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Abstract. Recent advancements in the use of active wake mixing (AWM) to reduce wake effects on downstream turbines open

new avenues for increasing power generation in wind farms. However, a better understanding of the fluid dynamics underlying

AWM is still needed to make wake mixing a reliable strategy for wind farm flow control. In this work, a spectral proper

orthogonal decomposition (SPOD) is used to analyze the dynamics of coherent flow structures that are induced in the wake

through blade pitch actuation. The data are generated using the Exawind software suite to perform a large eddy simulation of an5

NREL 2.8 MW turbine operating in a stable atmospheric boundary layer. SPOD tracks the modal behavior of flow structures

from their generation in the turbine induction field, through their growth in the near wake region, and to their subsequent

evolution and energy transfers in the far wake. SPOD is shown to be a useful tool in the context of AWM because it translates

the wavenumber and frequency inputs to the turbine controller to structures in the wake. A decomposition of the radial shear

stress flux in the wake is also developed using SPOD to measure the contribution of coherent flow structures to mean flow10

turbulent entrainment and wake recovery. The effectiveness of AWM is connected to its ability to excite inherent structures in

the wake of the turbine that arise using baseline controls. The effects of AWM on blade loading are also analyzed by connecting

the axial force along the blade to the SPOD analysis of the turbine induction field. Lastly, the performance of different AWM

strategies is demonstrated in a two-turbine array.
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1 Introduction

Interactions between wind turbines and surrounding wakes often result in reduced power generation and increased structural

loads for downstream turbines in a wind farm (Nygaard, 2014; El-Asha et al., 2017). Power losses are particularly problematic20

in stable atmospheric boundary layers (ABLs) because of the increased persistence of wind turbine wakes in these conditions.
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Several wind farm flow control (WFFC) methods have been proposed in the last decade to reduce the negative impacts of

wake momentum loss in wind farms, including turbine derating, wake steering, and wake mixing (Meyers et al., 2022). These

methods rely on static or dynamic adjustments to the operation of upstream turbines, away from their optimal set-point, for

the benefit of downstream turbines. This paper focuses on the technique of active wake mixing (AWM), which is a particularly25

promising approach for wake mitigation as it provides a mechanism for introducing new momentum into a wind farm. Specif-

ically, AWM aims to excite coherent structures in the wake through dynamic oscillations in the turbine’s control parameters to

enhance the entrainment of higher velocity flow into the wake, resulting in faster wake recovery.

As with any WFFC strategy, AWM introduces power and load trade-offs to the wind farm optimization problem. Recent

experimental and numerical results indicate that AWM can improve the power production of turbine arrays anywhere from30

1% to 30% (Frederik et al., 2020c, b; Yılmaz and Meyers, 2018; Taschner et al., 2023; Frederik et al., 2020a), at the cost of

increasing loads on upstream turbines due to pitch actuation (Frederik and van Wingerden, 2022). These results vary signif-

icantly with wind farm layout, turbine model, and ABL condition. Additionally, the design space for AWM is considerably

large. While wake steering, for example, depends on setting the yaw angle, common implementations of AWM involve sev-

eral relevant design parameters to control the blade pitch fluctuations, such as the pitch amplitude, forcing frequency and35

wavenumber, clocking angle, and waveform of the pitch signal (see Cheung et al. (2024a) and Section 2). Given the complex

interactions between wind conditions, wind farm layout, and turbine control parameters, we therefore cannot expect to rely

solely on parametric studies to optimize AWM. Instead, a deeper understanding of the physical mechanisms behind the power

and load trade-offs of AWM is necessary to effectively navigate the design space.

AWM introduces periodic oscillations in the turbine’s control parameters, such as the blade pitch, to generate large-scale40

coherent structures in the wake. Several approaches have been developed in the recent literature to analyze the dynamics

induced by these large-scale structures and their connection to the performance of different AWM strategies. Brown et al.

(2025) analyzed the mean flow kinetic energy budget through a control volume analysis around the wake of an actuated turbine.

This analysis was used to explain the power increases for a two turbine array reported by Frederik et al. (2025). It was shown

that AWM enhances the turbulent and, in some cases, the mean-flow entrainment of momentum into the wake, and that veer45

has a large impact on the relative performance among AWM strategies. Korb et al. (2023) noted the importance of turbulent

entrainment as well, but also showed that helical structures in particular can spread and deflect the wake deficit, leading to

faster wake recovery. Munters and Meyers (2018) used an adjoint framework to determine an optimal perturbation to impart

on the wake, which resembled an axisymmetric flow structure that enhanced existing vortical structures in the non-actuated

wake. Cheung et al. (2024a) introduced a normal mode representation of the coherent wake structures and used linear stability50

analysis to quantify the growth characteristics of the initial flow disturbances in the wake.

Despite these advancements, a complete understanding of the performance differences between AWM strategies has not been

established, including their impact on wake dynamics and relationship to ABL characteristics, which limits the applicability of

wake mixing technologies in practice. Fortunately, large-scale coherent structures are a well studied phenomenon in the broader

context of turbulent flows (Hussain and Reynolds, 1970; Robinson et al., 1991; Ho and Huerre, 1984; Crow and Champagne,55

1971; Fuchs et al., 1979), and several techniques have been developed to extract, quantify, and model coherent flow features
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(Rowley and Dawson, 2017; Taira et al., 2017). The spectral proper orthogonal decomposition (SPOD), in particular, has proven

to be a useful representation of space-time coherence in statistically stationary flows (Towne et al., 2018). Since its introduction

by Lumley (1967), SPOD has been applied to a number of turbulent flows, including turbulent boundary layers (Tutkun and

George, 2017), jets (Citriniti and George, 2000; Gudmundsson and Colonius, 2011), and wakes (Tutkun et al., 2008; Araya60

et al., 2017). In the context of AWM, Cheung et al. (2024a) demonstrated in a canonical flow that SPOD could be used to

track the modal growth of instabilities in the wake. Other related data-driven methods also exist, such as space-only POD

and Dynamic Mode Decomposition (DMD), which provide spatial and temporal orthogonalizations of the flow, respectively.

DMD has recently been used to analyze flow structures (Muscari et al., 2022) and model wake dynamics (Gutknecht et al.,

2023) within the context of AWM. While these methods are effective at identifying either spatially coherent structures or65

dynamically meaningful temporal structures in the flow, the SPOD identifies structures that evolve coherently in both space

and time. Furthermore, as demonstrated by Towne et al. (2018), the SPOD structures correspond to an ensemble-average of

DMD structures, so that the SPOD structures are both dynamically significant, unlike those identified by space-only POD, and

provide an optimal description of the energy content in the flow.

In this paper, the applicability of SPOD to AWM is strengthened further. A formulation of SPOD is presented that translates70

the wavenumber and frequency inputs to the turbine controller to coherent structures in the flow. The coherent structures

induced by AWM are then analyzed from the turbine induction field to the far wake region using high fidelity large eddy

simulation (LES) data of a wind turbine operating in stable ABL conditions. SPOD is used to quantify the energetic structures

in the wake for each AWM strategy, as well as their interactions with other large-scale wake structures. Additionally, the

SPOD analysis is connected to conventional wake mixing metrics through a modal decomposition of turbulent entrainment75

statistics. This formulation provides insights into the wake recovery mechanisms of different AWM strategies and their relative

performance, which is subsequently demonstrated in a two-turbine array. The flow structures that arise in the wake of a baseline-

operated turbine are also analyzed through SPOD and connected to the performance of different AWM strategies.

The remainder of this paper is organized as follows: The methodology for the paper is discussed in Section 2, including

the LES specifications, ABL precursor generation, turbine model, implementation of AWM in the turbine controller, and80

SPOD formulation. The results from the SPOD analysis are then discussed in Section 3.1 for several AWM strategies, which

are connected to conventional wake mixing metrics in Section 3.2 and turbine performance metrics in Section 3.3. Finally,

conclusions are provided in Section 4.

2 Methodology

2.1 LES formulation85

Large eddy simulations of a single wind turbine are performed using the ExaWind Nalu-Wind solver. Nalu-Wind employs an

unstructured second-order control-volume finite-element discretization in space and a second-order backwards-differentiation

scheme in time to solve the implicitly-filtered incompressible Navier-Stokes equations. Additional details on the Nalu-Wind

solver and its application to wind turbine simulations is given by Sprague et al. (2020) and Domino (2015). A one-equation
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Figure 1. (Left) 3D visualization of the flow for the pulse case with A= 1.25◦ pitching amplitude. Isosurfaces of the Q-criterion (Q= 0.05)

are shown on a subset of the domain, colored by spanwise vorticity. Mid-planes of the wake are projected to the domain boundaries and show

streamwise velocity. (Right) Contours of streamwise velocity for each AWM strategy on the hub height plane.

model for the evolution of the subgrid turbulent kinetic energy (TKE) is used to represent the subgrid-scale effects on the90

resolved flow (Davidson, 1997). The simulation domain ranges from 0 m ≤ x≤ 3000 m, 0 m ≤ y ≤ 750 m, and 0 m ≤ z ≤
960 m in the streamwise, lateral and vertical directions, respectively. A three-dimensional visualization of the flow on a subset

of the domain is shown in Fig. 1. Three distinct levels of isotropic resolution are used to discretize the domain around the

turbine: a 5 m background mesh near the domain boundaries; a 2.5 m refinement zone that extends 10D in the streamwise

direction and 1.8D in the lateral and vertical directions from the domain center; and a 1.25 m refinement box surrounding the95

turbine, extending 2D upstream and downstream of the turbine, and 1D in the vertical and lateral directions from the turbine’s

hub location.

The streamwise and lateral boundary conditions are defined by an inflow condition extracted from an initial precursor simu-

lation. The target conditions for the precursor simulation are derived from stable ABL measurements taken in 2021 concurrent

with the American Wake Experiment (AWAKEN) campaign (Moriarty et al., 2024). Specifically, the atmosphere was sampled100

at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) C1 site (Facility,

2024) using a Doppler profiling lidar and CO2 flux stations. A number of filters were applied to isolate 30-minute bins cor-

responding to high-quality measurements and periods of likely interest for wake control. Balancing the need for appreciable

sample size with that for retaining the realism of a specific, observable ABL condition, the latter filters isolated a wind condi-

tion with a frequency of occurrence: wind speed between 6 and 6.7 m/s, wind direction ranging from 100◦ to 260◦ (assuming a105

clockwise definition of wind direction with 0◦ corresponding to northerly flow), and turbulence intensity (TI) from 0% to 7%.
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Figure 2. Horizontally averaged profiles of the simulated and measured wind speed, turbulence intensity, and wind direction.

The 1200 minutes of (non-contiguous) data that meet the above criteria are used to establish target statistics for the precursor

simulation, and these are a hub-height wind speed of 6.4 m/s, a TI of 4.4%, a shear exponent of 0.19, and 17◦ of veer over the

rotor disk. The low TI and high veer in this target are congruent with the southerly, stable ABL conditions typically observed

at the SGP site (Krishnamurthy et al., 2021), and these conditions offer a strong opportunity to demonstrate a use-case for110

wake-control technology.

The surface roughness height (0.0015 m) and cooling rate (4.16× 10−5 K/s) parameters are calibrated in the precursor

simulation of the ABL to ensure good agreement between the simulated and measured flow statistics; this calibration results

in inflow data with an average hub-height wind speed of U∞ = 6.4m/s, a TI of 3.5%, a shear exponent of 0.17, and 9◦ of

veer over the rotor disk. Notably, the simulated ABL exhibits less veer than the measurement data, and this is due to the115

numerical forcing scheme used to drive the ABL towards the target statistics (primarily TI and shear), which limits the amount

of simulated veer that can be achieved while maintaining a realistic ABL velocity profile; such difficulty achieving high veer

was also encountered in Brown et al. (2025) and Frederik et al. (2025). Alternate ABL forcing schemes, such as those which

incorporate meso-scale information in a direct assimilation approach, may be able to match the veer and wind speed profiles,

but are not studied here. In addition to the above summary statistics, a good agreement between the vertical profiles of the120

simulated and measured ABL is found (see Fig. 2).

The turbine is simulated within the ABL with a time step of ∆t= 0.02 for 1,100s after reaching a steady state. Terrain

effects are not included in either the precursor or the wind turbine simulations, and, instead, a flat lower surface is implemented

using the atmospheric rough wall model from Moeng (1984). A 100m wide inversion layer is applied to the temperature profile

at z = 700 m to reduce perturbations in the flow above this height, and a temperature gradient of 7.5 · 10−4 K/m is maintained125

at the upper boundary. A potential flow solution is used set the upper boundary condition for the velocity field.

The turbine specifications are provided by the NREL 2.8 MW turbine model (Quon, E. W., 2024), which provides an open-

source representation of a turbine that is similar to those located at the AWAKEN site. The hub of the turbine is located in

the computational domain at (xhub,yhub,zhub) = (1050,375,88.5) m, within the ∆x= 1.25 m resolution region. The wind

speed in the precursor ABL simulation at the hub height location corresponds to region 2 for this turbine and also falls within130
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NREL 2.8MW

Hub-height (m) 88.5

Rotor diameter (m) 127

Rated RPM 12

Design Ct 0.75

Rated TSR 8

Figure 3. Specifications of the NREL 2.8MW reference turbine model (Quon, E. W., 2024) including the generator power and rotor thrust

curves (left) and the design parameters (right). The dashed line corresponds to the hub height wind speed for the precursor ABL simulation

used in this study which is situated in region 2 for this turbine.

the relatively constant thrust coefficient region (see Fig. 3). To represent the dynamic response of the turbine, Nalu-Wind is

coupled to the National Renewable Energy Lab’s OpenFAST software suite (National Renewable Energy Laboratory, 2024b),

which has been validated versus measurements of the GE 2.8 MW turbine on which the NREL 2.8 MW turbine is based

(Brown et al., 2024). An actuator line model (ALM) with an isotropic Gaussian spreading function with a spreading parameter

of ε/∆x= 2 is used to represent the turbine aerodynamic forces computed in OpenFAST as body forces in the LES (Sorensen135

and Shen, 2002). The filtered lifting line correction is applied with an optimal kernel width of εopt = 0.25c, where c is the

chord length, to improve the ALM’s representation of the force distribution along the blade (Martínez-Tossas and Meneveau,

2019; Martínez-Tossas et al., 2024).

To implement different AWM control strategies on the turbine, a dynamic blade pitch, Θ, is specified on top of the baseline

pitch set point, Θ0. The dynamic blade pitch can be specified using either a normal-mode representation (Cheung et al., 2024a)140

or a Coleman-transform representation (Frederik et al., 2020b). Both representations have been implemented in NREL’s refer-

ence open-source controller (ROSCO v2.8.0; National Renewable Energy Laboratory (2024a)), which is coupled to OpenFAST

in the LES. In this work, the normal-mode representation is used because the wavenumber and frequency input to the controller

align directly with the parameters of the SPOD analysis formulated in Section 2.2. Specifically, the dynamic blade pitch for

each blade is specified as145

Θ(t) = Θ0(t)+A
∑
{κθ}

cos(ωet−κθθ(t)+ϕclock), (1)

where A is the pitching amplitude, ωe is the excitation frequency, θ is the azimuth position of the blade, ϕclock is the clocking

angle, and κθ is an azimuthal wavenumber. The summation in Eq. 1 is over a discrete set of azimuthal wavenumbers. Of

particular importance to this study are the κθ and ωe parameters, which control the shape and frequency of the flow structures

that are imparted on the wake, respectively. The excitation frequency can be specified through a Strouhal number based on150

the inflow velocity, U∞, and turbine diameter, D, as ωe = 2πStU∞/D. A Strouhal number of St= 0.3 is used for all control

strategies considered here, as this has been shown in previous studies to align with natural unsteady processes in the wake
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Figure 4. Time series of the blade pitch signal for a single blade for each AWM cases, normalized by the pitching amplitude. One Strouhal

period is shown based on the excitation frequency ωe. The black line at Θ/A= 0 corresponds to the baseline blade pitch signal. The total

pitch travel for a single Strouhal period is also shown for each AWM case.

and result in good performance for different AWM cases (Frederik et al., 2020c; Munters and Meyers, 2018; Cheung et al.,

2024a). A single Strouhal period based on the inflow velocity and turbine diameter corresponds to 66.15s, which means that

flow structures are generated over much longer periods than a typical rotor period (see Fig. 4). The 1,100s of simulation time155

corresponds to over 16 complete Strouhal cycles at St= 0.3.

Four AWM strategies are considered in addition to a baseline case, including a pulse (κθ = 0), helix (κθ =−1), side-

to-side (κθ =±1, ϕclock = 90◦), and up-and-down (κθ =±1, ϕclock = 0◦) actuation. Here, positive and negative azimuthal

wavenumbers denote flow structures that rotate in the same and opposite direction of the turbine, respectively (i.e., clockwise

and counter-clockwise when looking downstream). The counter-clockwise helix method is used here, which has been found160

to consistently outperform its clockwise counterpart (Coquelet et al., 2024). The pulse forcing is axisymmetric and achieved

through collective pitching of the three turbine blades, while the other AWM strategies rely on individual pitch control to

create a non-uniform thrust force around the rotor disk. In this study, the clocking angle is only relevant for differentiating

the side-to-side and up-and-down actuations, in which case it negates the thrust force in the vertical and horizontal directions,

respectively. For the pulse and helix cases, the clocking angle only determines the phase of excitation and it is arbitrarily set to165

90◦ here. A pitching amplitude of A= 1.25◦ is primarily used in this study, although other values of A are also discussed.

The blade pitch signal for each AWM case is shown in Fig. 4 over a single Strouhal period. For the up-and-down and side-to-

side cases, a pitching amplitude of A= 1.25◦ is applied to both the ±1 modes. This choice is made to ensure that each mode is

forced with the same pitch amplitude, allowing for a consistent comparison of modal energy and entrainment between modes

and AWM cases in the SPOD analysis developed in Section 2.2. As a result, the total pitch amplitude for the up-and-down and170

side-to-side cases is twice that of the pulse and helix cases; however, this corresponds to only an 18% increase in total pitch

travel over the helix case (see Fig. 4). A summary of the AWM parameters is provided in Table 1, and a visualization of the

streamwise velocity on the hub height plane for each AWM strategies is shown in Fig. 1.

The blade pitch fluctuations are designed to induce azimuthal and temporal variations in the blade loading at the wavenum-

bers and frequencies input to the controller. These variations can be examined through the spectrum of the axial force along175

the blade span (Cheung et al., 2024a). The Fourier representation of the axial force, Fx, at a particular radial location, r, blade
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Table 1. Summary of AWM cases and control settings.

Case Name Pitch Amplitude

(A)

Azimuthal Wavenumbers

(κθ)

Strouhal Number

(St)

Clocking Angle

(ϕclock)

Baseline N/A N/A N/A N/A

Pulse 1.25◦ 0 0.3 90◦

Helix 1.25◦ −1 0.3 90◦

Up-and-down 1.25◦ ±1 0.3 0◦

Side-to-side 1.25◦ ±1 0.3 90◦

azimuthal angle, θ, and time, t, for a given blade is

F̂x(r,κθ,ω) =

∫ ∫
Fx(r,θ, t)e

−i(ωt+κθθ)dθdt. (2)

Given a discrete time series of the axial force at each nodal location along the blade, Fx(r, t), the blade azimuthal angle is

determined using the instantaneous rotor speed signal, Ω, as θ(t) = θ(0)+
∫ t

0
Ω(t′)dt′. Then the Fourier coefficients, F̂x, are180

readily determined by performing a Fourier transform in the time and azimuthal directions.

The blade loading spectra indicate that the prescribed blade pitch fluctuations result in the intended modal response in

the axial loading for each AWM strategy (see Fig. 5). In all cases, the highest periodic loading occurs near the blade-tip at

around 90% of the blade-span. Notably, the κθ = 0 actuation exhibits significantly higher periodic loading at St= 0.3 than

the other cases. An increase in the axial force of over 10% is observed at the κθ = 0 wavenumber for the pulse actuation185

across the majority of the blade span, while the other cases show around a 7.5% increase in their respective modes. There are

contributions to the axial force from wavenumbers other than those directly forced by the prescribed blade pitch fluctuations,

which may result from factors such as the unsteady inflow, the effects of AWM on the turbine induction field, or other controller

specifications. For instance, the non-axisymmetric forcing strategies exhibit a notable increase in the κθ = 0 mode, which is

attenuated 2.5% for the up-and-down case in the middle of blade.190

To analyze the corresponding wavenumber and frequency content in the wake, an SPOD analysis is formulated in the

following section.

2.2 SPOD formulation

Proper orthogonal decomposition (POD), also referred to as principle component analysis or Karhunen–Loéve decomposition,

is a common data analysis technique that identifies a set of deterministic modes that optimally represent the energy in a195

stochastic process. Since its inception by Lumley (1967), several formulations of POD have emerged and been applied to

a wide range of applications (Towne et al., 2018). In this paper, the focus is on spectral POD, which identifies the dominant

coherent structures in a flow through a set of spatial-temporal modes (Picard and Delville, 2000). This differs from a space-only

POD (Sirovich, 1987; Aubry et al., 1988; Ali et al., 2017) by considering the frequency content of the data, which is particularly

useful in the context of AWM for tracking flow structures that are forced at specific Strouhal numbers. Additionally, a polar200
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Figure 5. Variation in the axial blade loading for each AWM strategy. The individual curves correspond to the magnitude of the Fourier

coefficients of the axial force, |F̂x|, at St= 0.3 for different azimuthal wavenumbers, κθ , normalized by the mean axial blade loading, |F x|.

decomposition is used here to represent spatial correlations as in Citriniti and George (2000), and a Fourier transform is applied

in the azimuthal direction so that velocity correlations in the radial direction, r, are considered at each azimuthal wavenumber,

κθ, and frequency, ω. This setup allows for the evolution of the forced azimuthal wavenumbers and frequencies that are input

to the turbine controller to be explicitly tracked in the flow, as well as their interactions with other wake structures.

Given a time series of planar velocity field data, the SPOD is defined by the eigenvalues and eigenvectors of the cross-205

spectral density tensor, S, which is the time Fourier-transform of the two-point space-time velocity correlation tensor (Towne

et al., 2018). For a statistically stationary flow, the cross-spectral density tensor at a specific frequency, ω, and azimuthal

wavenumber, κθ, can be expressed as S(r,r′) = ⟨û(r,κθ,ω)û
∗(r′,κθ,ω)⟩, where û are the velocity Fourier coefficients, ⟨ ⟩ is

the expectation operator, and ∗ represents the complex conjugate of a scalar or the Hermitian transpose of a tensor (Citriniti and

George, 2000). In this paper, u denotes the fluctuating velocity field, since SPOD typically operates on a zero-mean stochastic210

process, and U will be used for the mean velocity field. The eigenvalue problem is then expressed as∫
S(r,r′,κθ,ω)ψ(r

′,κθ,ω)dr
′ = λ(κθ,ω)ψ(r,κθ,ω). (3)

The solution to Eq. 3 is a set of eigenvalues, λ, and orthogonal eigenvectors, ψ. The eigenvectors represent individual flow

structures and the eigenvalues represent the average TKE of flow that is captured by the eigenvectors. Therefore, the eigenvalues

can be used to rank the eigenvectors ψ1,ψ2,ψ3, · · · from most to least energetic across all κθ and ω such that λ1 ≥ λ2 ≥ ·· · ≥215
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Figure 6. Schematic of the cross-flow planes used for the SPOD analysis. Isosurfaces of the baseline wake are also shown, colored by

streamwise velocity. The cross-flow planes correspond to the streamwise locations: (x−xhub)/D = -5.00, -2.50, -1.00, -0.50, -0.40, -0.30,

-0.20, -0.10, -0.05, -0.025, 0.025, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 0.90, 1.0, 1.50, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 8.5, 9.0,

9.5, 10.0, 10.50, 11.0, 12.0, 13.0, 14.0.

0. In this sense, the velocity Fourier coefficients, û, can be optimally expanded from the most energetic to the least energetic

structures in the flow as

û(r,κθ,ω) =

∞∑
j=1

aj(κθ,ω)ψj(r,κθ,ω) (4)

where aj(κθ,ω) =
∫
û(r,κθ,ω)ψ

∗
j (r,κθ,ω)dr is obtained by projecting the velocity Fourier coefficient onto the jth eigen-

vector. We can define ûj(r,κθ,ω)≡ aj(κθ,ω)ψj(r,κθ,ω) as the contribution to the velocity Fourier coefficients from the220

jth eigenvector. The real-space velocity field is recovered by performing an inverse Fourier transform in the temporal and

azimuthal directions, i.e.,

u(r,θ, t) =

∞∑
j=1

uj(r,θ, t) =

∞∑
j=1

[∫ ∫
ûj(r,κθ,ω)e

i(κθθ+ωt)dκθ dω

]
. (5)

In Eq. 5, uj(r,θ, t) denotes the reconstruction of the velocity field in real space from the jth SPOD eigenvector. Similarly, the

velocity can be reconstructed from the leading N eigenvectors by truncating the summations in (4) and (5). More generally, we225

denote uJ =
∑

j∈J uj(r,θ, t) as the reconstruction of the velocity field from a collection of eigenvectors defined by a given
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Figure 7. (a) Contours of streamwise velocity for the baseline case at (x−xhub)/D = 1,3,6 and 10. Dashed lines indicate the turbine

rotor disk, dotted lines indicate a 1.4R disk around the wake centers, and dot-dashed lines indicate the wake boundaries identified using the

SAMWICH package. The wake centers are also marked. (b) and (c) show the mean lateral and vertical wake centers for each AWM case

across the extent of the streamwise domain, respectively.

set of integers J . Further details on the general application of SPOD to fluid dynamics, including its connection to Dynamic

Mode Decomposition (DMD) and resolvent analysis, are provided by Towne et al. (2018).

Given the computational setup in Section 2, SPOD is performed on time series of cross-flow planes extracted from the LES

at multiple streamwise locations ranging from −5≤ (x−xhub)/D ≤ 14 (see Fig. 6). These y-z planes are sampled at a spatial230

resolution consistent with the local grid resolution and a frequency of 2Hz over the 1,100s of simulation time. Each planar time

series is divided into nineteen overlapping blocks of data (NB = 19), and the cross-spectral density is approximated from an

ensemble average of these realizations for each temporal frequency using a windowed Fourier transform in time. The short-

time FFT routine from the SciPy package (Virtanen et al., 2020) is used to perform the padded windowed Fourier transform
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in time, providing routines for both forward and inverse transforms, allowing the flow field to be reconstructed in real space235

to machine precision using Eq. 4. Each block of data corresponds to 128s of simulation time, with a 64s overlap between

consecutive blocks. This configuration allows for the resolution of Strouhal numbers down to St= 0.15 within each block.

The SPOD parameters discussed here were primarily chosen to maximize the number of blocks over the 1,100s time interval,

while also ensuring good temporal resolution of the forcing Strouhal number, 0.3.

The velocity field is transformed to a polar grid with 256 uniformly spaced points in both the radial, r ∈ [0,LR], and az-240

imuthal, θ ∈ [0,2π), directions. The radial extent of the flow region considered is taken to be LR = 1.4R, which brings the flow

region to within a 1m clearance from the ground at its lowest point. This radius is found to be sufficient for encompassing the

wake near the turbine; however, the wake does spread anisotropically downstream beyond the extent of this radial domain (see

Fig. 7a). Thus, only the wake dynamics within a 1.4R circular region are captured by the SPOD analysis here. This choice is

made as the polar representation of the flow field is needed to track the flow structures at the specific azimuthal wavenumbers245

forced by turbine controller. However, we note that SPOD could be applied to the full Cartesian data to analyze y-z correlations

for the entire wake structure, and that, while this would sacrifice the ability to examine specific wavenumbers, it would result

in a more efficient basis for representing anisotropic structures in the wake.

For each streamwise location in the wake, the polar coordinates are defined around the center of the wake, rather than a fixed

y-z coordinate at all locations. This approach is taken because the turbulence in the wake, including the AWM-induced flow250

structures, will follow the mean movements of the wake, and we are interested in tracking their properties downstream. Further,

the path the actual wake travels dictates the worst-case position for a downstream turbine (and the best-case scenario for wake

control), which further motivates the choice to use the wake position as the centering point for the analyses herein. The wake

centers are identified by a velocity deficit weighted average over a πL2
R area using the SAMWICH package (Quon et al., 2020)

(see Fig. 7a). The lateral and vertical mean wake centers are shown in Figs. 7b and 7c, respectively, for each case in Table 1255

across the extent of the streamwise domain. The mean wake generally moves up and to the right (when looking downstream),

with the largest deviation from the hub height location occurring for the side-to-side actuation, which moves 0.45D to the right

and 0.26D upward. The wake movement and skewness align with the direction of veer in the ABL. The polar transformation

for each AWM case is defined around the wake center for the baseline case. This adjusts the analysis for wake movements

as a result of the unsteady inflow to follow the general movement of the dominant flow structures, but preserves differences260

in the induced wake movement from the baseline as a result of AWM. Subtraction of the wake centers also adjusts for wake

expansion and veer due to mean flow effects. For all streamwise locations upstream of the turbine, the polar representation of

the velocity field is centered on the turbine hub height.

All three cylindrical velocity field components, u= (ux,ur,uθ), are included in the SPOD analysis of the cross spectral

density tensor. This approach provides the most comprehensive description of the coherent structures in the flow because it265

contains correlations between all components of the velocity field. However, the eigenvalues and eigenvectors of the com-

ponents of the trace of S can also be used to identify the response of each velocity component to AWM individually (see

Appendix A). In this case S11, S22, and S33 are identified with the streamwise, radial, and azimuthal velocity components, re-

spectively. This is useful for discerning which components of the flow are contributing the most TKE to a given flow structure.
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Figure 8. Eigenvalues of S at five different Strouhal numbers for the baseline case. Shown are the azimuthal wavenumbers κθ = 0 (—),

κθ = 1 (—), κθ =−1 (—), κθ = 2 (—), and κθ =−2 (—). Each eigenvalue is normalized by the global maximum baseline eigenvalue

across all streamwise locations and Strouhal numbers.

For both S and its diagonal elements, the discrete eigenvalue problem is solved using a low-rank SVD solver, which results270

in NB eigenvalues and eigenvectors for each κθ and ω. More details on the solution to the discrete eigenvalue problem are

provided in Appendix B.

3 Results

In this section, the wake mixing dynamics and efficacy of each AWM strategy are explored through the SPOD analysis. The

energetic flow structures are tracked throughout the wake in Section 3.1 and connected to turbulent entrainment statistics in275

Section 3.2. The practical benefits of AWM are also demonstrated for a two-turbine array in Section 3.3.

3.1 SPOD results

The SPOD eigenvalues are used to track the dominant flow structures throughout the streamwise domain. The results primarily

focus on the azimuthal wavenumbers κθ = 0, ±1, and ±2 at St= 0.3 as this range encompasses the forced coherent structures

for each AWM case, as well as other large-scale structures that get excited downstream in the wake. The eigenvalues for the280

baseline case are also analyzed at these wavenumbers for a wider range of frequencies (Fig. 8), which represent the energy in

the inherent flow structures in the non-actuated wake resulting from standard turbine operations. Both the absolute values of

the eigenvalues (Fig. 9) and the baseline-normalized eigenvalues (Fig. 10) are discussed, which quantify the dominant coherent

structures in the wake for each control strategy and the effectiveness of AWM at exciting structures in the wake over the

baseline, respectively. Comparisons in the modal behavior for each AWM case offer insights into their relative performance,285

which are strengthened further in Sections 3.2 and 3.3. In addition to eigenvalues, the reconstruction of the velocity field from

the leading SPOD eigenvectors is used to show the leading flow structures in the wake and the induction field.

In Fig. 8, the eigenvalues for the baseline wake are shown for a broad frequency range. In general, the most energetic

structures in the wake are found at St= 0.3, which may explain the effectiveness of AWC forcing frequencies near this value
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Figure 9. Eigenvalues of S at St= 0.3 for the azimuthal wavenumbers κθ = 0 (—), κθ = 1 (—), κθ =−1 (—), κθ = 2 (—), and κθ =−2

(—). Each eigenvalue is normalized by the global maximum eigenvalue across all AWM cases and streamwise locations. The eigenvalues

are shown in the near the turbine region (|(x−xhub)/D| ≤ 1) in the top row of figures, (a), and across the entire streamwise domain,

−5≤ (x−xhub)/D ≤ 14, in the bottom row of figures, (b).

(Munters and Meyers, 2018; Frederik et al., 2020c; Cheung et al., 2024a; Brown et al., 2025; Frederik et al., 2025). In this290

sense, SPOD could provide a way to identify the optimal AWC forcing frequency based on baseline wake data. A more detailed

investigation of the baseline wake within the range St ∈ [0.25,0.35], would be worthwhile for future research; however, the

SPOD parameters selected in this study do not permit such fine resolution. There is also considerable energy present in the

baseline wake at St= 0.15, suggesting potential support for sub-harmonic forcing strategies (Li et al., 2024). In contrast, the

energy content at higher Strouhal numbers (St > 0.6) is largely insignificant when compared to lower values. The remainder295

of this section focuses on St= 0.3, as this corresponds to the dominant frequency in the baseline wake and the AWC forcing

frequency that was selected a priori.

In the baseline case, a small distinction between large-scale flow structures at St= 0.3 originates in the induction field ahead

of the turbine, which grows significantly in the wake (see Fig. 9). The κθ =−1 mode is the dominant flow structure in the

immediate near-wake of the turbine as well as in the far-wake, while the κθ = 1 mode is the leading structure between 0.5D and300

5D downstream of the turbine. Together, the ±1 modes result in a mean movement of the wake, as well as a swirl component

if the energy in these modes is imbalanced. SPOD decouples these competing rotational effects in the wake, allowing them to

be examined independently. There are several factors contributing to the swirl of the baseline wake. The clockwise rotation of

the turbine blades, for instance, imparts a counter-clockwise swirl in the mean wake, which may be contributing to the large

14



Figure 10. Eigenvalues of S at St= 0.3 for the azimuthal wavenumbers κθ = 0 (—), κθ = 1 (—), κθ =−1 (—), κθ = 2 (—), and κθ =−2

(—). The eigenvalues for each wavenumber and streamwise location are normalized by the corresponding eigenvalues in the baseline case.

The eigenvalues are shown in the near the turbine region (|(x−xhub)/D| ≤ 1) in the top row of figures, (a), and across the entire streamwise

domain, −5≤ (x−xhub)/D ≤ 14, in the bottom row of figures, (b).

κθ =−1 mode. Similarly, the positive veer in this ABL introduces a horizontal shear to the wake, resulting in a large-scale305

counter-clockwise swirl, which may be contributing to the κθ = 1 mode. Other prominent energetic structures in baseline wake

include the κθ = 2 mode in the near wake region, and the κθ = 0 mode in the far wake.

For each AWM case, the largest increase in eigenvalues over the baseline occurs in the near-wake region between 0.25D

and 1D behind the turbine, corresponding to the azimuthal wavenumber directly forced by the dynamic blade pitch settings

i.e., κθ = 0 for the pulse, κθ =−1 for the helix, and κθ =±1 for the up-and-down and side-to-side actuations (see Fig. 10).310

The SPOD analysis therefore confirms that the azimuthal wavenumber and frequency inputs to the turbine controller lead to

the intended flow response directly downstream of the turbine. The streamwise velocity component contributes the most to

the TKE of the coherent structures in the near wake region, although a similar modal response is induced in the radial and

azimuthal components (see Appendix A). This is expected as the most observable effect of the blade pitch fluctuations are

on the axial loading. It is also readily apparent from the leading SPOD mode shapes that the intended flow perturbations are315

imparted on the wake for each AWM case (see Fig. 11a). The primary flow perturbation in the near wake for the pulse actuation

is axisymmetric and oscillates at the Strouhal period. The coherent structures for the other AWM strategies are characterized

by two regions of low- and high-speed flow, which rotate about the wake center for the helix case and oscillate at the Strouhal

period for the mixed-mode forcings depending on the clocking angle. To connect the SPOD eigenvectors to more familiar flow
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Figure 11. Dominant flow structures at four streamwise locations in the wake. The reconstructed fluctuating velocity field, uJ (r,θ), is

shown at a single instance in time using the SPOD eigenvectors that correspond to the leading eigenvalues for St= 0.3. For each case, the

reconstructed velocity field is normalized by its maximum value in the polar domain at that specific time. For the pulse and helix cases, one

SPOD mode is included in the reconstruction, i.e., J = {1 | ωUinf/D = 0.3}. For the up-and-down and side-to-side cases two SPOD modes

are included in the flow reconstruction, i.e., J = {1,2 | ωUinf/D = 0.3}. The colored contours show normalized streamwise velocity and

the arrows denote the in-plane velocities.
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Figure 12. Phase-averaged, baseline-subtracted velocity fields at (x−xhub)/D = 0.1. Phase averaging within the Strouhal cycle is performed

with a 10◦ bin centered on 0◦. After the phase averaging is performed for all cases, both the streamwise and lateral components of velocity

are baseline-subtracted to yield the colored contours and the vector fields, respectively. The dashed lines outlines the turbine rotor disk.

quantities, we note that these flow patterns can also be observed in the region near the rotor by carefully phase averaging the320

real-space flow. In Fig. 12, the phase-averaged baseline-subtracted velocity field is shown for each AWM case. The leading

SPOD modes are clearly apparent in the phase-averaged fields, demonstrating that the flow patterns identified by SPOD are

indeed the dominant coherent structures in the wake.

The eigenvalues of the forced azimuthal wavenumber(s) begin to increase from the baseline values around 0.5D upstream

of the turbine for each AWM strategy, and grow rapidly through the induction field to reach a value over an order of magnitude325

larger than the baseline at the turbine location (see Fig. 10). AWM therefore modifies the induction field with similar spectral

characteristics as those imparted on the wake region directly behind the turbine. However, unlike in the wake, the coherent

structures at St= 0.3 are not the dominant energy containing modes in the induction field, which instead occur near the blade-

passing frequency (St≈ 7.5) for each AWM case (see Fig. 13a). Nonetheless, SPOD allows these structures to be decoupled,

and the focus here is on modes at the excitation frequency (Fig. 13b). The azimuthal and temporal modifications to the turbine330

induction field translate to variations in the axial force along the blade (compare Figs. 5 and 9a), which are subsequently

imparted to the downstream wake. Notably, the κθ = 0 in the near-wake region of the pulse case exhibits a larger increase in

energy over the baseline compared to the forced wavenumbers associated with the other AWM strategies. This observation

aligns with the larger variations in blade loading seen with the pulse method compared to the other cases. The structure of

the dominant modes in the induction field may provide insight into why there is increased blade loading observed with pulse335

actuation relative to the other AWM strategies. For the non-axisymmetric forcings, the in-plane velocity field in the induction

zone is seen to divert the flow from the low- to high-speed region of the streamwise velocity (see Fig. 13b). This suggests that

the individual pitching of the turbine blades creates a non-uniform blockage in the flow, leading to flow diversion around the

region of higher blockage and consequently reducing the periodic axial blade force that actuates the wake modes. However,

in the pulse case, there is no apparent flow diversion because all the blades are collectively pitched. This increase in blade340

loading for the pulse case is seemingly important as it translates to the largest modal energy in the near-wake region which, as

discussed further in Section 3.2, facilitates the most effective mixing of the downstream wake.
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Figure 13. Dominant flow structures in the induction field. The reconstructed fluctuating velocity field, uJ (r,θ, t) is shown at a single

instance in time. For each case, the reconstructed velocity field is normalized by its maximum value in the polar domain at that specific

time. For the pulse and helix case, one SPOD mode is included in the reconstruction, whereas for the up-and-down and side-to-side cases

two SPOD modes are included in the flow reconstruction. In (a), the leading SPOD eigenvectors across all wavenumbers and frequencies

are used, i.e., J = {1} for the pulse and helix methods, and J = {1,2} for up-and-down and side-to-side methods. In (b), the leading

SPOD eigenvectors across all wavenumbers at St= 0.3 are used, i.e., J = {1 | ωUinf/D = 0.3} for the pulse and helix method and J =

{1,2 | ωUinf/D = 0.3} for the up-and-down and side-to-side method. The colored contours show normalized streamwise velocity and the

arrows denote the in-plane velocities.

As the wake evolves downstream, nonlinear and mean flow interactions excite flow structures beyond those directly forced by

the turbine controller. For the non-axisymmetric forcing strategies, there is a notable increase in the κθ = 0 wavenumber relative

to the baseline between 2≤ (x−xhub)/D ≤ 5, which dominates the baseline-normalized eigenvalues in this region (Fig. 10b).345

For the pulse case, the increase over the baseline is sustained by the κθ = 1 and 2 wavenumbers between 3≤ (x−xhub)/D ≤
10. By 10D to 14D downstream, the κθ =−1 mode is dominant in all cases, but the modal energy in the large scales has

generally returned to the baseline levels for all of the AWM strategies. However, we note that increases in pitching amplitude

or adjustments to the Strouhal number may extend the duration of AWM effects. Moreover, it is important to highlight that,

although the modal energy relative to the baseline wake generally decreases downstream for the AWM cases, the modal energy350

in the baseline wake itself typically increases downstream (Fig. 9b). Consequently, the flow structure with the largest modal

energy for the AWM cases may not be located in the immediate near-wake of the turbine, despite the largest increases over

the baseline occurring in that region. It is clear from the SPOD modes, for instance, that the dominant flow structure, in terms
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Figure 14. Baseline normalized TKE in the wake computed as the sum of the magnitude of eigenvalues of S across all wavenumbers and

frequencies. The baseline normalized contribution to TKE from the streamwise, radial, and azimuthal velocity components is also shown and

computed from the eigenvalues of S11, S22, and S33, respectively.

Figure 15. The eigenvalue spectra for each AWM strategy are shown at five streamwise locations in the wake. The leading 75 eigenvalues

across all azimuthal wavenumbers and frequencies are included. Each spectrum is normalized by its leading eigenvalue, |λ1| to emphasize

the relative decay in eigenvalues between cases.

of the absolute magnitude of the eigenvalues, changes as the wake evolves downstream (see Figs. 11b-d). The largest absolute

eigenvalue across all AWM cases and streamwise locations occurs for the κθ = 1 wavenumbers for the pulse actuation 4D355

downstream (see Fig. 9b). In fact, for all AWM cases, the largest eigenvalues between 5 and 6D downstream is for the κθ = 1

wavenumber. The energy in this mode is primarily driven by the radial velocity component, ur, which is generally true of the

modal energy increases over the baseline by 4D to 5D downstream (see Appendix A). Notably, the κθ = 1 mode is also the

dominant structure in the near-wake region of the baseline case, which suggests that the effectiveness of AWM strategies at

increasing modal energy in the wake is related to their ability to excite the natural flow structures in the non-actuated wake.360

This appears to be the case for higher harmonics in the flow as well, such as the κθ = 2 mode for the pulse and side-to-side

actuations (see Fig. 9b).

The flow response in the wake between the two mixed-mode forcing strategies differs significantly even though both strate-

gies excite the κθ =±1 modes. This behavior highlights that differences in the clocking angle cause flow structures to interact

differently with the ABL, including variations in shear, stratification, turbulence, and ground effect. By 3D to 6D downstream,365
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Figure 16. Contours of the radial shear stress flux, T , for the baseline case at four different streamwise locations. The dashed line corresponds

to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

the up-and-down strategy strongly forces the κθ = 0 and 1 modes, while the side-to-side strategy forces the κθ = 2 mode

(Fig. 9b). Interestingly, the κθ = 1 and −1 modes have nearly identical growth rates in the induction field ahead of the turbine

for these cases, but, directly behind the turbine, κθ =−1 emerges as the dominant flow structure for both cases. This suggests

that the κθ =−1 mode is enhanced by the counter-clockwise vortex rings generated behind the turbine, which has also been

linked to the performance differences between the counter-clockwise and clockwise helix strategies (Coquelet et al., 2024).370

The total TKE in the wake at each streamwise location can be computed by summing the entire set of eigenvalues across

all wavenumbers and frequencies (see Fig. 14). In the near wake, the up-and-down and side-to-side forcings have the largest

TKE increase over the baseline, because two modes are forced at the same pitching amplitude as opposed to the single modes

in the pulse and helix case. However, by 3D downstream, the increase in TKE over the baseline drops to around 10% for the

non-axisymmetric forcings, while the pulse case maintains around a 15-20% increase until 9D downstream. This increase for375

the pulse actuation is driven by TKE in the radial velocity (see S22 in Fig. 14). It is important to note that the goal of AWM

is to increase TKE in the large scale coherent structures of the wake that entrain the freestream momentum, not necessarily

to increase wake TKE in general, which can impact blade loading on downstream turbines. To understand the separation of

scales in the wake, the streamwise evolution of the eigenvalue spectra is reported in Fig. 15. In the pulse and helix cases, an

order-of-magnitude decrease in the eigenvalue spectrum is observed after the first three SPOD modes at 0.5D downstream.380

In contrast, the side-to-side and up-and-down cases exhibit a more gradual decay, attributed to the forcing of two modes by

the blade pitch actuations, resulting in an order-of-magnitude decrease after six SPOD modes. This suggests that the flow is

effectively represented by the leading SPOD modes in the near wake region, where large-scale coherent structures dominate

the flow’s unsteadiness and account for the majority of the wake TKE. However, the decay becomes more gradual starting

around 3D downstream, and by 10D, the distribution of modal energy across all AWM cases is similar to the turbulence in the385

baseline wake.

3.2 Wake mixing and turbulent entrainment dynamics

The practical benefit of increased modal energy in the wake is additional entrainment of mean momentum by the coherent wake

structures. This is the primary mechanism by which AWM enhances wake recovery and where the advantage of AWM lies over
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Figure 17. (a) Circumferential average of the radial shear stress flux around a rotor disk centered at the wake center, defined as

τ = 1
2π

∫ 2π

0
T (r =D/2,θ)dθ. (b) Rotor averaged velocity for each AWM case, normalized by the baseline value. The velocity is aver-

aged over a rotor disk centered around the wake center.

other wind farm control strategies. Entrainment is quantified here using the negative radial shear stress flux, T =−Uxuxur,390

where · denotes the time average of a fluctuating quantity. This term quantifies the radial turbulent transport of mean streamwise

kinetic energy, which Lebron et al. (2012) demonstrated is the dominant contributor to wake recovery for a single, isolated

turbine wake. Positive values of T indicate a gain of mean flow into the wake due to turbulent transport, whereas negative

values of T indicate a loss of mean flow.

The radial shear stress flux of the wake for the baseline case is shown in Fig. 16. Mean flow is primarily entrained through395

the boundary of the wake, which aligns with the rotor-disk in the near wake region but deforms anisotropically downstream.

Veer, in particular, skews the wake significantly downstream, which in turn affects the distribution of T . A scalar measure of

mean flow entrainment, τ = 1
2π

∫ 2π

0
T (r =D/2,θ)dθ, is obtained by azimuthally averaging T around the circumference of a

rotor disk centered with the wake (see Fig. 17a). Wake recovery mechanisms are analyzed here in terms of a rotor disk centered

around the wake centers at each streamwise location to track the entrainment properties of the wake structures downstream.400

This formulation is consistent with the SPOD analysis, which is computed around the wake centers.

All AWM strategies improve the net radial shear stress flux over the baseline throughout most of the streamwise domain,

with the largest increases occurring between 2D and 4D behind the turbine (see Fig. 17a). Notably, the largest increase

in the net mean flow entrainment is for the pulse actuation, which sustains an increase over the baseline between 3D and

10D downstream, whereas the other AWM cases return to the baseline levels in this region. This behavior is similar to the405

downstream evolution of the eigenvalues for the pulse case, which also sustained an increase over the baseline in this region.

The improvement in radial shear stress flux over the baseline is not homogeneous around the rotor disk, however, and there are
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Figure 18. Contours of the baseline-subtracted radial shear stress flux for each AWM case. The dashed line corresponds to the rotor disk

centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

points where mean flow is even lost compared to the baseline due to the AWM pitch actuation (see Fig. 18). This is a departure

from the canonical case analyzed by Cheung et al. (2024a), further highlighting the impact of ABL characteristics on wake

mixing dynamics including wind veer, shear, and stratification. Moreover, the modal structure of the forcing is visible in the410

contours of T within a turbine diameter downstream, where positive values are approximately axisymmetric for the pulse case

but depend on the clocking angle for the up-and-down and side-to-side actuations.

While Fig. 17a provides an overview of the total radial shear-stress flux, SPOD facilitates a more detailed analysis of the

contributions to this flux. The contribution from each flow structure in the wake to turbulent entrainment can be quantified

by decomposing the radial shear stress flux into SPOD modes. Specifically, we can define the contribution to T from the jth415
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Figure 19. (a) Azimuthally averaged contribution to the radial shear stress flux, τj,j , and (b) TKE, |λj |, in the wake from the leading SPOD

eigenvectors at St= 0.3 and κθ = 0,±1, and ±2. Each AWM case is shown in addition to the baseline. The values in (a) and (b) are

normalized by the maximum values of τj,j and |λj | across all AWM strategies and streamwise locations, respectively.

SPOD eigenvectors as

Tj,j(r,θ) =−Uxux,jur,j , (6)

where ux,j and ur,j are the streamwise and radial components of uj . A full decomposition of T is obtained by considering

streamwise and radial velocity correlations between all pairs of SPOD eigenvectors, namely Tj,k(r,θ) =−Uxux,jur,k. How-

ever, the focus here is on the case when j = k, which is found to dominate Tj,k for all wavenumbers and frequencies of interest.420

This is expected as the AWM forcings induce a similar modal response in the streamwise and radial velocity components (see

Appendix A). Similarly to T , the net mean flow entrainment into the rotor disk from Tj,j can be quantified by the scalar

measure τj,j =
1
2π

∫ 2π

0
Tj,j(r =D/2,θ)dθ. While the eigenvalue, |λj |, is a scalar measure of modal TKE, the scalar quantity

τj,j represents the contributions to the net radial shear stress flux from the jth SPOD mode. The quantity τj,j is positive for

any mode that leads to a net turbulent entrainment of mean velocity into the wake, and negative for modes leading to the425

entrainment of mean velocity out of the wake.

The decomposition of T into SPOD modes enables a quantitative comparison between the modal contributions to turbulent

entrainment, τj,j , and modal TKE, |λj |, in the wake (see Fig. 19). For each AWM case, the wavenumbers directly forced by

the blade pitch actuations entrain the most momentum directly behind the turbine; however, this is not necessarily the case
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throughout the entire wake. Turbulent entrainment for the pulse actuation at St= 0.3 is driven by the κθ = 1 and 2 wavenum-430

bers between 3D and 10D downstream, explaining the large aforementioned increase in τ over the baseline for the pulse case

in this region. However, the contribution from the κθ = 0 mode drops below that of the baseline for the pulse case by 4D

downstream. The κθ = 1 and 2 wavenumbers are the dominant flow structures in the near wake of the baseline case, in terms

of both TKE and entrainment, which suggests that optimizing AWM depends on forcing the natural coherent structures in the

non-actuated wake, either directly through the turbine controller, or indirectly through triadic wavenumber interactions (Wal-435

effe, 1992) in the wake and interactions with other ABL processes. Similarly, the κθ = 1 and 2 modes contribute significantly

to entrainment for both mixed-mode forcing strategies, however, their entrainment characteristics in the wake differ. In the

up-and-down case, the κθ = 1 and 2 modes contribute the most to entrainment between 4D and 10D downstream following

the excitation of the 0 mode in the near-wake region. In contrast, for the side-to-side case, the κθ = 2 mode entrains the most

momentum in the near wake while the 1 mode dominants in the far wake. Finally, even though the counter-clockwise helix440

method is used here to excite the κθ =−1 mode, the largest contribution to entrainment in the wake is from the κθ = 1 mode

between 5D and 7D downstream.

Given the prominence of the κθ = 1 structure in this flow, it would be worthwhile to investigate a clockwise helix method

in this context, as it would directly excite this mode. Although we do not generally expect the clockwise helix method to

outperform the counter-clockwise helix (Coquelet et al., 2024), it may be that the presence of veer enhances the former’s effect445

by introducing a clockwise swirl in the wake. It is worth noting, however, that while the two mixed-mode cases do force the

κθ =−1 mode directly, the pulse method enhances this mode the most. Strategies that force higher harmonics may also be

worth investigating, as the κθ = 2 mode contributes significantly to entrainment for the pulse, up-and-down, and side-to-side

strategies, although increasing |κθ| beyond 1 in the turbine controller may introduce prohibitive oscillations in the pitch of the

turbine blades.450

A comparison between modal energy, |λj |, and modal entrainment, τjj , across a wider range of wavenumbers and frequen-

cies is shown in Fig. 20. It is generally found that the dominant coherent structures in terms of TKE are also responsible for

entraining the most mean flow. However, τj,j does not strictly decrease with the eigenvalue index, j, like |λj | does; there are

several instances across streamwise locations and AWM cases where the flow structure that entrains the most momentum is

not the one with the largest modal energy, although it typically falls within the leading 5-10 eigenvalues. It is important to455

recall that the SPOD formulation only guarantees an ordering of modes based on energy, not entrainment, so there is no reason

to expect, in general, that τj,j decay monotonically with j like |λj |. This is particularly evident for the large j-indices shown

in Fig. 20. Once the eigenvalue spectrum has decayed by roughly an order of magnitude, SPOD modes even begin to entrain

mean flow out of the wake, as indicated by the negative values of τj,j .

The increase in the radial shear stress flux over the baseline case results in faster velocity recovery in the wake (see Figs. 21460

and 22). Similar to T , the increases in mean streamwise velocity, Ux, are not distributed uniformly around the rotor disk;

however, all AWM strategies lead to a net increase in rotor-averaged streamwise velocity over the baseline across most of the

streamwise domain (see Fig. 17b). The largest increase occurs with the pulse actuation, which shows over a 4% increase from

the baseline between 2D and 6D downstream, while the other AWM strategies exhibit increases of 1% to 2.5% in this region.
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Figure 20. Energy and entrainment spectra defined by |λj | and τj,j , respectively, for the leading 75 eigenvalues at (x−xhub)/D = 1, 3,

and 6. The spectra are normalized on the maximum value of |λj | and τj,j for each AWM case and streamwise location. Note that τj,j is not

a strictly positive quantity like |λj |, so rapid roll-offs in the spectra occur on a log-log scale for any modes contributing to a net entrainment

of mean velocity out of the wake.

Beyond 12D downstream, the trend reverses, and the rotor-averaged velocity for the pulse actuation falls the furthest below the465

baseline value. However, at such far distances downstream, there may still be a benefit from AWM in terms of wake recovery

if averaging over a larger volume. Notably, the helix forcing does sustain an increase in rotor-averaged velocity over the entire

extent of the streamwise domain. In fact, by 14D downstream, the dominant mode in terms of energy and entrainment for all

AWM strategies and the baseline case is κθ =−1. These results suggest that strategies that excite the κθ =−1 mode, such as

the counter-clockwise helix, may be the most effective in deep-array scenarios.470
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Figure 21. Contours of the streamwise velocity, Ux, for the baseline case at four different streamwise locations. The dashed line corresponds

to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake centers.

3.3 Power and load performance metrics

Increased turbulent entrainment of mean flow enhances the performance of downstream turbines. This section demonstrates

the practical benefits of improved wake recovery using a virtual two-turbine array. The gains in power typically come with the

trade-off of increased loads on the upstream turbine due to pitch actuation. Therefore, the effect of different AWM strategies

on turbine loads are also discussed.475

The results for the second turbine are obtained through a stand-alone OpenFAST simulation of an identical NREL 2.8 MW

turbine positioned downstream of the turbine simulated in the LES. AWM is applied solely to the upstream turbine, while

the downstream turbine is operated using the baseline controls. Streamwise spacings ranging from 1D to 14D, in increments

of 1D, are analyzed for the two turbine array for each AWM strategy considered on the upstream turbine, as well as for

the baseline case, resulting in a total of seventy OpenFAST simulations. At each streamwise location, cross-flow planes are480

extracted from the LES and used as inflow conditions for the virtual second turbine OpenFAST simulations. This inflow data

is collected from the LES over a 600s period, the first 120s of which are discarded as transient data when computing statistics

from the outputs of OpenFAST. All statistics reported here are averaged over seven Strouhal periods. Importantly, the lateral

position of the second turbine is adjusted at each streamwise location to correspond with the wake centers identified in Fig. 7c.

This decision places the second turbine in the most waked environment at each streamwise location, which is where AWM is485

expected to be the most beneficial (Taschner et al., 2024). Recall that, in this flow, the turbine-aligned configuration does not

correspond to the most waked conditions for the second turbine, primarily due to the large degree of wind veer.

The change in power from baseline operations for the virtual two-turbine array is shown in Fig. 23. It is important to note

that the downstream turbine cannot follow the vertical movements of the wake, so an exact agreement with the wake analysis

resulted presented in Sections 3.2 is not anticipated. Nonetheless, the trends in power for the downstream turbine closely490

align with the rotor-averaged velocity centered with wake (compare Figs. 17b and 23). The largest increase in power for the

combined two-turbine array occurs for the pulse case, with a maximum increase of 3.7% occurring at a turbine spacing of 5D.

The pulse case performs the best for turbine spacings between 2D and 9D, while the other AWM strategies lead to increases

of around 1% for these spacings. These results are consistent with other studies that have examined the pulse method in highly
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Figure 22. Contours of the streamwise velocity, Ux, for each AWM case, subtract by the baseline values shown in Fig. 21. The dashed line

corresponds to the rotor disk centered at the hub height location and the dotted line corresponds to the rotor disk centered around the wake

centers.

veered ABLs (Brown et al., 2025; Frederik et al., 2025). However, for turbine spacings greater than 10D, the pulse method495

underperforms baseline operations. The helix method performs the best between 10D and 12D, which is consistent with the

sustained increase in modal energy and entrainment for the κθ =−1 mode observed in the far wake.

The increases in power come at the cost of increased loads on the upstream turbine. In Section 2.1, it was shown that

the variations in the blade pitch lead to an increase in the axial force along the blade. However, the dynamic blade pitch

fluctuations also affect other load channels on the turbine. In Fig. 23, loads are analyzed in terms of the baseline-normalized500

damage-equivalent loads (DELs) for seven different load channels for each AWM strategy. DELs are computed following

Freebury and Musial (2000) and Ennis et al. (2018). Flapwise DELs increase between 1.4 to 1.8 times the baseline values
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Figure 23. (top) Percent change in generated power, P , from the baseline case (PA=0◦ ) for a two turbine array with the turbine spacings

ranging from 1D to 14D. The results for the upstream turbine are computed from the LES, while the downstream turbine results are obtained

from a stand-alone OpenFAST simulation using YZ-planes from the LES as inflow data at each streamwise location. AWM is applied to the

upstream turbine with A= 1.25◦, while the downstream turbine is operated using baseline controls. (bottom) Baseline-normalized damage

equivalent loads (DEL) for seven different load channels. Solid bars indicate DELs for the upstream turbine, while the DELs for the turbine

5D downstream are outlined in black. The red dashed line corresponds to the DELs of the turbine using baseline controls in DLC 1.2

conditions (single seed) derived from the Normal Turbulence Model with a hub height wind speed of 6.4 m/s (i.e., turbulence intensity of

25.90%).

depending on the AWM strategy. The pulse method results in a greater increase in flapwise DEL compared to the helix method

at the same pitching amplitudes, which aligns with the increase in the axial force spectra observed for the pulse case compared

to the helix reported in Fig. 5. Large increases in the tower-base fore-aft moment are also observed for the pulse method,505

whereas the individual pitch control methods lead to increases in the low-speed shaft nodding and yawing moments. However,

the DELs for the edgewise moment, rotor torque, and tower-base side-to-side moment do not show as significant increases

compared to the baseline. For a virtual turbine placed 5D downstream, where the largest gains in combined power are found,

only minor variations in the DELs are observed, likely due to increases in wake TKE, and the changes from the baseline are

largely negligible across all load channels compared to the upstream turbine. In some instances, AWM even reduces the loads510

on downstream turbines.
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To provide context for these loads, the DELs for this turbine in a DLC 1.2 environment are also included in Fig. 23. A

DLC 1.2 simulation is typically used to evaluate the structural integrity and performance of the wind turbine under expected

operational conditions, ensuring that it can withstand the loads and stresses it will encounter during its operational life. The

DLC 1.2 results are computed here with a single seed for the turbine using baseline controls in conditions derived from the515

Normal Turbulence Model with a hub height wind speed of 6.4 m/s and a turbulence intensity of 25.90%. This comparison

is included to highlight that AWM is particularly well-suited for stable ABL conditions with low TI, where the significant

increases in DELs over the baseline largely remain much smaller than the loads on the turbine in typical design environments.

4 Conclusions

In this work, an SPOD analysis was developed to track the coherent flow structures induced by AWM throughout the streamwise520

domain, including their origins in the turbine induction field, growth in the near wake region, and subsequent evolution and

energy transfers in the far wake. SPOD is shown to be a particularly useful tool in the context of AWM because it decouples

structures in the flow, allowing the wavenumber and frequency inputs to the turbine controller to be translated directly to the

wake. The modes directly forced by the blade pitch fluctuations are found to be the dominant flow structures in the near wake

region, which originate around 0.5D ahead of the turbine. However, as the wake evolves downstream, modal interactions excite525

other flow structures within the wake, which often exceed the energy of the near wake structures. Further, it is demonstrated that

a complete description of AWM effects requires considering correlations between all three velocity components, as significant

radial and azimuthal modifications to the wake are induced, in addition to the those in the streamwise direction.

The SPOD analysis was also connected to conventional wake mixing quantities of interests for different AWM strategies. A

new modal decomposition of the radial shear stress flux was developed to measure the contribution of each flow structure in530

the wake to mean flow turbulent entrainment. This established a quantitative connection between the kinetic energy of coherent

structures in the wake and their contribution to turbulent entrainment. The leading flow structures in terms of TKE are found to

be primarily responsible for velocity recovery mechanisms within the wake; however, the relationship between modal energy

and entrainment is not necessarily directly proportional. In terms of blade loading, a correlation between the spectrum of the

axial force along the blade and the spectral characteristics of the induction field was established through the SPOD eigenvalues.535

Additionally, the modal structure of the induction field suggested that the individual pitch control strategies divert flow around

regions of higher blockage, leading to a decrease in the axial blade force compared to collective pitch actuation. A complete

end-to-end description of the actuated flow is thus provided. For example, the pulse method (1) induces an axisymmetric

modification to the induction field, which (2) results in the largest increase in axial loading amongst AWM strategies; this

increase in thrust (3) generates the most dominant coherent structure and largest enhancement of modal energy in the near540

wake, which (4) leads to greater turbulent entrainment and faster velocity recovery downstream for all AWM strategies; lastly,

this (5) ultimately results in the largest increase in generator power for the downstream turbine.

A key observation is that, for the cases considered in this study, the effectiveness of AWM relied on exciting the inherent

flow structures in the turbulence of the baseline wake. SPOD, therefore, proved equally useful for analyzing the structure of
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the wake under baseline operations as it did for the AWM control strategies. For example, the performance of the pulse method545

was primarily attributed to turbulent entrainment from the κθ = 1 and 2 modes. These modes were found to be the dominant

flow structures in the near wake region of the baseline case, suggesting that the effectiveness of the pulse method was due to its

ability to enhance the dominant structures in the non-actuated wake. It is important to note that this does not imply the pulse

method will perform optimally under all ABL conditions, rather that the effects of ABL characteristics on the modal structure

of the baseline wake must be considered when designing a control strategy. A broader range of atmospheric conditions should550

be examined, including variations in shear, veer, swirl, stratification, TI, and wind speeds to strengthen the relationship between

AWM performance and the coherent structures in the baseline wake. Such insights may enable the optimal design of wind farm

flow control with respect to power and load trade-offs, such as maintaining power benefits with lower pitching amplitudes by

targeting the optimal wake structures.

Similarly, the findings of this study highlight the importance of understanding the nonlinear mechanism responsible for555

transferring energy between coherent structures in the wake. While SPOD is used here to track modal TKE and entrainment, it

does not provide an explanation for how energy is transferred between SPOD modes. For example, why does the pulse method

excite the κθ = 1 and 2 wavenumbers in the flow, even though only the κθ = 0 wavenumber is directly forced by the controller?

Addressing such questions will be crucial for future work in optimizing AWM strategies, which may rely on understanding

triadic interactions between the forced AWM mode and the other turbulent scales.560

Lastly, recent work suggests that a linear stability based reduced order model may be effective for representing the effects

of AWM-induced coherent structures on the mean flow (Cheung et al., 2024b). The SPOD results presented here will be

useful for such model developments, as it will help characterizes the growth rates of coherent structures in the wake, which

are inputs to the linear stability analysis. Similarly, projection-based reduced order models including resolvant or DMD based

models (Muscari et al., 2022; Gutknecht et al., 2023) would also benefit from the SPOD formulation used in this study. For565

either approach, the eigenvalue spectra reported here indicate that it may not be sufficient to only model the forced coherent

structures in the wake, but that modeling interactions with other large scale structures in the wake is necessary for accurately

representing AWM dynamics.

Appendix A: SPOD analysis of the individual velocity components

The SPOD formulation in Section 2.2 includes correlations between all three cylindrical velocity field components, u=570

(ux,ur,uθ), in the definition of the cross-spectral density tensor,S(r,r′) = ⟨û(r,κθ,ω)û
∗(r′,κθ,ω)⟩. Here, the SPOD analysis

is repeated for each diagonal element ofS, namely S11(r,r
′) = ⟨ûx(r,κθ,ω)û

∗
x(r

′,κθ,ω)⟩, S22(r,r
′) = ⟨ûr(r,κθ,ω)û

∗
r(r

′,κθ,ω)⟩,
and S33(r,r

′) = ⟨ûθ(r,κθ,ω)û
∗
θ(r

′,κθ,ω)⟩.
The eigenvalues of the cross-spectral density tensor, S, and its diagonal components at St= 0.3 are shown in Fig. A1

across the streamwise extent of the domain. AWM generally induces a consistent modal response in the streamwise, radial, and575

azimuthal velocity components throughout the evolution of the wake, although there are differences in kinetic energy between

velocity components. In the near wake region, the dominant flow structure occurs at the forced azimuthal wavenumber in all
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three velocity components, i.e., κθ = 0, κθ =−1, and κθ =±1 for the pulse, helix, and mixed-mode actuations, respectively.

The most energetic structures in this region are found in the streamwise velocity component, which is expected since the

azimuthal and temporal variations in the blade pitch are designed to induced a significant axial force along the blade. However,580

by 4D to 5D downstream, the energetic structures (Fig. A1) and wake TKE as a whole (Fig. 14) are primarily driven by the

in plane velocities. For instance, the largest eigenvalue for S across all streamwise locations and AWM strategies occurs 4D

downstream for the pulse case at κθ = 1, which is driven by the radial velocity component, as is the subsequent increase in

κθ = 2 mode for this case. These two modes are also the dominant structures in ur for the baseline wake, and were shown to

contribute significantly to mean flow turbulent entrainment (see Section 3.2). This suggests that the effectiveness of the pulse585

strategy is a result of axisymmetric streamwise forcing exciting higher order radial velocity flow structures in the non-actuated

wake. Similarly, at 6D downstream, κθ = 1 is the dominant mode for all of the non-axiysmmetric forcing strategies, which

are driven by the radial and azimuthal velocity components. In the far wake, the modal TKE generally returns to the baseline

values for all AWM strategies and velocity components.

Appendix B: Discrete SPOD Solution590

The computational formulation in Section 2.2 results in a discrete complex velocity-Fourier matrix Û ∈ CNR×NB for each

azimuthal wavenumber κθ and frequency ω at each streamwise location (see Towne et al. (2018) for additional details on the

formulation of Û). Here, NR is the number of discrete points in the radial domain and NB is the number of blocks of data

resulting from the windowed Fourier transform in time. The analytical eigenvalue problem in Eq. 3 can then be represented

discretely as595

SWψ = λψ, (B1)

where ψ and λ are a discrete eigenvector and eigenvalue pair, and W ∈ RNR×NR is positive-definite Hermitian weighting

matrix that accounts for the numerical quadrature of the radial integral. Here, the matrix W is defined through a one-thirds

Simpson’s rule. The matrix S∼ 1
NB

ÛÛ
H
∈ CNR×NR is a discrete representation of the cross-spectral density tensor, approx-

imated from an ensemble average of velocity correlations over NB flow realizations. A difficulty in solving Eq. B1 is that the600

matrix product SW is not generally Hermitian. However, a Hermitian problem is achieved by multiplying B1 by W1/2,

S̃ψ̃ = λψ̃, (B2)

where S̃=W1/2SW1/2 and ψ̃. For cases where NB <NR, there are at most NB non-zero eigenvalues of S. Therefore,

Eq. B2 can be solved efficiently by performing a low-rank SVD of 1√
NB

W1/2Û= LΣRH , where L and R are the left

and right singular vectors and Σ is the matrix of singular values. Using this decomposition, S̃ can be expressed as S̃=605

(LΣRH)(RΣLH) = LΣ2L. Thus, the eigenvalues, λ, are given by the square of the singular values and the eigenvectors,

ψ̃, are given by the left singular vectors. Finally, the eigenvectors of the original eigenvalue problem (B1) are obtained by

multiplying L by W−1/2, i.e., ψ =W−1/2ψ̃ =W−1/2L.
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Figure A1. Eigenvalues of (a) S, (b) S11, (c) S22 and (d) S33 corresponding to velocity correlations in u, ux, ur , and uθ , respectively.

Eigenvalues at St= 0.3 are shown for κθ = 0, κθ = 1, κθ =−1, κθ = 2, and κθ =−2.
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