated flow is thus provided. For example, the pulse method (1) induces an axisymmetric
modification to the induction field, which (2) results in the largest increase in axial loading amongst AWM strategies; this
increase in thrust (3) generates the most dominant coherent structure and largest enhancement of modal energy in the near
wake, which (4) leads to greater turbulent entrainment and faster velocity recovery downstream for all AWM strategies; lastly,

this (5) ultimately results in the largest increase in generator power for the downstream turbine.
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A key observation is that, for the cases considered in this study, the effectiveness of AWM relied on exciting the inherent
flow structures in the turbulence of the baseline wake. SPOD, therefore, proved equally useful for analyzing the structure of

545 the wake under baseline operations as it did for the AWM control strategies. For example, the performance of the pulse method
was primarily attributed to turbulent entrainment from the k9 = 1 and 2 modes. These modes were found to be the dominant
flow structures in the near wake region of the baseline case, suggesting that the effectiveness of the pulse method was due to its
ability to enhance the dominant structures in the non-actuated wake. It is important to note that this does not imply the pulse
method will perform optimally under all ABL conditions, rather that the effects of ABL characteristics on the modal structure

550 of the baseline wake must be considered when designing a control strategy. A broader range of atmospheric conditions should
be examined, including variations in shear, veer, swirl, stratification, TI, and wind speeds to strengthen the relationship between
AWM performance and the coherent structures in the baseline wake. Such insights may enable the optimal design of wind farm
flow control with respect to power and load trade-offs, such as maintaining power benefits with lower pitching amplitudes by
targeting the optimal wake structures.

555 Similarly, the findings of this study highlight the importance of understanding the nonlinear mechanism responsible for
transferring energy between coherent structures in the wake. While SPOD is used here to track modal TKE and entrainment, it
does not provide an explanation for how energy is transferred between SPOD modes. For example, why does the pulse method
excite the kg = 1 and 2 wavenumbers in the flow, even though only the xy = 0 wavenumber is directly forced by the controller?
Addressing such questions will be crucial for future work in optimizing AWM strategies, which may rely on understanding

560 triadic interactions between the forced AWM mode and the other turbulent scales.

Lastly, recent work suggests that a linear stability based reduced order model may be effective for representing the effects
of AWM-induced coherent structures on the mean flow (Cheung et al., 2024b). The SPOD results presented here will be
useful for such model developments, as it will help characterizes the growth rates of coherent structures in the wake, which
are inputs to the linear stability analysis. Similarly, projection-based reduced order models including resolvant or DMD based

565 models (Muscari et al., 2022; Gutknecht et al., 2023) would also benefit from the SPOD formulation used in this study. For
either approach, the eigenvalue spectra reported here indicate that it may not be sufficient to only model the forced coherent
structures in the wake, but that modeling interactions with other large scale structures in the wake is necessary for accurately

representing AWM dynamics.

Appendix A: SPOD analysis of the individual velocity components

570 The SPOD formulation in Section 2.2 includes correlations between all three cylindrical velocity field components, u =
(ug,ur,up), in the definition of the cross-spectral density tensor, S(r,r") = ((r, kg,w)u* (1, Kg,w)). Here, the SPOD analysis
is repeated for each diagonal element of S, namely S11(7,7") = (U, (1, kg, w) 0} (1", Kg,w)), S22(r,7") = (U (r, Ko, W)W (1', Ko, w)),
and Ss3(r,7") = (g (r, kg, w) Uy (r', ke, w)).
The eigenvalues of the cross-spectral density tensor, S, and its diagonal components at St = 0.3 are shown in Fig. Al

575 across the streamwise extent of the domain. AWM generally induces a consistent modal response in the streamwise, radial, and
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azimuthal velocity components throughout the evolution of the wake, although there are differences in kinetic energy between
velocity components. In the near wake region, the dominant flow structure occurs at the forced azimuthal wavenumber in all
three velocity components, i.e., kg = 0, kg = —1, and kg = %1 for the pulse, helix, and mixed-mode actuations, respectively.
The most energetic structures in this region are found in the streamwise velocity component, which is expected since the
azimuthal and temporal variations in the blade pitch are designed to induced a significant axial force along the blade. However,
by 4D to 5D downstream, the energetic structures (Fig. A1) and wake TKE as a whole (Fig. 14) are primarily driven by the
in plane velocities. For instance, the largest eigenvalue for S across all streamwise locations and AWM strategies occurs 4D
downstream for the pulse case at kg = 1, which is driven by the radial velocity component, as is the subsequent increase in
kg9 = 2 mode for this case. These two modes are also the dominant structures in u,- for the baseline wake, and were shown to
contribute significantly to mean flow turbulent entrainment (see Section 3.2). This suggests that the effectiveness of the pulse
strategy is a result of axisymmetric streamwise forcing exciting higher order radial velocity flow structures in the non-actuated
wake. Similarly, at 6D downstream, k¢ = 1 is the dominant mode for all of the non-axiysmmetric forcing strategies, which
are driven by the radial and azimuthal velocity components. In the far wake, the modal TKE generally returns to the baseline

values for all AWM strategies and velocity components.

Appendix B: Discrete SPOD Solution

The computational formulation in Section 2.2 results in a discrete complex velocity-Fourier matrix U € CVr*N5 for each
azimuthal wavenumber k¢ and frequency w at each streamwise location (see Towne et al. (2018) for additional details on the
formulation of Ij). Here, Ny is the number of discrete points in the radial domain and Ny is the number of blocks of data
resulting from the windowed Fourier transform in time. The analytical eigenvalue problem in Eq. 3 can then be represented

discretely as
SW1p = A, (B1)

where 1) and \ are a discrete eigenvector and eigenvalue pair, and W € RVN2*N= g positive-definite Hermitian weighting
matrix that accounts for the numerical quadrature of the radial integral. Here, the matrix W is defined through a one-thirds
Simpson’s rule. The matrix S ~ NLBIAJ[AJH € CNr*Nr jg g discrete representation of the cross-spectral density tensor, approx-
imated from an ensemble average of velocity correlations over Np flow realizations. A difficulty in solving Eq. B1 is that the

matrix product SW is not generally Hermitian. However, a Hermitian problem is achieved by multiplying B1 by W/2,
S =\, (B2)

where S = W1/2SW /2 and ). For cases where N < Np, there are at most N non-zero eigenvalues of S. Therefore,
Eq. B2 can be solved efficiently by performing a low-rank SVD of ﬁwl/ 20 = LER¥, where L and R are the left
and right singular vectors and ¥ is the matrix of singular values. Using this decomposition, S can be expressed as S=

(LERH)(RZLY) = LX2L. Thus, the eigenvalues, ), are given by the square of the singular values and the eigenvectors,
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Figure Al. Eigenvalues of (a) S, (b) Si1, (c) S22 and (d) Ss3 corresponding to velocity correlations in w, u., ur, and ug, respectively.

Eigenvalues at St = 0.3 are shown for kg =0 (—), kg =1 (—), ke = —1 (), ke =2 (—), and kg = —2 (—),

W, are given by the left singular vectors. Finally, the eigenvectors of the original eigenvalue problem (B1) are obtained by

multiplying L by W—1/2 jie., ¢p = W—1/2¢p = W-1/2L,
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