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Abstract.

This study presents and evaluates three wind field reconstruction methods for real-time inflow characterization, with po-

tential applications in lidar-assisted wind turbine control. The first method applies a least-squares fit of proper orthogonal

decomposition (POD) modes to lidar measurements (POD-LSQ). The second uses inverse distance weighting (IDW) interpo-5

lation across the rotor plane. The third, POD-IDW, applies the POD-LSQ fit to the interpolated field. The methods are tested

under semi-realistic conditions derived from large-eddy simulations (LES), using a hub-mounted lidar sensor implemented in

HAWC2 on the DTU 10 MW reference turbine. Measurements are extracted under varying inflow conditions. A rotor-effective

wind speed estimate, combined with the known vertical shear profile from LES, serves as the baseline for comparison. Re-

construction performance is quantified using a global mean absolute error, evaluated across combinations of scan count, POD10

mode number, and lidar beam angle. Optimal parameters are selected based on the minimum error. To assess physical accu-

racy, reconstructions are compared against true wind speeds, evaluating the effects of probe volume averaging, multi-distance

measurement selection, cross-contamination, and other sources of error. For optimal inputs, POD-IDW achieves the highest

accuracy, reducing error by 45.5% compared with the baseline estimation, at 5.4 times the computational cost. IDW performs

similarly (44.9%) with optimal inputs, while POD-LSQ achieves a 39.4% reduction with minimal overhead (7%). Spectral15

analysis shows that volume averaging and scanning strategies introduce low-pass filtering that attenuates high-frequency tur-

bulence, while preserving low-frequency content more accurately than the baseline. Reconstruction quality strongly depends

on the number and spatial distribution of lidar measurements and the number of retained POD modes. Although demonstrated

under idealized conditions, the methods show strong potential for real-time applications. Future work should integrate these

reconstructions with flow-aware controllers to evaluate fatigue load reduction, particularly at tower level.20

1 Introduction

The upscaling of wind turbines has led to increasingly large and flexible rotors. While larger rotors average out small-scale fluc-

tuations, they also increase sensitivity to spatio-temporal wind variability, which impacts both power production and structural

loading (Angelou and Sjöholm, 2022). To mitigate these effects, advanced control strategies are needed to enhance performance

while minimizing fatigue and extreme loads (Dong et al., 2021; Angelou and Sjöholm, 2022; Russell et al., 2024).25
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Lidar-assisted control (LAC) has emerged as a promising approach to reduce fatigue loads (Bossanyi et al., 2012; Guo

et al., 2023; Fu et al., 2023; Russell et al., 2024), extreme loads (Schlipf and Kühn, 2008), and the levelized cost of energy

(Scholbrock et al., 2016; Simley et al., 2018). Conventional LAC systems use nacelle-mounted lidars, which measure upstream

wind via Doppler sensing and enable feedforward control by anticipating turbulence (Bossanyi et al., 2012; Schlipf et al.,

2015; Simley et al., 2018). However, nacelle-mounted lidars performance is hindered by blade blockage, causing data loss and30

increased uncertainty in wind field estimation (Schlipf et al., 2018; Angelou and Sjöholm, 2022). Mounting the lidar on the

hub or spinner (hereafter hub-lidar) mitigates blockage and improves scan availability.

Lidar technology also influences data quality. Continuous-wave lidars focus on a single range, while pulsed-wave lidars use

discrete time intervals to measure multiple distances along the line-of-sight (LOS) (Letizia et al., 2023). Therefore, pulsed

lidars exhibit higher coherence with the rotor-effective wind speed (REWS), as they capture a broader spatial extent (Kumar35

et al., 2015).

Among LAC strategies, feedforward collective pitch control is the most established. It adjusts all blades simultaneously by

using REWS estimated as the averaged wind velocities measured by the lidar and projected into the longitudinal direction

(Held and Mann, 2019), improving rotor speed regulation and reducing loads (Dunne et al., 2011; Canet et al., 2021; Fu et al.,

2023). However, reliance on spatially averaged REWS becomes less valid as rotor size increases.40

To address this, feedforward individual pitch control adjusts each blade independently in response to localized wind. Ap-

proaches include combining REWS with horizontal and vertical shear profiles (Schlipf et al., 2010; Dunne et al., 2012) or

measuring blade-level wind speeds at fixed radial and azimuthal positions (Dunne et al., 2012; Russell et al., 2024). Despite

their benefits, these methods rely on simplified inflow assumptions and do not resolve spatio-temporal structures, which become

increasingly inadequate for large rotor diameters. Thus, there is a critical need for real-time, high-fidelity wind field reconstruc-45

tion algorithms capable of resolving the spatial and temporal structures of the incoming wind, enabling more advanced LAC

strategies and improved load mitigation across both tower and blade components.

High-fidelity reconstruction methods are therefore needed to capture the full wind field dynamics. Spectral techniques (Dim-

itrov and Natarajan, 2016; Rinker, 2022; Fu et al., 2022; Guo et al., 2022), CFD-based optimization (Bauweraerts and Meyers,

2021), and Bayesian estimation (Bauweraerts and Meyers, 2020) exist but are computationally intensive and not suited for50

real-time applications. Physics-informed machine learning approaches show promise for fast inflow reconstruction (Zhang and

Zhao, 2021a, b), but lack demonstrated scalability for utility-scale turbines.

Proper orthogonal decomposition (POD) offers a computationally efficient model reduction technique by decomposing ve-

locity fields into spatial modes and time-dependent coefficients that capture the flow’s temporal evolution. It has been used in

wind energy to study turbine wakes for individual flow cases (VerHulst and Meneveau, 2014; Newman et al., 2014; Andersen55

et al., 2017; De Cillis et al., 2020). While early POD applications lacked predictive generality (Meneveau, 2019), Andersen and

Murcia Leon (2022) introduced a global POD basis by combining multiple flow cases, allowing the basis to span a broader pa-

rameter space and enabling consistent physical interpretation across different flow conditions. More recently, Céspedes Moreno

et al. (2025) evaluated the performance of a global basis in reconstructing wake aerodynamics, showing that the reconstruction

error decreases and converges as more cases are included in the dataset.60
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Focusing now on the use of lidar measurements in combination with POD, recent studies have explored both wake char-

acterization and inflow reconstruction. In the context of wakes, Hamilton et al. (2025) applied POD to horizontal scans from

nacelle-mounted lidars to identify coherent turbulent structures experienced by a turbine operating in the wake of an upstream

rotor. For inflow reconstruction, Sekar et al. (2022); Kidambi Sekar et al. (2022) combined SpinnerLidar measurements with

POD to estimate the incoming turbulent wind field. However, their approach relies on a complex and non-commercial lidar65

system (Mikkelsen et al., 2013; Herges et al., 2017), and it requires prior knowledge of the inflow, limiting its predictive ca-

pability. To address these limitations, Soto Sagredo et al. (2024a) proposed a least-squares fit of POD (POD-LSQ) method

using hub-lidar data to estimate modal amplitudes in real time without requiring prior flow information. While promising, this

approach was developed using idealized Mann-generated turbulence (Mann, 1998), and its robustness under realistic inflow

conditions remains to be demonstrated.70

Interpolation offers another approach for inflow reconstruction. Techniques such as kriging, inverse distance weighting

(IDW), and cokriging are widely used in meteorology to estimate wind from sparse data (Luo et al., 2007; Joyner et al., 2015;

Friedland et al., 2016). Similar methods have been applied to lidar-based wind field reconstruction (Chu et al., 2021; Bao et al.,

2022), though they struggle to resolve unsteady 3D flows structures due to limited coverage and assumptions. Particularly, IDW

is a widely used interpolation technique in geosciences, environmental science, and spatial data analysis (Bokati et al., 2022),75

and was also used by Soto Sagredo et al. (2024b) to reconstruct rotor-plane wind fields using hub-lidar data. While promising

for real-time use, that study focused on idealized conditions and a single wind speed.

This study addresses the need for robust, real-time wind field reconstruction under varying inflow conditions. We evaluate

three techniques: POD-LSQ, IDW, and a hybrid POD-IDW approach, comparing them against a REWS-based baseline that

includes the vertical shear profile. Using LES-generated inflow and a numerical six-beam pulsed hub-lidar, we assess recon-80

struction accuracy and sensitivity to different input parameters across methods and inflow conditions. In particular, POD-LSQ

shows promise for LAC due to its computational efficiency and spatial fidelity.

The paper is structured as follows: Section 2 describes the methodology, including LES inflow, lidar setup, and reconstruction

methods. Section 3 evaluates the performance of each method across varying inflow conditions, analyzing their sensitivity

to input parameters and measurement uncertainty to identify the optimal parameter combinations for each reconstruction85

approach. Section 4 discusses implications and limitations, while section 5 concludes the paper and outlines future work.

2 Methodology

To evaluate the wind field estimation techniques, synthetic lidar data are generated using high-fidelity inflow conditions from

LES and a numerical hub-lidar sensor implemented on the DTU 10 MW reference wind turbine model (Bak et al., 2013) in

HAWC2 v13.1 (DTU Wind Energy, 2024), which includes a flexible tower and a five degree tilt. The methodology is first90

summarized in the following paragraphs before being described in detail in the subsequent subsections.

An overview of the wind field reconstruction concept using pulsed hub-lidar technology is shown in Fig. 1. The multi-

distance projected LOS velocities captured by the hub-lidar are mapped onto a reconstruction plane, where an estimation
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method reconstructs the spatio-temporal wind field. This high-resolution inflow can potentially support advanced control strate-

gies by enabling real-time adaptation to turbulent structures and improving load mitigation.95

Figure 1. Schematic overview of the wind field reconstruction approach used in this study, using pulsed hub-lidar measurements for LAC.

Figure 2 outlines the numerical framework used to assess each method’s accuracy. The primary goal is to quantify recon-

struction error and analyze sensitivity to key input parameters: the lidar beam half-cone angle (θ), the number of scans (nscan),

the number of POD modes used for truncation (K), and the influence of measurement uncertainty.

The process begins with a turbulence database derived from LES inflow fields, divided into two subsets: Set A is used to

extract hub-lidar measurements in HAWC2, serving as the reference dataset, while set B is used to construct the global POD100

basis. After preprocessing, the lidar data are mapped to the reconstruction plane and decomposed into wind fluctuations in the

YZ-plane, which are then used as inputs to the reconstruction methods. The reconstructed fields are compared against the refer-

ence fields to compute the reconstruction error, where the best-performing cases across multiple inflow conditions are identified

by selecting the parameter combinations that yield the lowest error. This systematic framework enables a consistent evaluation

of each method and supports the identification of robust configurations suitable for real-time wind field reconstruction.105

2.1 LES precursor

The LES data used in this study originates from precursor simulations by Andersen and Murcia Leon (2022).

The precursor simulates a neutral atmospheric boundary layer driven by a steady pressure gradient over flat terrain. It

is performed using the EllipSys3D flow solver (Michelsen, 1992, 1994; Sørensen, 1995), which solves the Navier–Stokes

equations in general curvilinear coordinates using a finite volume method on a block-structured and collocated grid.110

The computational domain spans 2880 m× 1440 m× 700.8 m, discretized into 576× 288× 320 cells, with uniform grid

spacing of 5 m in the longitudinal and lateral directions and 2.19 m vertically. To avoid spanwise locking of turbulent struc-
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Figure 2. Numerical framework for wind field reconstruction evaluation using synthetic lidar measurements and four reconstruction tech-

niques.

tures, a lateral shift is applied to the periodic boundaries in the longitudinal direction, following Munters et al. (2016). The

simulation assumes a surface roughness of zorg
0 = 0.05 m and a friction velocity of uorg

∗ = 0.4545 m s−1. It runs for 82,600 s

(approximately 22.94 h) to ensure statistical convergence before collecting 28,800 s of inflow data.115

As described by Castro (2007), neutral atmospheric boundary flows can be rescaled to generate multiple inflow conditions.

We apply this rescaling following Troldborg et al. (2022):

unew = unew
∗

(
uorg

uorg
∗

+
1
κ

ln
zorg
0

znew
0

)
, (1)

where κ= 0.41 is the von Kármán constant, and the superscript "new" refers to the inflow condition to be generated, where

unew ∈ [8.0,12.0,15.0,18.0] m s−1, obtaining four inflow wind speeds. All inflows have an average TI of approximately 11%.120
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2.2 LES datasets

The LES datasets (set A and B) are taken from two different locations within the LES domain and have distinct spatial

dimensions in the lateral and vertical directions. Set A consists of 28800× 1× 61× 138 grid points (t×x× y× z), while

set B includes 28800×1×39×91 grid points. Both datasets cover a 4-hour period at a temporal resolution of dt = 0.5 s, with

spatial resolutions of 5 m in the lateral (y) direction and 2.19 m in the vertical (z) direction. An illustration of the locations125

in the LES domains is given in Fig. A in the appendix for clarity. For each inflow wind speed, the three turbulent velocity

components (u, v, w) are extracted and rescaled following the method described in Sect. 2.1.

To ensure that the global POD basis characterizes the coherent turbulent structures over the rotor area, the spatial domain of

set B is reduced and centered accordingly, spanning 190.3× 197.1 m (y× z). In contrast, set A retains a larger spatial extent

of 300.5× 300.0 m (y× z), providing sufficient coverage for aeroelastic simulation and lidar probe volume modeling.130

From set A, sixteen non-overlapping 900 s segments are extracted to generate sixteen independent 3D turbulent inflow fields.

These are transformed into spatial boxes under Taylor’s frozen turbulence hypothesis (Taylor, 1938), which assumes that turbu-

lent structures are convected downstream at a constant advection velocity Ūo—the average wind speed at hub height—without

evolving in time. Under this transformation, the time and longitudinal directions are combined to define the longitudinal coor-

dinate x, with a spatial resolution given by:135

dx =
ŪoTsim

Nx
, where Nx =

Tsim

dt
= 1800, Tsim = 900 s.

The resulting reference turbulence boxes have dimensions of 1800× 61× 138 grid points (x× y× z), enabling accurate

15-minute HAWC2 simulations and ensuring full inclusion of lidar probe volume effects.

To account for HAWC2’s transient effects, lidar initialization and boundary effects, the first 250 s and the last 50 s of the

simulation are discarded—beyond the conventional 100 s warm-up typically used in HAWC2—yielding the final reconstructed140

wind fields of 600 s, with dimensions of 1200× 39× 91 grid points (t× y× z), with a time step dt = 0.5 s.

2.3 Proper orthogonal decomposition and global basis

POD decomposes turbulent flow into orthogonal spatial modes that optimally capture the variance of the fluctuations (Lumley,

1967; Berkooz et al., 1993). Typically, POD is applied to a single flow case, yielding an orthogonal basis optimized for that

specific dataset.145

To enable generalization across different flow conditions, Andersen and Murcia Leon (2022) utilized a "global" POD basis,

which is derived by combining multiple cases, providing a more general representation across a broader parameter space. As

the global POD modes are derived from multiple flow conditions, they are not optimized for any single case but instead capture

generalized flow structures across the parameter space. However, as shown by Céspedes Moreno et al. (2025) the global basis

is still very effective and the suboptimality of a global basis compared to a "local" basis is at least an order of magnitude smaller150

than the truncation error.
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To compute the basis, we first calculate the fluctuating component of the longitudinal velocity field by subtracting the tempo-

ral mean, Ū(y,z), from the full velocity field: U ′(y,z, t) = U(y,z, t)− Ū(y,z). These fluctuations are then reshaped into col-

umn vectors over Nt time steps for each of Nc flow cases, forming the matrix M = [U ′
1,1, . . . ,U

′
1,Nt

, . . . ,U ′
Nc,1, . . . ,U

′
Nc,Nt

],

which is used to compute the POD modes using the randomized singular value decomposition (SVD) following the method of155

Halko et al. (2011).

The decomposition yields a set of orthonormal spatial modes G = [g1, . . . ,gNt−1]. A visualization of the first ten global

POD modes is provided in Appendix B.

The corresponding modal time series are obtained by projecting the fluctuating flow onto the spatial POD modes using an

inner product ϕi(t) =
〈
U ′(t),gi

〉
.160

A reduced-order approximation of the flow field can then be constructed as:

U(y,z, t) =
K∑

i=1

gi(y,z)ϕi(t) + Ū(y,z) (2)

where K <Nt− 1 is the number of retained modes and ϕi(t) are the modal time coefficients. This approach provides a low-

dimensional representation of the flow, retaining dominant coherent structures while reducing computational complexity.

Although accurate representation of the flow physics in POD requires all three velocity components (u,v,w) (Iqbal and165

Thomas, 2007), in this study we only extract the global POD modes using the longitudinal component (u) from the LES dataset

set B (see Sect. 2.2). This choice reflects the focus on reconstructing the longitudinal wind speed, which is the primary quantity

of interest for LAC applications. The simplification is motivated by both methodological and practical considerations. First,

u-component fluctuations dominate turbine loads (Dimitrov et al., 2018), whereas lateral (v) and vertical (w) components have

negligible impact (Dimitrov and Natarajan, 2016). Additionally, only the longitudinal u-component can be estimated from the170

LOS, due to the inability from the lidar system to measure 3D velocity but rather its projection onto the along-beam direction,

known as the "cyclops dilemma" (Raach et al., 2014).

To avoid data leakage and promote generalization, the POD basis is computed from LES domains that are spatially offset

from the reconstruction region (Appendix A).

2.4 Numerical lidar sensor175

A numerical model of a hub-mounted pulsed lidar sensor is available in HAWC2 v13.1 (Soto Sagredo et al., 2023) to simulate

realistic LOS wind measurements based on user-defined parameters for a single-beam lidar. This section outlines the sensor

used in this study, including lidar parameters, coordinate system, and estimation of longitudinal wind speed.

The hub-lidar consists of a pulsed single-beam sensor installed on the spinner and constrained to the wind turbine model,

meaning that the lidar beams moves with the turbine structure and is affected by tower motion, including yaw, pitch, roll and180

structural vibrations. As the spinner rotates, the beam sweeps the rotor area, measuring LOS wind speeds by projecting the

local u-, v-, and w-components onto the LOS direction (Fig. 1). Tower motion influences the measurements, introducing the

relative velocity into the measured wind speed. Motion-induced fluctuations can be mitigated using frequency-domain filtering,
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which preserves the integrity of the estimated wind field without introducing bias (Gräfe et al., 2023). Nevertheless, no motion

correction has been applied in the present analysis.185

Probe volume effects are simulated by HAWC2 using the weighting function and system parameters described in Meyer Forsting

et al. (2017) for pulsed lidar systems. HAWC2 provides as outputs: (i) the probe volume-averaged LOS velocity VLOS, wgh; (ii)

the nominal LOS velocity VLOS, nom, without volume averaging; and (iii) the corresponding measurement locations in X,Y,Z.

The lidar beam unit directional vector, n(θ,ψ,ω(t)), can be defined in a left-handed Cartesian coordinate system, with X

downwind and Z vertical direction as:190

n(θ,ψ,ω(t)) = (−cos(θ), −sin(θ)sin(ψ+ω(t)), sin(θ)cos(ψ+ω(t))), (3)

where θ is the half-cone angle, ψ the azimuthal offset from blade 1 where the lidar beam is located (clockwise viewed down-

wind) and ω(t) is the azimuthal angle of blade 1 (origin aligned with the Z-axis upward, rotation clockwise viewed downwind).

The LOS-velocity (also called radial velocity) can be mathematically expressed as:

VLOS(θ,ψ,ω(t),P ) = n(θ,ψ,ω(t)) ·U(P ), (4)195

where U(P) = [u(P),v(P),w(P)]T is the wind vector, and P represents the location in space (x,y,z) where the measurement

is taken, as a function of the instantaneous hub location, the lidar beam unit vector and the range length, fd.

Figure 3 illustrates the beam configuration from three perspectives, for a beam with θ = 20◦, ψ = 30◦, and a range length

fd = 200 m. The measurement point P is located at a distance OP from the lidar origin O, placed at (−Ls,0,Zhub), where Ls

is the shaft length and Zhub the hub height. The spatial location of P can be expressed as:200

P(θ,ψ,ω(t),β,ν,γ,fd) = Rhub(β,ν,γ) ·




−Ls

0

0


 +




0

0

Zhub


 +Rhub(β,ν,γ) · fd ·n(θ,ψ,ω(t)), (5)

where Rhub(β,ν,γ) is the rotation matrix accounting for tilt (β), roll (ν), and yaw (γ) of the wind turbine model for a left-

handed coordinate system. For this study, β = 5.0◦ and ν = γ = 0.

Therefore, the LOS-velocity accounting for beam orientation and tilt can be finally express as:

VLOS(θ,ψ,ω(t),β,P) = [cos(β)cos(θ)− sin(β)sin(θ)cos(ψ+ω(t))] ·u(P) + [sin(θ)sin(ψ+ω(t))] · v(P)

+ [sin(β)cos(θ) + cos(β)sin(θ)cos(ψ+ω(t))] ·w(P) (6)205

The longitudinal wind speed is estimated by projecting VLOS onto the x-axis. This projection assumes negligible lateral and

vertical components (v and w) when the rotor is perfectly aligned with the wind (Schlipf et al., 2013; Simley et al., 2011),

which introduces cross-contamination errors (Kelberlau and Mann, 2020). The final equation to project the LOS velocity to

the longitudinal direction is thus as follows:

ulidar(θ,ψ,ω(t),β,P) =
VLOS(θ,ψ,ω(t),P)

cos(β)cos(θ)− sin(β)sin(θ)cos(ψ+ω(t))
, (7)210

Effects related to optics, internal signal processing, and lidar-specific smearing are not considered in this study.
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Figure 3. Left-handed coordinate system for a single-beam lidar mounted on the DTU 10 MW wind turbine model. Example with range

length fd = 200 m, half-cone angle θ = 20◦, azimuthal angle ψ = 30◦, and blade 1 at ω = 35◦.

2.5 Lidar scanning strategy

The HAWC2 hub-lidar sensor supports flexible scanning configurations, allowing multiple beams with user-defined half-cone

angles (θ), azimuthal angles (ψ), and range lengths (fd). In this study, a six-beam configuration is employed, with each beam

sampled sequentially at 5 Hz and no switching delay. The lidar records 29 fixed range gates spaced every 10 m, covering215

distances from 75 m to 355 m—consistent with common pulsed lidar practice (Peña et al., 2013). During post-processing, the

beam sequence, sampling frequency, and switching delay can be customized.

Preliminary analysis (not shown for brevity) revealed that reconstruction accuracy improves when all six lidar beams are

angled away from the central axis, rather than having a central beam pointing directly upwind. Although each beam samples

multiple range gates, a beam aligned with the wind direction collects data along a nearly straight line, with only a slight vertical220

shift due to turbine tilt. As a result, many measurements overlap and map into the same grid location, providing only a small

number of central points in the fixed spatial grid. In contrast, angled beams increase their spatial coverage and provide more

data for the estimation across the rotor plane. Similar results have been reported by Simley et al. (2014), where optimal scan

radii was found to be approximately 70-75% of the rotor span.

The half-cone angle selection affects both projection errors—due to the assumption of negligible v and w components—and225

the spatial coverage of the rotor. Increasing the preview distance reduces cross-contamination and induction effects but in-

creases errors due to wind evolution (Simley et al., 2012). Since HAWC2 does not model induction in the lidar sensor or

temporal evolution of inflow, their impact is therefore not considered in this study.

The azimuthal angle defines each beam’s angular separation from blade 1 in the rotating frame (Fig. 3), with allowable

values in this study, ψ ∈ [0◦, 120◦, 240◦], based on practical installation constraints. Specifically, for many multi-megawatt230
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wind turbines, manufacturers provide access to the hub through service hatches positioned every 120 degrees. Aligning the

lidar beams with these access points simplifies both the installation and maintenance process.

The goal is to optimize the beam sequence to maximize rotor plane coverage over a given number of scans, where a "scan"

is defined as the time needed to sample all six beams. At 5 Hz per beam, a single scan takes tscan = 1.2 s.

Figure 4 illustrates the final six-beam hub-lidar configuration, which was found with an exhaustive search through iteration235

at fixed rotor speed Ω = 9.6 rpm (rated speed of the DTU 10 MW turbine), yielding the optimal beam sequence: ψ = [0◦, 240◦,

120◦, 240◦, 120◦, 0◦]. Panel (a) shows the initial mounting azimuthal angles (YZ view), (b) the scanning trajectory over one

scan (non-rotating frame), and (c) beam locations projected onto the XZ plane. This azimuthal configuration ensures optimal

coverage of the rotor area above rated wind speed, since this is the operational range where LAC is used for load reduction.

Figure 4. Six-beam lidar configuration with a half-cone angle θ = 20◦ for all beams, azimuthal angles ψ = [0◦,240◦,120◦,240◦,120◦,0◦],

and 29 range-gates from 75 to 355 m spaced every 10 m. (a) Initial beam mounting positions (YZ view); (b) scanning trajectory over one

scan at Ω = 9.6 rpm; (c) beam locations projected on the XZ plane.

2.6 Measurement selection for reconstruction240

Synthetic lidar measurements are extracted from the reference inflow fields (Sect. 2.2) using the hub-lidar sensor. During

post-processing, the 20 Hz HAWC2 lidar output is downsampled to a 5 Hz sampling rate per beam, with no switching delay.

Measurements used for the reconstruction are selected through a spatial filtering process. In the lateral and vertical directions,

the filter dimensions match those of the turbulence box from set A (refer to Sect. 2.2). In the longitudinal direction, the

filter spans a distance dspan = Ūonscan tscan, where nscan is the selected number of scans and tscan = 1.2 s is the duration of a245

single full scan. This longitudinal span is centered around the target reconstruction plane, located at Xtarget = Ūo ts, where

ts denotes the time step at which the reconstruction is evaluated. As a result, only measurements satisfying the condition

Xtarget− 1
2 Ūonscan tscan < x <Xtarget + 1

2 Ūonscan tscan are selected for the reconstruction. Additionally, we imposed a constraint

requiring all selected measurements to be located at least one second upstream of the rotor plane, to ensure preview time.

10

https://doi.org/10.5194/wes-2025-148
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Lidar measurement selection for wind-field reconstruction at a single time step. (a) Lidar data advancing toward the rotor with the

spatial filtering cuboid centered at Xtarget = Ūots. (b) Mapping onto a fixed YZ grid. (c) Subtraction of the vertical wind speed profile.

This process is illustrated in Fig. 5, where (a) shows lidar data advancing towards the rotor with the cuboid centered around250

Xtarget, representing the spatial filtering region, and (b) maps selected measurements inside the cuboid onto the fixed YZ grid.

If multiple measurements fall into the same grid cell, only the one closest to Xtarget is retained. Panel (c) shows the resulting

fluctuations after subtracting the known shear profile (Ū(y,z)) from the LES dataset set A (refer to Sect. 2.2).

All data used in this study is gather in an publicly available dataset (Soto Sagredo et al., 2025a).

2.7 Wind-inflow reconstruction techniques255

This section presents the methodologies used to reconstruct the longitudinal wind component (u) from synthetic lidar mea-

surements obtained from the hub-lidar database (Sect. 2.6). Reconstructions are performed on a fixed 39× 91 grid (y× z),

consistent with the global POD modes (Sect. 2.2). A total of 1200 time steps (600 s) are reconstructed with a sampling interval

of dt = 0.5 s.

All four methods use lidar-derived wind speed fluctuations as input, defined as u′lidar(t,y,z) = ulidar(t,y,z)− Ū(y,z), where260

Ū(y,z) is the known mean vertical wind speed profile (i.e., shear) from LES set A. This step standardizes the input across

methods. After reconstructing the fluctuating component, the known shear is added back to obtain the full wind field for

evaluation.

The four reconstruction techniques evaluated in this study are described below.

2.7.1 Baseline265

The baseline methodology replicates the standard approach of estimating REWS from lidar measurements in LAC applications

(Held and Mann, 2019). To ensure fair comparison, we account for the known shear profile. The reconstructed longitudinal

wind speed at each time step is defined as:

u(t,y,z) =
1

nmeas

nmeas∑

i=1

u′lidar, i + Ū(y,z) (8)
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where u′lidar,i are the LOS-projected wind speed fluctuations (Sect. 2.4) within the circular regionAR defined by
√
y2

j + (zj − zhub)2 ≤270

95 m, centered at hub height. This area spans the rotor disk of the DTU 10 MW turbine with a 6 m margin to account for tower

and shaft motion. The term nmeas denotes the number of lidar measurements available within AR.

2.7.2 Least-squares fit of POD modes

The Moore–Penrose pseudo-inverse is used to solve a least-squares problem for estimating the modal time series from lidar

measurements, originally introduced by Moore (1920) and independently by Penrose (1955).275

Using the projected LOS fluctuations, u′lidar, this field is stored in a matrix Mlidar ∈ RNy×Nz on a regular Y Z grid (Fig. 5c),

with missing data points assigned NaN for numerical computational purposes, where Ny = 39 and Nz = 91 are the grid points

across the lateral and vertical directions respectively. We define the index set I = {i1, i2, . . . , inmeas} for grid locations with

valid measurements, where nmeas is the number of available measurements. Hence, the measurement vector Dlidar is defined

as Dlidar = vec(Mlidar)I ∈ Rnlidar , where vec(·) denotes column-wise vectorization.280

The global POD modes G are sub-sampled at I locations, and the first K global POD modes are selected to form the matrix

A = GI,1:K ∈ Rnmeas×K .

The modal coefficients ϕ̃ are computed by solving the least-squares problem via pseudo-inverse of A, by projecting Dlidar

onto the column space of A, leading to ϕ̃ = (A⊤A)−1A⊤Dlidar. The reconstructed wind field at each time step is then

computed as:285

u(t,y,z) =
K∑

i=1

gi(y,z)ϕ̃i(t) + Ū(y,z), (9)

where gi(y,z) is the i-th POD mode and ϕ̃i(t) the corresponding estimated modal amplitude. Finally, the known mean profile

Ū(y,z) is added back to recover the full field.

2.7.3 Interpolation with IDW

IDW estimates the wind fluctuations at a target location as a weighted average of nearby measurements, where influence290

decreases with distance. If the target coincides with a measurement location, the interpolated value matches the measurement.

Mathematically, the interpolated longitudinal velocity at position x = (t,y,z) is calculated as:

u(t,y,z) =
∑nmeas

i=1 wi(x)u′i∑nmeas

i=1 wi(x)
+ Ū(y,z), (10)

where u′i is the wind speed fluctuation at measurement location xi, and the weights wi(x) are defined as:

wi(x) =
1

d(x,xi)p
, (11)295

with d(x,xi) the Euclidean distance between the location of unknown u′ and lidar measurements u′i, and p is a positive

exponent controlling the decay rate, where higher values of p emphasize nearer points. An exponent of p= 3 was found to

minimize reconstruction errors.
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2.7.4 Hybrid methodology: IDW combined with POD-LSQ

The final method combining IDW and POD-LSQ is presented in this section, called POD-IDW. First, the wind field fluctuations300

across the Y Z plane are estimated at each time step using IDW technique, following Sect. 2.7.3. Using the resulting IDW-

reconstructed fluctuations (without the added vertical shear profile), the modal amplitudes ϕ̃ are then estimated by performing

a least-squares fit onto the global POD modes (Sect. 2.7.2).

Therefore, the modal coefficients ϕ̃ are computed as ϕ̃ = (A⊤A)−1A⊤DIDW, where DIDW ∈ RNyNz is now the vector-

ization of the IDW reconstructed plane.305

This hybrid approach is proposed to address a challenge encountered when using POD-LSQ: In areas without measurements,

localized overfitting occurs. By using the IDW interpolated field to estimate the modal amplitudes, this limitation is mitigated.

2.8 Metrics for optimal parameter selection

Several parameters influence the accuracy of wind field reconstruction. To quantify the performance of the methods described

in Sect. 2.7, we use the mean absolute error (MAE) computed within an area around the rotor, denoted as AR (see Sect. 2.7.1).310

The MAE is computed over the 10-minute simulations period (Nt = 1200, dt = 0.5 s) as:

MAErotor,i,m(θ,nscan,K) =
1
Nt

Nt∑

t=1


 1
N

∑

(y,z)∈AR

|uref,i(t,y,z)−ui,m(t,y,z)|


 , (12)

where N is the number of spatial grid points within the rotor area AR, and uref,i denotes the reference wind field for inflow

case i. The index i ∈ {1, . . . ,Ncases} spans the set of inflow cases, with Ncases = 64, representing 16 independent 10-minute

realizations across four wind speeds Ūo ∈ {8.0,12.0,15.0,20.0}m s−1. The subscriptm represents each reconstruction method315

described in Sect. 2.7, with m ∈ {Baseline, POD-LSQ, IDW and POD-IDW}.

To enable fair comparison across different wind speeds, all reconstruction errors are normalized by the corresponding inflow

mean wind speed Ūo,i. The global performance metric for a given method m is defined as:

MAEglobal,m(θ,nscan,K) =
1

Ncases

Ncases∑

i=1

(
MAErotor,i,m(θ,nscan,K)

Ūo,i

)
(13)

The global reconstruction performance depends on several key parameters. First, the half-cone opening angle θ directly influ-320

ences the spatial distribution and availability of lidar measurements across the rotor, as well as potential cross-contamination

effects. In this study, we evaluate θ values in the range θ ∈ {10.0◦,12.5◦, . . . ,50.0◦}, using the same angle for all six beams.

Second, the number of lidar measurements per time step, nmeas, depends on the selected number of lidar scans, nscan ∈
{1,2, . . . ,8} (see Sect. 2.6). Increasing nscan provides higher data availability, but it can degrade reconstruction due to higher

spatial filtering.325

For POD-based methods, the number of retained modes K is another important parameter. A higher K allows for finer-

scale flow reconstruction but can increase sensitivity to measurement sparsity and lead to overfitting. We evaluate K ∈
{10,20,30,40,50,75,100,125,150,200}.
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The optimal parameter combination for each method, (θopt,m,nscan,opt,m,Kopt,m), is defined as the one that minimizes the

global normalized reconstruction error:330

(θopt,m, nscan,opt,m, Kopt,m) = arg min
θ,nscan,K

{MAEglobal,m(θ,nscan,K)} , (14)

where the search spans all 1,360 combinations in the discrete parameter space.

3 Results

To evaluate the performance and characteristics of the proposed reconstruction methods, we begin by assessing the accuracy

of the modal amplitude estimation for POD-LSQ using lidar measurements, as discussed in Sect. 3.1. We then examine how335

the number of scans and modes influences the spectral content of the reconstructed inflow fields in Sect. 3.2. The effect of the

half-cone opening angle on reconstruction accuracy is analyzed in Sect. 3.3, while Sect. 3.4 investigates the influence of wind

speed quantity. Finally, Sect. 3.5 synthesizes these findings and presents a discussion on the optimal parameter configuration

for each method.

To assess the influence of wind speed quantity selection has in reconstruction accuracy, we compare the reconstruction results340

using three wind speed quantities, hereafter referred to as: (i) the volume-averaged lidar estimate, ulidar, wgh, representing LOS

velocities projected into the longitudinal direction and averaged over the lidar probe volume; (ii) the nominal lidar estimate,

ulidar, nom, obtained from the same projection procedure but without applying volume averaging; and (iii) the true wind speed,

ufw, corresponding to the reference longitudinal wind velocity extracted from the reference LES inflow field at the same grid

locations in the Xtarget plane where the lidar measurements are fixed (see Fig. 5c) at each time step.345

While only ulidar, wgh represents a physically realistic lidar input, the alternative wind speed definitions are used for diag-

nostic purposes. In particular, ufw isolates the performance of the reconstruction methods from key sources of measurement

uncertainty, including volume averaging, cross-contamination, tower motion, and multi-distance fixed-plane mapping error.

The latter refers to the spatial inconsistency introduced when lidar measurements—collected at different longitudinal posi-

tions—are projected onto a fixed estimation plane (Xtarget), ignoring their true spatial separation along the longitudinal direc-350

tion. In contrast, the difference between ulidar, nom and ulidar, wgh isolates the effect of volume averaging alone. These three wind

speed definitions are used consistently throughout the paper to evaluate reconstruction accuracy and quantify the impact of

measurement-related uncertainties.

3.1 Modal amplitude estimation with POD-LSQ

In real-time applications, reconstructing wind fields at each time step using global POD modes requires estimating the corre-355

sponding modal amplitudes, ϕ̃(t). This estimation is carried out using the POD-LSQ approach described in Sect. 2.7.2. In this

section, we evaluate how wind speed quantity selection affects the accuracy of these modal amplitude estimations.

Figure 6 presents the first five modal amplitudes for a representative 10-minute inflow case with a mean wind speed of

Ūo = 15.35 m s−1. The reference modal amplitudes (solid black lines) are compared against those estimated by POD-LSQ
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Figure 6. First five modal amplitudes estimated using POD-LSQ with K = 50 global POD modes, nscan = 7 scans, and half-cone angle

θ = 22.5◦. Top row: estimation using true wind speed (ufw); second row: estimation using nominal lidar estimated (ulidar, nom) wind speed;

bottom row: estimation using volume-averaged lidar estimated (ulidar, wgh) wind speed.

(dashed orange lines), using K = 50 global POD modes, nscan = 7 scans, and a half-cone angle of θ = 22.5◦. The top row of360

Fig. 6 shows results obtained using the true wind speed as input, second row uses the nominal lidar estimate (without volume-

averaged), while the bottom row uses the volume-averaged lidar estimate. This comparison allows us to isolate and quantify the

impact of measurement errors on the estimation of modal amplitudes. Each subplot also reports the normalized MAE, defined

as MAE/σ, where σ is the standard deviation of the corresponding reference amplitude.

As expected, the estimation error MAE/σ increases with mode number. Lower-order modes (e.g., Modes 1–3), which365

represent dominant large-scale structures, are reconstructed more accurately than higher-order modes (e.g., Modes 4–5), which

correspond to finer-scale features. Furthermore, the use of the lidar-based estimates leads to consistently higher reconstruction

errors compared to using the true wind speed. For mode 1, MAE/σ increases by 55% when using nominal lidar estimate

15

https://doi.org/10.5194/wes-2025-148
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



compared to the true wind speed, while an increase of 41% is observed for volume-averaged lidar estimate. For mode 5, these

differences become more pronounced, with increases of 119% and 114%, respectively. These results highlight the sensitivity370

of modal amplitude estimation to measurement-related uncertainties—such as cross-contamination, spatial offsets resulting

from the fixed-grid filtering approach used for multi-distance lidar measurements, and tower-induced motion. Higher-order

modes are particularly affected by these effects. Notably, probe volume-averaged helps to reduce such errors, as reflected in

the consistently lower MAE/σ values compared to the nominal case.

3.2 Sensitivity to number of scans and modes on the spectral content375

To assess how the number of scans and modes affects the reconstruction of turbulent inflow fields, we analyze the power spectral

density (PSD) of the u-velocity fluctuations for a representative case with Ūo = 15.35 m s−1 over a 10-minute simulation. The

PSD are estimated using Welch’s method with a Hamming window, six segments, and 50% overlap, applied over the area of

interest, AR, across the rotor (refer to Sect. 2.7.1. A smooth PSD is calculated by averaging the PSDs at every lateral and

vertical point in the grid.380

3.2.1 Number of scans and estimation method

This section compares the PSD of the original flow to the estimated flow for different estimation methods and numbers of

scans. The number of modes used in the POD-based estimation methods is kept fixed for this analysis; the impact of POD

modes is analyzed in detail in Sect. 3.2.2.

Figure 7 presents the PSD results for (a) Baseline, (b) POD-LSQ, (c) IDW, and (d) POD-IDW, using θ = 22.5◦ andK = 100385

global POD modes. Each panel shows reconstructions for various numbers of lidar scans (nscan ∈ {4,8,12,16}) and two types

of wind speed inputs: the true wind speed (ufw, solid lines) and the volume-averaged lidar estimate (ulidar, wgh, dashed lines). For

reference, the full LES turbulence spectrum is plotted in solid black. The truncated POD spectrum (gray dashed) corresponds

to the projection of the LES flow onto the first 100 POD modes using the standard inner product, which is a better basis of

comparison for the POD methods. The vertical dashed line indicates the tower’s first fore-aft eigenfrequency, ftower. The energy390

drop-off beyond 0.1 Hz in the LES reference is attributed to grid resolution limitations, as reported in Thedin et al. (2023);

Doubrawa et al. (2019); Rivera-Arreba et al. (2022). Similarly, the further roll-off observed in the truncated POD spectrum is

due to modal truncation. As noted by Liverud Krathe et al. (2025), these high-frequency limitations do not significantly affect

fatigue analysis outcomes.

Low frequencies395

At frequencies below 0.1 Hz, all reconstruction methods except the baseline (Fig. 7a) closely follow the LES spectrum when

estimating using the true wind speed ufw (solid lines). IDW effectively reproduces the LES spectrum, while POD-based meth-

ods align with the truncated POD reference, consistent with their basis truncation. In contrast, reconstructions based on the

volume-averaged lidar estimate consistently exhibit lower energy from 0.02 Hz upwards. This reduced energy results from two

sources of spatial filtering: the intrinsic averaging within the probe volume (Peña et al., 2017) and the measurement selection400

procedure, which maps multi-distance observations—taken at varying longitudinal positions—onto a fixed grid. This process
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Figure 7. Influence of the number of scans nscan on the turbulence spectra of the u-component over a 10-minute simulation for each method,

using θ = 22.5◦, K = 100 global POD modes for POD-based methods, for the true wind speed (ufw) and volume-averaged lidar estimate

(ulidar, wgh) as input parameters for the reconstruction. Welch’s method with Hamming window (six segments, 50% overlap) is applied and

the PSDs around the area AR (see Sect. 2.7.1) around the rotor area averaged for smoothing.

smooths out turbulent fluctuations by blending information across different regions of the inflow. This filtering effect also

impacts the baseline method, though to a lesser extent given its already simplified reconstruction approach.

High frequencies

In the high-frequency range, the flow estimated using POD-LSQ, POD-IDW, and IDW has more energy than the LES flow405

for both ufw and volume-averaged lidar estimate. When using ufw, increasing the scan count reduces this extra spectral energy

for these methods, drawing their spectra closer to the LES reference. This reduction in high-energy content with higher scans

is driven by the number of available measurements in the rotor plane, which increases with nscan. For example, in this study,

four scans correspond to approximately 15% coverage of the Y Z plane, while 16 scans increases that coverage to around 42%.

Having more measurements in the rotor plane reduces overfitting for the POD methods, which results in lower spectral energy410
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for more scans. In IDW, a higher number of measurements increases spatial coverage, reducing gaps between data points. This

leads to more accurate interpolation and lower reconstruction error.

However, for lidar-based inputs, the measurement selection procedure described in Sect.2.6 selects data points across varying

longitudinal positions and maps them onto a fixed grid, which becomes increasingly extended as more scans are included. This

introduces an additional spatial filtering effect, resulting in a sharper energy drop beyond 0.017 Hz. While IDW does not exhibit415

the same steep decline, this instead reflects increased noise due to higher multi-distance fixed-plane mapping errors, rather

than improved reconstruction fidelity. Unlike POD-based methods, which enforce spatial coherence through a global modal

basis, IDW does not incorporate spatial correlations between measurements, which can compromise accuracy, especially for

irregularly distributed data (Li et al., 2020; Bokati et al., 2022). Furthermore, IDW assumes isotropic flow variations and is

sensitive to outliers, making it more susceptible to errors caused by spatial separation. This behavior is further illustrated in the420

time series example for nscan = 16 shown in Appendix C.

Tower natural frequency

A secondary effect visible in Fig. 7 is the presence of a peak near the tower’s natural frequency, ftower = 0.25 Hz, in the

volume-averaged lidar estimate reconstructions (zoomed area). This is caused by tower-induced motion distorting the lidar

measurements. The effect is particularly visible when nscan = 4k for k ∈ N, since four scans approximately matches the tower’s425

oscillation period. The peak is more pronounced in POD-based reconstructions and less distinguishable in IDW due to IDW’s

elevated background spectral energy near ftower.

3.2.2 Number of POD modes

This section demonstrates the impact of number of POD modes on the estimation for the POD-LSQ and POD-IDW methods,

where nscan is kept constant.430

Figure 8 presents the PSD for (a) POD-LSQ and (b) POD-IDW for different numbers of modes, K ∈ {50,100,150,200},

using nscan = 4, θ = 22.5◦, and the volume-averaged lidar estimate as input. Lower values of K capture the large-scale, low-

frequency content of the flow, while increasing K introduces more high-frequency energy. At low frequencies, POD-LSQ

aligns more closely with the truncated POD spectrum, whereas POD-IDW shows greater deviation due to the influence of

the initial IDW plane, which introduces interpolation-related errors. At higher frequencies (above 0.1 Hz), POD-LSQ tends to435

overestimate energy, primarily due to overfitting in the modal amplitude estimation, as mentioned in Sect 3.2.1. This effect will

be discussed again in Sect. 3.3. POD-IDW mitigates overfitting by using the IDW-reconstructed plane as input for estimating

modal amplitudes, which smooths the high-frequency content and reduces overfitting.

3.2.3 Summary and methodological implications

The scan count, nscan, exerts a dual influence on reconstruction quality. On the one hand, increasing nscan improves fidelity when440

using ideal inputs (ufw) by enhancing spatial coverage. On the other hand, it also increases the longitudinal separation between

measurements, which can degrade reconstruction accuracy when lidar-based inputs (ulidar, wgh) are used due to amplified multi-

distance fixed-plane mapping error.
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Figure 8. Influence of the number of POD modes (K) on the turbulence spectra of the u-component over a 10-minute simulation for POD-

LSQ (a) and POD-IDW (b), with K ∈ 50,100,150,200 and nscan = 4. Welch’s method is applied (six segments, 50% overlap) over the

interest area AR (see Sect. 2.7.1).

Each reconstruction method responds differently to this trade-off. IDW is particularly sensitive to spatial separation, as it

does not account for spatial correlation across measurements. POD-LSQ, by contrast, is more affected by the number and445

distribution of available measurements—especially at higher values of K—since accurate estimation of modal amplitudes

requires adequate spatial coverage. POD-IDW, which combines an initial IDW interpolation with subsequent POD fitting,

inherits some limitations from the interpolation step but benefits from the modal projection, which helps to smooth errors

introduced by spatial filtering (refer to Appendix C). As a result, the optimal selection of both scan count (nscan) and number

of POD modes (K) should be tailored to the specific sensitivities of each method and the nature of the available input.450

Finally, attention should be given to the effects of tower motion, which introduce spurious energy near the tower’s natural

frequency (ftower). These artifacts, particularly prominent in lidar-based reconstructions, may require correction techniques or

frequency-domain filtering to avoid negative impacts on both control performance and aeroelastic load assessments.

3.3 Effect of half-cone angle on reconstruction performance

The selection of the half-cone angle, θ, affects reconstruction accuracy in two main ways: (1) by influencing the number and455

spatial distribution of lidar measurements across the rotor plane, and (2) by increasing cross-contamination in the volume-

averaged lidar estimate derived from LOS measurements.

Figure 9 illustrates these effects at a representative time step across the Y Z rotor plane. Each column corresponds to a

half-cone angle θ ∈ {10.0◦,17.5◦,20.0◦,22.5◦,35.0◦,50.0◦} using K = 200 modes and nscan = 4 for all reconstructions. Row

(a) shows the location of the lidar measurements, and each point’s color represents the difference between the true wind speed460
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(ufw) and the volume-averaged lidar estimate (ulidar, wgh), while rows (b)–(e) present reconstruction errors relative to the LES

reference for (b) Baseline, (c) POD-LSQ, (d) IDW, and (e) POD-IDW. MAE values are reported above each case.

Figure 9. Difference across the Y Z plane between the reconstructed (u(t,y,z)) and reference (uref(t,y,z)) wind fields, for Ūo =

15.35 m s−1 at a single time step. The columns correspond to increasing half-cone angles from 10◦ to 50◦, using four scans and 200

POD modes, where (a) shows the difference between the hub-lidar volume average projected LOS measurements (ulidar, wgh) and the true

wind speed (ufw), and (b)–(e) present the differences between the reconstructed and LES reference cases for (b) baseline, (c) POD-LSQ,

(d) IDW, and (e) POD-IDW. Blue colors indicate underestimation, while red colors indicate overestimation of wind speeds relative to the

reference field.
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As shown in Fig. 9a, at θ = 10.0◦, measurements concentrate near the upper center of the rotor due to turbine tilt, yielding

nmeas = 457. With increasing θ, spatial coverage improves as measurements spread more broadly across the rotor plane. How-

ever, beyond a certain point, outer beams extend beyond the rotor, reducing central coverage. For example, at θ = 50.0◦, only465

182 valid measurements remain as outer range gates extend beyond the rotor area due to beam inclination. Additionally, larger

θ values increase cross-contamination—indicated by the more intense coloring of the points—due to increased misalignment

with the line-of-sight and the longitudinal turbulence.

Figure 9b–e shows how each method responds to changes in θ. The baseline method is relatively insensitive, exhibiting

consistent performance across all angles. POD-LSQ, in contrast, is highly sensitive, as accuracy depends on both the num-470

ber and spatial distribution of measurements. At θ = 10.0◦, performance degrades despite a high measurement count due to

poor spatial coverage and localized overfitting. At θ = 50.0◦, the number of measurements is too low (nmeas = 182) to sup-

port fitting K = 200 modes, yielding an underdetermined system and degraded accuracy. These results highlight that, for

POD-based methods, ensuring nmeas ≥K is necessary but not sufficient—broad spatial coverage is equally critical. Notably,

although θ = 10.0◦ yields more measurements than θ = 35.0◦, POD-LSQ performs worse, underscoring the importance of475

spatial distribution over raw measurement count.

The sensitivity of IDW and POD-IDW to θ is less significant than for POD-LSQ. However, both methods exhibit increased

reconstruction error at θ = 50.0◦, consistent with greater cross-contamination in the LOS-derived wind speed (Fig. 9a). POD-

IDW inherits interpolation errors from the IDW field, so spatial inaccuracies propagate into the final reconstruction. Still,

applying POD over the IDW field reduces spatial inconsistencies, resulting in smoother fields and improved performance over480

IDW alone—though the improvement in MAE is limited (Fig. 9d-e).

Careful selection of the half-cone angle is therefore essential, particularly for POD-based methods. The angle must balance

spatial coverage with minimal contamination from v and w components in the LOS signal. This selection depends on lidar

geometry, turbine tilt, and alignment between beam orientation and the rotor plane. It is also critical to ensure that nmeas ≥K,

and that measurements are sufficiently distributed to avoid overfitting in POD-LSQ. The baseline method, by contrast, remains485

largely insensitive to θ, provided enough data are collected across the scan radius (Simley et al., 2018).

3.4 Impact of wind quantity on reconstruction performance

To assess how lidar-induced measurement errors affects reconstruction accuracy, we evaluate each method using the three

wind speed inputs: (i) true wind speed (ufw), (ii) nominal lidar estimate without volume averaging (ulidar, nom), and (iii) volume-

averaged lidar estimate (ulidar, wgh).490

Figure 10 shows the global reconstruction error, MAEglobal (defined in Sect. 2.8), as a function of the half-cone angle θ for

each method using its optimal configuration, nscan,opt and Kopt, determined as shown in Fig. 2 and listed in Table 1. Results are

presented for four methods—(a) Baseline, (b) POD-LSQ, (c) IDW, and (d) POD-IDW—under all three wind speed inputs. The

performance spread across these inputs reflects the influence of measurement errors and volume averaging.

Consistent with Sect. 3.3, the baseline method (Fig. 10a) shows almost identical results regardless of input type, due to its495

rotor-averaging approach that inherently smooths spatial uncertainties. Despite this robustness, it consistently yields the highest

21

https://doi.org/10.5194/wes-2025-148
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 10. Global mean absolute error, MAEglobal, as a function of half-cone angle, θ, for the best-performing configurations: (a) baseline,

(b) POD-LSQ, (c) IDW, and (d) POD-IDW. Results are shown using: true wind speed (ufw, blue), nominal estimate (ulidar, nom, orange), and

volume-averaged estimate (ulidar, wgh, green).

reconstruction error. Among the other methods, POD-LSQ remains the most sensitive to half-cone angle selection, with errors

increasing sharply as θ deviates from the optimum due to overfitting and cross-contamination, which impair modal amplitude

estimation (see also Sects. 3.2 and 3.3). In contrast, IDW and POD-IDW show less sensitivity to θ, with errors remaining

relatively stable even as measurement distribution deteriorates. For POD-IDW, this robustness is partly inherited from IDW, as500

it uses the interpolated IDW field for modal fitting and thus avoids overfitting (see Sect. 3.3).

IDW shows the largest performance gap between ufw and lidar-based inputs, highlighting its strong sensitivity to uncertain-

ties—particularly the multi-distance fixed-plane mapping error and cross-contamination. POD-IDW performs slightly better,

as the modal decomposition enforces spatial coherence, mitigating some interpolation-related errors. POD-LSQ also benefits

from modal constraints, reducing sensitivity to input uncertainty, though it remains highly dependent on θ.505

Across all methods, reconstructions using the true wind speed ufw significantly outperform those from the two line-of-sight

quantities, but the volume-averaged input (ulidar, wgh) outperforms the nominal lidar estimates (ulidar, nom). In other words, there

is a significant increase in error caused by measurement inaccuracies, but adding volume averaging actually reduces the error.

This demonstrates the benefit of modeling the probe volume, as volume averaging reduces cross-contamination and improves

reconstruction quality—a trend especially evident for POD-LSQ and consistent with the findings reported in Soto Sagredo510

et al. (2025b).

In summary, reconstruction accuracy is significantly influenced by measurement quantity. IDW is the most affected, followed

by POD-IDW, which inherits interpolation errors. POD-LSQ shows better resilience but depends strongly on appropriate

angle selection. The baseline, though robust to measurement variations, performs worst overall. These results emphasize the

importance of accounting for probe volume effects and tuning method-specific parameters for reliable lidar-based wind field515

reconstruction.
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3.5 Overall method performance

The ultimate conclusion we would like to draw is which of the investigated methods performs “best.” The optimal parameter

sets—half-cone angle θopt, number of scans nscan,opt, and number of POD modesKopt—are those that minimize the global mean

absolute error MAEglobal for each reconstruction method (Sect. 2.8). These values are summarized in Table 1 for both the true520

wind speed input (ufw) and the volume-averaged lidar estimate (ulidar, wgh), with corresponding performance trends shown in

Fig. 10.

Table 1. Optimal parameter combinations (θopt,nscan,opt,Kopt) that minimize the global mean absolute error, MAEglobal, for each reconstruc-

tion method, using as inputs the true wind speed (ufw) and volume-averaged lidar estimated wind speed (ulidar, wgh).

Method Wind speed input θopt nscan, opt n̄meas Kopt MAEglobal Error compared to baseline

Baseline
True wind 22.5◦ 8 868 - 0.0549 -0.04 %

Volume-averaged 22.5◦ 8 868 - 0.0549 Reference case

POD-LSQ
True wind 25.0◦ 8 791 200 0.0206 -58.8 %

Volume-averaged 22.5◦ 7 776 50 0.0328 -39.4 %

IDW
True wind 22.5◦ 8 868 - 0.0120 -74.5 %

Volume-averaged 20.0◦ 3 403 - 0.0288 -44.9 %

POD-IDW
True wind 25.0◦ 8 791 200 0.0183 -65.6 %

Volume-averaged 20.0◦ 4 518 200 0.0287 - 45.4 %

Using lidar-based input, POD-IDW achieves the lowest reconstruction error, with a 45.4% reduction inMAEglobal compared

to the baseline. IDW performs nearly as well (44.9% reduction), followed by POD-LSQ (39.4%). With true wind input, IDW

achieves the best accuracy (74.5% reduction), followed by POD-IDW (65.6%) and POD-LSQ (58.8%). For the baseline, only a525

negligible 0.04% difference exists between input types—reflecting its robustness to uncertainty but also its limited resolution,

which results in the highest reconstruction error overall. Note that the baseline method achieves its best performance with

nscan = 8, although using fewer scans results in nearly identical accuracy. This insensitivity to scan count reflects the inherent

spatial averaging of the baseline approach.

Measurement errors—including probe volume averaging, cross-contamination, multi-distance fixed-plane mapping error,530

and tower motion—degrades reconstruction accuracy for all methods except the baseline. This effect is most pronounced

for IDW (Sects. 3.2–3.4), where the error reduction drops from 74.5% (with ufw) to 44.9% (with ulidar, wgh), and the optimal

number of scans decreases from eight to three. These shifts reflect IDW’s strong sensitivity to the assumption that all selected

measurements lie on the same plane, neglecting their actual longitudinal location in space. For all methods, using true wind

input generally shifts the optimal half-cone angle θ upward by 2.5–5◦, as cross-contamination is no longer a limiting factor.535

POD-LSQ, in particular, improves its performance by increasing the number of modes from 50 to 200 with only one additional

scan, highlighting the impact of measurement uncertainty on modal amplitude estimation (Sect. 3.1).
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Overall, POD-IDW offers the best reconstruction accuracy with lidar-based inputs but comes with a higher computational

cost. IDW is simpler and moderately expensive, but does not capture spatial correlations and assumes isotropic flow vari-

ations, leading to unrealistic estimates under certain conditions. POD-LSQ provides a good balance between accuracy and540

efficiency but requires careful tuning of lidar configuration and POD parameters. The baseline method is the fastest and most

robust to measurement uncertainty, yet consistently delivers the poorest reconstruction quality. Ultimately, reliable wind field

reconstruction depends on accounting for measurement uncertainty and appropriately tuning method-specific parameters.

4 Discussion

The goal of this study was to assess the reconstruction accuracy and robustness of three methods under semi-realistic inflow545

conditions, using LES-generated data and a hub-mounted lidar simulator. Evaluation was based on a global metric,MAEglobal,

which quantifies the deviation from the true inflow field across multiple conditions. While effective for identifying optimal

parameters and quantifying deviations from the reference wind field, this metric does not capture the ability of the reconstructed

fields to drive realistic turbine dynamics. A more robust analysis would involve evaluating the reconstruction error on turbine

load channels, which is the subject of future work.550

The current study makes several simplifying assumptions due to limitations in the available tools. Notably, the HAWC2

lidar implementation does not account for turbulence evolution (Bossanyi, 2013; de Maré and Mann, 2016) or induction

effects (Borraccino et al., 2017; Mann et al., 2018), as it is based on Taylor’s frozen turbulence hypothesis and BEM-based

inflow dynamics. As a result, the inflow is treated as a stationary free-stream field, from where the lidar measurements are

extracted. Although this is not realistic, it provides a controlled environment to evaluate reconstruction accuracy. Future work555

should incorporate 4D inflow fields from LES simulations that include these effects to better evaluate how they influence

reconstruction performance—and how they may be compensated in practice.

All methods in this study also rely on knowledge of the mean shear profile to reconstruct the flow. This allows a consistent

comparison across methods and avoids introducing additional shear estimation uncertainties. Although accurate shear esti-

mation from hub-lidar data is feasible over longer time frames, following similar procedure to the one described in Eq.(4)560

from Sebastiani et al. (2022), it was not the focus of this study. Importantly, POD-based methods require subtraction of the

mean flow to eliminate trends during the estimation of the modal amplitudes. In contrast, IDW and the baseline approach can

operate directly on lidar measurements without prior shear estimation. Furthermore, this study focused on neutral boundary

layer conditions with a turbulence intensity around 11%, which are representative but do not encompass the full range of field

scenarios. Extending the evaluation to different atmospheric conditions—including stable and unstable stratification—would565

broaden validation.

The real-time performance of the proposed reconstruction methods was evaluated to confirm their suitability for online

applications. On a standard PC using a Python implementation and input from four lidar scans (≈520 measurements), the

baseline method required ≈19 ms per time step. POD-LSQ introduced minimal overhead, increasing computational time by

only 7% (to ≈20 ms). In contrast, IDW was more computationally demanding, requiring 4.5× the baseline duration (≈86 ms),570
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due to the cost of the interpolation step. POD-IDW, which combines interpolation with a subsequent POD fitting, was the most

expensive at≈103 ms per time step (5.4× the baseline). Despite the higher cost for IDW and POD-IDW, all methods remained

within practical real-time constraints.

The methods proposed in this study are not well suited for nacelle-mounted lidar systems—the most common configuration

for wind turbine-mounted lidars (Letizia et al., 2023)—due to their limited spatial resolution and blade blockage, which reduce575

the number of available measurements. The accuracy of methods like POD-LSQ depends on having a high number of spatially

distributed inputs. Moreover, the hub-lidar scanning pattern in this study was optimized for the rated rotor speed of the DTU

10 MW turbine; other turbines or operating conditions would require re-optimization to ensure adequate coverage.

Finally, real-world lidar systems also face additional uncertainties, such as optical misalignment, Doppler noise, signal

processing errors, and probe volume smearing. It is also critical to ensure sufficient lead time for control while accounting for580

latency, memory constraints, and turbulence advection. Future work should address these challenges through adaptive filtering

and selection strategies (Schlipf, 2016), validated in conjunction with flow-aware control.

5 Conclusions

This study proposed and evaluated three methodologies for real-time reconstruction of wind inflow fields across the full rotor

plane, using lidar measurements extracted from LES simulations via a numerical hub-mounted lidar model in HAWC2. The585

methods include: POD-LSQ, which fits lidar data to a global POD basis using least squares; IDW, which interpolates the

flow using inverse distance weighting from lidar data; and POD-IDW, a hybrid that estimates modal amplitudes from the

IDW-reconstructed field. All were benchmarked against a baseline rotor-averaged approach based on conventional REWS

estimation, a standard practice for LAC applications, that accounts for the mean known shear across the rotor plane.

When optimally configured, all proposed methods significantly outperformed the baseline, offering improved spatial res-590

olution and turbulence reconstruction. POD-IDW achieved the lowest reconstruction error, reducing MAEglobal by 45.4%

compared to the baseline estimation, followed by IDW (44.9% reduction) and POD-LSQ (39.4% reduction). All methods met

real-time computational requirements. On a standard PC with four lidar scans (≈520 measurements), the baseline required

≈19 ms per time step, while POD-LSQ added only 7% overhead. IDW and POD-IDW required≈86 ms and≈103 ms, respec-

tively, but remained within practical limits.595

Reconstruction performance was found to depend strongly on the number and spatial distribution of measurements, half-cone

angle, measurement uncertainty, and the number of POD modes. POD-LSQ was especially sensitive to half-cone angle due

to the tradeoff between number of measurements in the rotor plane and measurement coverage, which can lead to overfitting

with higher numbers of modes. For POD-based methods, increasing the number of global modes K increased the ability to

capture flow energy and improve inflow reconstruction, but required K ≤ nmeas and good coverage around the rotor to ensure600

numerical stability. POD-IDW relaxed this constraint by using a full interpolated field, supporting higher K values at the cost

of propagating interpolation errors and increased computational demand.
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Measurement uncertainty had a notable impact, particularly for IDW and POD-IDW, which reconstruct the full plane directly

from lidar data. IDW was most affected by multi-distance fixed-plane mapping errors and performed best with fewer scans due

to its lack of spatial correlation modeling. The marginal accuracy gain between POD-IDW and IDW (0.5%) reflects the trade-off605

between reduced overfitting and inherited interpolation error. POD-LSQ also exhibited sensitivity, as uncertainties propagated

through the modal amplitude fitting process. Overall, POD-LSQ offers the best compromise between reconstruction accuracy,

computational efficiency, and robustness to lidar-related uncertainties—provided that adequate spatial coverage and a sufficient

number of measurements are available to support the selected number of POD modes. By projecting lidar measurements onto

a set of spatial patterns derived from POD, the method captures the dominant flow structures. This enables reliable spatial610

reconstruction even under imperfect measurement conditions, making POD-LSQ particularly well suited for real-time wind

field estimation in LAC applications.

Future work should investigate the effects of rotor induction and turbulence evolution on reconstruction accuracy, as these

are not captured in the current setup. Additionally, evaluating the proposed methods under a broader range of atmospheric

stability conditions and turbulence intensities will help further define their robustness and operational limits. To fully assess615

their control relevance, these reconstruction techniques should also be coupled with a flow-aware controller and tested within a

feedforward individual pitch control framework, enabling quantification of potential load reductions and operational benefits.
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Appendix A: LES wind speed profile

A representation of the LES wind speed profile of the precursor is presented in Fig. A1, illustrating the two data sets used in

this study, where set A represent the location from where the reference 3D turbulence fields used in HAWC2 for the hub-lidar620

generation were extracted, while set B shows the section from where the data to computed the global POD basis was extracted.

Noticed that the lateral distance (Y ) between the center of the two boxes is 751.3 m. These two datasets are referred in the

overview of the methodology presented in Fig. 2.

Figure A1. LES wind speed profile representation, and the two datasets used on this study, where set A represent the dataset from where the

3D turbulence fields were extracted, while set B represent the location where the dataset for the global POD modes generation was extracted.

Appendix B: Global POD modes

The global POD modes are derived from the inflow database detailed in Sect. 2.3. The first ten POD modes for the global basis625

are shown in Fig. B1. These modes are ranked by decreasing total kinetic energy (TKE), revealing large-scale structures in

the lower-order modes that progressively diminish in size with increasing mode number. Overall, the resulting spatial modes

are consistent with those previously reported for both single-wake scenarios (Sørensen et al., 2015; Bastine et al., 2018) and

multiple-wake configurations (Andersen et al., 2013; Andersen and Murcia Leon, 2022).

This consistency highlights the similarity of dominant coherent structures across cases, demonstrating the potential for a630

reduced-order model built upon these generic patterns (Céspedes Moreno et al., 2025). However, the importance (order) of
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different modes will differ across different cases, where the low-frequency fluctuations are predominant, and they disappear at

higher modes (Andersen and Murcia Leon, 2022).

It is important to note that these POD modes include only the longitudinal (u) fluctuating velocity component, since this is

the reconstruction target in our study.635

Figure B1. First 10 global POD modes, only estimated for u component.

Appendix C: Time series

To illustrate the effect of increasing the number of scans on the different reconstruction methods, Fig. C1 presents time series at

a single location in the Y Z plane for all evaluated methods, located at y =−65.1m and z = 156.1m (approximate 75% radius

span). Two input cases are considered: the true wind speed (ufw, solid lines) and the volume-averaged lidar estimate (ulidar, wgh,

dashed lines), both using a high scan count of nscan = 16. This high scan count is chosen to highlight the impact of longitudinal640

spatial filtering, not as a practical recommendation. Above each subplot, the corresponding MAE is reported, representing the

time-averaged deviation of the reconstructed signal from the LES reference signal over the full 10-minute period.

The baseline method exhibits minimal differences between the two wind speed inputs, effectively capturing the average

behavior of the time series but failing to reproduce high-frequency fluctuations. This limitation reflects the method’s lack

of spatial and temporal adaptability. In contrast, the POD-LSQ method closely follows the LES reference in both amplitude645

and phase when using the true wind speed (ufw). However, when using the lidar-based input (ulidar, wgh), it captures the high-

frequency variations less accurately. This is caused by the high scan number, which results in a large longitudinal span of the

lidar measurements used to fit the POD amplitudes, introducing a low-pass filtering effect in the time domain. In addition, the

inherent probe volume averaging of the lidar further attenuates high-frequency fluctuations (Peña et al., 2017).

28

https://doi.org/10.5194/wes-2025-148
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure C1. Comparison of 10-minute time series for each method, at a single location in y =−65.1 m,z = 156.1 m, using nscan = 16,

θ = 22.5◦, K = 100 global POD modes for POD-based methods as input parameters for the reconstruction, for the true wind speed (ufw)

and volume-averaged lidar estimate (ulidar,wgh) cases.

The IDW method shows excellent agreement with the LES signal when using ufw, nearly replicating the full temporal650

dynamics. Yet, with lidar-based input, its performance declines significantly, yielding blocky and discontinuous reconstructions

that highlight its sensitivity to multi-distance fixed-plane mapping error. This is because the IDW method with ufw samples the

true wind at the desired Y Z positions in the Xtarget plane, whereas the values of ulidar, wgh used for interpolation are located

at different longitudinal positions. Furthermore, the values for ufw used during the IDW interpolation are updated at every

time step of the simulation, whereas the values for ulidar, wgh do not change. Thus, the time series for IDW with ulidar, wgh has a655

“quantized” look, because the point in space is being interpolated from the same measurement points, until enough time has

elapsed that a new, closer measurement has acquired.

While POD-IDW performs slightly worse than POD-LSQ in terms of absolute error, it shows significantly improved ro-

bustness compared to IDW when using lidar-based inputs. By applying POD fitting on top of the interpolated IDW field, the

method mitigates the blocky and discontinuous behavior introduced by direct IDW interpolation—particularly the “quantized”660

appearance caused by fixed measurement locations over time. This improvement stems from the projection of the IDW field

onto a set of spatial patterns derived from POD, which enforces spatial coherence and smooths out interpolation artifacts. As a

result, POD-IDW produces more continuous and physically consistent time series, as further illustrated in Fig. C1d.
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Code and data availability.

The hub-lidar database generated from LES inflow simulations is available at https://doi.org/10.11583/DTU.28151724665

(Soto Sagredo et al., 2025a).
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