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Abstract. This paper introduces the eXtreme Theory of Functional Connections (X-TFC), a physics-informed machine learn-

ing algorithm, and tailors it to estimate the remaining useful life (RUL) of wind turbine gearbox bearings experiencing fatigue

crack growth. Unlike purely data-driven methods, X-TFC embeds a physics model, based on the Head’s theory in this work,5

into its training objective. The core of X-TFC is a random-projection single-layer neural network trained via Extreme Learning

Machine, which requires only limited damage progression data and solves for output weights with a least-squares optimization

algorithm. A composite loss function balances the network’s fit to observed degradation data against the residuals of the gov-

erning crack-growth differential equation, ensuring the learned damage trajectory remains physically plausible. When applied

to a vibration-based health-index (HI) dataset measured during the growth of a crack on the inner ring of a high-speed bearing10

in a wind turbine gearbox (Bechhoefer and Dubé, 2020), X-TFC achieves near-zero prediction bias. Even when trained on only

the first 10–20% of the damage progression data, its predictions remain monotonic and smooth, delivering high prognosabil-

ity and trendability. To quantify the epistemic uncertainty, we employ a Monte Carlo ensemble of independently initialized

X-TFC models trained on noise-perturbed data, which yields confidence intervals around each RUL estimate. This approach

provides confidence intervals around each RUL estimate, capturing both model-parameter and epistemic uncertainty. In ad-15

dition to a vibration-based HI, we demonstrate that the proposed framework can be directly applied to a SCADA data-based

HI (Eftekhari Milani et al., 2025) measured during similar wind turbine gearbox bearing crack faults, preserving its accuracy

and interpretability. This extension shows the versatility of our approach, which is applicable to bearings of multiple gearbox

manufacturers, models and ratings using only SCADA data. By integrating domain knowledge with machine learning, X-TFC

offers a rapid, reliable tool for crack prognostics. Its adaptability to other bearing failure modes, such as pitch-bearing ring20

cracks, positions X-TFC as a powerful enabler of data-driven, physics-informed asset management in the wind energy sector

and beyond.
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1 Introduction

The wind industry has witnessed tremendous growth over the past two decades, as reported by Global Wind Energy Council,

with the global cumulative installed capacity recently crossing the 1,000 gigawatt mark. Although the levelized cost of energy25

from wind and wind plant operations and maintenance (O&M) costs have fallen (Wiser et al., 2024); O&M still accounts for

up to 35% of the levelized cost of energy. Approximately half of the wind plant O&M costs are from wind turbine O&M, a

cost of $22/kW-year for land-based wind plants (Wiser et al., 2019). Turbine O&M costs, therefore, represent the single largest

component of wind plant O&M costs and the primary source of potential O&M cost reductions. More reliable components and

better O&M strategies, including for wind turbine blades and drivetrain components, have the potential to reduce premature30

failures, O&M costs, downtime, and thus the levelized cost of energy by 10% to 15% (Stehly and Duffy, 2021). Additionally,

an accurate reliability forecast provides crucial information for reducing O&M costs through design improvements, optimized

operation strategies, and enhanced budgeting. Optimized operation strategies often include condition-based maintenance and

prognostics, which rely on the prediction of the remaining useful life (RUL) of components to provide an early warning of

failure and thereby allow maintenance to be scheduled proactively (Bechhoefer et al., 2021).35

One challenging reliability problem that remains for wind turbine main bearings and bearings in gearboxes is axial cracking

of the inner rings, examples of which are shown in Figures 1(a) and (b) (Greco et al., 2022). In gearboxes, this failure mode

in intermediate- and high-speed stage bearings accounts for a majority of uptower bearing replacements (Haus et al., 2024).

“Axial” describes the orientation of these cracks as they align with the axis of rotation of the shaft on which the bearing

is mounted. This type of crack is also commonly called a white-etching crack (WEC), due to the appearance of the steel40

microstructure when the cracked bearing cross sections are polished, etched with chemicals, and examined under reflected

light. These cracks tend to propagate to spalls or lead to a complete splitting of the bearing inner ring in gearboxes in as little

as 5% to 20% of the bearing rating life (Greco et al., 2013). The conditions leading to WECs, the reasons for their apparent

prevalence in wind turbine main bearings and gearboxes (Demas et al., 2023), and the effectiveness of countermeasures (Jensen

et al., 2021) are now better understood through over a decade of research; however, accurate methods to predict the RUL of45

bearings with WECs still need to be developed. Early efforts focused on development of a physics-based probability of failure

model based on frictional energy accumulation, which has been partially validated on a limited set of damaged bearings from

a wind plant; however, the probability of failure and RUL was only predicted only for the population of gearboxes rather than

individual ones (Guo et al., 2020). It was also used to explore the influence of bearing clearance and lubricant temperature

(Clark et al., 2023). Another challenging reliability problem that has recently become more prevalent is fatigue cracking of50

pitch bearing outer rings in larger wind turbines as shown in Figure 1(c), resulting in a replacement rate of several percent per

year and a 10% replacement rate for the population in just 5 years (Haus et al., 2025). These cracks can occur at at bolt holes, fill

holes, or locations of significant stiffness changes (Shapiro, 2017) and risk the blade detaching from the turbine. A typical pitch

bearing replacement requires the use of a large, expensive crane and removal of the blade(s) or rotor, with a significant amount

of downtime. However, research into the root causes of pitch bearing ring cracking has only begun (Schleich, 2025; Keller55

et al., 2025). In rotating machinery, fatigue cracks in bearings, gears, or shafts are a common failure mode. Classical fracture
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Figure 1. Examples of bearing cracks and damage in wind turbines. (a) Gearbox bearing WEC and spalling (Greco et al., 2022). (b) Main

bearing WEC and spalling (Greco et al., 2022). (c) Pitch bearing ring crack (Shapiro, 2017).

mechanics models, such as linear elastic fracture mechanics, Head’s theory, and dislocation theory, describe such crack growth

under cyclic loading. However, no single crack-growth law fits all phases of damage: Bechhoefer and Dubé (2020) showed

that three high-cycle fatigue modes were needed to cover the primary crack propagation period. They found that a hybrid

combination of modes was more accurate than any individual model.60

In recent years, new computational techniques have been developed to improve evaluation and prediction tasks in various

fields of science. Among these, Physics-Informed Machine Learning (PIML) (Karniadakis et al., 2021) has emerged as a pow-

erful paradigm for integrating data-driven modeling with known physical laws, often expressed using differential equations. By

embedding governing equations and domain constraints directly into learning objectives, PIML methods improve robustness,

data efficiency, and interpretability compared to purely data-driven approaches. One of the most widely used PIML frame-65

works is the Physics-Informed Neural Network (PINN) (Raissi et al., 2019), which augments standard neural-network training

with residual losses for differential equations, initial/boundary conditions, and observed data (Raissi et al., 2020). PINNs have

demonstrated success across many fields such as fluid mechanics (De Florio et al., 2021, 2022b; Cai et al., 2021), epidemiology

(Schiassi et al., 2021a; Millevoi et al., 2024; Han et al., 2024; Kharazmi et al., 2021), cardiovascular mechanics (Sahli Costabal

et al., 2020; Yin et al., 2021; De Florio et al., 2025), and beyond (De Florio et al., 2024; Ahmadi Daryakenari et al., 2024), while70

extensions incorporating variational inference, dropout, and deep ensembles have enabled principled quantification of aleatoric

and epistemic uncertainty under noisy or incomplete observations (Hüllermeier and Waegeman, 2021; Zou and Karniadakis,

2025; De Florio et al., 2025).

Despite their flexibility, PINN-based methods incur significant computational cost due to backpropagation through complex

loss terms and often require careful tuning of weighting coefficients between physics and data objectives. To alleviate these75

challenges, the Theory of Functional Connections (TFC) (Mortari, 2017b) provides an alternative “constrained expression”

for differential-equation solutions that analytically satisfy boundary or initial conditions (Mortari, 2017a). The resulting con-
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strained approximation permits rapid, training-free inference via direct least-squares solves of residuals at collocation points

(Schiassi et al., 2022). Building on TFC, the X-TFC (Schiassi et al., 2021b) employs a single-layer random-projection network

whose input weights and biases are randomly sampled once and held fixed. This technique has been widely used recently with80

promising performance in terms of accuracy and computational efficiency in several PIML frameworks (Fabiani et al., 2021;

Fabiani, 2025; Fabiani et al., 2024; Dong and Li, 2021; Wang and Dong, 2024; Dwivedi and Srinivasan, 2020; Galaris et al.,

2021).

X-TFC has been applied to both forward and inverse differential problems, demonstrating fast convergence and robustness

in scenarios with limited, gappy, or noisy data (Osorio et al., 2025). Recent studies extend X-TFC to grey-box and black-box85

system identification (De Florio et al., 2024; Ahmadi Daryakenari et al., 2024) and uncertainty quantification (UQ) in physi-

ological models, showing its capacity to decompose total uncertainty into aleatoric, epistemic, and model-form contributions

(De Florio et al., 2025).

In this work, we review the conceptual foundations of PIML and X-TFC, apply X-TFC to an existing 1,475-hour vibration-

based health-index (HI) dataset from a crack of the inner ring of a high-speed bearing in a 2.2-megawatt wind turbine gearbox90

(Bechhoefer and Dubé, 2020), and compare its effectiveness to classical physics-based fracture mechanics models. Finally,

we show how our unified framework successfully also predicts RUL of bearings on different gearbox models using a HI

generated from Supervisory Control and Data Acquisition (SCADA) measurements (Eftekhari Milani et al., 2025), broadening

its applicability to a wider range of industrial assets. Once the effectiveness of X-TFC has been assessed, future work will

explore the application of X-TFC to other bearing cracking problems in wind turbines, such as pitch bearing ring cracks95

shown in Figure 1(c). We also employ Monte Carlo (MC) X-TFC to quantify epistemic uncertainty for different scenarios of

dataset sizes. The paper is structured as follows: Section 2 describes the vibration-based HI dataset from the 2.2-megawatt

wind turbine gearbox, Section 3 describes classical physics-based fracture mechanics models, Section 4 describes PIML and

the X-TFC method, Section 5 assesses the effectiveness of X-TFC combined with a classical physics-based fracture mechanics

model to the vibration-based HI dataset, with UQ analysis, and to two similar cracks with HIs derived from only SCADA data,100

and Section 6 summarizes the analysis.

2 Crack Growth and Health Indicator Dataset

As described in Section 1, the dataset used in this paper is derived from an existing 1,475-hour (61-day) HI dataset from a

crack of the inner ring of a high-speed bearing in a 2.2-megawatt wind turbine gearbox (Bechhoefer and Dubé, 2020). The

HI represents a fusion of vibration-based condition indicators collected at irregular intervals (approximately every 10 minutes105

on average, with occasional 20–30 minute and multi-hour gaps), and used to extract features correlated with bearing damage.

The HI was constructed such that a value of 0 represents a pristine bearing and a value of 1 indicates that it is appropriate to

do maintenance. The RUL is then the time from the current HI until the HI is 1. Note that this nomenclature does not define

a probability of failure for the component, nor does it mean that the component fails when the HI is 1. Instead, it suggests

performing maintenance before collateral damage or cascading faults occur. By performing maintenance on a bearing prior to110
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shedding extensive material, costly gearbox replacement can be avoided, and the reliability of the gearbox can be restored to

its design requirement. (Bechhoefer and Dubé, 2020).

Figure 2 (a) shows the HI calculated over the last 1,475 hours of operation of the wind turbine prior to the discovery of the

bearing crack. Initially, the HI is very low; however, at 1,000 hours remaining, the HI began to rise, which corresponds to high

loads from a winter storm (Bechhoefer and Dubé, 2020). By the time 400 hours remaining is reached, the HI reached 0.5 on115

average with maximum values greater than 1. At 0 hours, the average HI exceeded 1, which triggered a borescope inspection

of the bearing that uncovered the crack in the inner ring shown in Figure 2 (b). It is not known whether this crack originated

from WECs; however, it has the same axial orientation on the inner ring and occurred in a high-speed bearing like many WECs

in wind turbine gearboxes. This HI dataset will be used in the remainder of the paper to assess the effectiveness of X-TFC

combined with a classical physics-based crack growth model.

Figure 2. Example vibration-based HI dataset and bearing crack. (a) Calculated vibration-based HI (Bechhoefer and Dubé, 2020). (b) Crack

in 2.2-megawatt wind turbine gearbox bearing (Bechhoefer and Dubé, 2020)

120

3 Fracture Mechanics Models

As stated in (Bechhoefer and Dubé, 2020), fatigue crack propagation is commonly described in terms of three fundamental

displacement modes (Beer et al., 1999; Frost et al., 1999): Mode I (opening), Mode II (in-plane sliding), and Mode III (out-

of-plane shear). In Mode I, the crack faces separate under tensile loading; in Mode II, the faces slide laterally within the plane

of the crack; and in Mode III, the faces move parallel to the crack front. By superposition of these modes, most general crack-125

tip displacement fields can be represented. Under linear-elastic assumptions, the crack surfaces are treated as traction-free

boundaries so that external loads affect only the intensity of the stress field near the crack tip, which is quantified by the stress
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intensity factor K. The factor K depends on the component geometry and loading; for simple geometries, it scales linearly

with the applied nominal stress σ and with the square root of the crack length a (Beer et al., 1999). For example, the Mode-I

stress intensity factor for a crack of length a can be expressed as130

K = σ
√

πa α, (1)

where σ is the far-field (gross) stress and α is a dimensionless shape factor. When K is known, stresses and strains near the

crack tip can be calculated. For instance, the normal stress in the x-direction at a point (r,θ) measured from the crack tip is

(see Frost et al. (1999))

σx(r,θ) =
K√
2πr

cos
(

θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
(2)135

which illustrates the classical inverse-square-root singularity of the stress field. This formulation of the crack-tip field in terms

of a single parameter K is a cornerstone of linear elastic fracture mechanics. In fatigue crack growth analysis, the driving force

is taken as the stress intensity range ∆K (the difference between maximum and minimum K in a load cycle). Experimental

evidence (Frost et al., 1999) shows that ∆K, not the maximum K, governs crack advance, and if ∆K is held constant, then

the crack growth rate becomes steady.140

3.1 Linear Elastic Fracture Mechanics

For many engineering materials (e.g., steels in gears and bearings) subjected to cyclic tensile loading, the incremental crack

growth per cycle is Mode I, and it follows a power-law relation (i.e. Paris’ law (Pugno et al., 2006)). A commonly used form is

da

dN
= D(∆K)m, (3)145

where da/dN is the crack extension per load cycle, D is a material-specific constant, and m is the crack-growth exponent

(typically 3≤m≤ 5). Substituting the expression ∆K = 2σ
√

πaα into Eq. (3) yields

da

dN
= D

[
2σ
√

πα
]m

am/2. (4)

Rearranging Eq. (4) and integrating both sides gives the total number of cycles N required to grow the crack from an initial

length a0 to some length af150

N =

af∫

a0

a−m/2

D (2σ
√

πα)m da (5)

Performing the integration yields

N =−dN

da
a0−

af(a0/af)m/2

m/2− 1
(6)
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provided m ̸= 2. In particular, if one assumes m = 4, Eq. (6) reduces to

dN

da
=− N

a0 ln
(

af
a0

) (7)155

Under steady, cyclic loading (e.g., constant-speed operations for helicopter gearboxes or wind turbines in region 3), the number

of cycles N is directly proportional to operating time. If the prognostic HI is assumed proportional to the accumulated damage

(so that advancing crack length corresponds to decreasing HI), then Eq. (7) provides a RUL estimate by relating crack growth

to the elapsed time or number of cycles. We can select af = 1, defining the need to perform maintenance when the HI is 1.

3.2 Head’s Theory160

Head’s theory proposes a simplified model of the crack-tip stress field in which the material ahead of the crack tip is treated as

an assembly of parallel elastic bars. Each bar of modulus E carries the applied remote stress σ both directly and through shear

transfer. The resulting crack-growth law can be cast in a form similar to Eq. (4), but with a higher effective exponent

da

dN
=

2Eσ3a3/2

3EW(∆σ)D
∝K3 (8)

In effect, Head’s model predicts a crack advance that corresponds to m = 6 in the Paris’ law form. Although the intermediate165

steps involve material and geometric parameters, the final integrated form resembles Eq. (6) with m = 6. In particular, inversion

and integration analogous to the linear-elastic case yield an alternate RUL expression

dN

da
=

N

a0

(
2af− 2√

a0

) (9)

3.3 Dislocation Theory

In the case of Mode-III (anti-plane shear) dominant loading, dislocation (or plastic dislocation) theory may apply. Here the170

crack-tip plastic zone is modeled as a continuous distribution of dislocations. Crack advance is assumed to occur when the

integrated plastic slip reaches a threshold. The associated growth law can be expressed as

da

dN
=

a2σ4
max

DEσ3
(10)

This equation implies that crack advance per cycle grows with decreasing crack length, similar in form to the Paris’ law in Eq.

(3) with an effective exponent m = 2. By inverting, integrating, and changing terms we get175

dN

da
=− N

a0(2af− 2
√

a0)
(11)

3.4 Comparison of Crack Growth Models

Figure 3 compares the three models described in the previous sections when applied to the full 1,475 hour vibration-based HI

dataset described in Section 2. For this comparison, the values of a0 and af are 0.05 and 1, respectively. With the given crack
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growth exponent m assumed in each model, Head’s theory best matches the slow rise of the calculated HI data, especially over180

the last 700 hours. In comparison, the linear elastic and dislocation theory models have a very slow rise, followed by a much

steeper rise thereafter that would provide very little warning of the necessity of an impending maintenance action. Thus, in the

remainder of this paper, we choose to use the Head’s theory model in combination with X-TFC.

-1400 -1200 -1000 -800 -600 -400 -200 0 200

RUL (hours)

0

0.5

1

1.5

2

H
I

Data

Linear Model

Head's theory

Dislocation Theory

Figure 3. Solutions of the differential equations given by linear, Head’s theory, and Dislocation theory models compared to the calculated

vibration-based HI.

4 Physics-Informed Machine Learning

Physics-Informed Machine Learning (PIML) is an emerging framework that integrates known physical laws into the train-185

ing of data-driven models. By embedding governing differential equations, boundary conditions, and other domain-specific

constraints directly into the loss function, PIML enables models to learn from both observational data and prior physical

knowledge. This approach contrasts with purely data-driven methods, which may struggle when observations are scarce, noisy,

or incomplete.

Consider a physical system governed by partial differential equations,190

N [u(x),x] = 0, x ∈ Ω, (12)

where u(x) is the state variable and N [·] is a differential operator defined on the domain Ω. Traditional data-driven models

seek a surrogate û(x;θ) parameterized by θ that minimizes a data loss

Ldata(θ) =
1

Nd

Nd∑

i=1

∣∣û(xi;θ)−uobs
i

∣∣2, (13)
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where {(xi,u
obs
i )}Nd

i=1 are Nd observed data points. In contrast, PIML augments this objective with a physics-based penalty195

Lphysics(θ) =
1

Np

Np∑

j=1

∣∣N [û(xj ;θ),xj ]
∣∣2, (14)

where {xj}Np
j=1 are collocation points chosen in Ω. The physical loss is made by the residual of the differential equation, which

needs to be minimized. In our case, it is the residual of the Eq. (9):

dN

da
− N

a0

(
2af− 2√

a0

) = 0 (15)

The total loss is then given by200

L(θ) = λdata · Ldata(θ) +λphysics · Lphysics(θ), (16)

with weighting coefficients λdata and λphysics balancing data fidelity against physical consistency.

By enforcing Eq. (12) during training, PIML offers several advantages when dealing with realistic datasets:

– Regularization via Physics: The physics-based term Lphysics acts as a principled regularizer, preventing overfitting to

noise in uobs
i .205

– Data Efficiency: Incorporating prior knowledge reduces the reliance on large volumes of labeled data, enabling accurate

learning even when Nd is small or spatial coverage is incomplete.

– Robustness to Missing Observations: The model can be evaluated at arbitrary collocation points, filling gaps in the

observational domain and providing continuous field reconstructions.

– UQ: Extensions of PIML integrate Bayesian or ensemble approaches to quantify epistemic and aleatoric uncertainties,210

further improving reliability under data scarcity.

4.1 eXtreme Theory of Functional Connections (X-TFC)

The PIML framework used in this work is based on the X-TFC algorithm (Schiassi et al., 2021b), which differs from classic

PINN for two main feature introduced: the TFC (Mortari, 2017b, a; Mortari et al., 2019), which allows to satisfy initial and

boundary conditions of the differential equations analytically, and random-projection neural networks (Fabiani, 2025) trained215

via Extreme Learning Machine algorithm (Huang et al., 2006), avoiding thus the need of the computationally expensive back-

propagation algorithm. The TFC constructs an explicit approximation of the solution of a differential equation that identically

satisfies given boundary or initial conditions. For a general initial value problem of the form

dx

dt
= f

(
x(t), t

)
, x(0) = x0, (17)

TFC represents the solution of the differential equation via a so-called ‘constrained expression’220

x(t;β) = g(t;β)− g(0;β) +x0, (18)
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where g(t;β) is any sufficiently smooth function parameterized by coefficients β. In the X-TFC framework (De Florio et al.,

2022a), g(t;β) is chosen as a random-projection single-layer neural network whose input weights and biases {wj , bj}L
j=1 are

randomly sampled once and held fixed. Specifically,

g(t;β) =
L∑

j=1

βjσ
(
wj , t + bj

)
=




σ(w1t + b1)

σ(w2t + b2)
...

σ(wLt + bL)




T

, (19)225

and

σT (0) =




σ(b1)

σ(b2)
...

σ(bL)




= σT
0 , (20)

where σ(. . .) is the neural network’s activation function, and β is the vector of the output weights of the neural network to be

learned.

Thus, a parametric approximation of the solution of the ordinary differential equation and its derivative in time are230

x(t;β) = [σ−σ0]
T

β + x0, (21)

and

ẋ(t;β) = σ̇(t)T β, (22)

A least-squares formulation minimizes the residuals of the ordinary differential equation at the collocation points {ti} and any

available data. Denoting the vector of ordinary differential equation residuals loss235

Lphysics =
dx

dt
− f

(
x(t), t

)
(23)

and data loss

Ldata = x(t;β)− x̂(t;β) (24)

(where x̂(t;β) represents the observation data), by L= Lphysics +Ldata, the update step in a Gauss–Newton scheme to deter-

mine the k-th iterate of the unknown coefficients β is240

∆βk =−
[
J TJ

]−1J TL, (25)

where J is the Jacobian of losses with respect to coefficient vector β. A schematic of the X-TFC framework is shown in

Figure 4. X-TFC offers rapid, training-free inference by exploiting random projections and a direct least-squares solver, making

it well suited for online estimation and UQ.
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Figure 4. Schematic of the X-TFC algorithm that includes data and physics in the loss function. Input weights and biases are randomly

selected. The last step solves the least-squares problem.

5 Results245

As previously mentioned, the physics loss consists of the residual of the differential equation modeled by the Head’s theory

as a fracture mechanics model, where the values of a0 and af are 0.05 and 1, respectively. The simulations are run with 1,000

collocation points of the neural network’s input, sampled equally spaced between -1 and 1, and with five hidden neurons. The

number of collocation points and neurons are user-selected to achieve a good compromise between accuracy and computational

expense. The input weights and bias are sampled with a uniform distribution between -1 and 1, and the selected activation250

function is tanh. Figure 5 reports the results for all our simulations. Each plot represents a different data size scenario to

understand the advantage of using PIML, especially when data availability is scarce. For each data size scenario, we performed

the RUL prediction for different weights given to the differential equation, such as λphysics = [0.0,0.25,0.50,0.75,1.0], where

scenario λphysics = 0 is the case in which we do not have knowledge of physics, so we only perform data-driven regression.

The scatter data points in blue represent the full dataset we have for the bearing under study, while the red scatter data255

points are those used in our framework, simulating conditions of missing data. The time domain, which represents the RUL

in hours, is calibrated to correspond to zero when the HI reaches a value of 1, which means that there is a high probability of

bearing damage and need to perform maintenance, obtained with the scenario of full knowledge of physical (λphysics = 1) and

full availability of data (see Figure 5(a)). This gives us our ground truth solution.The results in Figure 5(a) represent the case

in which we assume to know the data throughout the entire domain, allowing us to see the effect of the weights on the physics260
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loss to the RUL prediction. When we assume no knowledge of physics, the data alone is sufficient to have a good prediction of

RUL, which differs from our ground truth of about 50 hours, as reported in Table 1.

RUL error (hours)

Data Availability Physics Weight Time

(%) 1.0 0.75 0.50 0.25 0.0 (ms)

100 0.00 9.74 24.78 44.39 55.57 45

75 22.15 42.09 73.27 110.98 133.19 35

50 42.25 75.50 131.50 208.59 240.30 25

25 54.48 102.51 202.23 409.15 597.23 15
Table 1. Error values of RUL prediction in hours for different combinations of data availability and physics weights. On the right column,

the computational time in milliseconds is reported.

The plots in Figures 5 (b),(c), and (d) show a linear trend of the deviation of the RUL prediction, as the availability of data

and knowledge of physics decrease, as expected. This is clear evidence of the improvement brought by physics that reduces

the search space previously based only on data. In fact, it can be observed that even with low data availability (25%), the RUL265

prediction has an error of only about 50 hours when full weight (physics weight = 1.0) is given to the loss of the differential

equation. However, with no contributions from physics (physics weight = 0.0), the RUL predication error increases to ≈ 600

hours. In Figure 6, the RUL error surface is plotted, obtained with 9,191 simulations (91 dataset sizes from 0.1% to 100%, and

101 physics weights from 0 to 1), showing a mirror-like behavior that explains the equal importance of both data and physics,

fundamental ingredients of PIML, and the advantage of using both of them in synergy to obtain the maximum performance270

gain. The simulations in this work were performed with a laptop MacBook Pro, Apple M3 Pro, 12 cores, 36GB, and MATLAB

R2024b.

5.1 Uncertainty Quantification

To quantify epistemic uncertainty, we employed a simple yet scalable MC strategy, which is called MC X-TFC (De Florio et al.,

2025). In this method, we independently train multiple X-TFC models on synthetic data corrupted by random noise drawn from275

a known distribution, and each model starts from a different random initialization of weights and biases. MC X-TFC closely

parallels the “deep ensembles” frameworks, as proposed in Lakshminarayanan et al. (2017), which has proven highly effective

for neural-network UQ, even when that uncertainty arises solely from random parameter initialization (Ganaie et al., 2022;

Rahaman et al., 2021; Wenzel et al., 2020; Gawlikowski et al., 2023; Psaros et al., 2023; Zou et al., 2024b; Pickering et al.,

2022; Zou et al., 2024a; Zhang et al., 2024). We define epistemic uncertainty as the variability in the predicted state vector that280

arises from two sources:

1. Model-parameter uncertainty, that is, the fluctuations in the coefficients β induced by the random sampling of network

weights w and biases b in Eq. (19);
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Figure 5. Results of PIML for different dataset sizes. For each scenario, different weights (λphysics = [0.0,0.25,0.50,0.75,1.0]) on the

equation loss are given to understand the improvement in the RUL forecasting brought by the physics knowledge. (a) Full dataset available:

100%. (b) Partial dataset available: 75%. (c) Partial dataset available: 50%. (d) Partial dataset available: 25%.

2. Data-driven uncertainty, that is, the variability in the observed data under our noise model, which we also propagate into

the initial condition a0 of the HI, by perturbing it with zero-mean Gaussian noise, with standard deviations of 20%.285

In our analysis, we evaluate the predictive performance of the model using the Mean of Error (ME), the Standard Deviation

of Error (SDE), and Confidence Interval (CI) of signed errors, where errors retain their direction (positive or negative). All

error values and derived statistics are expressed in hours, and the simulations are performed with 100 MC realizations and

physical loss weight equal to 1. The ME is calculated as

ME =
1

mc

mc∑

i=1

ei, (26)290

where ei (in hours) is the error for the i-th sample (predicted minus true value), and mc is the total number of samples. The ME

indicates systematic bias: a positive ME means earlier predictions of failure, a negative ME means later predictions of failure.
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Figure 6. Error in RUL prediction (hours) for different scenarios of dataset size and weights on physics loss.

The SDE is given by:

SDE =

√√√√ 1
mc− 1

mc∑

i=1

(ei−ME)2, (27)

which measures the spread of signed errors around the ME. A larger SDE (in hours) indicates greater variability in the predic-295

tion deviations. We also compute non-parametric percentiles of the ei distribution to capture coverage analogous to Gaussian

confidence levels:

– 68% Interval (“1σ”): 16th to 84th percentiles of ei.

– 95% Interval (“2σ”): 2.5th to 97.5th percentiles of ei.

– 99.7% Interval (“3σ”): 0.15th to 99.85th percentiles of ei.300

These intervals indicate where the central 68%, 95%, and 99.7% of signed errors lie, respectively, preserving information on

whether prediction errors tend to be positive or negative. All these error metrics for epistemic UQ are reported in Table 2, for

different dataset sizes. As expected, the absolute values of ME and SDE increase with the decrease in dataset size. The negative

values of ME represent an error in an overly early prediction of failure. Computational times also decrease with the decrease of

dataset size, because of the smaller number of points in the data loss function. The CIs reported in Table 2 are also qualitatively305

shown in Figure 7 for the three confidence percentages. Despite the inherent stochasticity of random model initialization and

noisy observations, the resulting CIs remain moderate (e.g., ±10 hours for a 68% CI on the full dataset). This behavior stems

primarily from the strong physics constraint given by the Head’s theory differential equation, which tightly regularizes the
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RUL error (hours) CI of error (hours)

Data Availability

(%)
ME SDE 68% 95% 99.7%

Time

(s)

100 7.43 11.28 [-3.16, 17.52] [-9.92, 34.45] [-13.22, 38.86] 7.4

75 -18.09 14.63 [-31.80, -4.87] [-40.76, 16.67] [-45.13, 22.22] 5.7

50 -47.72 19.42 [-66.03, -30.05] [-78.19, -2.08] [-84.28, 4.97] 4.9

25 -73.54 24.87 [-97.05, -50.68] [-113.20, -16.01] [-121.35, -7.46] 3.2
Table 2. Error values of RUL prediction in hours for different combinations of data availability while quantifying epistemic uncertainty. The

error metrics in hours are the Mean of Error (ME), the Standard Deviation of Error (SDE), and the Confidence Interval (CI) of error. Last

column reports the computational time in seconds for 100 MC realizations.

Figure 7. Epistemic quantification for different dataset sizes, considering λphysics = 1 on the equation loss, and three CIs with 67%, 95%, and

99.7% confidence obtained with 100 MC realizations. (a) Full dataset available: 100%. (b) Partial dataset available: 75%. (c) Partial dataset

available: 50%. (d) Partial dataset available: 25%.
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solution and limits divergence across ensemble members. As such, once model-induced variability is largely suppressed by

physics-informed regularization, the spread in predictions stays relatively small, highlighting the effectiveness of embedding310

physical laws into the learning process.

Since the epistemic uncertainty is reducible, the CIs presented in Figure 7 are obtained with optimized parameters that reduce

the epistemic uncertainty as low as possible. This reduction depends on the many hyperparameters selected, such as activation

function, number of collocation points, number of neurons, least-squares iteration tolerance, and random sampling ranges. An

ablation study on the behavior of epistemic uncertainty depending on the choice of the random initialization of the neural315

network input weights and bias is shown in Figure 8. The three plots show that the different choices of input weights and bias

ranges can lead to wider CIs for the RUL prediction, and by choosing the optimal hyperparameter set up, the epistemic (model)

uncertainty can be reduced. Further reduction in prediction spread would therefore require enhancements in data quality, such

Figure 8. Ablation study on epistemic quantification for different random initialization of input weights and bias ranges, considering λphysics =

1 on the equation loss, partial data size (25%), and three CIs with 67%, 95%, and 99.7% confidence obtained with 100 MC realizations.

Random initialization of input weights and bias in range (a) [-1 ,1], (b) [-10 ,10],(c) [-20 ,20].

as using higher resolution measurements, to minimize noise-driven variability. Moreover, the aleatoric uncertainty is inherently
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irreducible (Hüllermeier and Waegeman, 2021) and, in this case, is particularly high due to the very noisy data. In practical320

terms, this means that there is a minimum level of predictive uncertainty, driven by data noise, that cannot be further reduced

by improving the model. Consequently, even a perfect model would still exhibit this baseline uncertainty dictated by the natural

variability of the observations. This is shown in Figure 9, where the CI of the aleatoric uncertainty is plotted against the noisy

dataset. Because the dataset exhibits heteroscedastic noise, that is, noise amplitude varies over time, we first estimate the global

noise scale by analyzing the full HI series. We apply a LOESS (Locally Estimated Scatterplot Smoothing) method to find a325

smoothed trend of the HI over time and then compute the residuals using the noisy dataset to capture fluctuations. Then, the

overall noise level is approximated as the standard deviation of the residuals. Finally, the aleatoric uncertainty band in Figure 9

is generated by plotting the smoothed trend ±2σ, reflecting the heteroscedastic, irreducible noise-driven uncertainty in the HI

measurements.

Figure 9. Aleatoric uncertainty band estimated from the vibration-based HI. The shaded region represents ±2σ bounds based on the time-

varying standard deviation of the residuals between noisy data and smoothed data. This illustrates the heteroscedastic, irreducible uncertainty

arising from measurement noise.

5.2 Application to SCADA-Based Health Index330

To demonstrate the generality and adaptability of the X-TFC framework, we further apply our methodology to a derived HI

from SCADA data described in Eftekhari Milani et al. (2025). The SCADA dataset is from two 1.5-megawatt wind turbines,

with measurements available in a 10-minute time frame. These turbines have identical gearbox configurations, with one experi-

encing an intermediate-speed shaft bearing axial crack and the other experiencing a high-speed shaft bearing axial crack. These

failures are the first gearbox-related failures in these wind turbines, enabling an analysis of the degradation from a pristine state335

to failure.
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In the data pre-processing step, the non-operational data points with a zero rotor speed or a negative power are removed.

In addition, the time stamps with missing or erroneous values due to sensor problems are dropped. Then, a daily averaging

is performed, decreasing the missing data percentage from 14% in the 10-minute time frame to around 2% in the daily time

frame. This averaging increases data continuity and reduces the computational burden.340

To obtain the HIs, the approach proposed in Eftekhari Milani et al. (2025) is used. First, for each turbine, the gearbox high-

speed shaft bearing temperature in the healthy state is modelled by training a convolutional neural network using the remaining

six SCADA channels during the first year of operation, in which the turbines are expected to be healthy. Then, the modelled

healthy-state gearbox bearing temperature values are subtracted from the recorded values, obtaining the residuals. They are

then normalised according to the one-year training period to obtain the residual z-scores. These z-scores, along with the four345

operational and environmental signals of power, rotor speed, wind speed, and ambient temperature, are input to a convolutional

autoencoder (CAE)-based unsupervised HI construction model to build the HIs. A leave-one-out cross-validation is performed,

where one wind turbine is set aside for testing and the remaining five wind turbines are used for training the CAE. The trained

CAE is then used to obtain the test wind turbine’s HI.

While purely data-driven methods like LSTM and XGBoost showed promise for SCADA data, their precision was lim-350

ited, often resulting in a high number of false alarms (Desai et al., 2020). To address this limitation, we applied X-TFC to

SCADA-based HIs of two turbines (Eftekhari Milani et al., 2025), embedding the same Head’s theory differential equation

used previously for vibration-based data. The physics model acts as a regularizer, enforcing consistency between the SCADA-

derived HI trajectory and the expected fatigue crack growth behavior. In Figure 10, epistemic uncertainty of the X-TFC RUL

prediction for the SCADA data-based HI is reported. When trained on only 25% of the available SCADA HI trajectory, X-TFC355

obtains failure predictions with a confidence of about 10 days. Importantly, the physics-informed structure of X-TFC helped to

suppress model overfitting, compared to traditional machine learning models applied directly to SCADA signals (Desai et al.,

2020). This confirms the versatility and applicability of the X-TFC framework to both vibration- and SCADA data-based HIs.

This widens the scope of prognostics applications for wind turbines, enabling early and reliable failure prediction even when

only typical SCADA data are accessible.360

6 Conclusions

In this work, we have introduced and demonstrated the application of the X-TFC as a PIML framework for predicting the RUL

of wind turbine gearbox bearing cracks. By embedding Head’s fracture-mechanics model directly into the learning objective,

X-TFC balances fidelity to HIs based on both vibration and SCADA data with consistency to the differential crack-growth

law. In particular, we calibrated the baseline PIML time-domain solution to be zero for the full 1,475-hour vibration-based HI365

dataset from a cracked high-speed bearing in a 2.2-megawatt wind turbine gearbox and full physics weighting (λphysics = 1) to

a value of HI equal to 1, indicating a high possibility of bearing damage and need to perform maintenance. Lower values of

weights and purely data-driven regression (λphysics = 0) still lead to a good accuracy in RUL prediction with less than an error

of 60 hours. Even when only 25% (or less) of the vibration-based HI data are available, heavy weighting on the physics loss
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Figure 10. Epistemic uncertainty quantification with SCADA-based HI of two different gearbox bearings, considering λphysics = 1 on the

equation loss, and three CI with 67%, 95%, and 99.7% confidence obtained with 100 MC realizations. (a) Gearbox bearing #1. (b) Gearbox

bearing #2.

yields RUL errors below 60 hours, a four-fold improvement over the data-only case (≈ 600 hours). This demonstrates X-TFC’s370

ability to leverage domain knowledge to fill gaps in noisy, sparse, or intermittent monitoring data, in very low computational

times (in the order of milliseconds). To further enhance the interpretability and robustness of these predictions, we introduced

a MC ensembling strategy (MC X-TFC) to quantify epistemic uncertainty. This approach produces CIs for the estimated RUL

by propagating uncertainty due to both model initialization and measurement noise, thereby enabling probabilistic forecasting.

These intervals provide insight into the reliability of each prediction and help operators assess risk in real-time maintenance375

planning. Finally, as shown for this case, the irreducible aleatoric uncertainty is high due to the natural variability of the HI

data.

These results demonstrate the potential of X-TFC as a powerful, data-efficient, and computationally light methodology for

bearing fatigue-crack prognostics in rotating machinery. By guaranteeing physically plausible degradation trajectories regard-

less of data sparsity, X-TFC enables earlier and more reliable maintenance decisions, with the potential to reduce unplanned380

downtime and O&M costs for wind turbine gearboxes. Our study, in its early stage, focuses on HI data derived from bearing

cracks and employs Head’s theory as the governing crack-growth law. By validating our methodology using HI data generated

from both vibration and SCADA datasets, we confirm its versatility to bearings of multiple gearbox manufacturers, models

and ratings. To capture more realistic wind-turbine bearing behavior, our PIML framework should be validated against larger,

more diverse datasets. These models would enable real-time monitoring of bearing health by continuously ingesting streaming385

data and updating predictions as new information arrives.

Future extensions should also examine fatigue cracking in pitch bearing rings, which may require more comprehensive

fracture-mechanics models such as multi-phase Paris laws or dislocation-theory blends, to capture more complex and realistic

nonlinear crack–load interactions. Continued development of UQ capabilities, such as MC X-TFC, will also be critical for

producing probabilistic RUL estimates with actionable confidence bounds, especially in high-stakes decision environments.390
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