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Abstract. This study seeks to advance our understanding of energy losses caused by wind farm cluster wakes off the U.S. East

Coast by utilizing advanced numerical models in conjunction with real-world, available data on existing and planned offshore

wind sites. To this end, we have run simulations of existing and planned U.S. offshore wind lease areas using a typical-

meteorological-year approach with a GPU-based Weather Research and Forecasting (WRF) model, where lease area layouts

are generated based on most up-to-date project capacity information for each individual lease areas. To evaluate wake losses,5

we use an energy-loss-based definition of “wake shadow”, as opposed to the traditional wind speed deficit assessment. A key

insight from this study is that large wind speed deficits do not necessarily translate into significant energy losses. In addition,

our results indicate that the conventional wind speed deficit method may underestimate the size of the wake area by up to 30%

compared to the proposed energy loss approach. These findings highlight the need to consider both wind speed deficits and

energy losses when evaluating the wake effects of offshore wind farms and assessing future offshore wind development.10

1 Introduction

With its reliable 100-meter wind resource (>8.5 ms−1), shallow water depths (<60 m), and close proximity to large population

centers, the U.S. Atlantic Outer Continental Shelf (OCS) is an ideal place to harvest offshore wind energy (Bodini et al., 2019;

Musial et al., 2016). Currently, there are 30 offshore lease areas over this region in various stages of development (Bureau

of Ocean Energy Management, 2024), 26 of which are examined in this study. However, if all these projects advance to15

installation and commissioning, concerns regarding wake-induced energy losses from upstream and neighboring farms have

been raised (Dörenkämper et al., 2014; Lundquist et al., 2019; Golbazi et al., 2022; Pryor and Barthelmie, 2024b, a; Rosencrans

et al., 2024). Moreover, the establishment of new wind farms on future lease areas could further impact the energy-generating

potential of existing leases, highlighting the need for more informed and transparent site selection. To this end, a robust

assessment of the wake effects is critical to ensure the sustainable future growth of offshore wind and address an industry-wide20

problem.
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Wake-induced energy losses have long been recognized as a critical challenge for offshore wind energy (Lissaman, 1979;

Ainslie, 1988; Rados et al., 2001). Initially, research focused on the effects within a single wind farm (intra-array) (Barthelmie

et al., 2009) and between closely spaced wind farms (deep-array) (Nygaard, 2014). More recently, the emphasis has shifted

to cluster wake effects (Platis et al., 2018; Lundquist et al., 2019; Cañadillas et al., 2022; Schneemann et al., 2020), in which25

wakes from one wind farm can extend far into the surrounding area, impacting other offshore wind farms in the far field (Platis

et al., 2018). Research on cluster wakes has predominantly concentrated on the North Sea, driven by the region’s increasingly

dense arrangement of offshore wind farms and future climate change considerations (Akhtar et al., 2021; Warder and Piggott,

2025). The extensive size and close spacing of wind farms influence not only individual downstream turbines but also entire

neighboring downstream facilities (Cañadillas et al., 2020; Ahsbahs et al., 2020), potentially lowering the overall capacity30

factor by 20% or more (Akhtar et al., 2021).

Atmospheric modeling has been at the forefront of cluster wake research (Fischereit et al., 2022a). In particular, mesoscale

numerical weather prediction models have become widely used for assessing long-term wake effects thanks to their ability

to capture the atmospheric conditions (e.g., stability) influencing wake evolution at a reasonable computational cost (Fitch

et al., 2012). Validating these models with field measurements and comparing wake estimates across different model fidelities35

have been essential for quantifying uncertainty and revealing current model limitations (Dörenkämper et al., 2015; Lee and

Lundquist, 2017; Tomaszewski and Lundquist, 2020; Siedersleben et al., 2018b, a, 2020; Fischereit et al., 2022b; Maas, 2023;

Ali et al., 2023a). For example, Cañadillas et al. (2022) collected both airborne and scanning wind lidar data and compared them

to a mesoscale model with wind farm parameterization. Under neutral and unstable conditions, the model and measurements

agreed within about 2% for wind speed, but stable conditions introduced the largest discrepancies. Similarly, Sanchez Gomez40

et al. (2024) compared operational data from the Westermost Rough Offshore Wind Farm, subjected to partial or full wakes

from the Humber Gateway array, against high-resolution mesoscale simulations. They found that while mesoscale models with

wind farm parameterizations generally represent the influence of cluster wakes on the front-row turbines, they often fail to

capture cluster wake effects across the entire farm, likely due to misrepresentation of internal wake dynamics.

Recent studies have also focused on offshore wind development off the U.S. East Coast, offering insights into how large-scale45

wind farm wakes interact with the region’s distinct atmospheric conditions. Pryor et al. (2021a) presented the first quantitative

analysis of how offshore wind energy lease areas along the U.S. East Coast influence power production and wake formation,

focusing on selected short periods. Their study considered capacity densities between 2.1 MW/km2 and 4.3 MW/km2 and

found that energy output may diminish by approximately one-third due to the wakes produced by upwind turbines and wind

farms. Under some atmospheric conditions, extensive wind farm wakes can extend as far as 90 km beyond the largest lease50

areas, and the frequency-weighted area experiencing a 5% velocity deficit can be 2.6 times the size of the original lease area.

Based on their simulations, they introduced scaling rules that relate wake impacts from large offshore wind developments to

prevailing meteorological conditions and the density of installed wind turbines. Rosencrans et al. (2024) examined a complete

annual cycle of wake impacts on the East Coast. The study demonstrates that offshore wind farm wakes can reduce power

output by approximately 34% to 38%, with the strongest wakes extending up to 55 km during summertime stable atmospheric55

conditions. They also pointed out that internal wakes may contribute more to energy losses than external wakes, and the overall
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wake impact is influenced by nonlinear processes. By varying the wake-added turbulent kinetic energy (TKE) amount, they

quantified uncertainty in the yielded energy output variability, which was estimated at 3.8%. Pryor and Barthelmie (2024a)

revisited their 2021 study, projecting that the annual energy production from current offshore wind energy leases ranges from

139 to 173 TWh/yr and demonstrating out that the combined intra- and inter-array wake effects can extend well beyond existing60

lease areas, reducing the annual energy production by up to 49 TWh/yr. They also considered the fraction of U.S. East Coast

resource that remains available after considering wake effects and competing ocean uses (shipping activity, distance to coast,

etc.). They suggested that there are more than 40000 km2 available in shallow water for offshore wind development. We note

that marine spatial planning is a thorough process managed by the Bureau of Ocean Energy Management (BOEM), which is

responsible for overseeing renewable energy development on the outer continental shelf. As a result, any assessment, including65

this study, may not fully reflect the actual availability of resources.

All of the studies mentioned above used numerical weather prediction models equipped with a wind farm parameterization

(Fitch et al., 2012; Volker et al., 2015) to examine the impact of wakes over an offshore wind farm. To complement and expand

on the findings of previous studies, in this study we provide a detailed analysis of the wake-induced energy losses along the

U.S. East Coast. In contrast to previous studies, we focus on energy losses, rather than velocity deficits, when assessing the70

extent of wind farm cluster wakes. We also differ from previous studies in our approach for generating wind farm layouts based

on up-to-date information from BOEM (BOEM, 2024) to better approximate the installed density capacity of individual lease

areas. We find that using the more accurate heterogeneous capacity density (CD) can affect the extent of the cluster wakes and

the magnitude of the energy deficit for downstream wind farms. Moreover, we adopt the typical-meteorological-year (TMY)

method in contrast to single year-long simulations (Rosencrans et al., 2024) or multiple short-period simulations (Pryor et al.,75

2021b; Pryor and Barthelmie, 2024a) in an effort to capture seasonal and inter-annual variability in wake-induced energy loss

assessment.

2 Simulation Methodology

This section introduces the simulation methodology used to assess wind farm cluster wakes at lease areas along the U.S.

East Coast. We first describe the Weather Research and Forecasting (WRF) model used, before describing the wind farm80

characterization and the approach used to generate wind farm layouts within the specified lease areas.

2.1 WRF model setup and experiment design

The version of the WRF model (Skamarock et al., 2019) used here was developed by TempoQuest, a company based in Boulder,

CO, USA, and was built to run on accelerated graphical processing units (GPUs) (Veer, 2023). The GPU-based WRF version,

called AceCAST, allows for rapid acceleration of WRF simulations and was used explicitly in this project to leverage the85

National Renewable Energy Laboratory’s (NREL) modern NVIDIA H100 GPUs on its Kestrel high-performance computing

platform. AceCAST encompasses a set of refactored common WRF physics and dynamics modules and namelist options with
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Shortwave & longwave radiation Rapid radiative transfer model for global climate models

(RRTMG; Iacono et al., 2008)

Planetary boundary layer Mellor-Yamada-Nakanishi-Niino

(MYNN; Nakanishi and Niino, 2004, 2009)

Surface layer Revised MM5 Monin-Obukhov scheme (Jiménez et al., 2012)

Land surface model Noah land surface model (Chen and Dudhia, 2001)

Cumulus Kain-Fritsch scheme (Kain and Fritsch, 1990; Kain, 2004)

Microphysics Single-moment 3-class (WSM3) simple ice scheme (Hong et al., 2004)

Wind farm parameterizations Fitch scheme (Fitch et al., 2012); TKE generation factor = 1.0
Table 1. Summary of physics parameterizations in the WRF model.

NVIDIA CUDA or OpenACC GPU programming techniques and is built to function as an interchangable replacement for

existing WRF configurations.

In October 2023, Veer Renewables conducted a validation study of AceCAST against the traditional CPU-based WRF90

model. Using a full-year simulation focused on the U.S. offshore Atlantic wind energy areas, the study found near-perfect

agreement between AceCAST version 3.1 and the equivalent WRF version 4.2.2 (Veer, 2023). Based on the results of this

study (summarized in Appendix A), the GPU-based equivalent to WRF 4.5.1 is used for conducting our simulations.

As in Pryor et al. (2021b), simulations are performed with three one-way nested domains (Figure 1), focusing on the wind

lease areas over the U.S. East Coast with a spatial resolution of 9 km, 3 km, and 1 km, respectively. The European Centre for95

Medium-Range Weather Forecasts Version 5 (ERA5) reanalysis data (Hersbach et al., 2020) provide the initial and boundary

conditions for the simulation. The physics parameterizations used in this study are summarized in Table 1. In total, the model

employs 52 vertical levels, with finer resolution (15 levels) concentrated in the lowest 200 meters above the ground to better

capture the interactions between the wind farms and the surface layer (Tomaszewski and Lundquist, 2020).

4

https://doi.org/10.5194/wes-2025-154
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



28°N

31°N

34°N

37°N

40°N

43°N

46°N

84°W 81°W 78°W 75°W 72°W 69°W 66°W 63°W

Domain1

Domain2

Domain3 North

Central

South

Figure 1. Domain design for the WRF simulation. The shaded areas represent the locations of the wind turbines. Domain 1 has 9-km

horizontal resolution, Domain 2 has 3-km horizontal resolution, and Domain 3 has 1-km horizontal resolution. The three blue boxes

indicate distinct offshore wind lease areas—north, central, and south—used for regional analysis.

A full-year simulation is run in this study. However, rather than running the simulation over a continuous year, we construct a100

TMY (Knight et al., 1991; Kambezidis et al., 2020; Ren et al., 2021) that is representative of 24 years of atmospheric conditions

(Table 2). To construct the TMY, the following steps are performed:

1. At the center coordinate of the model domain, we download 100-m wind speed, 100-m wind direction, and 2-m temper-

ature timeseries data from the ERA5 reanalysis over the period from January 2000 to December 2024.

2. For each calendar month, we compute the Wasserstein metric (also called the Earth mover’s distance) between the long-105

term distribution of the 100-m wind speed and that for each year. We then repeat for the 100-m wind direction and 2-m

temperature data.
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3. For each atmospheric variable, we normalize the Wasserstein metric by using the mean of all years, allowing compara-

bility of the metrics between atmospheric variables.

4. For each year, we sum the normalized metrics across each atmospheric variable. The year with the lowest summed metric110

is the one selected in the TMY.

5. Repeat for each calendar month.

Year Month

January 2008

February 2001

March 2007

April 2013

May 2010

June 2020

July 2017

August 2006

September 2019

October 2013

November 2021

December 2004
Table 2. Summary of the months constructed for the TMY used in this study.

By building the TMY using full calendar months—in contrast to more meticulous TMY approaches where individual days

might be selected—it is ensured that extreme events are not excluded. By considering wind speed, wind direction, and 2-m

temperature (related to air density), a more complete picture of the meteorological situation is created. Figure 2 examines the115

efficacy of this TMY approach by contrasting the full TMY distributions against the 20-year long-term ERA5 data. It is evident

that the TMY approach accurately captures the long-term wind climatology from ERA5 and is therefore appropriate for use in

this study.

The wind farm parameterization of Fitch et al. (2012), with the bug fixes of Archer et al. (2020), is the default wind farm

parameterization in the WRF model and is used in this study. It represents the effect of a wind turbine by introducing a mo-120

mentum sink term and a TKE source term into the model layer where wind turbines are located. The following equations show

the effect of the wind farm parametrization on 1) horizontal wind speed, 2) power production, and 3) turbulence generation:

δ|V |ijk

δt
=−

NijCT (|V |ijk)|V |2ijkAijk

2(zk+1− zk)
(1)
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Figure 2. Probability distributions of 100-m wind speed (a), 100-m wind direction (b), and 2-m temperature (c) at the model domain

center: comparison of TMY approach (green) and 20-year ERA5 data (red-dashed).

δPijk

δt
=

NijCP (|V |ijk)|V |3ijkAijk

2(zk+1− zk)
(2)

δTKEijk

δt
=

NijCTKE(|V |ijk)|V |3ijkAijk

2(zk+1− zk)
(3)125

where i, j, and k denote Cartesian model coordinates. The thrust coefficient, CT (|V |ijk), varies with wind speed, and |V |
represents the wind speed magnitude at the turbine’s hub height. The rotor-swept area is denoted as Aijk. The turbine number

density within a grid cell ij is represented as Nij . The power coefficient, CP (|V |ijk), is also dependent on wind speed. The

height of the vertical model level is indicated by zk, and CTKE approximates the fraction of energy converted to TKE. Several

modifications to the Fitch scheme (Redfern et al., 2019) and other wind farm parameterizations (Abkar and Porté-Agel, 2015;130

Volker et al., 2015; Pan and Archer, 2018) have been developed in recent years, as reviewed by Fischereit et al. (2022a). Ali

et al. (2023b) provide an in-depth comparison between these wind farm parameterizations and conclude that inclusion of the

turbulence source term is critical for an improved prediction of near-surface variables, as shown in comparison of mesoscale

simulations to large-eddy simulations of Vanderwende et al. (2016). A development to correct for the blockage effect on upwind

wind speed (Vollmer et al., 2024) was introduced to the Fitch parameterization after the beginning of this project and so was135

not implemented in the present study.

Wind turbines are represented in the WRF simulations by using their thrust coefficient and power as a function of wind

speed (see Figure 3). The thrust coefficient is a dimensionless quantity representing the thrust force applied by the turbine

on the flow at a given wind speed (Burton et al., 2011, ch. 3.2.4). Three turbine power ratings—11 MW, 13 MW and 15

MW—are selected for this study. The 15-MW turbine coefficients, which make up the bulk of the turbines, are based on the140

International Energy Agency’s (IEA) 15-MW reference turbine (Gaertner et al., 2020) with 20% peak shaving (discussed in

the following paragraph). The 11-MW turbine coefficients are scaled-down versions of the IEA 15-MW turbine, using turbine

information and technology assumptions from Beiter et al. (2020), combined with the actuator disk theory from Burton et al.
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Figure 3. Power (a) and thrust coefficient (b) curves for the 11-, 13-, and 15-MW turbines used in this study. The hub height and rotor

diameter are 133 m and 205.5 m for the 11-MW turbine, 138 m and 220 m for the 13-MW turbine, and 150 m and 240 m for the 15-MW

turbine.

(2011), resulting in the power and thrust coefficient curves in Figure 3. The 13-MW turbine information was obtained from

Det Norske Veritas in April 2024 and left unmodified in this study. Note that this turbine’s rated power is in fact 13.6 MW;145

however, for simplicity and consistency we refer to it as “13 MW” and will use it in lease areas where an approximate turbine

rating of 13 MW is assumed (see Section 2.2).

Peak shaving operation, where a wind turbine is intentionally operated off of its maximum-power-generating control settings

near the rated wind speed to lessen structural loads, is increasingly common for large offshore wind turbines (Peeringa et al.,

2011; Hansen and Henriksen, 2013). To incorporate peak shaving into the simulation, the thrust curve of the IEA 15-MW150

turbine is altered to achieve a 20% reduction in the peak thrust compared to the nominal thrust curve defined by Gaertner et al.

(2020) (see especially Figure 3-1 therein), chosen as a reasonable compromise between load reduction and power loss (Vanelli

et al., 2022; Tian et al., 2023). This alteration gives the “trimmed corner” appearance of the thrust curve of the IEA 15-MW

turbine between roughly 9 and 12 m/s in Figure 3(b). An approximation of the resulting effect on the power curve based

on simple actuator disk theory (Burton et al., 2011, ch. 3.2) is also included, as shown in Figure 3(a) (note in particular the155

deviation from the cubic curve before rated wind speed). The adjustments to the IEA 15-MW thrust and power curves to

represent peak shaving are also mapped over to the downscaled version used to represent the 11-MW turbines. The 13-MW

turbine already has a rounded corner in the thrust and power curves and, as such, is left as is.
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2.2 Wind turbine layout

Estimating the turbine layout for projects in the U.S. pipeline that have not yet finalized their project design poses significant160

challenges (Mulas Hernando et al., 2023). Recognizing these challenges, we have developed a replicable framework for gen-

erating turbine layouts for U.S. lease areas. This framework adapts to the project’s permitting stage or construction proximity,

incorporating the most recent market information available at the time of application.

The proposed framework adopts a three-step approach. The first step involves determining the project capacity for each wind

lease area. When publicly available data, such as offtake agreements or announced developer plans, are accessible, they are165

directly utilized. Otherwise, the project capacity of each wind lease area is determined by multiplying the lease area by the

estimated CD, which is the weighted-average CD specific to the state in which the wind lease area is located (Mulas Hernando

et al., 2023). The second step focuses on determining the turbine rating for each wind lease area, relying again on publicly

available information, such as turbine supplier agreements. In the absence of such data, the turbine rating is estimated based on

whether the commercial operation date (COD) for each lease is expected before or after 2026. If before 2026, the turbine rating170

is set at 13 MW; otherwise, the turbine rating would be 15 MW. The assumed 13- and 15-MW turbine ratings are selected

based on market research from NREL’s Offshore Wind Market Report (Musial et al., 2023). The final step involves generating

the turbine layout. For each lease area, if a proposed turbine layout is publicly available, it is adopted with modifications to

accommodate as many turbine positions as necessary, ensuring that the number of turbine positions aligns with the selected

project capacity and turbine rating. In cases where no proposed layout is available, the number of wind turbines is calculated175

by dividing the project capacity by the turbine rating. The turbines are then distributed across the lease area with uniform

spacing. Note that, in our framework, equidistant layouts are used only when detailed, project-specific layout information is

not publicly available—typically for lease areas that are still in the early stages of development, where no layout information

is disclosed in permitting documents (e.g., COPs or official BOEM GIS data). Detailed flowcharts outlining this three-step

approach are provided in Figure B1, Figure B2, and Figure B3, respectively, and more discussion on generating the turbine180

layout is provided in Appendix B.

Using this approach, we generated the proposed layout for all 26 wind lease areas along the U.S. East Coast. We note that

the layouts presented in this study are based on data collected up to March 13, 2024, and reflect project information available

as of March 13, 2024. A total of 3,057 wind turbines were located within the 26 lease areas plotted, with the project capacity

per lease area ranging from 132 to 2,640 MW and CD ranging from 1.81 to 9.55 MWm−2.185

3 Data Analysis

We analyze the results from the WRF simulations described in the previous section by defining the “wake shadow”, that is, a

region around a lease are that where there is an energy loss due to the wind farm cluster wakes. This approach differs from the

work of others (Rosencrans et al., 2024; Pryor and Barthelmie, 2024b) that have focused on wind speed deficit when defining

the waked region. This section first describes the stability classification we use to analyze cluster wakes in different atmospheric190

conditions before providing a description of the energy loss analysis approach and definition of the “wake shadow”.
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3.1 Stability classification

Atmospheric stability is the tendency of air to resist or enhance vertical motion, which plays a critical role in weather pat-

terns and boundary-layer processes (Stull, 1988). Several methods exist to define atmospheric stability, each based on different

parameters, such as temperature gradients, turbulence, and mean wind profiles. A widely used index for assessing dynamic195

boundary-layer stability is the Richardson number (Ri; Kaimal and Finnigan, 1994), which is a dimensionless ratio that com-

pares the relative contributions of buoyancy and shear forces.

To study the impact of atmospheric stability on wind turbine wakes, we choose to describe stability using the bulk Ri rather

than the Obukhov length, especially given the degree of stable stratification and the size of the rotor-swept heights in an offshore

environment (Rosencrans et al., 2024). In strong stability conditions, surface flows can decouple from those aloft, and therefore200

surface fluxes may not represent stability conditions across the rotor layer, where stability affects wakes (Quint et al., 2025).

The expression for the bulk Ri is described in equation (4):

Ri =
g

θ̄
·

∆θ
∆z(

∆u
∆z

)2
+

(
∆v
∆z

)2 (4)

where g is the gravitational acceleration, θ is the potential temperature, θ̄ is the mean potential temperature over a layer of

atmosphere, u is the horizontal wind velocity in the west-east direction, and v is the horizontal wind velocity in the south-north205

direction. To better understand and quantify the stability difference in an offshore environment, we calculate Ri over both the

near-surface layer (20 m to 50 m) and over the entire rotor layer (20 m to 300 m). Additionally, we perform this analysis across

three different wind lease regions (north, central, and south; Figure 1) to assess regional variations in atmospheric stability.

Figure 4 compares the stability between the near-surface layer and rotor layer in the predefined northern, central, and south-

ern wind lease regions. In the majority of cases (86%), the surface and rotor layers share the same stability characteristics, with210

all layers simulated as stable 61% of the time and unstable 25% of the time. Instances where the near-surface layer is stable

but the rotor layer is unstable are extremely rare, occurring only 0.2%-1% of the time. More commonly, 13% to 14.4% of the

time, the near-surface layer is unstable while the upper rotor layer remains stable. These conditions are critical for phenomena

such as marine fog (Koračin et al., 2014). Overall, the difference in stability conditions across the simulation region is small,

indicating minimal sensitivity in the geospatial representation of background stability. This analysis demonstrates, as also in-215

dicated in Rosencrans et al. (2024), that near-surface stability is not always representative of the deeper rotor layer. For the

remainder of the paper, we will use the rotor-layer Ri for further analysis, as it is more appropriate for examining the effects of

wind turbines on energy loss.

3.2 Wake impact identification using energy losses

In a wind farm, where multiple wind turbines are placed in clusters, the wakes of individual turbines interact with one another,220

leading to cumulative effects that can extend far beyond the wind farm area. These combined wakes from one or more wind

farms are referred to as “cluster wakes”. Often, the wake wind speed deficit map, which shows the difference in wind speed at
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Figure 4. Difference in Ri between the near-surface layer (20 m to 50 m) and rotor layer (20 m to 300 m) across three predefined

wind lease regions.

hub-height between the wind farm (WF) and no wind farm (NWF) simulations, is used as an indicator for assessing wind farm

impacts on adjacent regions, where future wind farm development may take place. Although these maps provide important

information on the potential extent of wind farm wakes, they do not provide an accurate estimate of resulting energy loss.225

This disconnect arises because the velocity deficit does not directly indicate the energy loss due to the nonlinear relationship

between wind speed and power.

Instead, we may obtain a better picture of the wake effects by combining the wake-induced wind speed deficit with a typical

power curve (Figure 5). For instance, when the wind speed deficit (∆v) is close to or below the rated wind speed, wind turbines

in the wake region will experience significant power loss (∆Pbelow rated, represented by the blue shaded area). However, if the230

wake-induced wind speed (i.e., v−∆v) is greater than the rated wind speed, then no matter how large ∆v is, ∆P will be

zero (shown as ∆Pabove rated, represented by the red shaded area in Figure 5). The latter situation is most likely to occur under

stable stratification in an offshore environment (see Section 3.1), where flow from aloft is decoupled from the ocean surface.

Therefore, a direct correlation between larger wind speed deficit and larger energy loss may not always hold true, especially in

the offshore environment.235

We compute and represent wake-induced energy loss in a geospatial map using a two-step approach. First, we pass the wind

speed map through the power curve to get the power map for both the NWF and WF simulations at each model output timestep

(10 min). In the second step, we take the integral of the power with time and then calculate the energy loss for each location

on the map with

Energy Loss = 100%−
∫ t1

t0
PWF · dt

∫ t1
t0

PNWF · dt
× 100% (5)240

where PWF and PNWF are the power production from the WF and NWF simulations, respectively, and t0 and t1 are the time

integrals used to calculate energy production. To account for variations in wind speed and atmospheric stability, we further
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Figure 5. A schematic diagram of the relationship between power loss (∆P ) and wind speed deficit (∆v) on a typical wind turbine

power curve.

categorize the energy loss based on whether the atmosphere is stably stratified and whether the hub-height wind speed is above

or below the rated wind speed (11 ms−1).

To quantify the extent of wind farm wake effects, we consider 2% and 5% energy loss thresholds and calculate the total area245

enclosed within these thresholds on the geospatial map. These areas are referred to as the “wake shadow”. We also determine

the ratio, Fwakearea, between the wake shadow and the total turbine area using as

Fwakearea =
Areawakearea

Areawindlease
(6)

where Areawakearea represents the wake shadow defined by a specific energy loss threshold (e.g., 2% or 5%), Areawindlease denotes

the total wind lease area within the study region. Note that the ideal threshold should ideally be informed by industry standards;250

however, in the absence of such guidance, we adopted the threshold values from Pryor et al. (2021a) to facilitate comparison

of wind speed deficit results. A similar analysis is performed using wind speed deficit metrics to enable comparison between

the two approaches. Additionally, this analysis is conducted across three different wind farm regions (north, central, and south;

Figure 1) to account for the effects of cluster size and CD on the extent of the wake area.
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Below-Rated Above Rated

hub-height wind speed (<11ms−1); hub-height wind speed (>11ms−1);

Unstable

(Ri < 0) 16%, UBR 9%,UAR

Stable 45%, SBR 30%, SAR

(Ri > 0)

Table 3. Frequency of occurrences during the 1-year TMY simulation ).

4 Results255

4.1 Impact of atmospheric stability on wake characteristics based on energy loss versus wind speed deficit

Using the rotor-layer Ri and hub-height (150 m) wind speed from the NWF simulation, we define four distinct scenarios to

compare wake characteristics based on either wind speed deficit or energy loss: 1) unstable stratification with below-rated hub-

height wind speed, UBR, 2) unstable stratification with above-rated wind speed, UAR, 3) stable stratification with below-rated

wind speed, SBR, and 4) stable stratification with above-rated wind speed, SAR. The most common occurrence (45%) is when260

the rotor layer is stable and the hub-height wind speed is below the rated power, SBR (Table 3). This 45% bin is also the

most impactful condition that affects wake propagation and energy deficits. The least common combination of wind speed and

atmospheric stability is unstable stratification and above-rated hub-height wind speed (UAR) with only 9% of cases.

Figure 6 shows the wind speed deficit and energy loss associated with each flow scenario. In unstable atmospheric conditions,

the wind speed deficit caused by the wind farm remains nearly unchanged, regardless of whether the hub-height wind speed is265

below-rated (UBR; Figure 6a) or above-rated (UAR; Figure 6c). Under stable conditions, the wind speed deficit is largest when

the hub-height wind speed is above-rated (SAR; Figure 6g), indicating the largest wind farm impact on wind speed. However,

the story changes when wind speed deficits are translated into energy loss. Despite SAR having the largest wind speed deficit, it

shows only the second-to-last impact on energy loss (Figure 6h). In fact, when wind speed is above-rated, energy loss is much

smaller compared to below-rated wind speeds. The greatest energy loss occurs in SBR, where the wind speed is below-rated270

under stable conditions (Figure 6f). Under this scenario, power generation for wind farms like Community Wind, Attentive

Energy, and Leading Light Wind could experience a greater than 30% reduction in power output. Notably, this is also the most

frequent flow scenario in the region (Table 3). In summary, the analysis emphasizes a critical finding: Large wind speed deficits

do not necessarily lead to large energy losses, as also shown in Lundquist et al. (2019) Figure 5c. Significant power deficits are

more often associated with below-rated wind speeds, regardless of atmospheric stability (Lundquist et al., 2019).275
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Figure 6. Spatial map of the average wind speed (WS) deficit and energy loss under different WS and stability scenarios from the

1-year TMY simulation. A cutoff value of -0.5 m.s−1 for the WS deficit and 2% for energy losses are used.
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Figure 7. Spatial map of the annual energy production loss from the 1-year TMY simulation. The dashed lines represent the 2% and

5% energy loss threshold contours.

Figure7 presents the spatial distribution of the annual mean energy loss, the aggregate of the four scenarios in Figure 6, from

the TMY simulation. Regions experiencing an annual energy loss of at least 5% are all situated near the wind lease areas. As the

threshold lowers to 2%, the affected regions expand further. To further understand the regional difference in the wake extension

over these offshore wind farms, Table 4 shows a comparison of wake areas over the three predefined wind farm regions (Fig.1)

using 2% and 5% thresholds for energy loss and wind speed deficit. Comparing the northern and southern regions, even though280

the lease area in the northern region is almost four times the size of the southern region, the percentage of the wake area due

to energy loss is significantly smaller in the north. Note that the CD in the northern region is half that in the southern region,

which explicitly suggests that the extent of the wake area is more strongly associated with the CD rather than the size of the

lease area. When the CD is around 3.23 MW/km2 (e.g., northern region), the wake area associated with a 5% energy loss is

approximately 2.5 times the lease area. However, in regions where the CD doubles (e.g., central and southern regions), the wake285

area also doubles. Lowering the energy loss threshold from 5% to 2% results in an even greater wake expansion: In high-CD

regions, the wake area grows to about eight to ten times the lease area, whereas in the north, it is only four times. This result

highlights the crucial role of CD in determining wake area size and underscores the need to establish an industry-acceptable

energy loss threshold to maximize the area available for offshore wind development.
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All Northern Central Southern

Regions Region Region Region

Total lease area (km2) 9,062 3,673 4,424 965

CD (MW/km2) 4.98 3.23 6.59 6.44

Fwakearea ≥ 5% energy loss 3.68 2.42 4.70 4.07

Fwakearea ≥ 5% wind speed deficit 2.82 1.89 3.63 2.67

Fwakearea ≥ 2% energy loss 7.12 4.53 8.57 11.3

Fwakearea ≥ 2% wind speed deficit 6.20 3.88 7.68 9.34
Table 4. Comparison of wind lease areas, CDs, and wake area percentages across different regions. The wake area factor Fwakearea is defined

in Equation (6).

4.2 Differences in wake shadow based on energy loss and wind speed deficit approach290

As emphasized in the previous section, wind speed deficits do not always translate directly to energy losses. Here, we continue

to express the waked area as a percentage reduction in energy or wind speed to allow a direct comparison. The distinction

between using a percentage wind speed deficit as opposed to an absolute wind speed deficit is described in Appendix C. We

now highlight the sensitivity of the wake shadow extension when using the energy loss approach versus the wind speed deficit

approach.295

Accounting all offshore wind farm lease areas, the annual mean wake area quantified using the energy deficit approach

is approximately 14% to 30% larger than that defined using the wind speed deficit approach (Table 4). This greater wake

expansion from the energy deficit approach is also consistently identified across all three regional wind lease areas. Figure 8

demonstrates the spatial extend of the wake area under 2% and 5% deficit scenarios for each wind lease region. Depending

on the specific lease region, the wake area can be 11% to 52% larger when employing the energy loss approach compared300

with the wind speed deficit approach. For both thresholds, the wake area from the energy deficit approach exceeds that from

the wind speed deficit approach, and the difference becomes more pronounced when the threshold increases from 2% to 5%.

For instance, the wake area over southern region (Fig. 8e and 8f) defined using the energy loss approach is 21% larger than

that obtained using the wind speed deficit approach when employing a 2% threshold while at a 5% threshold the difference

increases to 52%. Overall, these results highlight the sensitivity of defining the “wake shadow" using the energy loss method,305

in contrast to the traditional wind speed deficit approach. The findings underscore that the area available for offshore wind

development strongly depends on the criteria used to define the wake shadow and the industry-acceptable threshold for energy

loss.
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Figure 8. Comparison of the spatial extent of the wake area using the energy loss and wind speed (WS) deficit approaches. The purple

line represents the 2% threshold, whereas the orange line represents the 5% threshold. Panels (a) and (b) illustrate the wind lease

areas in the northern region, panels (c) and (d) depict those in the central region, and panels (e) and (f) show the wind lease areas in

the southern region.

4.3 Comparison to existing literature

Lastly, we compare key findings from this study—such as the number of wind turbines, turbine ratings, CD, and wake area310

factors—with recently published studies (Rosencrans et al., 2024; Pryor et al., 2021a) that employ different turbine layouts and

simulation methodologies. The results are summarized in Table 5.

The present study reports the highest total project capacity at 45,102 MW, substantially surpassing the estimates of Rosen-

crans et al. (2024) and Pryor et al. (2021a), which are 17,016 MW and 28,830 MW, respectively. This highest capacity is

primarily driven by the largest wind lease area and the greatest number of wind turbines, whereas the values reported by315

Rosencrans et al. (2024) and Pryor et al. (2021a) remain relatively comparable. Consequently, the CD is highest in this study

(4.92 MW/km2), followed by Pryor et al. (2021a) (3.23 MW/km2) and Rosencrans et al. (2024) (2.7 MW/km2). Addition-

ally, while both Pryor et al. (2021a) and Rosencrans et al. (2024) assume a single wind turbine rating of 15 MW and 12

MW, respectively, this study incorporates a mix of 11-MW, 13-MW, and 15-MW turbines, offering a more diversified turbine

configuration.320

Reducing the wind speed deficit from 5% to 2% results in a doubling of the wake area factor across all three studies,

indicating a significant expansion of the wake region. Comparing our results with those of Rosencrans et al. (2024), we observe

that an increase in installed CD is accompanied by a higher wake area factor, aligning with our previous conclusions (Table 4).

However, despite having a lower CD, the wake area factor reported by Pryor et al. (2021a) is higher than in our study under

17

https://doi.org/10.5194/wes-2025-154
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



This work Rosencrans et al. (2024) Pryor et al. (2021a)

Total Project Capacity (MW) 45,102 17,016 28,830

All Lease Area (km2) 9,062 6,194 6,566

Number of Wind Turbines 3,057 1,418 1,922

Average Installed CD (MW/km2) 4.98 2.75a 4.39

WTR (MW) 11, 13, 15 12 15

Fwakearea ≥ 5% Wind Speed Deficit 2.82 1.71 (1.80) 3.73

Fwakearea ≥ 2% Wind Speed Deficit 6.20 4.02 (3.90) 7.69
aRosencrans et al. (2024) identified their average installed CD as 3.14 MW/km2 focusing on areas within the lease boundaries. When

considering the irregular arrays and spacing between their lease areas, we find an average installed CD of 2.75 MW/km2. The italic values

are calculated using simulation from Rosencrans et al. (2024) that has 0% added TKE.
Table 5. Comparison of key findings across three different studies: For Pryor et al. (2021a), the wake area factor is calculated as the average

factor of the 11-flow scenario from Table 3 of their paper.

both wind speed deficit scenarios. This discrepancy can primarily be attributed to two key factors. First, the difference in the325

equations used to calculate wind speed deficit plays a crucial role. Equations (7) and (8) are the equation used in our study and

in Pryor et al. (2021a), respectively, for calculating wind speed deficit.

Wind Speed Deficit =
( 1

n

∑n
i=1 WSWF − 1

n

∑n
i=1 WSNWF

1
n

∑n
i=1 WSNWF

)
× 100% (7)

Wind Speed Deficit =
1
n

n∑

i=1

(
WSWF −WSNWF

WSNWF

)
× 100% (8)

where n represents the total number of hourly output from the year-long simulation, WSWF and WSNWF are the hub-height330

wind speed from the WF and NWF simulations. The primary distinction between these methodologies lies in the normalization

of wind speed. In our study, normalization is conducted at the final stage using the mean wind speeds from the WF and NWF

simulations (Eq. (7)). Conversely, in Pryor et al. (2021a), normalization occurs at each output timestep before being averaged

over time (Eq. (8)). Note that we calculated wind speed deficit using equation (7) because it has the same mathematical form

as equation (5), which is the standard method for estimating annual power loss. This is to ensure consistency and comparable335

assessment in our analysis by applying the same formulation to both wind speed deficit and energy loss.

The impact of these differing approaches is illustrated in Figure 9 from our simulation and in Figure C2 from Rosencrans

et al. (2024) (see Appendix C). Notably, the wake area is considerably larger when using Equation (7) compared to Equation

(8). For instance, when considering a 2% wind speed deficit, the wake area calculated with Equation (7) is twice as large as

that obtained using Equation (8). This finding underscores the sensitivity of wake area estimation to the choice of wind speed340

deficit calculation methods. Future research should account for these methodological differences and exercise caution when
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Figure 9. Comparison of annual wind speed deficit calculated using Equation (7) and (8)) from the one-year TMY simulation.

selecting an appropriate approach. Ultimately, wind speed measurements from the far-wake offshore region are necessary to

determine which normalization method is most suitable for wind speed deficit calculations.

The second reason of discrepancy in the results is primarily related to differences in simulation methodologies. Both our

study and that of Rosencrans et al. (2024) employ year-long simulations to represent the regional wind climate., whereas345

Pryor et al. (2021a) conduct 11 five-day representative wind flow scenarios. This methodological difference likely introduces

variations in wind statistics, which could significantly influence the wake area factor calculations.

The impact of added TKE on the wake area is also examined using simulation from Rosencrans et al. (2024). Reducing TKE

from 100% to 0%, the Fwakearea increases from 1.71 to 1.80 under 5% wind speed deficit scenario but decreases from 4.02 to

3.90 under 2% wind speed deficit scenario (Fig.C2). Overall, these changes are insignificant, consistent with recent finding350

indicating that meteorological impacts of added TKE is the least sensitive at the hub-height level (Quint et al., 2024).

Overall, these findings highlight the complex interplay of multiple factors, including turbine design, simulation techniques,

and analytical methods, in determining the final wake area. This complexity underscores the need for further research to better

understand and standardize wake impact assessments for future offshore wind development.

5 Conclusions355

This study presents new results for cluster wake-induced energy losses in the U.S. East Coast offshore wind lease areas. In

contrast to previously reported work, we focus on energy loss rather than wind speed deficit when defining the wake-affected

region. We have also developed a replicable framework for generating realistic turbine layouts based on publicly available
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information, focusing on U.S. offshore wind lease areas and adapted the TMY approach to better represent regional wind

climate in the numerical simulations used to evaluate wakes.360

The study identifies a significant difference between the resulting wake extents when defining the “wake shadow" using

the traditional wind speed deficit approach and and when using the energy loss method. Under a 5% threshold, the wake area

associated with the energy loss approach can be 30% larger in size compared to that defined using the wind speed deficit ap-

proach. These results indicate that the wind speed deficit approach may underestimate the wake area. The findings demonstrate

considerable sensitivity to the chosen method for defining wake areas and emphasize the importance of incorporating both the365

wind speed deficit and energy loss approaches in offshore wind development assessments.

Our findings also underscore the notable difference in stability conditions when comparing the near-surface layer to the

entire rotor layer in offshore environments. This disparity suggests that greater caution should be exercised when selecting

the appropriate stability definition for analyzing wind farm impacts. Consistent with previous research, stable atmospheric

conditions lead to larger wind speed deficits, particularly when hub-height wind speeds exceed the rated value. However, a370

key insight from this study is that large wind speed deficits do not necessarily translate into significant energy losses. In fact,

the greatest energy loss occurs when wind speeds are below-rated with stable stratification. This result highlights the need to

consider both wind speed deficits and energy losses when evaluating the wake effects of offshore wind farms.

Additionally, the results indicate that the extent of the wake area is strongly influenced by the capacity density (CD) and the

selected cutoff threshold. A wind lease region with larger CD generally suggests a larger wake area. Lowering the energy loss375

threshold from 5% to 2% results in significant wake expansion, with the wake area potentially increasing to seven to ten times

the size of the lease area. This finding highlights the crucial role of CD in determining the wake area and underscores the need

to establish an industry-acceptable energy loss threshold to maximize the area available for offshore wind development.

A comparison with recently published studies on offshore wind wake assessments demonstrates the complex interplay of

multiple factors in determining the final wake area, including the (1) turbine design and layout, (2) simulation techniques,380

and (3) analysis methods and metrics employed. The variability in the results arising from these factors highlights the need

for further research to standardize wake assessment methodologies and develop more robust, universally applicable wake

characterization techniques. Future studies should aim to bridge the gaps between various assessment methods, ultimately

leading to more accurate and consistent wake impact predictions across different wind farm configurations and environmental

conditions.385

Data availability. The data and files that support this work are publicly available. The ERA5 forcing data can be downloaded from the

ECMWF Climate Data Store at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2020). Shapefiles including the bounding extents

of the lease and call areas are available at https://hub.arcgis.com/datasets/709831444a234968966667d84bcc0357/explore. (BOEM,

2021). Individual turbine coordinates, power and thrust curves and WRF namelists for NWF and WF simulations can be obtained at https:

//doi.org/10.5281/zenodo.15078171.The simulation output data will be available in HDF5 format upon request.390
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Appendix A: Validation of GPU-Accelerated WRF Model AceCAST Against the Standard CPU-Based Model

In October 2023, Veer Renewables published a validation report summarizing AceCAST—a GPU-accelerated version of the

WRF model developed by TempoQuest—and the standard CPU-based WRF model (Veer, 2023). A full-year TMY was simu-

lated over a U.S. offshore Atlantic domain very similar to that simulated in this study. However, a coarser inner 3-km domain

nested within a 9-km domain was employed. Wind farms spanning from Delaware to Massachusetts were modeled, using con-395

fidential client-provided wind turbine characteristics and locations. Comparisons were performed between WRF 4.4.2 and an

equivalent AceCAST build, both based on the same physics options described in Table 1.

Figure A1 compares the mean modeled wind speeds, power, and TKE over the TMY between the standard WRF model and

AceCAST. As shown in the figure, the agreement between the two models is excellent, with differences in wind speed and

power deviations less than 1.5% and TKE deviations less than 2%, according to:400

perfdiff = 1− Va

Vw
(A1)

where Va is the AceCAST variable (either wind speed, power, or TKE) and Vw is the corresponding WRF variable.

These differences are of similar magnitude to those observed when the WRF model is launched on different high-performance

computing clusters (Hahmann et al., 2019). When comparing the mean net capacity factor across the different lease areas, we

observe deviations between the WRF model and AceCAST ranging from -0.22% to 0.03%, with an average of -0.12%.405

Next, we perform timeseries analyses of the AceCAST and WRF simulations. In Figure A2, we provide a snapshot of key

atmospheric variables for January 2019. As shown in the figure, the agreement between the WRF and AceCAST timeseries is

excellent, with only small deviations in atmospheric parameters. Across the four variables shown in A2, correlations between

the WRF and AceCAST simulations exceeded 0.99, and the distributions were nearly identical.

The results from this validation study demonstrate that AceCAST is a suitable alternative to the standard CPU-based WRF410

model. Whether looking at mean atmospheric parameters modeled across the entire domain or timeseries analysis at specific

coordinates, we find strong agreement between AceCAST and the WRF model.
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Figure A1. Mean maps of 120-m wind speed (top row), power (middle row), and 120-m TKE (bottom row), modeled using the WRF

model (left column) and AceCAST (center column). Percentage differences between the WRF and AceCAST results are shown in the

right column.
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Figure A2. Timeseries visualization of key atmospheric parameters for January 2019 within a selected lease area.
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Appendix B: Details of Wind Turbine Layout Generation Approach

Following section 2.2, here we provide further detail on the three-step approach of generating turbine layout using our proposed

framework. The first step is to estimates the PC of each wind lease area (Fig. B1) using either public available data (e.g., offtake415

agreement) or multiplying the lease area by the estimated CD, which is the weighted-average CD specific to the state1 in which

the wind lease area is located (Mulas Hernando et al., 2023). Estimating PC for each wind lease area is the first and most critical

step of our proposed turbine layout generation approach because it ensures the layout is realistic, aligned with regulatory and

financial expectations, and feasible within the constraints of the lease area. The second step focuses on assigning turbine rating

for each wind lease area (Fig. B2). For projects lacking turbine supplier agreements and with a COD before 2026, we assume420

the use of 13-MW turbines. For projects expected to reach the COD in 2026 or later, we use 15-MW turbines, reflecting current

industry trends and supplier announcements 2.Finally, the third step involves defining a turbine layout (Fig. B3). If a proposed

layout exists in the public, it is adopted or adjusted as needed to match the expected PC. For instance, Revolution Wind (OCS-

A 0486) is a 704 MW capacity offshore wind farm under construction off the coast of Rhode Island. The actual layout and

turbine rating are already available to public and thus, we adopted their turbine positions as the layout. In the case of Bay State425

Wind (OCS-A 0500), located offshore Massachusetts and currently in the permitting stage, the proposed layout by BOEM is

modified by removing the 30 turbine positions closest to the lease area boundary in order for the total PC to be aligned with the

estimated PC. For leases without proposed layouts—typically those in early development stages with no permitting documents

available (half of the offshore wind projects examined in this study)—the number of turbines is calculated by dividing the

project capacity by the turbine rating. Turbines are then distributed uniformly across the lease area using equidistant spacing,430

which serves as a default layout assumption. Note that, in our framework, equidistant layouts are used only when detailed,

project-specific layout information is not publicly available. In contrast, when turbine layout data is available—along with

other market-relevant data such as project capacity from offtake agreements, turbine ratings, or regionally-informed capacity

density assumptions—our framework integrates that information to produce more representative and realistic layouts.

The layouts presented in this study are based on data collected up to March 13, 2024, and reflect the project information435

available as of March 13, 2024. Details of the layouts for individual lease areas after applying the layout generation approach

are given in Table B1. Figures B4)a and B4)b show the spatial pattern of CD and WTR across the wind lease areas in the

study region. Notably, CD tends to increase as one moves southward, where newer wind lease areas are located. This trend

can be attributed to two primary factors: First, the spacing between turbines in new wind lease areas becomes more compact

(transitioning from the uniform wide spacing of the MA/RI lease areas to a combination of wide and narrow corridors); second,440

1Based on weighted-average capacity densities by state in Mulas Hernando et al. (2023), we use 3 MW/km2 for MA and RI, 4 for NJ, 6 for MD and VA,

and 7 for NC, NY, and DE lease areas. These are the states to consider according to BOEM state leasing activities (BOEM, 2021).
2South Fork Wind, Revolution Wind, and Sunrise Wind are expected to use 11-MW turbines based on turbine supplier agreements, whereas Vineyard

Wind is installing 13-MW turbines (McCoy et al., 2024). Based on this, we assume that projects with a COD before 2026 and no supplier agreements will use

13-MW turbines. Projects like Empire Wind and CVOW-C are projected to use 14-MW to 15-MW turbines based on supplier agreements. Vestas is focusing

on the 15-MW V236 model, GE is prioritizing the 15.5-MW Haliade-X, and, although Siemens Gamesa has not fully revealed its strategy for new turbine

models, it has secured a supply agreement for 14.7-MW turbines in the United States (McCoy et al., 2024). This assessment assumes a trend toward 15-MW

turbines for mid-to-long-term projects post-2025, but we recognize that there may be potential for further turbine upscaling.
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larger and more powerful wind turbines are being proposed for these new wind areas. Using the proposed framework for layout

generation, the WTR for each lease area is also determined, with three turbine capacities—11 MW, 13 MW, and 15 MW—being

applied. Most lease areas are assigned 15-MW turbines, as their CODs are yet to be determined. However, for areas such as

South Fork Wind, Revolution Wind, and Sunrise Wind, the turbine ratings have already been established based on agreements

with their turbine suppliers. Figure B4c provides a detailed view of the exact wind turbine locations/layout within the MA/RI445

lease areas, with a prescribed spacing of 1 nautical mile between each turbine. For Revolution Wind (OCS-A 0486) and South

Fork Wind (OCS-A 0517), the 11-MW wind farm layouts were predetermined based on publicly available information. In

contrast, the layouts for the remaining wind lease areas were established using the proposed framework.

Even though this framework is specific applied to the U.S. offshore wind lease area, we believe it is, in fact, applicable to

wind farms globally—in the sense that it offers a replicable approach for generating realistic turbine layouts using publicly450

available information. Leveraging data such as offtake agreements and permitting documents to inform layout assumptions is

a practice that can be applied in any region where such data exists.

Figure B1. Flowchart outlining the process of determining the project capacity for each wind lease area.

25

https://doi.org/10.5194/wes-2025-154
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Lease Number Project Capacity (MW) WTR (MW) Number of Turbines CD (MW/km2)

OCS-A 0482 1,980 15 132 6.97

OCS-A 0483 2,640 15 176 5.87

OCS-A 0486 704 11 64 1.81

OCS-A 0487 924 11 84 2.08

OCS-A 0490 1,815 15 121 9.55

OCS-A 0498 1,095 15 73 3.58

OCS-A 0499 2,700 15 180 6.53

OCS-A 0500 2,280 15 152 3.0

OCS-A 0501 806 13 62 3.05

OCS-A 0508 2,580 15 172 7.63

OCS-A 0512 2,070 15 138 6.45

OCS-A 0517 132 11 12 2.4

OCS-A 0519 975 15 65 9.11

OCS-A 0520 2,325 15 155 4.46

OCS-A 0521 2,235 15 149 4.43

OCS-A 0522 1,605 15 107 3.0

OCS-A 0532 1,155 15 77 3.36

OCS-A 0534 2,040 15 136 4.96

OCS-A 0537 2,025 15 135 7.0

OCS-A 0538 2,745 15 183 8.04

OCS-A 0539 3,000 15 200 5.88

OCS-A 0541 1,290 15 86 4.01

OCS-A 0542 2,400 15 160 7.05

OCS-A 0544 1,320 15 88 7.59

OCS-A 0549 1,320 15 88 4.02

OCS-A 0559 930 15 62 5.89
Table B1. Summary of the project capacity, WTR, number of turbines, and CD for all 26 lease areas examined in this study.
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Figure B2. Flowchart outlining the process of determining the turbine rating power.

Figure B3. Flowchart outlining the process of determining the turbine layout.
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Figure B4. Spatial pattern of a) CD and b) WTR for all the examined lease areas along the U.S. East Coast; the orange dots are

locations where data are extracted to calculate the atmospheric stability. c) An enlarged view of the wind turbine locations/layout

over the MA/RI lease areas.

Appendix C: Characterization of wind speed deficits

While we have focused on defining wind speed loss as a percentage to facilitate a more direct comparison to energy loss, other

studies have used absolute wind speed deficits (expressed in SI units, m/s) to characterize the wake area. Figure C1 illustrates455

the extent of the wake based on the wind speed deficit, expressed as an aboluste value (m/s) and as a percentage (%). In this

analysis, contour thresholds of -0.2 and -0.5 m/s were applied for the SI units, whereas the corresponding thresholds of 2%

and 5% were used for the percentage-based representation. The difference in the total wake area defined by the -0.2 m/s and

2% contours is smaller than 1%, whereas the areas defined by the -0.5 m/s and 5% contours are almost identical. However,

this does not imply a linear relationship between the wake area defined by the wind speed deficit expressed in SI units and as460

a percentage. In fact, a previous study (Rosencrans et al., 2024) has shown that such a relationship does not hold, particularly

when the wind speed deficit increases (< -1.5 m/s). The observed correspondence appears constrained to the threshold values

examined in this study. Nevertheless, this correspondence is important, as it enables direct comparison of wake areas quantified

using both wind speed deficit and energy loss expressed in equivalent percentages.

Regarding the distinction between methodologies lies in the normalization of wind speed, Figure C2 further illustrate using465

data from Rosencrans et al. (2024). Consistent with the findings in Section 4.3, the wake area estimated using Equation (7) is

approximately twice as large as that obtained using Equation (8). This highlights the sensitivity of wake area estimation to the

choice of wind speed deficit calculation method.
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Figure C1. Spatial map of annual wind speed (WS) deficit expressed in SI units (m.s−1) and as a percentage (%) from the 1-year

TMY simulation.
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Figure C2. Similar as Figure 9 but using data from Rosencrans et al. (2024); LA100 and LA0 represent year-long simulation with 100%

and 0% added TKE.
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