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Abstract.

The expansion and creation of new wind farms in recent years brings up challenges to manage both inter- and intra- wind
farm wake effects. Wake blockage impact heavily relies on atmospheric conditions for determining how long and how intense
the wake propagation is. One of these key atmospheric parameters is the height of the atmospheric boundary layer (ABL),
which determines the height of the atmosphere most impacted by surface layer wind speed and temperature regimes. Generally
lower ABL is united with more stable conditions, and thus greater the wake propagation. Offshore wind farms experience
more frequent stable conditions compared to onshore farms, thus boundary layer conditions must be well parameterized to
accurately model wake blockage effects. Scanning lidars present a viable solution for boundary layer height determination. In
this study, their measurements are compared against ERAS and WRF ABL model outputs. The lidar acts as a reference for
boundary layer conditions, categorizing the ABL for both the mixing (convectively driven) and residual (stably driven) layer
heights. Two campaigns, both using WindCube Scan devices, were assessed: one located completely offshore and another
on a coastline. The results demonstrate an overestimation of the boundary layer height from both ERAS5 and WRF from the
offshore site of around 400m. The coastal site yielded mixed results when comparing the ABL model height to the mixing and
residual layer heights derived from the lidar, with a model overestimation compared to the mixing height of 300m and for the
residual height of 750m. A sensitivity study demonstrates the bias of both models correlates to the ABL diurnal cycle and to

temperature flux misrepresentation in the model.

1 Introduction

Offshore wind development has made incredible advancements in the last decade, highlighting the need for well-informed
resource assessments as these wind farms expand. As wind farms grow larger and more densely concentrated, understanding
the atmospheric phenomena of these offshore sites elucidates the potential risks from wake clusters (Veers et al., 2022). The
atmospheric boundary layer height (ABLH) defines the limit of the atmosphere where all convective activity occurs. This
is where the wind speed is affected by phenomena at the surface (heat flux, friction velocity, etc.) before reaching the free
atmosphere. This parameter is directly linked to atmospheric stability conditions and strongly influences momentum flux

recovery in wakes (Dorenkédmper et al., 2015) (Schneemann et al., 2021).
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Offshore conditions are mostly characterized by stably stratified conditions. These stable conditions augment wake prop-
agation and induce turbine stress, and are normally coupled with low ABLHs, thus highlighting the importance of accurate
representation (Puccioni et al., 2024) (Sood et al., 2020). Few studies exist that quantify the impact of boundary layer heights
on wake propagation, such as (Sood et al., 2020). By assessing a neutral boundary layer developing against a stably stratified
free atmosphere, which often occurs in offshore conditions, they found wake induced turbine loads when ABLHs were low due
to greater strength of oscillations. Kalvig et al. (2014) showed that oversimplifications regarding the marine boundary layer,
such as assuming a neutral boundary layer, in offshore wind applications, leads to a gross underestimation (up to 25 times
lower) of lifetime turbine fatigue. Eliassen et al. (2012) and Sathe and Bierbooms (2007) also found that stable conditions give
rise to greater fatigue than neutral conditions. Eliassen et al. (2012) derived an increase in damage equivalent load on rotor
blades by a factor of 1.4 when considering atmospheric stability. Xu et al. (2023) concluded that, for floating offshore wind
turbines, the ABLH influences power variation more than platform motions. Together, these studies show the significant impact
of the ABLH and stability conditions on wake propagation, turbine lifetime, and power output, thus highlighting the need to
accurately characterize this phenomenon.

Currently in meso- and micro-scale modeling the ABLH is either defined by a theoretical boundary layer scheme in numer-
ical models, or it is set explicitly in simpler analytical models. Olsen et al. (2024) use lidar measurements to validate low level
jet (LLJ) sensitivity in the Weather Research and Forecast (WRF) and the ECMWF atmospheric reanalysis of the global climate
fifth generation (ERAS) models in the North and Baltic seas. They found high variability in the LLJ heights among the WRF
ABL schemes, and ERAS not capturing enough LLJ events for statistically significant comparison. Hu et al. (2010) assess three
boundary layer schemes for a WRF model and compare to radiosonde data. They find the sensitivity of WREF to different ABL
schemes dependent on vertical mixing strength and the resulting entrainment, meaning each scheme has its applications for
particular stability conditions. Optis et al. (2014) use the ABLH as an input parameter to determine the wind profile in different
stability conditions. They find the Gryning wind profile model, which incorporates the linear function of the frictional velocity
and ABLH, and yields more accurate wind speeds for all stability conditions compared to the Monin-Obukhov stability theory.
Munters and Meyers (2017) assess a predictive large eddy simulation (LES) model of the ABL to improve wind farm control
strategies. They found an 8-21% increase in power gain but with the significant limitation of computational cost and high
uncertainty in ABLH validity. Shen et al. (2024) use LES to evaluate the nocturnal stable atmospheric boundary layer, but
mention limitations due to challenges in obtaining field validations. They further highlight that ABL schemes are incomplete,
missing parameters that contribute to the ABLH evolution. These parameters could better define the streamwise and spanwise
wind gradient scales, the Ekman length scale, the Coriolis force, surface Obukhov length, friction velocity, and various other
stability parameters that rely on temperature and heat flux profile understanding.

Historically, radiosondes have been used to validate ABL model output. Radiosondes measure temperature, humidity, wind,
and pressure throughout the troposphere. Guo et al. (2024) compare radiosonde data to a reanalysis dataset to bias correct
ABLH data. The greatest sensitivities were attributed to land properties, near-surface meteorological conditions, terrain, lower
tropospheric stability, and heat flux, with a global underestimation of the ABLH from ERAS especially during daytime. Li et al.

(2023) validate ABLHs from ERAS to onshore radiosonde measurements in Jiangsu, China. They also find model sensitivity
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to the near-surface temperature, wind speed, relative humidity and lower tropospheric stability. Xi et al. (2024) evaluate the
offshore ABLH from a ship campaign with radiosonde measurements in different stability conditions and compare to ERAS
outputs. They state that coarser climate models may not capture the small-scale variations of physical processes in the ABL.
They find that ERAS significantly overestimates the ABLH at low heights but underestimates the ABLH at greater heights,
eliciting a smoothing tendency for ABLHs

Though radiosondes provide rich atmospheric data throughout the boundary layer, the data is limited to the launch times
and locations of these devices. Doppler wind LIDAR (LIght Detection And Ranging) systems (referred to as lidar for this
publication) present a viable solution to provide remote sensing measurements of the ABLH at a continuous rate, and can
be easily deployed both onshore and offshore. Lidars emit laser pulses into the atmosphere and evaluate the return Doppler
signal for wind speed, wind direction, aerosol concentration, and strength of the return signal. Scanning lidars provide flexible
scanning patterns with a mobile scanning head and can measure the entire boundary layer with suitable atmospheric conditions.
The ABLH can be derived from the lidar’s measurement of vertical velocity and return signal gradients, as sharp gradient drops
from these parameters represent viable indicators of residual and mixing layer heights.

ABLH validation using lidars, however, has only been a recent subject of interest. Flamant et al. (1997) represent one of the
first studies to measure the marine atmospheric boundary layer from an airborne lidar. Using turbulence flux measurements
from instruments of another aircraft, they validated the boundary layer height by evaluating the cumulative density distribution
of the signal gradient from the airborne lidar. Bianco and Wilczak (2002) and Bianco et al. (2008) generate ABLHs using fuzzy
logic method from radar signal-to-noise ratio (SNR) and vertical velocity measurements, which represent similar outputs to
lidar measurements. This fuzzy logic method consists of combining the SNR and vertical velocity and variability gradients to
characterize the background noise and atmospheric phenomena, then defining thresholds of when this peak occurs to define the
mixed layer location. Krishnamurthy et al. (2025) used lidars to measure momentum flux using a Velocity-Azimuth Display
(VAD) scan for velocity profiles. They found good correlation with surface sonic anemometers and used the lidar data to
evaluate the momentum transfer in stable and unstable conditions. These continuous profiles also measured low level jet
(LLJ) heights, wind farm wakes, and gravity waves. Puccioni et al. (2024) demonstrated the use of the wavelet covariance
theorem (WCT) to detect the boundary layer height from lidar profiles. The WCT was used to detect sharp transitions in the
SNR profiles, since above the boundary layer the density of aerosols drastically decreases. Moreira et al. (2020) use similar
remote sensing technology by using ceilometer measurements to generate the ABLH. Ceilometers are a type of remote sensing
instrument that measures atmospheric backscatter and aerosol concentration. They used a gradient method based on a literature
review assessment and to avoid complex selection of specific parameters as required by other methods such as WCT, Ideal Fit,
or Threshold Method. Abraham et al. (2024) evaluated both vertical velocity variance from scanning lidars and backscatter
profiles from a ceilometer to find the ABLH impact from wind farm wakes in stable conditions. Both instruments were used to
categorize stable and unstable characteristics of the ABLH. These studies provide a basis of demonstrating the practical use of
scanning lidars to provide continual profiling measurements for reliable and consistent ABL measurements.

This study examines the use of offshore scanning lidar ABLH measurements to support and provide insight on model

derived ABLH values. Scanning lidars for wind resource assessment are widely used and have gained trust in the wind en-
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ergy community for continuous reliable data for wind speed validation, wake visualization, and more (Krishnamurthy et al.,
2025) (Lundquist et al., 2014) (Puccioni et al., 2024). The analysis conducted in this study consists of offshore lidar ABLH
measurements compared to ERAS and WRF model ABLH output for two offshore sites in the North sea from two separate
measurement campaigns. Both scanning lidars used on the two sites are WindCube Scans with an integrated tool made from
Vaisala that generates the ABLH from the Carrier-to-Noise ratio (CNR) and vertical velocity gradients. Evaluating this dif-
ference between measurement and model helps understand how these models could be corrected by on-site measurements for
improved representation in wake modelling.

The following section in the introduction outlines the principles of the boundary layer, as this definition becomes relevant for
the boundary layer retrieval method for the lidar and models. This report is then structured by first detailing the methodology,
presentation of results, a discussion of the analysis, and key takeaways. Firstly, the methodology of the analysis is detailed: what
datasets were used, both model and lidar ABLH derivation, and key performance indicators used to analyze the bias of ABL
model and measurement and sensitivity analysis of the bias compared to dataset characteristics and atmospheric conditions.
The results are presented and discussed in three parts. First, the overall ABLH distributions of the WRF, ERAS, and lidar
are separately presented to obtain insight into the spread of data. Second, a direct comparison of bias and root mean square
error (RMSE) is conducted to assess over or underestimation and the magnitude of the differences. Last, a sensitivity study is
conducted by classifying these key performance indicators such as hour of the day, sea surface temperature, and others. The
analysis concludes by summarizing the model performance compared to the lidar ABLH measurements and recommendations

for model correction techniques.
1.1 Boundary layer definition

The ABLH is defined as the lowest portion of the troposphere that is most affected by the presence of surface forcings such
as friction, pollution, heat transfer, etc (Stull, 1988). This area of the atmosphere is characterized by complex turbulent and
temperature gradient processes, a unique challenge for determination from measurements (Puccioni et al., 2024). The boundary
layer can be categorized in two ways: the mixing layer, defined by convective conditions and turbulent driven, and the residual
layer, based on neutral or stable conditions. The residual layer is defined by aerosols driven not by convection but rather
by passive atmospheric transport (Stull, 1988). These aerosols are called "tracers", and are important as lidars rely on these
aerosols to obtain a return signal and perfectly follow the wind speed and direction. Figure 1 shows this distinction on a diurnal
cycle. The mixing layer height is determined by convection and is mostly characterized by turbulent wind profiles. The residual
layer is defined by more stable conditions and mostly during night, so the aerosols that were mixed in the atmosphere during

the day remain aloft and act as tracers for any wind advection.
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Figure 1. Graphic demonstrating the diurnal boundary layer development and distinction of the mixing and residual layer over the course of

the day.

2 Methodology
2.1 Datasets

Two offshore campaigns were chosen for this analysis that include long term scanning lidar data and WRF ABLH simulations.
Figure 2 shows the location of both campaigns in the North Sea. The GLOBE dataset is located completely offshore and the
FLOW dataset was taken along the coast of northern Denmark.

The first campaign was funded by the X-Wakes project to participate in the Carbon Trust Offshore Wind Accelerator (OWA)
Global Blockage Effect in Offshore Wind campaign (GloBE). Seven long range scanning lidars, in addition to various other
instruments, were deployed on wind turbine transition pieces offshore to measure the global blockage effect on an offshore
wind farm cluster in stably stratified conditions (Adams et al., 2023). One WindCube Scan (WCS) 200S lidar was reserved
for making boundary layer measurements, Table 1 outlines the scanning strategy of the scanning lidar. The scanning strategy
alternated from a two-minute fixed scan measuring completely vertically followed by 18 minutes of a Velocity Azimuth Display
(VAD) scan which provides a reconstructed vertical wind speed profile. Only the ABL scan was used for this analysis. Figure 3
demonstrates the layout of the wind farms, location of the scanning lidar, meteorological mast, WRF cell size, and other floating
lidar systems around the area.

The second campaign comes from the Flow, Loads and pOwer for Wind energy (FLOW) project, a research effort to develop

and improve wind energy engineering applied models from in-situ data (Patel et al., 2025). This particular site, located on
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Figure 2. Map showing two offshore locations for the FLOW and GLOBE campaign

Table 1. GLOBE scanning strategy for the scanning lidar

Scan Name  Scan Type Duration [min]  Elevation [°] ~ Accumulation Time [ms]  Pulse length [m] Min Range [m] Max Range [m] Display Range [m]

ABL Fixed 2 90 1000 50 100 7200 25
VAD VAD 18 75 1000 50 100 6950 25

140 the coast of northern Denmark, also hosts multiple lidars conducting dual doppler scanning techniques to measure turbulence
measurements. A WCS 200S lidar alternated from doppler beam swinging (DBS) for horizontal wind speed retrievals and a
fixed vertical scan to measure the boundary layer height. Table 2 demonstrates the detailed scanning strategy for this lidar.

Figure 4 shows the location and image of the lidar used, as well as the other lidars and a ceilometer on-site.

Table 2. FLOW scanning strategy for the scanning lidar

Scan Name  Scan Type Duration [s]  Elevation [°]  Accumulation Time [ms]  Pulse length [m] Min Range [m] Max Range [m]  Display Range [m]

VAD PPI 480 45 1000 25 100 3075 25
ABL Fixed 120 90 1000 25 50 3025 25

Both campaigns aim to better understand maritime atmospheric conditions for wind energy applications through comparison
145 of models such as WRF to multiple on-site remote sensing measurements. Since both sites are located in the North Sea, the

analysis will demonstrate the consistency of ERA5/WRF model performance against the vertically profiling scanning lidar



https://doi.org/10.5194/wes-2025-155 WIND

Preprint. Discussion started: 20 October 2025 e WE ENERGY
Auth 2025. CCBY 4.0 Li . \
© " Or(S) reense european academy of wind energy S C I E N C E

6044.26
(a) LRI R (b)
. [Amrurobapk_iVest )
........... :
6041.26 4 - ooooooooooo &
----------- -
. [FsA]
6038.26 1 _
e e e e .
. ) * -
£ 6035.26 1 Sierlle 2 2 0 ®
o . . . . . .
@ . .
£ « Nordsee_Ost  «
. = .
§6032.25~ coee e e
. . > -
. - o
6029.26 - s L,
. . D
Feerwind
6026.26 1 ——
.
6023.26 1
401.4 404.4 407.4 410.4 4134 416.4 419.4 4224

Easting [km]

Figure 3. This figure was taken from Adams et al. (2023). Graphic (a) shows a detailed map demonstrating the GLOBE campaign scanning
lidar location (labeled "ABL") and surrounding offshore wind farms in the North Sea. The scanning lidar was placed on the platform of the
meteorological (met) mast. The wind farms are located north, south, and west of the lidar. Graphic (b) shows the scanning lidar’s "view" of

the wind farms from the met mast platform.
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Figure 4. Graphic (a) shows the dual-doppler scanning strategy for the FLOW campaign on the coast of Denmark. This analysis focuses on

the scanning lidar measurements done at the church site by the WindCube 2008, as seen in graphic (b) with other measurement devices.

measurements. Additionally, as the GLOBE site is located completely offshore and the FLOW site directly on the coastline,

this study aims to evaluate if the sensitivity of measurement/model bias is dependent on location and surface roughness. Table 3
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provides detailed information on each campaign. The additional sensors for the GLOBE site are attributed to the meteorological

mast that is located on site.

Table 3. FLOW and GLOBE campaign descriptions

Name Coordinates Start Date  End Date  Duration  Instrumentation on site

WindCube Scan 200S lidar

GLOBE [54.47,7.64]  08/2021 04/2022 9 months

— Sonic anemometers (32m and 92m)

Wind vanes (32m and 92m)

— Sea surface temperature sensor

WindCube Scan 2008 lidar

FLOW [56.51, 8.09] 02/2024 06/2024 5 months
CL51 Ceilometer

2.2 ABL Estimates

The following subsections detail the method to derive ABLH from both the lidar return signal and vertical velocities, as well

as the averaging methods used to be comparable to the temporal scale of the mesoscale models.
2.2.1 Lidar ABLH Detection

The WindCube Scan has an integrated algorithm that takes as input the CNR and vertical velocity and outputs the ABLH.
The radial wind speed denotes the value of the wind speed moving towards or away from the lidar beam, so when measuring
vertically this is the vertical velocity. Since the mixing layer height is characterized by turbulence, the standard deviation of the
vertical velocity is calculated to estimate the vertical turbulence (Flamant et al., 1997). The vertical turbulence gradient is then
evaluated to determine the height of the convective layer. The CNR represents an indicator of the lidar’s return signal strength
based on aerosol concentration. In the residual layer, aerosols behave as passive tracers in these conditions, so the vertical CNR
gradient is used as an indicator of aerosol dispersion within the boundary layer (Bianco and Wilczak, 2002) (Bianco et al.,
2008).

Figure 5 demonstrates the general workflow of the ABLH algorithm. The vertical gradients of the radial velocity and CNR
are used to generate the mixing and residual layer, respectively. Both variables are filtered using a confidence index (““Status IC”
in the figure) to remove invalid data. The gradients of these variables along the line of sight are calculated. The distribution of
these gradients as a function of height is assessed for local maxima and minima through a series of logic analysis to determine
the boundary layer height. A cloud height detection algorithm is used to properly define the boundary layer height: in some
cases, the height is determined as the cloud base, and if there are multiple clouds then the height is determined as the maximum
of the local gradients. The latitude, longitude, and timestamp are used to determine sunrise and sunset times to characterize the

mixing and residual layer heights. These steps are applied for a specific averaging window, in this project set to 30 seconds.
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For each window, the output of the algorithm includes the residual layer height, the mixing layer height, the cloud base height.
Figure 6 displays a sample output of mixing and residual layer heights for an extended time period, demonstrating accuracy in

well defined boundary layer conditions.
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Figure 5. ABL detection flowchart outlining the steps necessary to calculate the residual and mixing layer.

A final logical decision tree is applied to the residual and mixing layer heights to ensure the values are physically logical.
175 For example, all mixing layer heights generated in the middle of the night must not be considered as convective conditions do
not exist.
ERAS data is originally outputted on an hourly basis, so the WRF and lidar datasets were averaged to accomodate this
temporal resolution.
The lidar outputs both residual and mixing layer heights at some parts of the day and data is provided every 30 seconds, so
180 three averaging methods were conducted to assess the sensitivity of evaluating the ABLH in different conditions. Averaging
both ABLH retrieval types results in an ABLH that is not representative of the true conditions. The three averaging methods are
defined in Table 4: the residual layer average, where only the residual layer retrievals are considered, the mixing layer average,
and a "time of day" (ToD) average. This method assumes that the boundary layer is defined by the diurnal cycle, where only
the mixing layer is considered during daytime hours, the residual layer during nighttime hours, and an average of both around

185 sunset and sunrise hours.
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Figure 6. Visual representation of residual and mixing layer heights. This example comes from a sample dataset from the validation of the

tool, the timeline shows 24h on the x axis with colors demonstrates a range of the CNR.

Table 4. Description of three averaging techniques for lidar ABLH retrievals of mixing and residual layer heights.

Name Abbreviation Meaning

Mixing Layer Mix Only mixing layer ABLHs are averaged

Residual Layer Res Only residual layer ABLHs are averaged

Time of Day ToD Only mixing layer averaged during daytime; only residual layer averaged during

nighttime; both are averaged 4 one hour from the sunrise/sunset time

2.2.2 ERAS ABLH

The ERAS Reanalysis product provides atmospheric data from a model informed by observational data on a global scale. It is
the 5th generation of atmospheric reanalysis to be produced by ECMWE, with hourly resolution output of 0.25° (Hersbach et al.,
2020). As ERAS is based on observational datasets, the preceding method for measuring the ABLH and its characteristics is
190 done with radiosondes as these instruments provide temperature, humidity, and pressure data below and above the ABL. ERAS
uses the Bulk Richardson number to determine the ABLH as it has been found to provide the overall best representation for
stable and convective boundary layers not highly dependent on sounding vertical resolution in a study conducted by Seidel

et al. (2012) and Vogelezang and Holtslag (1996). Equation (1) shows the Bulk Richardson calculation (R;),

10
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R; represents the ratio of turbulence associated with buoyancy to turbulence associated with mechanical shear. The numer-
ator, representing buoyancy, is a function of gravity g, height z, surface height 25, and virtual potential temperature €,,;. The
denominator, representing shear, is composed of the sum of the squares of the differences between surface and elevated velocity
components v and v.

Seidel et al. (2012) note that a Bulk Richardson number of 0.25 indicates the top of the boundary layer. Vogelezang and
Holtslag (1996) find that the ABLH characterized by the Bulk Richardson value performs well over land but in areas with high
wind speeds over the ocean where deep boundary layers may arise, R; may not capture extreme ABL conditions. The lack
of literature pertaining to validation of this method, which is applied in ERAS and other models, leads to an opportunity for

scanning lidars to provide direct measurements of stability conditions and height variation of the ABLH.
2.23 WRF

The WRF parameterizations used in this analysis are based on the research done in Cafiadillas et al. (2022), where scanning
lidars were used to quantify cluster wake effects in the German Bight region. The results demonstrated good agreement of wake
effects from both the model and scanning lidar measurements in neutral and unstable conditions. Stable conditions yielded the
largest discrepencies, between 10-20% disagreements in wind speed. Though this analysis focuses on ABLHs, this provides
an indication that stable conditions with these parameterizations are not well simulated. Additional studies using MYNN
support this results. Sandu et al. (2013) concluded that increased turbulence diffusion in ABL schemes increases precision for
surface temperature at the cost of inducing extra mixing. Olson et al. (2019) found similar results of increased mixing in stable
conditions, thus providing a basis for a misrepresentation in heat flux parameterization driving the turbulence diffusion.

The WREF dataset assessed in this study already includes the location of the scanning lidar used in this study. The same param-
eterizations were used to rerun the WRF simulation for the FLOW site, as seen in Table 5. The Mellor- Yamada-Nakanishi-Niino
(MYNN) level 2.5 boundary layer scheme was used, as well as ERAS data used for atmospheric boundary layer conditions.

The horizontal resolution is 2km.
2.3 Presentation of applied metrics

The comparative results are presented in three parts: lidar vs. WRF/ERAS ABLH distribution, lidar vs. WRF/ERAS5 ABLH
direct comparison, and a sensitivity analysis.

First, the ABLH distributions from the lidar, WRF, and ERAS are presented separately by probability density distributions
for the overall campaign from each dataset.

Second, two key performance indicators (KPIs) are used to compare lidar and model ABLH derivations: bias and root
mean square error (RMSE). A simple mean bias error calculation, as seen in (2) was used to assess the positive and negative

tendencies of the lidar measurements as compared to the ERA5/WRF outputs,

11
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Table 5. Description of WRF parameterizations used in this study. The same setup was using in Cafiadillas et al. (2022)

Parameter Setting

WRF model version 421

Atmospheric boundary layer (ABL) scheme MYNN level 2.5

Wind farm parameterization Fitch et al. (2012)

Land use data MODIS

Surface layer scheme MYNN

Mucrophysic scheme WREF single-moment five-class

Shortwave and long-wave radiation RRTMG

Atmospheric boundary conditions ERAS

Sea surface conditions OSTIA

Horizontal resolution 18, 6, 2km

Vertical resolution 60 eta level

Nudging Grid nudging above ABL

Model output interval 10 min

Nesting One-way

Land surface model Unified Noah Land Surface Model

Simulation suration 240 (+24 spin up) hours
Bias — Ei]\il hmodet (1) — Riidar (2) 2)

N

where A, 040 represents the ABLH derived from the model and A4, that of the lidar in the same hour timeframe. Equation
(3) demonstrates the RMSE,

RMSE — \/ZZ\; |himodei (i) — huidar (4) [

N

3)

where NV is the population size. This becomes more relevant during the sensitivity study where the datasets are sorted by

varying distributions based on hour of the day, month, temperature, and other variables.

Last, a sensitivity analysis is conducted. The bias and RMSE are then categorized by bins of different atmospheric and

temporal conditions to assess if observational/model ABLH values are sensitive to specific conditions. Table 6 outlines the
variables used in the sensitivity study. The Monin-Obhukov length (MOL) is analyzed for the GLOBE site thanks to the
availability of the appropriate sensors to capture and calculate these variables. Table 7 outlines the categorization of stability

conditions based on the MOL values. The sea surface temperature (SST) bias between the measured SST onsite and from the
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model is also used as a sensitivity variable to find a correlation with ABLH bias and potential sources of heat flux deviation

from real conditions.

Table 6. Sensitivity variables analyzed for the GLOBE and FLOW campaign

Variable GLOBE FLOW
Hour of Day Lidar timestamp Lidar timestamp
Month Lidar timestamp Lidar timestamp
Wind direction Wind vanes Lidar DBS
SST bias Temperature sensors

MOL (stable, unstable, neutral)  Sonic anemometers

Table 7. MOL stability categorization

Condition Stability case = Abbreviation
MOL < -0.25 Unstable 1_U
-0.25>MOL < -0.05 Near Unstable 2_NearU
-0.05>MOL < 0.05 Neutral 3_N
0.05 >MOL < 0.25 Near Stable 4_NearS
MOL > 0.25 Stable 5_S

3 Results and Discussion
3.1 Visualization of results

240 Figures 7 and 8 show a sample of the lidar ABLH retrievals for the GLOBE and FLOW datasets, respectively. Often the
boundary layer conditions are clearly delineated. These two cases demonstrate conditions where the boundary is vague. Figure 7
shows a clear mixing layer height from the vertical velocity around 400 m, yet the CNR gradient drops off at a much greater
height around 2 km, which leads to a disagreement with the single boundary layer definition from the models. The mixing layer
height is closer to the model output, and the ToD average method would only include this value in the hourly average. Figure 8

245 shows a residual layer height only slightly higher than the mixing layer height. As the boundary layer height is difficult to
quantitatively validate, these case studies show the visual interpretation and verification of the lidar ABLH retrieval method.
This qualitative analysis is often done for boundary layer measurements from remote sensors (Liu and Liang, 2010) (Jozef
et al., 2022). Analysis of sufficient examples ultimately provide an acceptable level of confidence for the ABLH retrieval from

the scanning lidar.
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Figure 7. The figure demonstrates a time/height plot from the lidar CNR in (a) and vertical velocity in (b) from the GLOBE dataset, taken
from March 13th 2022 from 15h43-15h45. The x axis denotes the passage of time and the y axis the altitude in the vertical direction. The
variables are color coded to denote intensity of their magnitude. The mixing layer is denotes as a red diamond, and the residual layer as an

orange square.

3.2 ABL lidar distribution

Figure 9 demonstrates the probability distribution function (PDF) of the ABLHs derived from WREF, ERAS, and the three
different averaging techniques from the lidar.

Both sites demonstrate similar distribution characteristics for the mixing, residual, and ToD average lidar ABLH retrieval.
The mixing layer heights generate a higher density of lower ABLHs, whereas the residual layer heights demonstrate a more
well-spread distribution of both low, medium, and high altitudes for the ABLH. The ToD, as it considers both mixing and

residual on a diurnal basis, shows a balance between the two. Since the mixing layer represents the height of the atmosphere

14



260

https://doi.org/10.5194/wes-2025-155
Preprint. Discussion started: 20 October 2025
(© Author(s) 2025. CC BY 4.0 License.

—/ { WIND
ENERGY

eawe\ SCIENCE
DISCUSSIONS

Time-Height plot of lidar measurements
(a) CNR (db)
3000 | I I 10
2500 5
¢ Mixing
O  Residual =
2000 0 =
=4
5 3
S 1500 5
C
©
[hd
1000 10
500 15
0 1 1 ! 1 L L 1 20
15:50:45 15:51:00 15:51:15 15:51:30 15:51:45 15:52:00 15:52:15 15:52:30
Time
(b) Vertical velocity (m/s)
3000 : ‘ : 5
~ — WRF 4
2500 — — = ERA5 3
¢ Mixing
O  Residual 2
2000 1
£ O o 1
@ - ¢ Q2
1500 [~ 0 F
c
© . -
E e e o e e e e e e e T e m e e e m e e - - - - - - —-————— - 45
1000 = = = = = =SSR = = = = = = = - - - - - - .- - - -s ... -—==- 1,
500 3
¢ 4
0 L L ! ! ! L L | B 5
15:50:45 15:51:00 15:51:15 15:51:30 15:51:45 15:52:00 15:52:15 15:52:30
Time

Figure 8. The figure demonstrates a time/height plot from the lidar lidar CNR (a) and vertical velocity (b) plot from the FLOW dataset, taken

from March 21st 2022 from 0h20 to Oh22.

based on convective activity, i.e. turbulence, this gradient threshold is almost always below the aerosol concentration dropoff

which defines the residual layer.

The comparison of the model ABLHs with the lidar measurements shows overestimation by the models. Based on the

particular atmospheric conditions of the site, both the reanalysis and mesoscale model do not capture the prevailing low ABLH

conditions, demonstrated at least 15% of the time to be 100m from the lidar ABLH measurements and only between 2-4%

from the models.

The FLOW site demonstrates a wider range of ABLHs compared to GLOBE. The lidar ABL measurements show a more

even distribution across all heights between 100-2000m, with probability of 2km heights from residual layer measurements
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reaching around 12%. The model ABLH distribution, however, drops off at around 1400m, meaning the models rarely output

ABLHs above this value.

(a) Distribution of ABL averages: GLOBE (b) Distribution of ABL averages: FLOW
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Figure 9. Probability density distribution (PDD) of the ABLH from all three lidar averages, WRF, and ERAS. Figure (a) shows the ABLH
dataset distribution from the GLOBE site, and figure (b) from the FLOW site.

3.3 Assessing bias and RMSE

Figure 10 demonstrates the bias (model ABLH — lidar ABLH) for the GLOBE (left) and FLOW (right) datasets.

For the GLOBE site, the model comparison to all lidar averaging techniques demonstrate an overestimation from the model
ABLH. The WRF model data tends to perform slightly better than ERAS, with the residual layer average yielding the lowest
bias. The biases for each model range from 184-348m for WRF and 231-422m for ERAS. This is significant for the GLOBE
site where ABLH conditions are typically around 100-400m based on the distribution graph. If the actual ABLH conditions
are 100m and the model normally overestimates by 300m, the wake dissipation may be stronger than real ABL conditions will
allow.

The bias results for the FLOW site are significantly different from the GLOBE dataset. The mixing layer average of the
lidar ABLH measurements yield small, positive bias. The time of day and residual layer averages, however, demonstrate an
underestimation from the model, with extreme biases from the residual layer average between 557 and 458m difference from
WREF and ERAS, respectively. Thus, this extreme overestimation needs further investigation on both the model and lidar side
to assess the validity of the ABLH measurement.

Figure 11 shows the root mean square error (RMSE) between the model ABLH output compared to the measurements.

The RMSE for the GLOBE dataset yields very similar results among all the lidar ABLH averaging techniques and WR-
F/ERAS. The mixing layer height yields the lowest RMSE with values around 370m from WRF and ERAS5, whereas the

residual layer height is around 470m. These results contrast the previous bias analysis, where the residual layer yielded lower
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Figure 10. ABLH bias results for all three lidar averaging techniques. Each grouping represents a lidar averaging technique, and each color

represents WRF/ERAS (blue and red, respectively). Figure (a) shows the results for the GLOBE dataset, and figure (b) for the FLOW dataset.

biases. The residual layer bias is more variable, sometimes underestimating. ERAS5 performs slightly better than WREF, con-
trasting with the WRF performance for the bias.

The RMSE of the FLOW dataset demonstrates similar results as the previous section, with the residual layer ABLH yielding
the most extreme results. The comparison of the mixing layer retrieval to the models yields an RMSE of around 300m for
both models, where WRF performs slightly better than ERAS. The ToD and residual layer lidar retrievals, however, yield a
significantly higher error of around 600m for ToD and around 750m for the residual layer. This variability in the comparison of
different lidar ABLH definitions shows the importance of how the ABLH is characterized. The disparity between the models
and lidar measurement demonstrate a great distrinction between the ABLH definition based on turbulence or concentration of

backscatter.
3.4 Sensitivity analysis

Figure 12 and Figure 13 demonstrate the distribution of all the sensitivity variables for each of the model data comparisons.
The wind direction is predominantly east and south easterly, which may indicate turbine wake effects in the wind speed; the
lidar measurements measure the wake while the models do not include wakes. The SST bias represents the difference between
the SST generated by the model from the SST measured on the GLOBE site. The SST bias is slightly skewed with a bias
centered around 1° overestimation from the models. The MOL bias is not well distributed, demonstrating extreme conditions
between stable and unstable conditions. The FLOW sensitivity variable dataset distribution seen in Figure 13 shows slightly

more stable distributions, with limited data with northerly wind directions but otherwise well dispersed data.
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Figure 11. ABLH RMSE results for all three lidar averaging techniques. Each grouping represents a lidar averaging technique, and each
color represents WRF/ERAS (blue and red, respectively). Figure (a) shows the results for the GLOBE dataset, and figure (b) for the FLOW

dataset.

3.4.1 Hourly sensitivity

The hourly sensitivity to the WRF/ERAS bias can be seen in Figure 14. For the GLOBE dataset, the bias varies significantly,
from an overestimation of 70m from the residual layer average and 506m overestimation from the mixing layer average. The
RMSE varies from 385m from the mixing layer average and the highest from the residual layer average at 590m. For both bias
and RMSE the best agreement occur in the middle of the day, whereas the bias and RMSE slightly increase during nighttime
hours. As the ToD average is based on the mixing/residual average values based on the time of day, this average method shows
the highest sensitivity to the diurnal cycle. Regarding model performance, both models yield an overestimation compared to
the measurements. WRF yields lower bias results compared to ERAS, and performs slightly better than ERAS in the RMSE
results.

The FLOW dataset shows more disagreement in bias and RMSE. The mixing layer bias ranges from 0 to 270m overesti-
mation for both models, whereas the residual layer bias shows an underestimation between -270m to -700m. The RMSE is
similarly high for the residual layer average, fluctuating between 700-1000km difference with the measurements. The mixing
layer average is significantly lower, ranging from around 160m-400m. Similarly to the GLOBE dataset, there is a slight diurnal
sensitivity for both bias and RMSE. For this dataset, WRF demonstrates better results for bias and RMSE when compared with
the mixing layer average and ERAS with the residual layer average.

Figure 15 shows monthly sensitivity plots of hour of day versus ABLH bias for the GLOBE and FLOW datasets. The lidar
ABLH average assessed in this graph is the ToD to a more accurately evaluate boundary layer conditions. The GLOBE dataset
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Figure 12. Histograms of all sensitivity variables assessed for the GLOBE dataset: month of the year (a), wind direction (b), MOL stability

classifiction (c), and SST bias (d). The "count” denotes the data point counts for each bin of the specific variable.

demonstrates slightly worse performance from ERAS compared to WRE, with overestimation from both models in all months
except February and March. The diurnal cycle sensitivity is rarely present until February onwards, indicating a possible shift
in the heat flux balance in the model representation. The FLOW dataset demonstrates more varied results, with more stable
ABLH bias sensitivities in February and June and significantly pronounced biases in all other months. ERAS5 shows slightly
worse performance than WRF. The standard error (shaded area around the curves) for both datasets is relatively stable with

ABLH bias fluctuating around 100m throughout the day.
3.4.2 Wind direction sensitivity

The wind direction sensitivity was evaluated to discern any correlation with specific site features that may not be captured in
the WRF/ERAS. Figure 16 demonstrates the sensitivity results of bias and RMSE for the GLOBE and FLOW sites for each
of the lidar averaging techniques. Recalling Figure 3 for the GLOBE site, there are wind farms located to the north, south,
and east of the lidar. The results show a slight sensitivity and higher bias/RMSE to the northwesterly/northerly winds. The

best performing bias and RMSE occur between the east/southerly winds, with a low of around 200m RMSE compared to the
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Figure 13. Histograms of all sensitivity variables assessed for the GLOBE dataset: month of the year (a) and wind direction (b). The "count"

denotes the data point counts for each bin of the specific variable.

average 500m RMSE. This sensitivity could be due the lack of wake consideration in both models. Turbine wakes induce
mixing thus increasing the entrainment layer and increasing the boundary layer height (Abraham et al., 2024). It is possible
that the lower bias and RMSE in the east/southerly winds is not the models’ accuracy in these wind direction bins, but rather
the genuine conditions of increased boundary layer heights attributed to wakes.

The scanning lidar for the FLOW dataset is located along the coastline as seen in Figure 4, with the land on the eastern side
and ocean on the western side. The relationship between the lidar averages and model appear to have a slight sensitivity to
wind direction with lower bias and RMSE around the northwest/northerly wind direction bins. Though the residual and ToD
lidar average methods yield extreme bias and RMSE results (up to 1km), they converge with low bias and RMSE values at
these wind speed bins. This may indicate well represented conditions of northerly winds in the models, whereas the coastal

flow on the eastern/western sides may not be well parameterized.
3.4.3 MOL sensitivity

The MOL sensitivity is demonstrated for the GLOBE dataset in Figure 17. The conditions are primarily unstable or stable. The

sensitivity results in Figure 17 do not demonstrate any significant correlation of bias or RMSE to the stability characterizations
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Figure 14. Hourly sensitivity graphs of average bias and RMSE for each hour of the day. Figure (a) shows the the results for the GLOBE

dataset, demonstrating the average bias (al) and average RMSE (a2) for each hour of the day. Similarly, (b1) and (b2) demonstrate the

average bias and RMSE, respectively, for the FLOW dataset. The three colors indicate the three different lidar ABLH averaging techniques.

of the MOL. To continue investigating stability influences on the ABLHs, sea surface temperature was evaluated as a potential

source of heat flux misrepresentation.
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Figure 15. Hourly sensitivity graphs of hour of the day versus ABLH bias for each month of the campaign, plotted for the GLOBE campaign

(a) and FLOW campaign (b). The shaded areas around the curves denote the standard error to evaluate variability around the sensitivity.

3.4.4 SST bias sensitivity

The SST bias from the onsite measurement and the models was calculated to assess potential correlation with the ABLH bias.
Figure 18 shows a sensitivity of the WRF dataset to the SST bias, where a positive SST means an overestimation from the
model. Both the ABLH bias and RMSE graphs demonstrate a positive correlation with the SST bias, meaning the greater the
overestimation of SST from the models, the greater the bias and RMSE of the ABLH from both models. The ERAS curves are

relatively stable, fluctuating around a stable level of the average bias and RMSE.

4 Discussion

For both sites, the ABL lidar retrievals demonstrate tendencies of lower ABLHs with the mixing layer definition, and higher
ABLHs with the residual layer definition. The difference between the mixing and residual layer average is much greater for
the FLOW dataset, almost S00m difference in the RMSE when compared to the model difference. This indicates and confirms
the model ABLH definition to be based on convective conditions, rather than the distribution of aerosols in the atmosphere.
The better performance from the mixing layer lidar measurement average can be attributed to the basis that the ABL in
the models is also defined by turbulence characterizations. The WRF ABL scheme used in this analysis is based on an eddy
diffusivity model which defines the turbulent kinetic energy (TKE) balance, stability equations, and mixing length. ERAS is
based on the Richardson number which is based on both potential temperature and wind speed gradients at difference heights.
Because neither model defines the ABL by aerosol concentration, it is unlikely to agree with the residual layer definition from

the lidar.

22



https://doi.org/10.5194/wes-2025-155 WIND

Preprint. Discussion started: 20 October 2025 e WE\ ENERGY
Auth 2025. BY 4.0 Li .
© " Or(S) O 5 CC 0 reense european academy of wind energy S C I E N C E

Comparing lidar averaging methods by sensitivity (a) GLOBE Comparing lidar averaging methods by sensitivity
(al) Sensitivity var: Dir  KPI: bias (a2) Sensitivity var: Dir  KPIl: RMSE
——Mix WRF
1000 - 1 12001 -~ Mix ERA5 | |
ToD WRF
ToD ERA5
——Res WRF
1000 -~ ResERA5| |
0 bias
800
E E
@ 2]
©
& 2

-500 | [——Mix WRF
- Mix ERA5
ToD WRF
ToD ERAS
——Res WRF
-1000 |- |- = Res ERA5
0 bias

I I I 0 1 I 1
0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315
Dir (°) Dir (°)

(b) FLOW

Comparing lidar averaging methods by sensitivity Comparing lidar averaging methods by sensitivity

(b1) Sensitivity var: Dir__KPI: bias (b2) Sensitivity var: Dir  KPI: RMSE

1000 1200 [ 1

m)

Bias (
RMSE (m)

-1000

0 45 9% 135 180 225 270 315 0 45 90 135 180 225 270 315
Dir () Dir (¢)

Figure 16. Wind direction sensitivity graphs of average bias and RMSE for each hour of the day. Figure (a) shows the the results for
the GLOBE dataset, demonstrating the average bias (al) and average RMSE (a2) for each wind direction bin. Similarly, (b1l) and (b2)
demonstrate the average bias and RMSE, respectively, for the FLOW dataset. The three colors indicate the three different lidar ABLH

averaging techniques.)

The ToD average was calculated to provide a realistic characterization of the boundary layer, where the mixing layer defines

the daytime, convective conditions and the residual layer defines the nighttime, stable atmosphere. The mix of both boundary
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Figure 17. Stability classification sensitivity graphs based on the MOL for only the GLOBE dataset. The x axis denotes the five stability
condition bins and the y axis the bias (a) and RMSE (b)
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Figure 18. SST bias from measurement to model sensitivity graphs for the GLOBE dataset. The x axis denotes the SST bias bins and the y
axis the bias (a) and RMSE (b)
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layer definitions in the analysis yields an artificial bias in the diurnal cycle sensitivity, as the residual layer tends to yield greater
biases and RMSE than the mixing layer average.

The choice between mixing or residual layer height as the true ABLH depends on the application. The boundary layer height
evolves with diurnal turbulence regimes; wind turbine wakes add to this momentum flux and increase entrainment. At night,
however, the turbulence dissipates and the ABL can only be defined by the passage of aerosols. This is why the ToD average
provides accurate ABL insight as it considers the ABL definitions during the appropriate conditions.

The results do not demonstrate a clear advantage or disadvantage between WRF and ERAS. Based on the RMSE results,
both models show similar difference from the lidar measurements. The GLOBE dataset yields a greater overestimation from
ERAS than WRE, but the FLOW dataset demonstrates a lower bias from the ERAS dataset than WREF.

The slightly closer correlation of WRF to the ABL measurements could be due to the integration of an ABL scheme,
rather than the calculation of a critical Richardson number as in ERAS. The boundary layer scheme used in WRF for this
analysis was MYNN, and is based on an eddy diffusivity component which calculates the TKE budget, mixing lengths, and
stability functions to obtain the boundary layer height (Olson et al., 2019). The inclusion of the TKE budget also accounts for
buoyancy production via the Brunt-Vaisala frequency, which also includes an entrainment efficiency term. This term, however,
is a product of a constant that may not be well tuned for stable conditions. Additionally, unlike ERAS which depends on a
critical Richardson number, the MYNN stability functions are formulated to allow small finite momentum mixing to exist as
the Richardson number approaches infinity. In Olson et al. (2019), however, they note that this requires adjusting other closure
constants that results in increased mixing in stable conditions, thus potentially increasing the boundary layer height indirectly.

The main sensitivities that were found were related to the diurnal cycle, SST bias of model and on-site measurement, and a
slight sensitivity to wind direction. The stability characterization of the MOL did not show any correlation with the bias. The
lack of data in neutral conditions leads to an insufficient determination on this sensitivity. Both sites and a majority comparisons
made with three lidar ABL averaging techniques demonstrated higher biases during the night, and lower during the day. As
previously noted, the models seem to have better correlation with the lidar mixing layer retrieval potentially due to the their
turbulence-defined ABL schema definition of the ABL. During nighttime conditions are more stable, and mesoscale models
are known to be less accurate during these conditions (Olson et al., 2019) (Cafadillas et al., 2022). The SST bias of the models
and measurement appears to have the greatest sensitivity, indicating misrepresentation of heat flux parameterizations could be
the cause of the ABL over and underestimations. The slight directional sensitivity in the GLOBE dataset could be due to wind
farm wakes from certain wind directions; the wind farm is not parameterized in the models, thus skewing the results.

The results of the analysis highlight the importance of the ABLH definition in all stability conditions, as well as the lack of
consistency between ABLH mesoscale model outputs and lidar measurement. The dual representation of the boundary layer
in stable and turbulent conditions greatly impacts the comparison with mesoscale models. The ABLH is a function of both
convective activity and aerosol concentration, thus both atmospheric components should be accurately modeled in order to
understand impacts of momentum flux on this energy entrainment.

The inconsistency of results between the GLOBE and FLOW datasets could be attributed to the difference in site charac-

teristics. The FLOW site is coastal and the subgrid, unstable conditions of the site are not well parameterized leading to an
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underestimation of the ABLH. The residual layer retrievals from the FLOW site yielded high ABLHs, leading to an underesti-
mation from the models. The greatest errors came from land-based winds, so it is possible that certain atmospheric phenomena
such as dust events or low level jets result in higher backscatter profiles. This leads to higher ABLHs from the lidar residual
layer retrieval compared to the models. It is also possible the grid location from WRF and ERAS5 did not accurately capture
the coastal atmospheric conditions within the parameterizations for boundary layer conditions. The comparative analysis be-
tween both sites shows a more consistent bias and error with the lidar measurements in completely offshore conditions for the
GLOBE campaign and more variable results for the coastal location of the FLOW campaign.

The RMSE is quite high in all circumstances, ranging from around 300m to almost 800m difference from model to measure-
ment. This is significant enough to create uncertainty in both WRF and ERAS validity in ABL representation, and highlights
the need for further validation. Scanning lidar ABLH measurements represent a credible reference for boundary layer height
conditions. The lidar measurements used to derive the ABLH are already trusted to give accurate depictions of wake charac-
teristics from both radial wind speeds and CNR, as well as reconstructed wind speeds for wind resource assessment. Therefore
the significant difference between the lidar and model ABLHs can be confidently attributed to model misrepresentation rather
than miscalculation from the lidar derivation. Mesoscale model ABL characterization is based on physical equations defining
stability regimes such as turbulence and heat flux, which do not always accurately capture ABLH conditions. The mixing and
residual layer definitions from the lidar can help correct the model parameterizations to conditions where the ABL scheme is
not well tuned, especially for the residual layer representing more stable conditions. The models yielded closer results to the
mixing layer height derived from the lidar, yet the residual layer derivation still represents a valid characterization of the ABL

as it is based on the intensity of aerosols in the atmosphere.

5 Conclusion

With the projected increased investment in offshore wind, it is important to accurately model atmospheric conditions to under-
stand wake impacts and wind farm power performance. Previous studies demonstrate the significance of the ABLH to impact
wake augmentation and dissipation rates by affecting the entrainment area for the momentum flux of the wake to dissipate.
This research aims to fill the gap of model ABLH validation by comparing to lidar ABLH retrievals in offshore conditions.
Two scanning lidar campaigns were compared with WRF and ERAS ABLH outputs for bias and RMSE comparisons. The
lidar ABLH retrievals provided altitudes for the mixing and residual layer, so three different averages were compared with the
model ABLH outputs: an average of only mixing layer altitudes, an average of only residual layer altitudes, and an average
based on the time of day where only residual layer heights were averaged at night, and mixing layer heights during the day.
The results showed a wide disparity between the measurements and the models. Both ERAS and WRF found greater cor-
relation with the lidar ABLH mixing layer retrievals, indicating the basis of ABL characterization of mesoscale models using
turbulence-based derivations. WRF performed more accurately for the GLOBE dataset, while ERAS yielded slightly more
accurate results for the FLOW dataset. The sensitivity analysis exposed a significant correlation with ABLH bias of the models

and measurement to SST biases, indicating that a misrepresentation of surface heat fluxes could impact the ABLH derivation
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methods for both ERAS, which is based on the critical Richardson number, and WREF, based on an eddy-diffusivity boundary
layer scheme. The results from both campaigns did not yield a clear and consistent bias of the models with the measurements,
demonstrating a simple bias correction is not possible. Additional research must be conducted to pinpoint the sensitivity of this
bias in various stability conditions.

Further investigation should include assessing various stability parameterizations to better represent ABL characteristics.
Lidar ABLH retrievals vary depending on mixing or residual layer definition, so further studies should be conducted to under-
stand the boundary layer definition based on remote sensing techniques to define when backscatter or vertical velocity gradients
provide accurate representation of the marine boundary layer. Additionally, this study could further improve the validity of lidar
boundary layer height retrievals by comparing different methods to derive the height including image processing, various gra-
dient processing techniques, and inclusion of machine learning methods. The absence of an absolute reference for the ABLH,
as well as multiple physical definitions on how to derive it, leads to the uncertainty investigated in this study. The wind energy
industry would benefit from a consolidation and comparison of ABLH retrievals in all stability conditions to validate wake

modeling ABL characterization and ensure accurate power production representation.
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